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Abstract

Many newly discovered genes are of unknown
function. DNA microarrays are a method for
determining the expression levels of all genes in an
organism for which a complete genome sequence is
available. By comparing the expression changes
under different conditions it should be possible to
assign functions to these genes. However, many
hundreds of thousands of data points may be
produced over a series of experiments. Genetic
programming  provided simple explanatory rules
for gene function from such datasets, where
previous approaches had not succeeded.

1 INTRODUCTION
The greatest challenge to biological science over the next
decade will probably be in the field of functional genomics.
Now that the DNA sequences of entire genomes are
becoming available, we are discovering how incomplete is
our knowledge of biological systems. When the total
number of genes now known to exist in a genome are taken
into consideration, we find that the genes which have well-
defined functions are very much in the minority. The
purpose of functional genomics is to determine the
biological roles of the many previously unknown genes
(Bork et al., 1998; Brent, 2000; Dyer, Cohen & Herrling,
1999; Hieter & Boguski, 1997; Oliver, 1996; Oliver et al.,
1998).
There has been an explosion in the capabilities of the
experimental techniques available to molecular biologists
for the study of functional genomics. Advances in DNA
sequencing and the biomolecular analysis of whole-cells and
cell extracts has led to the generation of data sets the size
and complexity of which easily defy conventional analysis.
There is now a crucial need for new methods of
computational analysis able to extract meaningful

information from these types of data, to enable biologists to
take full advantage of the new experimental technologies.
One of the most critical features required of a numerical
analysis method for functional genomics is that it is
explanatory, i.e. that the information it uncovers is readily
apparent to the investigator. With the exception of rule
induction methods, most learning methods based on (e.g.)
statistical and neural computing approaches (Weiss &
Kulikowski , 1991) do not provide explanatory models of
the type required for a functional genomics study. Whilst
rule induction methods are able to generate explanatory
models, they do not in general scale well with increasing
data set dimensionality. Genetic programming (GP) has
been shown to be able to provide explanatory models for
datasets with extremely high dimensionality (Koza, 1992;
Koza, 1994; Koza et al., 1999), and so was chosen to
perform the functional genomics analysis presented here.

2 DNA MICROARRAY HYBRIDISATION
DNA microarray hybridisation is a new technology which
provides biologists with the ability to measure the
expression levels of many thousands of genes in a single
experiment. Each data point from a DNA microarray
hybridisation experiment represents the ratio of the
(transcriptional) expression levels of a particular gene under
two or more different experimental conditions. For example,
cells grown in media lacking the amino acid tryptophan
would be expected to show different expression levels in the
genes responsible for tryptophan metabolism as compared to
cells grown in complete media. DNA microarray
hybridisation allows the differences in expression levels to
be quantified for every gene in the cells, potentially under
many hundreds of different experimental conditions, and so
provides the sort of information which will lead to the
characterisation of genes which currently have unknown
functions. However, this useful information is frequently
obscured by the vast complexity of the data generated by
this type of experiment.
A microarray hybridisation experiment is performed on a
“DNA chip” containing many hundreds or thousands of
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individual spots. Short, single-stranded DNA molecules are
attached to the chip surface, either using a process akin to
the photolithographic manufacture of semiconductors (de
Saizieu et al., 1998; Lipshutz et al., 1999; Lockhart et al.,
1996) or (more conveniently) by directly spotting DNA
molecules to produce an ordered array (Brown & Botstein,
1999; DeRisi, Iyer & Brown, 1997). Each spot is designed
to contain a unique sequence, complementary to an
individual gene from the genome of the organism being
studied. A microarray chip therefore comprises a grid of
spots, each of which hopefully binds DNA whose sequence
matches a single gene (Figure 1).
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Figure 1: DNA microarray molecular recognition.

When a gene is expressed within a cell, the information it
encodes is copied from the genomic DNA to intermediary
molecules called messenger RNA (mRNA) which are
subsequently translated into the functional protein
molecules. Amongst other things, this is an amplification
mechanism: a single-copy gene can be transcribed into
many thousands of mRNA copies, each of which can then
be translated into many thousands of protein molecules.
Thus, the amount of mRNA transcribed from each gene at
any given time can give an indication of its relative
metabolic activity.
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Figure 2: A typical DNA hybridisation microarray
experiment.

