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ABSTRACT 
This work aims to investigate the automatic generation of Verilog 
code, representing digital circuits through Grammatical Evolution 
(GE). Preliminary tests using a simple full adder generation 
problem have been performed.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis, program verification.  

General Terms 
Design, Verification. 

Keywords 
Grammatical Evolution, Automatic Code Generation, Verilog. 

1. INTRODUCTION 
Application of a HDL (Hardware Description Language) 
represents a basic step in the ASIC (Application Specific 
Integrated Circuit) design flow. In this context, (mostly) a digital 
circuit is represented in Verilog or VHDL. Then simulations are 
performed to check the functionality of the generated circuit 
representation. If the circuit model generated by a HDL shows the 
expected behavior, synthesis of the circuit, the conversion of the 
HDL code to an ensemble of logic gates, follows [2]. Because the 
syntax of Verilog is simpler, Verilog code generation is aimed for 
in this study.  

In Verilog, circuits can be described at various abstraction levels: 
behavioral, structural and RTL (Register Transfer Level) coding 
[4]. Behavioral coding provides a “black box” representation of 
the circuit to be designed and cannot be synthesized. Structural 
coding reflects components of a design (e. g. logic gates) and 
interconnections between them. RTL coding, representing the 
functionality of a design at register transfer level, employs only 
the synthesizable portion of Verilog syntax. The most descriptive 
type is behavioral, then RTL and finally structural coding [2].  
  

Generation of synthesizable Verilog code, using RTL coding, is 
intended within the scope of this work. Circuit models generated 
by synthesis tools stand in strong correlation with the HDL code 
written to represent the functionality of the circuit to be designed 
[2]. Automatic Verilog code generation through Grammatical 
Evolution covers this step.  

2. DETERMINATION OF THE 
EVOLUTIONARY TECHNIQUE SUITED 
TO VERILOG CODE GENERATION 
2.1 Genetic Programming (GP) 
The first technique considered was Genetic Programming (GP). 
Since each element in the solution space of the problem is 
depicted as a tree, GP provides a proper representation 
mechanism for the automatic code1 generation paradigm [1]. 
Main limitation of GP over crossover and mutation is closure. 
Closure allows any two points in a tree representing a computer 
program to be crossed over without loss of validity [11]. The set 
of syntactically valid individuals should be closed over the 
genetic operations. To achieve this, each non-terminal node of the 
tree representation of a program is expected to have the same arity 
and a return value of the same type [10].  

Verilog syntax permits the use of code blocks such as “if” and 
“always”, which should be protected against the destructive 
operation of crossover. GP’s modularization scheme, 
Automatically Defined Functions (ADFs) can be used to achieve 
this. Besides, Verilog syntax constraints include: 

1. An input variable on the left hand side of an 
assignment is not allowed. 

2. An assignment cannot be generated as the condition 
statement of an “if” or “always” block. 

3. Depending on the nature of the circuit to be 
represented, zero or more “always” blocks or alternatively zero or 
more assignment statements should be brought together. For 
instance, an expression defining the right hand side of an 
assignment, or a conditional statement (expected to be used in the 
context of an “if” or “always” block) should not be generated 
without context to represent a line of code.  

If standard GP is used, the set of non-terminals consist of Verilog 
operators. To define constraint 1, e. g., the left child of a subtree 
having an assignment operator in its root should be restricted to 
include an element from the set of output variables, while various 
logical, bitwise, reduction or concatenation operators can be 
placed at the right hand side child. As no rules can be defined to 
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1 In this work, “code” is used to specify Verilog code.  



manipulate the selection on the function (non-terminal) and 
terminal set to determine the function or terminal corresponding 
to a certain node of the tree, generation of syntactically correct 
Verilog code cannot be guaranteed if standard GP is employed.   

To overcome the mentioned problem of standard GP, GP variants 
such as Grammatically Based Genetic Programming [12], 
Strongly Typed Genetic Programming (STGP) [3] or Derivation 
Tree Based Genetic Programming (DTGP) [10] are introduced. 
Grammatically Based Genetic Programming benefits from context 
free grammars to meet structural requirements. The derivation 
steps for each individual (according to the preset grammar 
defining constraints to be followed) are given as the nodes of the 
tree representing the individual. The program code of the 
individual can be detected by traversing the leaves of the tree 
(derivation tree) from left to right [12]. In STGP, the number and 
type of arguments for each function and the return type of the 
function (the “signature” of a function) is defined before the 
construction of the initial population to force the generation of 
valid individuals only. Since the signatures are to be preserved 
over genetic operations, more sophisticated operators than the 
ones used by standard GP are needed. STGP uses the basic tree 
structure of the standard GP [3]. DTGP aims to design solely 
syntactically correct individuals by introducing constraints as 
derivation trees [10]. Derivation trees represent individuals as 
well. 

