
SCALING GENETIC PROGRAMMING TO CHALLENGING
REINFORCEMENT TASKS THROUGH EMERGENT

MODULARITY

by

Stephen Kelly

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

June 8 2018

c© Copyright by Stephen Kelly, 2018

Table of Contents

List of Tables . vii

List of Figures . x

Abstract . xi

List of Abbreviations Used . xii

Chapter 1 Introduction . 1

1.1 Machine Learning and Artificial Behavioural Agents 1

1.2 The Scaling Problem . 2

1.3 On the Significance of Ecology and Bottom-Up, Behaviour-Based De-
velopment . 4

1.4 Genetic Algorithms . 6

1.5 Approach . 10

1.6 Chapter by Chapter Thesis Outline 16

Chapter 2 Foundations . 18

2.1 Modularity and Hierarchical Models 18

2.2 Modular Genetic Programming . 20

2.3 Diversity . 23

2.4 Hierarchical Reinforcement Learning 29

2.5 Transfer Learning . 31

2.6 Summary . 33

Chapter 3 Domain Descriptions: RoboCup and Ms. Pac-Man . . 34

3.1 Overview . 34

3.2 RoboCup Domain Description . 35

3.3 Related Work in RoboCup . 39

ii

3.4 Ms. Pac-Man Domain Description . 42

3.5 Related Work in Ms. Pac-Man . 43

3.6 Summary . 45

Chapter 4 Algorithm Description: Teams of Programs 46

4.1 Overview . 46

4.2 Teams of Programs . 47

4.3 Linear GP Implementation . 52

Chapter 5 Algorithm Description: Policy Trees 56

5.1 Overview . 56

5.2 Initialization and Variation . 57

5.3 Decision-Making in Policy Trees (Evaluation) 57

5.4 Specialization and Diversity Maintenance 59

5.5 Overall Policy Tree Training Algorithm 61

5.6 Multiple Populations and Transfer Learning 63

5.7 Additional Domain-Specific Details 65

Chapter 6 Empirical Evaluation: Policy Trees 67

6.1 Overview . 67

6.2 Experimental Setup . 68

6.3 Half Field Offense Test Performance 71

6.4 Ms. Pac-Man Test Performance . 73

6.5 Significance of Policy Tree Variants 76

6.6 HFO Solution Analysis . 77

6.7 Ms. Pac-Man Solution Analysis . 78

6.8 Comparison of Policy Tree Solution Complexity with SarsaRBF and
MM-NEAT . 80

6.9 Summary . 81

iii

Chapter 7 Domain Description: Arcade Learning Environment . 83

7.1 Overview . 83

7.2 Related Work in the Arcade Learning Environment 85

7.3 Summary . 88

Chapter 8 Algorithm Description: Tangled Program Graphs . . . 89

8.1 Overview . 89

8.2 Initialization and Variation . 90

8.3 Decision-Making in Policy Graphs (Evaluation) 90

8.4 Overall TPG Training Algorithm . 92

8.5 On Diversity Maintenance . 95

Chapter 9 Empirical Evaluation: Tangled Program Graphs 96

9.1 Overview . 96

9.2 Experimental Methodology . 97

9.3 Screen Capture State Space . 98

9.4 Parameterization . 100

9.5 Single-Task Learning . 102

9.6 Multi-Task Learning . 121

9.7 Summary . 136

Chapter 10 Conclusions and Future Work 139

10.1 Summary of Goals, Methods, and Observations 139

10.2 Future Work . 143

Bibliography . 145

Appendices . 159

Appendix A RoboCup Soccer Server Parameters 160

Appendix B Robocup Sensors . 161

iv

Appendix C Ms. Pac-Man Sensors . 162

Appendix D ALE Comparator tables 164

Appendix E Complexity of Deep Q-Network for Reinforcement Learn-
ing in the Arcade Learning Environment 167

