
Automatic Verilog Code Generation through Grammatical
Evolution

Ulya R. Karpuzcu
Department of Computer Engineering

Istanbul Technical University
Maslak 34469 Istanbul, Turkey

karpuzcu@itu.edu.tr

ABSTRACT
This work aims to investigate the automatic generation of Verilog
code, representing digital circuits through Grammatical Evolution
(GE). Preliminary tests using a simple full adder generation
problem have been performed.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis, program verification.

General Terms
Design, Verification.

Keywords
Grammatical Evolution, Automatic Code Generation, Verilog.

1. INTRODUCTION
Application of a HDL (Hardware Description Language)
represents a basic step in the ASIC (Application Specific
Integrated Circuit) design flow. In this context, (mostly) a digital
circuit is represented in Verilog or VHDL. Then simulations are
performed to check the functionality of the generated circuit
representation. If the circuit model generated by a HDL shows the
expected behavior, synthesis of the circuit, the conversion of the
HDL code to an ensemble of logic gates, follows [2]. Because the
syntax of Verilog is simpler, Verilog code generation is aimed for
in this study.

In Verilog, circuits can be described at various abstraction levels:
behavioral, structural and RTL (Register Transfer Level) coding
[4]. Behavioral coding provides a “black box” representation of
the circuit to be designed and cannot be synthesized. Structural
coding reflects components of a design (e. g. logic gates) and
interconnections between them. RTL coding, representing the
functionality of a design at register transfer level, employs only
the synthesizable portion of Verilog syntax. The most descriptive
type is behavioral, then RTL and finally structural coding [2].

Generation of synthesizable Verilog code, using RTL coding, is
intended within the scope of this work. Circuit models generated
by synthesis tools stand in strong correlation with the HDL code
written to represent the functionality of the circuit to be designed
[2]. Automatic Verilog code generation through Grammatical
Evolution covers this step.

2. DETERMINATION OF THE
EVOLUTIONARY TECHNIQUE SUITED
TO VERILOG CODE GENERATION
2.1 Genetic Programming (GP)
The first technique considered was Genetic Programming (GP).
Since each element in the solution space of the problem is
depicted as a tree, GP provides a proper representation
mechanism for the automatic code1 generation paradigm [1].
Main limitation of GP over crossover and mutation is closure.
Closure allows any two points in a tree representing a computer
program to be crossed over without loss of validity [11]. The set
of syntactically valid individuals should be closed over the
genetic operations. To achieve this, each non-terminal node of the
tree representation of a program is expected to have the same arity
and a return value of the same type [10].

Verilog syntax permits the use of code blocks such as “if” and
“always”, which should be protected against the destructive
operation of crossover. GP’s modularization scheme,
Automatically Defined Functions (ADFs) can be used to achieve
this. Besides, Verilog syntax constraints include:

1. An input variable on the left hand side of an
assignment is not allowed.

2. An assignment cannot be generated as the condition
statement of an “if” or “always” block.

3. Depending on the nature of the circuit to be
represented, zero or more “always” blocks or alternatively zero or
more assignment statements should be brought together. For
instance, an expression defining the right hand side of an
assignment, or a conditional statement (expected to be used in the
context of an “if” or “always” block) should not be generated
without context to represent a line of code.

If standard GP is used, the set of non-terminals consist of Verilog
operators. To define constraint 1, e. g., the left child of a subtree
having an assignment operator in its root should be restricted to
include an element from the set of output variables, while various
logical, bitwise, reduction or concatenation operators can be
placed at the right hand side child. As no rules can be defined to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO)’05, June
25–29, 2005, Washington DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00.

1 In this work, “code” is used to specify Verilog code.

manipulate the selection on the function (non-terminal) and
terminal set to determine the function or terminal corresponding
to a certain node of the tree, generation of syntactically correct
Verilog code cannot be guaranteed if standard GP is employed.