To examine differential expression levels, cells are grown
under two different conditions (Figure 2). The total mRNA
complement of the cells are extracted (step 1), and single-
stranded DNA copies (cDNA) are made using a reverse
transcriptase enzyme (step 2). The cDNA copies are labelled
with fluorescent markers, e.g. green for the control cells and
red for the test cells. The labelled cDNA transcripts are then
mixed together and applied to a microarray chip, where they
bind to appropriate spots in a sequence-specific manner.
Since the amount of cDNA produced for each gene is
determined by the amount of mRNA in the cell extract, each
spot will bind red- or green-labelled cDNA with a ratio
reflecting the relative expression levels in the original cell
samples. Thus, the colour of a spot (red, green, yellow,
orange, etc.) is an indication of the expression level ratio for
a particular gene between the two cell samples, and the
spot’s absolute fluorescence intensity reflects the total
expression level relative to the other genes in the genome.
For organisms whose genomes have been sequenced, the
microarray can be constructed to contain spots for every
known gene in their genome, such that this technique can
provide data describing the expression levels of the entire
genome in a single experiment. Figure 3 shows a typical
microarray image, with the entire yeast genome (6116
genes, 96 intergenic regions and 349 control spots)
represented on an 81 × 81 spot array. A typical microarray
study would generate several dozen of these images, one for
each growth condition (or time point of a time-course
experiment), leading to data sets comprising several
hundred thousand individual measurements.

Figure 3: A microarray image of the entire yeast genome
(from (DeRisi et al., 1997).
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Although supervised learning methods are necessarily
better for the analysis of such microarray data, and have
occasionally been used (Alizadeh et al., 2000; Brown et al.,
1999; Brown et al., 2000; Golub et al., 1999), these require
knowledge of class membership for the examples in the
training set (Kell & King, 2000). Consequently, most
analyses have used unsupervised, clustering methods (Chu
et al., 1998; Eisen et al., 1998; Spellman et al., 1998;
Tamayo et al., 1999).
The data set analysed in this study (available at
http://rana.stanford.edu/clustering/) comprised expression
data for 2467 genes from the baker’s yeast Saccharomyces
cerevisiae, measured in 79 different DNA microarray
hybridisation experiments (Eisen et al., 1998). Six classes
(“Histone”, “Proteasome”, “TCA Pathway”, “Respiratory
Complex”, “Ribosome” and “HTH-containing”) were learnt
from these data, based on known functional assignments
provided in the MIPS Yeast Genome Database
(http://www.mips.biochem.mpg.de/proj/yeast/). The first
five classes are ‘functional’, in that in each case the
members all share a common biological function. The sixth
class is conventionally considered to be structural,
describing the presence of a particular folding motif (a
helix-turn-helix, HTH) within the protein. Being based on
structure rather than function, this class has previously been
considered a  “control” class for the other five (Brown et al.,
1999; Brown et al., 2000), but it is in fact another functional
class since all the training examples are also members of the
“Transcription factor” class. The 79 different experimental
conditions included a time-course study of the cell division
cycle after synchronisation with α-factor arrest, a cell
division cycle after synchronisation by centrifugal elution, a
cell division cycle measured using a temperature-sensitive
cdc15 mutant, sporulation, heat shock, reducing shock, cold
shock and diauxic shift. Sporulation is the generation of a
yeast spore by meiosis, and diauxic shift is a switch from
anaerobic (fermentation) to aerobic (respiration)
metabolism. Heat, cold and reducing shocks are various
physical ways to stress the yeast cells.