Appendix F Additional TPG Multi-Task Learning Results 169

Appendix G Additional Multi-Task Policy Graphs 176

v

List of Tables

4.1 Parameters associated with creating and modifying teams . . . 51

4.2 Parameters associated with creating and modifying programs . 54

5.1 Parameters associated with the overall Policy Tree training pro-
cedure . 63

6.1 Algorithms benchmarked in Section 6.2 69

6.2 Parameterization of team and program populations (Policy Tree
empirical evaluation) . 70

6.3 Rank based summary of Policy Tree configurations 76

8.1 Parameters associated with the TPG training procedure 93

9.1 Parameterization of team and program population (TPG empir-
ical evaluation) . 101

9.2 Wall clock time for making each decision and memory require-
ment (TPG empirical evaluation) 116

9.3 Characterizing overall TPG complexity 117

9.4 Task groups used in MTRL experiments 122

9.5 Summary of MTRL results over all task groups 130

9.6 Complexity of champion multi-task policy graphs from each game
group in which all tasks were covered by a single policy 137

A.1 Soccer server parameter settings 160

B.1 Sensor inputs for the 4v3 Half-field Keepaway task and 4v4 Half-
field Offense task . 161

C.1 Undirected sensor inputs for the Ms. Pac-Man task 162

C.2 Directed sensor inputs for the Ms. Pac-Man task 163

vi

D.1 Average game score of best agent under test conditions for TPG
along with comparator algorithms in which screen capture rep-
resent state information . 165

D.2 Average game score of best agent under test conditions for TPG
(screen capture) along with comparator algorithms based on
prior object/feature identification 166

vii

List of Figures

1.1 Organism ↔ environment interaction loop 2

1.2 Basic workflow of a genetic algorithm 6

1.3 Overview of Policy Trees . 12

1.4 Overview of Tangled Program Graphs 14

2.1 Illustration of a major transition in the Policy Tree repre-
sentation . 27

2.2 Illustration of major transitions and levels of modularity in the
Tangled Program Graph representation 29

3.1 Initial positions for keepaway players at the beginning of an
episode . 36

3.2 Decision tree assumed by RoboCup agents 37

3.3 Initial positions for players at the beginning of an episode of
Half-Field Offense . 38

3.4 Example sensor inputs for the RoboCup environment 39

3.5 4 unique mazes and initial positions for Ms. Pac-Man 43

4.1 Two-step initialization procedure for team and program popu-
lations . 49

5.1 Illustration of the primary concepts in the development of policy
trees . 57

5.2 Illustration of the multi-population model used for transfer learn-
ing with Policy Trees . 65

6.1 Post-training test results for RoboCup Half-Field Offense . . . 72

6.2 Mean post-training test scores for Ms. Pac-Man 74

6.3 Max post-training test scores for Ms. Pac-Man 75

6.4 Step-by-step Half-Field Offense game played by a champion pol-
icy tree . 77

viii

6.5 Example policy tree for Ms. Pac-Man 79

6.6 CPU time for the champion/final policy to select an action in
RoboCup Half-Field Offense (SBB policy tree and SarsaRBF) 81

7.1 Example Atari game environments 83

8.1 Overview of Tangled Program Graph policies (graph-building
variation operators highlighted) 91

9.1 Atari screen quantization procedure 99

9.2 TPG training curves for set of 49 Atari game titles 103

9.3 Development of the number of teams per champion TPG policy
graph as a function of generation and game title 108

9.4 Development of the proportion of input space indexed by cham-
pion TPG policies . 109

9.5 Adapted Visual Field of champion TPG policies in Ms.Pac-Man
and Battle Zone . 110

9.6 Adapted Visual Field of champion TPG policy graph in Up ’N
Down . 112

9.7 Number of operations per frame over all game frames observed
during training (TPG and DQN) 114

9.8 Temporal switching of TPG policy substructures (teams) dur-
ing gameplay . 119

9.9 Test results without MTRL for 3-title game groups 124

9.10 Test results without MTRL for 5-title game groups 125

9.11 TPG multi-task RL results for task group 3.2 128

9.12 TPG multi-task RL results for game group 5.3 129

9.13 Visualization of champion multi-task TPG policy graph from
the group 3.2 experiment . 133

9.14 Visualization of champion multi-task TPG policy graph from
the group 5.3 experiment . 134

ix

9.15 Test results for champion TPG policy graphs from 4 indepen-
dent MTRL experiments in the task group 5.3, each with a
unique setting for the patomic parameter 135