The modified approaches can be used to assign different subsets 
of function and non-terminal sets as arguments to functions, thus 
all appear to be suitable to define Verilog syntax constraints.  

2.2 Probabilistic Incremental Program 
Evolution (PIPE) 
Another technique suitable for automatic code generation is PIPE 
(Probabilistic Incremental Program Evolution) [9]. Individuals are 
represented by n-ary trees, n being the maximum arity. Programs 
are generated in accordance with the probabilistic prototype tree 
(PPT) suited to the problem at hand. The PPT is a complete n-ary 
tree. Each node of PPT contains a variable probability vector and 
each element of the vector corresponds to an element of the 
function or terminal set. Nodes are characterized by their depth 
and width coordinates. To determine the terminal or function 
corresponding to a certain node of an individual, the node of PPT 
having the same coordinates is examined. This node gives the 
probability of association of a certain terminal or function with 
the node in the individual tree under operation. Initially the PPT 
contains only the root node. Subtrees of PPT are created 
dynamically, when a function is selected for a node in the 
individual tree, and no node (or an insufficient number of nodes) 
is present to define its arguments in the PPT (growing). In a 
similar manner, subtrees of PPT not required as function 
arguments are pruned. After a population gets evaluated, learning 
from population (PPT probabilities are modified to increase the 
probability of generating the best program found in the current 
generation.) and mutation of the PPT (influenced by the current 
best solution) follows. This is the only genetic operation used. 

If a node in the PPT has a dominant probability for an assignment, 
e.g., the children of this node, corresponding to the arguments, 
should be organized to generate an output variable on the left 
hand side to stay in accordance with constraint 1. This could be 
achieved by setting the probability vectors corresponding to 
arguments accordingly, but PIPE does not permit such a 

modification. As long as no growing is required, the nodes of PPT 
cannot be manipulated in the generation phase of an individual. If 
growing were required, the new node to be inserted to generate an 
argument could not be determined in advance without any 
knowledge about the function associated with the parent node 
(since arguments are function dependant) and PIPE does not 
provide such an “inter-node communication” mechanism. Hence, 
PIPE turns out not to be suited to the Verilog code generation 
problem. 

2.3 Grammatical Evolution (GE) 
A method making use of context free grammars, Grammatical 
Evolution (GE) [7] was examined next. GE is capable of 
generating compilable code in any language, provided that the 
search space is limited by the BNF (Backus Naur Form) 
representation of the language concerned. Depending on the 
nature of the problem, a subset of the BNF representation can be 
employed to further restrict the search space. The first step in 
applying GE to a problem covers the determination of a BNF 
representation [8]. BNF representation defines a set of production 
rules that map non-terminals to terminals.  

In GE, the individuals are represented as binary strings of fixed 
length. The binary string is organized as a set of adjacent codons 
of 8 bits [7]. However, which (adjacent) portion of codons is to be 
reflected on the phenotype changes from individual to individual. 
GE can be regarded as a variable length linear genome system, 
since the size of genetic material to be reflected on the phenotype 
changes from individual to individual [8].  

To generate an individual, first the start symbol, a non-terminal, is 
mapped.  Production rules provide all possible mappings (various 
non-terminals or terminals) for a non-terminal. To determine 
which mapping to use, the integer value of each codon of 8 bits is 
calculated. Then, a rule to map a non-terminal is determined by 
the modulo operation of the integer codon value by the number of 
production rules associated with the current non-terminal [8]. If a 
non-terminal characterized by the 3 production rules <binary-op> :: 
<bitwise-and> (0) | <bitwise-or> (1) | <bitwise-xor> (2) is to be mapped 
and the codon value read is 7, e.g., rule 1 (7 mod 3), namely 
bitwise-or will be selected.  IN GE, to determine a production 
rule, each time a different codon is read and the binary string 
corresponding to an individual is traversed [7]. It is probable that 
the generated code of an individual contains non-terminals, when 
the genotype of the individual is fully traversed. Then, the codons 
of the individual are reused by wrapping the binary string 
genome. In this manner, a codon might be used multiple times 
until all non-terminals in the generated code are mapped. The 
relationship between codons and integers are one-to-one, but 
depending on the non-terminal under operation, the same codon 
may cause different production rules to be selected [7]. If a codon 
value results in the same production rule to be selected over and 
over, invalid individuals are very likely to occur. To help 
preventing this situation, the maximum number of wrapping 
events is defined as a parameter of GE. If an individual remains 
still invalid after the preset permitted maximum numbers of 
wrappings are carried out, it gets penalized with the lowest 
possible fitness value. To get rid of invalid individuals –as well as 
to eliminate those with low fitness values in an effective manner- 
steady state replacement techniques can be used [5, 6].  