3 GENETIC PROGRAMMING
The GP implementation used in this study, developed from
an earlier implementation (Gilbert et al., 1998; Gilbert et al.,
1997; Johnson et al., 2000; Jones et al., 1998; Taylor et al.,
1998; Woodward, Gilbert & Kell, 1999), was capable of
deriving multiple classifier rules incorporating non-linear
multivariate regression and automatic variable selection
simultaneously. It used a linear model representation, was
written in ANSI C, and was run on Pentium III based PC
compatibles under Windows NT 4.0 and on DEC Alpha
LX-164 based workstations under Linux 5.2.
The GP used the arithmetic operator functions add, subtract,
multiply, and protected divide and a Boolean ‘if greater than
or equal to’ function. The if function returned a value of 1.0
if the first argument was greater than or equal to the second
argument, and 0.0 otherwise. To avoid possible numeric
overflows, a protected divide function was used which
returned a numerical value of 1015 for divisions with a

denominator ≤10-15. Additional protection from floating-
point errors for the other operator functions was enforced by
clipping the return value of each node into the range ±1015.
Terminals comprised either floating-point constants
(initialised randomly in the range -10.0 to 10.0 but
subsequently allowed to mutate to any desired value) or
input variables (corresponding to one of the 79 expression
level measurements which comprised the observations for
each gene). The expression level change, E(i,j), for gene j
was defined as the logarithm of the ratio of j’s expression
level under condition i to its expression level in the
reference state (Eisen et al., 1998). This log ratio is positive
if gene j is induced (the expression is increased with respect
to the reference state), and negative if it is repressed (the
expression is decreased). E(i,j) is zero for genes which do not
alter their expression level under the different experimental
conditions. For this data set, E(i,j) ranged from -5.64 to 5.88,
representing expression level changes over almost 6 orders
of magnitude. Approximately 1.9% of the data set
comprised missing data, i.e. points for which
experimentally-determined expression level changes were
unavailable. These missing points were assigned the mean
values for column i (i.e. the mean expression level change
for all the genes under condition i).
The GP initialised the population with individuals
comprising random classifier rules. The performance of
each individual was assessed by counting the number of
correctly-classified genes for a training set comprising 152
representative genes from the six functional classes and 152
non-class member genes. The generalising ability of the GP
models was assessed using a test set comprising a further 76
class members and 76 non-members. For each class, an
equal number of members and non-members was included
in the training and test sets. No information from the test set
was used to guide the evolution of the GP. The number of
genes used in the training and test sets are listed in Table 1.

Functional
Class

Number in
Training Set

Number in
Test Set

Histone 16 6

Proteasome 48 22

TCA Pathway 22 12

Respiratory
Complex 40 20

Ribosome 162 80

HTH-containing 22 10

Table 1: The number of genes used to train and test the GP.

Many of the classes had an extremely small number of
training examples, and it was to the credit of the GP method
that it was able to form good classifier rules using such
limited information.
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Since the dataset contained multiple classes, class
membership was defined in the training examples by
assigning several target output values, with 1.0 for members
of each class, and 0.0 for non-members. Class membership
was not exclusive: some genes were members of more than
one class (e.g. gene YDR178W , coding for the succinate
dehydrogenase anchor subunit, was a member of both the
“TCA Pathway” and “Respiratory Complex” classes). For
this reason, each individual comprised six independently-
evolving classifier rules, one for each class in the training
set. A correct classification (i.e. a “hit”) was assigned when
the output value of the GP-derived rule for any given class
was within 0.01 of the appropriate target output. If all six
rules returned false (i.e. an absolute value < 0.01), the
example was deemed to have an unknown function. The
fittest individuals were those that gave the greatest number
of hits for the training set examples.
It has been observed that GP-generated rules, if allowed to
evolve unchecked, tend to become longer and more
arithmetically complex as the evolution proceeds, a
phenomenon known as bloat. This increase in complexity
reduces the interpretability of the expressions generated and
is likely to lead to over-fitting of the model to the training
set. To combat this, a penalty of 0.01 × N, where N
represents the number of nodes used in the rule, was
incorporated into the fitness calculation. This ensured that,
for a given number of hits, a simpler rule would be chosen
over a longer one. As an additional complexity constraint,
the rules were limited to a maximum of 100 nodes.
The size constraints on the GP rules meant that even the
longest rules could use only a small subset of the available
input variables comprising the dataset. The GP was
therefore compelled to perform an automatic selection of the
variables it used, resulting in predictive models with
significantly lower dimensionality (i.e. using far fewer
variables) than that of the dataset as a whole. The automatic
variable-selection ability of the GP approach is one of the
main benefits of using this as a predictive modelling
method.
The GP used five demes (sub-populations) each of 7,500
individuals. Each run was allowed to continue for a
maximum of 2,000 generations, but the final model was
typically produced after about 300 generations, as the GP
was also allowed to terminate when 100% hits were reached
for the training set. Every 10 generations, the best 5% of the
individuals in each of the four satellite demes replaced the
worst 5% in a central deme seriatim. The best 5% from this
deme updated this central deme then replaced the worst 5%
in each of the satellite demes, resulting in every deme
containing the best 5% of the population as a whole. This
divergent evolution and migration strategy has been shown
to be more effective at solving high-dimensional problems
than a conventional single-population (Whitlock & Barton,
1997).
During each generation, 1,500 new individuals were created
by single-point mutation, and 3,000 by single-point
crossover. Parental selection was proportional to fitness, and
new individuals were retained in the deme if their fitness