F.1 TPG multi-task RL results for game group 3.1 170

F.2 TPG multi-task RL results for game group 3.3 171

F.3 TPG multi-task RL results for game group 3.4 172

F.4 TPG multi-task RL results for game group 3.5 173

F.5 TPG multi-task RL results for game group 5.1 174

F.6 TPG multi-task RL results for game group 5.2 175

G.1 Champion multi-task TPG policy graph from the group 3.5
experiment . 176

G.2 Champion multi-task TPG policy graph from the group 3.4
experiment . 177

x

Abstract

Algorithms that learn through environmental interaction and delayed rewards, or

reinforcement learning, increasingly face the challenge of scaling to dynamic, high-

dimensional environments. Video games model these types of real-world decision-

making and control scenarios while being simple enough to implement within experi-

ments. This work demonstrates how emergent modularity and open-ended evolution

allow genetic programming (GP) to discover strategies for difficult gaming scenarios

while maintaining relatively low model complexity. Two related learning algorithms

are considered: Policy Trees and Tangled Program Graphs (TPG).

In the case of Policy Trees, a methodology for transfer learning is proposed which

specifically leverages both structural and behavioural modularity in the learner repre-

sentation. The utility of the approach is empirically evaluated in two challenging task

domains: RoboCup Soccer and Ms. Pac-Man. In RoboCup, decision-making policies

are first evolved for simple subtasks and then reused within a policy hierarchy in

order to learn the more complex task of Half-Field Offense. The same methodology

is applied to Ms. Pac-Man, in which case the use of task-agnostic diversity main-

tenance enables the automatic discovery of suitable sub-policies, removing the need

for a prior human-specified task decomposition. In both task domains, the final GP

decision-making policies reach state-of-the-art levels of play while being significantly

less complex than solutions from temporal difference methods and neuroevolution.

TPG takes a more open-ended approach to modularity, emphasizing the ability to

adaptively complexify policies through interaction with the task environment. The

challenging Atari video game environment is used to show that this approach builds

decision-making policies that broadly match the quality of several deep learning meth-

ods while being several orders of magnitude less computationally demanding, both in

terms of sample efficiency and model complexity. Finally, the approach is capable of

evolving solutions to multiple game titles simultaneously with no additional compu-

tational cost. In this case, agent behaviours for an individual game as well as single

agents capable of playing up to 5 games emerge from the same evolutionary run.

xi

List of Abbreviations Used

ADF Automatically Defined Function

AVF Adapted Visual Field

CC Cooperative Coevolution

GA Genetic Algorithm

GP Genetic Programming

HRL Hierarchical Reinforcement Learning

MTRL Multi-Task Reinforcement Learning

RL Reinforcement Learning

SBB Symbiotic Bid-Based Genetic Programming

TD Temporal Difference

TPG Tangled Program Graph

xii

Chapter 1

Introduction

1.1 Machine Learning and Artificial Behavioural Agents

Living organisms interact with their environment through an open-ended sequence of

observations and actions. The organism observes its surroundings and responds by

making decisions and taking actions that affect the world. Most real-world decision-

making problems can be characterized as an environmental interaction of this nature.

An organism’s behaviour is defined by how the sequence of observations, actions, and

environmental changes plays out over time. Adaptation is critical. That is, the term

behaviour only applies to an organism who’s sensory/motor response systems have

been adapted through environmental interaction [23].

Reinforcement learning (RL) is a common means of applying machine learning to

build artificial behavioural agents. RL can be understood as learning how to act in an

environment, that is, how to map situations to actions in the pursuit of a pre-defined

objective [135]. A solution in RL is represented by an agent that develops a decision-

making policy through direct interaction with the task environment. Interactions in

RL are typically episodic, beginning with the agent situated in a start state defined

by the task environment. From there, the agent observes the environment via sensory

inputs, takes an action based on the observation, and receives feedback in the form of

a reward signal. The process repeats in a loop until a task end state is encountered

or the episode ends for another reason, such as a time constraint. The end state

provides the final reward signal that characterizes the quality of the policy, or the

degree of success/failure, Figure 1.1. The policy’s objective is therefore to select

actions that maximize this long-term reward. The potential applications for RL are

vast and diverse, from autonomous robotics [78] to interaction design in video games

[138] and network security [93]. The breadth of these applications has motivated RL

researchers to design frameworks that are general enough to be applied to a variety

of environments without extensive parameter tuning.

1

2

�������	
�

���
�
����� �����
��

��	
�

������

Figure 1.1: Inspired by living organisms, artificial behavioural agents adapt through
interaction with their environment. Feedback from the environment (reward signal)
is only informative after many interactions. The agent’s objective is to maximize its
long-term cumulative reward.