2.4 Evaluation of the Techniques  
Bias is defined as all factors having an influence on the form of 
the solutions. A bias is characterized by its strength and 
correctness. The more constraints a bias defines, the stronger the 
bias is. Correctness is taken as a measure of how well a bias is 
suited to a problem [11]. The solution space should be biased to 
accelerate the system to find a solution. Verilog syntax represents 
the correct bias for the automatic Verilog code generation 
problem. The smaller a subset of the syntax is chosen, the 
stronger the bias will be. With no bias, individuals violating the 
Verilog syntax will occur more frequently. They can be penalized 
by worst-case fitness values; however, they often cannot be 
evaluated by a fitness function. Even if they can be corrected, 
they consume system resources [10].  

Neither standard GP nor PIPE is suited for a bias (Verilog syntax 
or a subset thereof) definition for the problem at hand, thus both 
get eliminated. Candidate techniques are the GP variants 
mentioned in Section 2.1 and GE. From the GP variants, DTGP 
and grammatically based GP suffer from extensive space 
consumption, because the representation (derivation tree) includes 
not only the generated code of an individual but also the 
production rules employed. STGP uses the same representation as 
standard GP, hence is simpler from this viewpoint. But the 
simplest representation is introduced by GE. Moreover, for 
DTGP, grammatically based GP and STGP, the operator 
complexity is higher when compared to the standard GP. GE turns 
out to be the simplest method with respect to operators as well 
[12, 10]. Various kinds of GA bit operators can be applied with 
GE. Since BNF notation (given in IEEE Std 1362-2001: Verilog 
Hardware Description Language) represents the most powerful 
definition of Verilog syntax and because of its simple 
representation and operators, in this study, GE is chosen as the 
evolutionary technique to be employed. 

3. AUTOMATIC VERILOG CODE 
GENERATION EXAMPLE 
3.1 Preparation 
As a simple first example, a one bit full adder is chosen. The full 
adder is expected to calculate the sum s of its one bit inputs a and 
b by taking the input carry cin into consideration. Moreover, the 
value of the output carry cout has to be determined. The fitness of 
an individual is the number of valid outputs generated over the 
whole 8 test cases (outputs are combined to a vector and 
evaluated simultaneously over the 8 test cases). The evaluation 
stops when an individual of fitness 8 (an optimal solution) is 
encountered or the maximum number of fitness evaluations is 
encountered. The truth table is given Figure 1. Open source Icarus 
Verilog [14] is employed as the Verilog compiler and simulator. 
The GE tool from [13] used.  

The BNF for the subset of Verilog syntax used in this example 
problem is given below:  

< S > :: < blocking-assignment-s > < blocking-assignment-cout > 
< blocking-assignment-s > :: assign s = < rhs > ; 
< blocking-assignment-cout > :: assign cout = < rhs > ; 
< rhs > :: < binary-op > | < logical-not > 
< binary-op > :: < bitwise-and > | < bitwise-or > | < bitwise-xor > 
< bitwise-and >:: (< argument > & < argument > ) 
< bitwise-or > :: ( < argument > | < argument > ) 
< bitwise-xor > :: ( < argument > ^ < argument > ) 
< logical-not > :: ! ( < argument > ) 

< argument > :: < invar >| < binary-op-out > | < logical-not-out > 
< argument-out > :: < invar > | <binary-op-in>| < logical-not-in > 
< binary-op-out > :: < bitwise-and-out > | < bitwise-or-out > 

| < bitwise-xor-out > 
< bitwise-and-out > :: (< argument-out > & < argument-out >) 
< bitwise-or-out > :: ( < argument-out > | < argument-out > ) 
< bitwise-xor-out > :: ( < argument-out > ^ < argument-out > ) 
< binary-op-in > :: < bitwise-and-in > | < bitwise-or-in > 

| < bitwise-xor-in > 
< bitwise-and-in > :: ( < invar > & < invar > ) 
< bitwise-or-in > :: ( < invar > | < invar > ) 
< bitwise-xor-in > :: ( < invar > ^ < invar > ) 
< logical-not-out > :: ! ( < argument-out > ) 
< logical-not-in > :: ! ( < invar > ) 
< invar > :: a | b | cin  

To strengthen the bias, all output variables are forced to be 
assigned a proper expression. Moreover, to prevent an unlimited 
growth of nested statements (since Verilog operators can accept 
statements including Verilog operators as arguments), maximum 
number of nested statements is bounded to be 3.  