was higher than that of the current-worst individual,
maintaining a population size of 7,500.
The GP used a linear representation for the classifier rules,
with each rule comprising an array of function nodes and
arguments. Each node comprised a descriptor block which
determined the node’s properties, and (if appropriate) a list
of arguments. In the example shown in Figure 4, the node
performs a numeric processing function: it returns a number
which is the sum of its two arguments, each of which may
be a floating-point number or an input variable.

Descriptor Argument 1 Argument 2

Type = Number
Function = ADD

Arguments = 2
Type(Arg1) = Number or Variable
Type(Arg2) = Number or Variable I3 0.287

output = I3 + 0.287

Figure 4: An ADD function node from the GP function set.
Like the function nodes, every rule had a descriptor block
which determined its structure (Figure 5). Although the
representation was linear, the flow of operation through the
rule may have been non-linear: the rule may have included
multiple conditional branches, which might have led to
infinite loops. These were trapped by limiting the maximum
CPU time available for the execution of each rule. The input
variables for the rule (In in the examples) obtained their
values from the experimental data set.

Descriptor

I18 + 1.15I21 – E1

If E2 ≥ E4

then 1 else 0I61 + I74

E1 E2 E3 E4

Length = 4
Start = E3

if(I21-(I61+I74)) ≥ (I18+1.15)thentrueelsefalse

Figure 5: The internal representation of a typical rule.

4 RESULTS AND DISCUSSION

The data set was modelled by the GP system for five
replicate runs. Each run produced rules able to classify
correctly genes from the six functional classes based on
their expression patterns as determined by DNA microarray
hybridisation. The classification accuracies for the five runs
are presented in Table 2.
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None of the runs produced a set of six rules with perfect
classifying ability, demonstrating that the globally optimum
set of rules was not found (although the rules from the best
run, number 3, misclassified no training set examples, and
only two from the test set). Over the five runs, at least one
“perfect” rule was found for each class with the exception of
the “Ribosome” class where at least one test set example
was misclassified in every run. However, this was not a case
of an outlier due to experimental error, as the misclassified
genes were different for each of the five “Ribosome” rules,
an indication of the difficulty of the task presented to the GP
system.

Histone Proteasome TCA   Pathway
Train Test Train Test Train Test
16/16 6/6 48/48 21/22 22/22 12/12

16/16 6/6 47/48 21/22 22/22 12/12

16/16 6/6 48/48 22/22 22/22 12/12

16/16 6/6 47/48 21/22 22/22 12/12

16/16 6/6 47/48 21/22 22/22 12/12

Respiratory
Complex Ribosome HTH-containing

Train Test Train Test Train Test
40/40 20/20 162/162 79/80 22/22 9/10

40/40 20/20 161/162 78/80 22/22 10/10

40/40 20/20 162/162 79/80 22/22 9/10

40/40 20/20 160/162 79/80 22/22 10/10

40/40 20/20 161/162 79/80 22/22 10/10

Table 2: Classification accuracies  for the GP models.