To overcome the mentioned problem of standard GP, GP variants
such as Grammatically Based Genetic Programming [12],
Strongly Typed Genetic Programming (STGP) [3] or Derivation
Tree Based Genetic Programming (DTGP) [10] are introduced.
Grammatically Based Genetic Programming benefits from context
free grammars to meet structural requirements. The derivation
steps for each individual (according to the preset grammar
defining constraints to be followed) are given as the nodes of the
tree representing the individual. The program code of the
individual can be detected by traversing the leaves of the tree
(derivation tree) from left to right [12]. In STGP, the number and
type of arguments for each function and the return type of the
function (the “signature” of a function) is defined before the
construction of the initial population to force the generation of
valid individuals only. Since the signatures are to be preserved
over genetic operations, more sophisticated operators than the
ones used by standard GP are needed. STGP uses the basic tree
structure of the standard GP [3]. DTGP aims to design solely
syntactically correct individuals by introducing constraints as
derivation trees [10]. Derivation trees represent individuals as
well.

The modified approaches can be used to assign different subsets
of function and non-terminal sets as arguments to functions, thus
all appear to be suitable to define Verilog syntax constraints.

2.2 Probabilistic Incremental Program
Evolution (PIPE)
Another technique suitable for automatic code generation is PIPE
(Probabilistic Incremental Program Evolution) [9]. Individuals are
represented by n-ary trees, n being the maximum arity. Programs
are generated in accordance with the probabilistic prototype tree
(PPT) suited to the problem at hand. The PPT is a complete n-ary
tree. Each node of PPT contains a variable probability vector and
each element of the vector corresponds to an element of the
function or terminal set. Nodes are characterized by their depth
and width coordinates. To determine the terminal or function
corresponding to a certain node of an individual, the node of PPT
having the same coordinates is examined. This node gives the
probability of association of a certain terminal or function with
the node in the individual tree under operation. Initially the PPT
contains only the root node. Subtrees of PPT are created
dynamically, when a function is selected for a node in the
individual tree, and no node (or an insufficient number of nodes)
is present to define its arguments in the PPT (growing). In a
similar manner, subtrees of PPT not required as function
arguments are pruned. After a population gets evaluated, learning
from population (PPT probabilities are modified to increase the
probability of generating the best program found in the current
generation.) and mutation of the PPT (influenced by the current
best solution) follows. This is the only genetic operation used.

If a node in the PPT has a dominant probability for an assignment,
e.g., the children of this node, corresponding to the arguments,
should be organized to generate an output variable on the left
hand side to stay in accordance with constraint 1. This could be
achieved by setting the probability vectors corresponding to
arguments accordingly, but PIPE does not permit such a

modification. As long as no growing is required, the nodes of PPT
cannot be manipulated in the generation phase of an individual. If
growing were required, the new node to be inserted to generate an
argument could not be determined in advance without any
knowledge about the function associated with the parent node
(since arguments are function dependant) and PIPE does not
provide such an “inter-node communication” mechanism. Hence,
PIPE turns out not to be suited to the Verilog code generation
problem.

2.3 Grammatical Evolution (GE)
A method making use of context free grammars, Grammatical
Evolution (GE) [7] was examined next. GE is capable of
generating compilable code in any language, provided that the
search space is limited by the BNF (Backus Naur Form)
representation of the language concerned. Depending on the
nature of the problem, a subset of the BNF representation can be
employed to further restrict the search space. The first step in
applying GE to a problem covers the determination of a BNF
representation [8]. BNF representation defines a set of production
rules that map non-terminals to terminals.

In GE, the individuals are represented as binary strings of fixed
length. The binary string is organized as a set of adjacent codons
of 8 bits [7]. However, which (adjacent) portion of codons is to be
reflected on the phenotype changes from individual to individual.
GE can be regarded as a variable length linear genome system,
since the size of genetic material to be reflected on the phenotype
changes from individual to individual [8].