Bitwise mutation at a rate of 0.01 and uniform crossover with 
probability 0.5 are employed. Two parents are selected through 
binary tournaments to participate in reproduction. If the generated 
child (the corresponding binary string) already exists in the 
population or if its fitness is less than the fitness of the worst 
individual in the population, it is discarded (duplicate 
elimination). After each insertion into the population, the worst 
individual is eliminated. Hence, the individuals in the population 
are maintained by a steady state approach. Codons of 8 bits are 
used. An individual consists of a chromosome of length 160 bits 
and there are 200 individuals in the population. The maximum 
number of fitness evaluations is limited to be 100000. All 
parameters are determined empirically and further tests are being 
carried out to find optimal settings.  

Table 1. Truth Table of the Full Adder 
a b cin cout s 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

3.2 Results 
An optimal solution (an individual of fitness 8) was generated 
after 50369 fitness evaluations. The generated individual employs 
24 codons (and a wrapping, since a maximum of 20 codons per 
individual is available). The Verilog code evolved is as given in 
the first column of Table 2. Another individual of fitness 8 
according to Table 1 is generated after 19772 fitness evaluations. 
Depicted on the right column of Table 2, this individual employs 
26 codons, thus a wrapping as well. (In Table 2, Verilog operators 
&, |, ^ and  ! represent logical and, or, xor and not respectively.) 

35 runs were performed, and only 2 of them resulted in a 
(optimal) solution. Hence, in spite of the strong bias employed, 
the probability of success [12] was only about %5.7. Obviously, 
runs were terminated too early (“Failing” runs were terminated 
after 100000 fitness evaluations were carried out and the majority 
of them ended up with a best individual of fitness 7.). Since 



evolutionary techniques are stochastic, statistical methods should 
be used to determine the expected value range for success.   

Table 2. Examples of Generated Verilog Codes 
module adder(a,b,cin,s,cout); 
input a; input b; input cin;  
output s; output cout; 
assign s=(a^(b^cin)); 
assign cout=(((b^a)&(a^cin)) 
^a); 
endmodule //adder 

module adder(a,b,cin,s,cout); 
input a; input b; input cin;  
output s; output cout; 
assign s=(!((a^cin))^!(b)); 
assign cout=((cin|b)^ ( 
(cin^b )&!(a))); 
endmodule //adder 

On the other hand, when the problem is partitioned, so that 
expressions for s and cout are evolved separately, a probability of 
success of 1 was encountered for both, s and cout, when 20 runs 
per each output were performed. Each run was able to yield a 
solution of fitness 8 with less than 100000 fitness evalutions by 
then. The %95 confidence interval for number of fitness 
evaluations required to locate the optimum is found out to be  

%95 CI = 242.1 to 500.9 for s and  
%95 CI = 4424.2 to 9819.1 for cout. 

4. DISCUSSION 
According to the results of experiments, introduction of an 
encapsulation scheme is suspected to be capable of improving 
performance dramatically.  

Although the full adder problem is of minimal complexity and the 
BNF specification represents a strong bias (s and cout are forced 
to participate in assignments) it proved to be a good starting point. 
However, more work is required to tune the current method and to 
find better parameter settings to improve average performance.  

5. FUTURE WORK 
Measures to improve efficiency and average performance should 
be taken. After having stabilized an effective scheme, multiple bit 
adder code is intended to be generated. After this, the next step 
will be to model a sequential circuit. The duplication operator 
mentioned in [7] is not currently employed. Introduction of this 
operator may improve performance. Furthermore, a scheme 
allowing definition of zero or more (up to a limit) temporary 
variables can be added to the grammar, which can be useful in 
applications requiring multiple nested statements. Also an 
adaptive method for the grammar representation can be 
introduced. For instance, if an operator taking input variables as 
arguments has selected one of the inputs and needs more inputs to 
be placed within the same statement, it can be forced to select 
another input at the next step. This will prevent occurrence of 
statements like (inputi ^ inputi) & (inputi ^ inputi), which do not 
seem to be very useful if constants 1 and 0 are presented in the 
grammar. (The current implementation does not employ any 
constants.) 

The results obtained from the preliminary experiments seem to be 
promising. Current work is being carried out to address some of 
the issues mentioned above.  
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