It was hoped that a close examination of the structures of the
classifier rules would lead to new insights into biological
systems at the genomic level, and this was indeed found to
be true for many of the rules generated by even this
relatively superficial investigation. For example, the
structurally-simplest rules were derived for the “TCA
Pathway” class. In four of the five runs, the final model
classified this set of samples using the following rule:

if alpha[35] ≥ alpha[49] then “TCA Pathway” else
“Unknown”

Thus, all the TCA pathway genes may be correctly
classified using just the 35-minute and 49-minute points
from the α-factor cell division cycle experiment (the type of
observation which may guide future experimental work).
The TCA genes show a decrease in expression levels over
the 35 to 49-minute time period, whilst every non-TCA

gene in both the training and test sets shows an increase in
expression levels (for clarity we show only the averages for
the class members and non-members –  Figure 6).
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Figure 6: The averaged expression levels for TCA and non-
TCA genes after α-factor synchronisation.

The GP analysis had therefore discovered the fact that a
decrease in expression levels between 35 and 49 minutes
after α-factor synchronisation is a behaviour apparently
unique to the TCA genes which, as far as the authors are
aware, has not been previously reported in the literature.
This is just one example of the wealth of information which
may be discovered by using GP as an explanatory modelling
system for this kind of data, and similar biological insights
could be provided by many of the other rules.
At present, the main objective of a functional genomics
study is to assign functions to genes which are known to
exist but which have never been characterised
experimentally. The GP rules have the ability to perform
this task as well. The rule for the “Ribosome” class derived
during run 1 was:

if (elution[30]-heat[20]-diauxic[b]) ≥
(alpha[119]+1.15335) then “Ribosome” else

“Unknown”

If this rule is applied to the data set as a whole, then 291
genes are selected from the 2,467 with available expression
level data as belonging to the “Ribosome” class. According
to the MIPS database classification, 121 genes are truly
members of this class, and all of these are indeed found by
the rule. Of the other 170 genes flagged as behaving like
ribosomal proteins, most have known or suspected
functions. Interestingly the majority of these (approximately
102 genes) appear to have functionally-similar properties to
ribosomes (which are the organelles responsible for
translating mRNA into protein). For example, genes
involved in protein, amino acid and nucleoside synthesis,
RNA processing, and translation / transcription control are
all particularly prevalent in this list. It appears that the strict
MIPS classifications may, at least in this case, be too
narrow, a general problem of assigning class membership in
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this type of problem (Kell & King, 2000). Although trained
on genes encoding proteins which physically belong to the
ribosome complex itself, the functional rule appears to be
selecting genes with a functionally supportive role as also
being members of this class. Of particular interest are the 12
genes of unknown function which this rule selects as being
functionally-related to the “Ribosome” genes (YCL054W,
YDR087C, YDR446W, YGR041W, YKL009W, YKL191W,
YLR384C, YMR243C, YNL327W, YOL109W, YPL163C and
YPL211W). The authors await with interest the actual
functional classifications which will eventually be assigned
to these genes.

5 CONCLUSIONS
Genetic programming has here been shown to be a uniquely
powerful tool for analysing functional genomics data sets.
Not only can it derive classifier rules with an extremely high
classification accuracy, but the structures of the rules
themselves have been shown to lead to the discovery of
previously unsuspected biological insights into the
functioning of an organism at the whole-genome level. In
contrast to the best previous analysis of these microarray
expression data, we were able to learn the class of HTH
proteins (transcription factors), previously considered
unlearnable (Brown et al., 1999; Brown et al., 2000). We
believe that this is due in part to the ability of the GP to
select those subsets of the available variables (Miller, 1990)
which can best provide a parsimonious explanation of the
problem at hand, consistent with previous general findings
(Seasholtz & Kowalski, 1993; Shaw et al., 1997).
We consider that the benefits of GP analysis for functional
genomics go well beyond simply assigning probable
functional properties to previously-uncharacterised genes, a
task for which it is evidently suitable. Its ability to perform
automatic variable selection means that GP can be used to
guide future experimental work by indicating which of the
many possible experimental conditions are actually most
appropriate, and which biochemical areas might best be
studied by more conventional, deductive approaches (Kell
& Mendes, 2000) if one is interested in a particular gene.
The mechanistic structure of the models has been shown to
provide new and unexpected details on the behaviour of
genes at the functional-class level, leading to a better
understanding of biological systems as a whole. Indeed, GP
has the potential to lead the way in the analysis of functional
genomics data, and by so doing will uncover new insights
into the fundamental principles of biology as we move into
the post-genomic era.
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