To generate an individual, first the start symbol, a non-terminal, is
mapped. Production rules provide all possible mappings (various
non-terminals or terminals) for a non-terminal. To determine
which mapping to use, the integer value of each codon of 8 bits is
calculated. Then, a rule to map a non-terminal is determined by
the modulo operation of the integer codon value by the number of
production rules associated with the current non-terminal [8]. If a
non-terminal characterized by the 3 production rules <binary-op> ::
<bitwise-and> (0) | <bitwise-or> (1) | <bitwise-xor> (2) is to be mapped
and the codon value read is 7, e.g., rule 1 (7 mod 3), namely
bitwise-or will be selected. IN GE, to determine a production
rule, each time a different codon is read and the binary string
corresponding to an individual is traversed [7]. It is probable that
the generated code of an individual contains non-terminals, when
the genotype of the individual is fully traversed. Then, the codons
of the individual are reused by wrapping the binary string
genome. In this manner, a codon might be used multiple times
until all non-terminals in the generated code are mapped. The
relationship between codons and integers are one-to-one, but
depending on the non-terminal under operation, the same codon
may cause different production rules to be selected [7]. If a codon
value results in the same production rule to be selected over and
over, invalid individuals are very likely to occur. To help
preventing this situation, the maximum number of wrapping
events is defined as a parameter of GE. If an individual remains
still invalid after the preset permitted maximum numbers of
wrappings are carried out, it gets penalized with the lowest
possible fitness value. To get rid of invalid individuals –as well as
to eliminate those with low fitness values in an effective manner-
steady state replacement techniques can be used [5, 6].

2.4 Evaluation of the Techniques
Bias is defined as all factors having an influence on the form of
the solutions. A bias is characterized by its strength and
correctness. The more constraints a bias defines, the stronger the
bias is. Correctness is taken as a measure of how well a bias is
suited to a problem [11]. The solution space should be biased to
accelerate the system to find a solution. Verilog syntax represents
the correct bias for the automatic Verilog code generation
problem. The smaller a subset of the syntax is chosen, the
stronger the bias will be. With no bias, individuals violating the
Verilog syntax will occur more frequently. They can be penalized
by worst-case fitness values; however, they often cannot be
evaluated by a fitness function. Even if they can be corrected,
they consume system resources [10].

Neither standard GP nor PIPE is suited for a bias (Verilog syntax
or a subset thereof) definition for the problem at hand, thus both
get eliminated. Candidate techniques are the GP variants
mentioned in Section 2.1 and GE. From the GP variants, DTGP
and grammatically based GP suffer from extensive space
consumption, because the representation (derivation tree) includes
not only the generated code of an individual but also the
production rules employed. STGP uses the same representation as
standard GP, hence is simpler from this viewpoint. But the
simplest representation is introduced by GE. Moreover, for
DTGP, grammatically based GP and STGP, the operator
complexity is higher when compared to the standard GP. GE turns
out to be the simplest method with respect to operators as well
[12, 10]. Various kinds of GA bit operators can be applied with
GE. Since BNF notation (given in IEEE Std 1362-2001: Verilog
Hardware Description Language) represents the most powerful
definition of Verilog syntax and because of its simple
representation and operators, in this study, GE is chosen as the
evolutionary technique to be employed.

3. AUTOMATIC VERILOG CODE
GENERATION EXAMPLE
3.1 Preparation
As a simple first example, a one bit full adder is chosen. The full
adder is expected to calculate the sum s of its one bit inputs a and
b by taking the input carry cin into consideration. Moreover, the
value of the output carry cout has to be determined. The fitness of
an individual is the number of valid outputs generated over the
whole 8 test cases (outputs are combined to a vector and
evaluated simultaneously over the 8 test cases). The evaluation
stops when an individual of fitness 8 (an optimal solution) is
encountered or the maximum number of fitness evaluations is
encountered. The truth table is given Figure 1. Open source Icarus
Verilog [14] is employed as the Verilog compiler and simulator.
The GE tool from [13] used.

The BNF for the subset of Verilog syntax used in this example
problem is given below:

< S > :: < blocking-assignment-s > < blocking-assignment-cout >
< blocking-assignment-s > :: assign s = < rhs > ;
< blocking-assignment-cout > :: assign cout = < rhs > ;
< rhs > :: < binary-op > | < logical-not >
< binary-op > :: < bitwise-and > | < bitwise-or > | < bitwise-xor >
< bitwise-and >:: (< argument > & < argument >)
< bitwise-or > :: (< argument > | < argument >)
< bitwise-xor > :: (< argument > ^ < argument >)
< logical-not > :: ! (< argument >)