1.2 The Scaling Problem

In real-world applications of RL, the agent is likely to observe the environment

through a high-dimensional sensory interface (e.g. a video camera). However, scaling

to high-dimensional state observations presents a significant challenge for machine

learning, and RL in particular. Each individual input from the sensory interface,

or state variable, may have a large (potentially infinite) number of possible values.

Thus, as the number of state variables increases, there is a significant increase in the

number of environmental observations required for the agent to gain the breadth of

experience required to build a strong policy. This is broadly referred to as the curse

of dimensionality (Section 1.4 of [16]). The temporal nature of RL introduces addi-

tional challenges. In particular, complete information about the environment is not

always available from a single observation (i.e the environment is partial observable)

and delayed rewards are common, requiring the agent to make thousands of decisions

before receiving enough feedback to assess the quality of its behaviour [63]. If the

agent could simultaneously learn a decision-making policy and determine which state

variables to use versus what is irrelevant to the task at hand, it could potentially

mitigate the computational cost of processing a large number of training samples.

This is the nature of the RL algorithm proposed in this thesis.

3

Video Games

Video games provide an interesting test domain for scalable RL. In particular, they

cover a diverse range of dynamic task environments that are designed to be challeng-

ing for humans, all through a common high-dimensional visual interface, or the game

screen, e.g. [14]. Developing behavioural agents, or non-player characters (NPC),

for video games through reinforcement learning is of broad significance to game AI

in general [163], with specific importance to three classes of end user: (1) From the

perspective of the game player, highly-skilled, believable agent behaviours represent

interesting game content and thus enhance the gaming experience. A believable agent

behaviour implies that the agent’s decision-making should be plausible. It is increas-

ingly unacceptable to rely on cheats or global information. Moreover, agents need to

be ‘proficient’ in order to be believable. The more proficient/believable a behaviour,

the more immersive a gaming experience potentially is; (2) From the perspective of

the game designer, NPCs that exhibit human-level competence can be used to simu-

late playthroughs in newly created game environments, automating aspects of quality

control in game design. Furthermore, automated testing of game content is essential

to procedural content generation (i.e. game design by AI); (3) From the perspec-

tive of the AI researcher, games represent an interesting benchmarking environment

characterized by high-dimensional spatial-temporal information. Moreover, the en-

vironments are often non-stationary and subject to partial observability. As such,

games represent a particularly rich combination of challenges for RL.

Artificial Behavioural Agents and Generalization

With regard to constructing behavioural agents for video games through machine

learning, the concept of generalization has been studied primarily from three related

but unique perspectives:

• Domain-Independent AI is concerned with developing learning algorithms that

can be applied to a variety of task domains with minimal prior knowledge and no

task-dependent parameter tuning. To date, this has been the focus of studies

in the Atari 2600 environment, where several approaches have demonstrated

an ability to build policies for multiple game titles using the same learning

4

framework [100, 14, 49, 152, 104]. In these works, a game-specific policy is

developed from scratch for each game title. However, task transfer has also

been employed in the Atari task [22], in which case the agent reuses experience

gained in one or more source game titles to improve learning under a single target

title. The Term ‘General Video Game Playing’ is often used when describing

Domain-Independent AI. However, there is an important distinction between

these terms which we acknowledge below.

• General Video Game Playing is concerned with building agents that are capable

of playing multiple games which they have never seen before [112, 86]. That

is, no off-line experience / training with a specific game environment takes

place prior to evaluation on that game. Thus, while learning is possible during

gameplay, a prior level of general game-playing competence is required.

• Multi-Task Learning is concerned with discovering agent behaviours for multi-

ple tasks simultaneously [142, 109], resulting in multiple task-specific policies

and/or a single policy that is capable of managing multiple tasks (e.g. play-

ing multiple game titles) at a high skill level. Multi-task learning in sequential

decision-making environments is currently seen as an important step toward de-

veloping artificial general intelligence, i.e. algorithms capable of demonstrating

human levels of intelligent behaviour [62, 41]. Indeed, a game-based formulation

of the Turing test has been proposed in which the play of artificial agents are

compared to that of humans [54].

This thesis specifically targets Domain-Independent AI and Multi-Task Learning

in a variety of challenging game environments.