< argument > :: < invar >| < binary-op-out > | < logical-not-out >
< argument-out > :: < invar > | <binary-op-in>| < logical-not-in >
< binary-op-out > :: < bitwise-and-out > | < bitwise-or-out >

| < bitwise-xor-out >
< bitwise-and-out > :: (< argument-out > & < argument-out >)
< bitwise-or-out > :: (< argument-out > | < argument-out >)
< bitwise-xor-out > :: (< argument-out > ^ < argument-out >)
< binary-op-in > :: < bitwise-and-in > | < bitwise-or-in >

| < bitwise-xor-in >
< bitwise-and-in > :: (< invar > & < invar >)
< bitwise-or-in > :: (< invar > | < invar >)
< bitwise-xor-in > :: (< invar > ^ < invar >)
< logical-not-out > :: ! (< argument-out >)
< logical-not-in > :: ! (< invar >)
< invar > :: a | b | cin

To strengthen the bias, all output variables are forced to be
assigned a proper expression. Moreover, to prevent an unlimited
growth of nested statements (since Verilog operators can accept
statements including Verilog operators as arguments), maximum
number of nested statements is bounded to be 3.

Bitwise mutation at a rate of 0.01 and uniform crossover with
probability 0.5 are employed. Two parents are selected through
binary tournaments to participate in reproduction. If the generated
child (the corresponding binary string) already exists in the
population or if its fitness is less than the fitness of the worst
individual in the population, it is discarded (duplicate
elimination). After each insertion into the population, the worst
individual is eliminated. Hence, the individuals in the population
are maintained by a steady state approach. Codons of 8 bits are
used. An individual consists of a chromosome of length 160 bits
and there are 200 individuals in the population. The maximum
number of fitness evaluations is limited to be 100000. All
parameters are determined empirically and further tests are being
carried out to find optimal settings.

Table 1. Truth Table of the Full Adder
a b cin cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3.2 Results
An optimal solution (an individual of fitness 8) was generated
after 50369 fitness evaluations. The generated individual employs
24 codons (and a wrapping, since a maximum of 20 codons per
individual is available). The Verilog code evolved is as given in
the first column of Table 2. Another individual of fitness 8
according to Table 1 is generated after 19772 fitness evaluations.
Depicted on the right column of Table 2, this individual employs
26 codons, thus a wrapping as well. (In Table 2, Verilog operators
&, |, ^ and ! represent logical and, or, xor and not respectively.)

35 runs were performed, and only 2 of them resulted in a
(optimal) solution. Hence, in spite of the strong bias employed,
the probability of success [12] was only about %5.7. Obviously,
runs were terminated too early (“Failing” runs were terminated
after 100000 fitness evaluations were carried out and the majority
of them ended up with a best individual of fitness 7.). Since

evolutionary techniques are stochastic, statistical methods should
be used to determine the expected value range for success.

Table 2. Examples of Generated Verilog Codes
module adder(a,b,cin,s,cout);
input a; input b; input cin;
output s; output cout;
assign s=(a^(b^cin));
assign cout=(((b^a)&(a^cin))
^a);
endmodule //adder

module adder(a,b,cin,s,cout);
input a; input b; input cin;
output s; output cout;
assign s=(!((a^cin))^!(b));
assign cout=((cin|b)^ (
(cin^b)&!(a)));
endmodule //adder

On the other hand, when the problem is partitioned, so that
expressions for s and cout are evolved separately, a probability of
success of 1 was encountered for both, s and cout, when 20 runs
per each output were performed. Each run was able to yield a
solution of fitness 8 with less than 100000 fitness evalutions by
then. The %95 confidence interval for number of fitness
evaluations required to locate the optimum is found out to be

%95 CI = 242.1 to 500.9 for s and
%95 CI = 4424.2 to 9819.1 for cout.

4. DISCUSSION
According to the results of experiments, introduction of an
encapsulation scheme is suspected to be capable of improving
performance dramatically.

Although the full adder problem is of minimal complexity and the
BNF specification represents a strong bias (s and cout are forced
to participate in assignments) it proved to be a good starting point.
However, more work is required to tune the current method and to
find better parameter settings to improve average performance.