1.3 On the Significance of Ecology and Bottom-Up, Behaviour-Based

Development

The concept of behaviour is derived from observing natural systems. With regard

to modeling behaviour in artificial agents, the central focus of this thesis, it is not

surprising that biologically-inspired mechanisms have proven useful. Specifically, ar-

tificial neural networks and genetic algorithms have been central to the study of

artificial behavioural agents, for example, from the work of Valentino Braitenberg

5

[19] to the current popularity of Deep Learning [100] and Neuro-evolution [127]. The

work herein adds to the latter contemporary approaches to modeling behavioural

agents, and makes a novel contribution through revisiting and implementing some

fundamental ideas in artificial behavioural systems:

• The ecological approach to understanding perception and behaviour [42] empha-

sizes the notion of environmental situatedness, or the idea that an agent/organism

observes and acts within its environment, and relates to the environment on a

specific spatio-temporal scale rather than through a complete, abstracted de-

scription of the world that might be easily understood by an external observer

[27]. A core tenant of the ecological approach is that action and perception

are fundamentally linked [27], which implies that a system of perception, as a

fundamental component of behaviour, is also an adapted property.

• Early work in behavioural robotics by Rodney Brooks emphasized the impor-

tance of behavioural decomposition. Brooks proposed the subsumption archi-

tecture [23], an artificial behavioural system that is incrementally constructed

from multiple interconnected modules, each representing a functionally indepen-

dent learned behaviour. In contrast to a system designed through functional

decomposition (i.e. distinct system components for vision, locomotion, etc.),

behavioural modularity implies that the complexity of the artificial agent is not

derived from the complexity of the world model, but from the interaction among

multiple interconnected behavioural modules within a situated agent, itself in

continuous interaction with the outside world.

Taken together, these points suggest that an artificial behavioural agent is essentially

a Complex System, or a “collection of diverse, connected, interdependent entities

whose behaviour is determined by rules, which may adapt, but need not. The inter-

connections of these entities often produce phenomenon [sic] that are more than the

parts. These phenomenon [sic] are called emergent.”[108]

This work proposes a genetic programming (GP) framework that emphasizes emer-

gent behavioural modularity to addresses challenges in scaling RL to real-world tasks

while maintaining minimal model complexity.

6

Figure 1.2: Basic workflow of a genetic algorithm. Genetic programming implies that
the individuals being evolved are computer programs.

1.4 Genetic Algorithms

As a biologically-inspired approach to machine learning, a Genetic Algorithm (GA)

generalizes the basic principles of biological evolution in order to discover incremen-

tally more sophisticated prediction models. In this work, adopting a GA as the under-

lying adaptive mechanism is partially motivated by a general sense of wonder at the

elegance and sophistication of organisms that have emerged from biological evolution.

Throughout this thesis, the term organism is not only used for biological entities, but

also to describe artificial agents in cases where the role of self-organization should be

emphasized. For example, the nature of GAs allows the development process to be-

gin with the simplest agent representations and then incrementally complexify based

on interaction with the environment, simultaneously learning an effective decision-

making policy and adapting the complexity of the model based on the requirements

of the task.

In a basic generational GA, a population of organisms are randomly initialized

and then iteratively developed over a sequence of generations. In each generation, the

organisms are evaluated on a task and assigned a fitness score, the worst performing

individuals are deleted, and the remaining organisms are sampled and modified to

form the next generation. As in Darwinian evolution, the driving force of development

in GAs is the selection-variation loop, Figure 1.2.

Banzhaf [9] discusses how the selection phase in a GA implies downward causa-

tion in the development of organisms. That is, the high-level interaction between

an organism and its environment determines how lower-level attributes of the organ-

ism (e.g. code, weights, or other representation-specific components) evolve1. GAs

1For completeness, it is important to note that bottom-up causation, or the mapping from low-
level attributes of the organism (e.g. code, weights) to high level attributes such as behaviour,
plays an equally important role. However, such mappings are deterministic in this thesis. That is,
assuming a consistent start state and a deterministic environment, an organism will always exhibit
the same behaviour. As such, less attention is paid to bottom-up causation in this work.

7

present a practical starting point for the open-ended development of complex struc-

tures, where both the nature of an organism’s behaviour and its structural complexity

are emergent properties adapted through the combination of environmental interac-

tion and the selection-variation loop. The concept of emergence is applied here to

indicate that neither properties are explicitly selected for by the GA. That is, while

the GA is designed to generate organisms with increasingly higher fitness, nothing is

specified a priori regarding how an organism might achieve a high fitness score or the

level of complexity necessary. A versatile representation for organisms is critical for

emergence in this respect. This thesis proposes a novel representation which empha-

sizes the role of emergent modularity [107] (and by extension hierarchy) in developing

strong yet efficient agent behaviours.

1.4.1 Genetic Programming

Genetic programming (GP) is the special case of a genetic algorithm where the in-

dividual members of the evolving population are programs [79]. A program’s basic

functionality is to solve a problem by processing input and predicting the best output

to maximize an objective function. Real-world inputs and objective functions are of-

ten noisy and a program is typically required to generalize its operation to input data

not seen during development/training. Under such uncertainty, a program’s input-

output mapping is an approximation, or prediction model [20]. In GP, the mechanism

for adaptation takes the form of a search over the space of possible models. Thus, GP

is a form ofmodel building. This is distinct from other types of machine learning which

complement a pre-existing model or objective function by searching for an optimal

setting for the model’s variables, i.e. parameter optimization. By definition, models

contain more structure than points in multi-dimensional space, and as a result it has

been suggested that model building might be less prone to learning-and-forgetting

[88]. Multi-Task Learning represents a scenario in which multiple, potentially unre-

lated tasks are learned by the same model (See Section 1.2). Thus, the model requires

a mechanism to avoid forgetting one task while learning another [77]. The empirical

study in Section 9.6.6 demonstrates how the GP representation proposed in this work

avoids forgetting by building multiple task-specific modules into the structure of the

learned model.

8

More broadly speaking, there are several advantages in adopting GP. In particu-

lar, programs are capable of representing arbitrarily complex and non-linear functions,

and minimal prior domain knowledge is required when selecting the programs’ func-

tion set. Moreover, GP represents an embedded approach to state variable selection.

That is, the system is capable of determining which state variables to use as part of

the learning process.

The principal disadvantage of GP is that it is often considered computationally

expensive, primarily due to the relatively high cost of evaluating the objective func-

tion. There is a significant cost in maintaining a population of candidate solutions,

many (if not all) of which must be evaluated in the task domain prior to every appli-

cation of selection and variation operators (See Figure 1.2) (the cost of evaluations

is explained in more detail when discussing cost function in the next section). GP

can also be prone to code bloat, where the complexity of programs increases without

improving the quality of the policies they define. That is, the complexity of organisms

becomes disengaged from the requirements of the task environment [6, 124]. Efficient

policy representation in GP is a key factor in addressing the scaling problem, and

adaptively scaling the complexity of organisms in concert with the requirements of

the environment is one of the primary focuses of this thesis.

As in the design of any machine learning algorithm, numerous decisions influence

the overall performance and complexity of a GP system. These design questions can

be categorized by three fundamental considerations: representation, cost function,

and credit assignment. While such categories are not independent and design deci-

sions often involve trade-offs, the following subsections provide an overview of each

category and give a brief justification for the decisions made in this work.

1.4.2 Representation

Representation defines the structure of organisms, including basic elements and the

relations or rules that govern how elements may interact and/or be organized into

complex structures. In the context of this work, individual solutions are composed of

multiple programs working together. As such, representation includes a specification

for the type of programs that will be evolved, linear register machines in this case [20],

and a specification for how multiple programs combine to form an overall solution,

9

all of which is captured by an organism’s low-level encoding, or genotype. Given the

set of possible solutions defined by a particular representation, a search process is

tasked with finding the best one(s) relative to the problem at hand. Thus, a good

representation should be general enough to define complete solutions for a wide variety

of problems without unnecessary complexity and support an efficient search process.

Section 1.5 provides overview of the specific representation considered in this thesis,

with Chapters 4, 5, and 8 providing complete details.

1.4.3 Cost Function

The cost function represents a measure of the quality of an organism’s decision-making

policy relative to the task objective(s). As such, the cost function quantifies aspects

of an organism’s phenotype, or the observable characteristics of the organism as it

interacts with the task environment. In a GA, the cost function is used to assign or-

ganisms with a fitness value. Individuals with higher fitness produce more offspring,

thus directing the search over successive generations to more desirable regions of the

search space. In RL tasks, raw measure of a policy’s quality is the reward signal

received from the environment at the end of an episode. Unfortunately, each episode

of environmental interaction may involve thousands of decision steps, and thus ob-

taining this feedback can be computationally expensive. Furthermore, noise in the

environment (discussed with respect to specific tasks in Chapters 3 and 7) implies

that each policy must be evaluated in multiple episodes, with the cost function de-

rived from the combined outcome. Finally, the raw episode outcome received from

the environment may be augmented with heuristics in order to direct the search. A

common example of this in GAs is diversity regularization, a method of maintaining

population diversity by defining each policy’s fitness as a combination of raw environ-

mental outcome and some measure of uniqueness relative to the rest of the current

population, discussed in detail in Section 5.4.1.