5. FUTURE WORK
Measures to improve efficiency and average performance should
be taken. After having stabilized an effective scheme, multiple bit
adder code is intended to be generated. After this, the next step
will be to model a sequential circuit. The duplication operator
mentioned in [7] is not currently employed. Introduction of this
operator may improve performance. Furthermore, a scheme
allowing definition of zero or more (up to a limit) temporary
variables can be added to the grammar, which can be useful in
applications requiring multiple nested statements. Also an
adaptive method for the grammar representation can be
introduced. For instance, if an operator taking input variables as
arguments has selected one of the inputs and needs more inputs to
be placed within the same statement, it can be forced to select
another input at the next step. This will prevent occurrence of
statements like (inputi ^ inputi) & (inputi ^ inputi), which do not
seem to be very useful if constants 1 and 0 are presented in the
grammar. (The current implementation does not employ any
constants.)

The results obtained from the preliminary experiments seem to be
promising. Current work is being carried out to address some of
the issues mentioned above.

6. ACKNOWLEDGMENTS
This work is being carried out as a senior year graduation project
under the supervision of Asst. Prof. Dr. Sima Uyar in the

Computer Engineering Department of Istanbul Technical
University.

7. REFERENCES
[1] Koza, J., Bennett III F. H., Andre D., Keane M. A. Genetic

Programming III: Darwinian Invention and Problem
Solving. Morgan Kaufmann Publishers, San Francisco, CA,
1999.

[2] Lee, W. F. Verilog Coding for Logic Synthesis. Wiley-
Interscience, Hoboken, NJ, 2003.

[3] Montana, D. J., Strongly Typed Genetic Programming.
Technical Report BBN 7866 Bolt Banek and Newman Inc.,
Cambridge, MA, 02138, 1994.

[4] Navabi, Z. Verilog Digital System Design. McGraw-Hill,
New York, NY, 1999.

[5] O'Neill M., Ryan C. Grammatical Evolution: A Steady State
approach. In Late Breaking Papers at the Genetic
Programming 1998 Conference (Madison, WI, USA, July
22-25, 1998). Madison, WI, Omni Press, 1998.

[6] O'Neill M., Ryan C. Under the Hood of Grammatical
Evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99 (Orlando, FL, USA,
July 13-17, 1999). Morgan Kaufmann Publishers, San
Francisco, CA, 1999.

[7] O'Neill M., Ryan C. Grammatical Evolution. IEEE
Transactions on Evolutionary Computation, 5, 4, (August
2001), 349-358.

[8] Ryan C., Collins J.J., O'Neill M. Grammatical Evolution:
Evolving Programs for an Arbitrary Language. In Proc. of
the First European Workshop on Genetic Programming
(Paris, France, April, 1998). Lecture Notes in Computer
Science Volume 1391, Spriger Verlag, London, UK, 1998,
83-96.

[9] Salustowicz, R.P. and Schmidhuber, J. Probabilistic
Incremental Program Evolution. Evolutionary Computation,
5, 2 (1997), 123-141.

[10] Vanyi R., Zvada S. Syntactically Correct Genetic
Programming. In Proc. of the Grammatical Evolution
(GEWS 2004) Satellite Workshop to Genetic and
Evolutionary Computation Conference (GECCO 2004)
(Seattle, Washington, USA, June 26-30, 2004). S. CDROM,
2004.

[11] Whigham, P. A. Inductive Bias and Genetic Programming.
In Proc. of First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and
Applications (12-14 September 1995) Conference
Publication No. 414, IEEE, London, UK, 1995, 461-466.

[12] Whigham, P. Grammatically-based Genetic Programming.
In Proc. of the Workshop on Genetic Programming: From
Theory to Real-World Applications (Tahoe City, California,
USA, October, 1995), Morgan Kaufmann Publishers, 1995,
33-41.

[13] http://www.grammatical-evolution.org.
[14] http://www.icarus.com/eda/verilog.

	INTRODUCTION
	DETERMINATION OF THE EVOLUTIONARY TECHNIQUE SUITED TO VERILO
	Genetic Programming (GP)
	Probabilistic Incremental Program Evolution (PIPE)
	Grammatical Evolution (GE)
	Evaluation of the Techniques

	AUTOMATIC VERILOG CODE GENERATION EXAMPLE
	Preparation
	Results
	On the other hand, when the problem is partitioned, so that

	DISCUSSION
	FUTURE WORK
	ACKNOWLEDGMENTS
	7. REFERENCES