1.4.4 Credit Assignment

Credit assignment is the mechanism used to modify candidate solutions relative to

information obtained through the cost function. In sequential decision-making prob-

lems, the task environment may provide the agent with a reward in response to each

10

action taken (each time-step or interaction step throughout the episode). However,

it is often difficult to determine which specific decision(s) led to ultimate success or

failure. For example, even actions with a neutral or negative step-wise reward may

ultimately contribute to a successful outcome. This is known as the temporal credit

assignment problem [136, 55]. The problem is addressed differently by methods that

perform a learning update relative to each decision and the immediate reward within

the temporal sequence, or ontogenetic learning (e.g Temporal Difference learning,

TD(λ) [136]), and cases such as GP, in which an organism’s decision-making policy is

evaluated as whole based on the final episode outcome only, or phylogenetic learning.

In effect, decision-level credit in GP is applied implicitly, since policies that make

better decisions will receive higher fitness and produce more offspring, thus evolution

directs the search in favour of policies that make individual decisions that contribute

to a positive overall outcome. As such, the issue of temporal credit assignment is ef-

fectively managed through the downward causation implicit in GP (See Section 1.4).

In the context of model building with GP, each learning update effectively creates

a new model (e.g. by selection and variation operators in the GA), and thus the

search process is performed over the space of possible models (decision-making poli-

cies) within a particular representation. Under RL tasks this approach is known as

policy search.

The relative merits of ontogenetic and phylogenetic learning for sequential decision-

making tasks has been the subject of debate [11], and which method is superior for

a particular problem remains an open question, with arguments supporting the ad-

vantages of both phylogenetic [102] and ontogenetic [136, 135] methods. While no

argument is made one way or the other here, this work can be seen as an empirical

example of the strengths of phylogenetic, GP-based RL.

1.5 Approach

This thesis is concerned with two related but unique representations for develop-

ing hierarchical decision-making policies through evolutionary policy search: Policy

Trees and Tangled Program Graphs. Key research contributions are demonstrated

through two extensive empirical evaluations, highlighting the relative merits of each

representation in relation to current state-of-the-art RL algorithms.

11

1.5.1 Teams of Programs and Policy Trees

The representations considered in this work are extensions of the well-established

Symbiotic Bid-Based (SBB) algorithm for evolving teams of programs [91]. SBB

has been shown to build strong policies for a variety of reinforcement learning tasks

[35, 75, 92, 70, 71], owing primarily to two key innovations:

1. Solutions are represented by a team of programs, in which each program defines

a context for deploying a single action. In this context, programs can be under-

stood as value functions for state/action pairs. That is, for each decision made

by a team, each team member (program) processes sensor input (all or part of

the current environmental observation represented as a vector of real values)

and produces a single real-valued output, or bid. The team then deploys the

action associated with the highest-bidding program. The number and comple-

ment of programs per team, as well as the bidding behaviour of each program,

are evolved properties, Figure 1.3(a);

2. A single team of programs represents the smallest stand-alone decision-making

entity. More complex, hierarchical decision-making agents may be constructed

over two independent phases of evolution, where the first phase produces a li-

brary of diverse, specialist teams and the second phase attempts to build more

general policies by reusing the library. The method of hierarchically organiz-

ing teams through code reuse is an example of what Watson and Pollack call

compositional evolution[158], or the evolution of complex structures that com-

bine multiple subcomponents which were previously adapted independently as

stand-alone behaviours. In the case of SBB, symbiotic coevolution provides

the underlying mechanism for building teams of programs and hierarchically

organizing multiple teams into a policy tree, Figure 1.3(b).

The explicitly modular nature of SBB is partly motivated by the intuition that

(automatic) problem decomposition is an important learning skill for artificial agents,

just as it is for humans. Each program learns a unique mapping from state to value,

or bid. Since the team will consider all its members (programs) and select the action

associated with the single highest bidder, the programs within a team collectively rep-

resent a form of lateral problem decomposition. Conversely, policy trees, constructed

12

����������

	
��
�����

�����

���� ���� ���� ����

������

��������

����

��������
�
�

�
�

�
�

�
�

�
�

�
�

�����

�
�

�
�

�
�

(a)

����

���	����

�������

���	����

�
�����

���
��

��������

���� ���� ���� ����

���� ���� ����

�
� �

�

�
�

�
�

�
�

������	��

��
�������

����
� �
�

�
�

�
�

�
�	 �

	
�

	
�

	
�

(b)

Figure 1.3: Overview of Policy Trees. Teams and programs are stored in separate
populations and coevolved. A single team, which is simply a variable length list
of pointers to members of the program population, represents the smallest stand-
alone decision-making entity in SBB (a). Multiple team/program population pairs
can be stacked and developed bottom-up over two phases of evolution (b) to form a
policy tree. In the case of hierarchically stacked populations, or policy trees, programs
above Phase 1 learn state/action mappings in which the ’action’ refers to a previously
evolved (and archived) team. In other words, programs in Phase 2 reuse code from
a previous evolutionary run, learning new contexts in which to deploy a cached team
of programs.

from the bottom up over independent phases of evolution, represent a form of vertical

problem decomposition.

1.5.2 Research contribution 1: A Methodology for Transfer Learning

Using Policy Trees

The first research contribution of this thesis is to demonstrate how vertical decomposi-

tion in SBB Policy Trees can be extended to support task transfer, discovering strate-

gies for difficult gaming scenarios while maintaining relatively low model complexity.

Critical factors in the proposed approach are illustrated through an in-depth study in

two challenging task domains: RoboCup Soccer and Ms. Pac-Man. In RoboCup, it is

shown that policies initially evolved for simple subtasks (Phase 1 of evolution, Figure

1.3(b)) can be reused, with no additional training or transfer function, in order to

improve learning in the complex Half Field Offense (HFO) task (Phase 2 of evolution,

13

Figure 1.3(b)). It is then shown how the same approach to code reuse can be applied

directly in Ms. Pac-Man. In the latter case, the use of task-agnostic diversity mainte-

nance removes the need to explicitly identify suitable subtasks a priori. The resulting

GP policies achieve state-of-the-art levels of play in HFO and surpass scores previ-

ously reported in the Ms. Pac-Man literature, while employing less domain knowledge

during training. Moreover, it is shown that modularity plays an important role in the

development of efficient decision-making policies, which are shown to be significantly

less complex than state-of-the-art solutions in both domains. In addition, special at-

tention is paid to a pair of task-agnostic diversity maintenance techniques and their

importance to the development of strong policies is empirically demonstrated2. This

work is published in [74], c©2017 IEEE. Excerpts are used in this thesis by permission.

1.5.3 Research contribution 2: Addressing the Scaling Problem in GP

Through Emergent Modularity

The principal disadvantage of the Policy Tree approach stems from the fact that each

‘path’ through the tree (of teams) is of equal depth. Thus, a team at the root de-

scribes a policy through a path defined in terms of teams at all prior levels of the

tree. Unfortunately, as the tree depth increases it becomes increasingly difficult to

disambiguate the relation between state and action, as new teams have to operate

‘through’ all previous policy levels. If teams could instead be inter-related through

a graph structure, the potential to retain clarity between state and action could be

retained. Furthermore, while effective, the approach to constructing policy trees de-

scribed above requires that some critical decisions be made a priori: (1) How many

phases of evolution, or levels in the hierarchy, might be useful for a particular prob-

lem? This also implies defining an appropriate diversity maintenance scheme and/or

manually decomposing the task into useful source tasks for phase 1 of evolution. This

assumes that the relevant diversity for a given phase is self evident. However, as

the capacity of a policy improves, the type of diversity and useful task decomposi-

tion might radically change as new parts of the environment are encountered; (2)

What computational budget (generation or evaluation limit) should be granted to

each phase of evolution? While such decisions could be partially automated through

2Preliminary work on the subject of diversity maintenance can be found in [70, 69, 71]

14

����
����

����

����

���	����

�������

���	����

�
� �

�

������

�
�

�
�

�
�

�	�
�� �
�

�
�

�
�

(a) Initial policies

����
����

����

����
����

�
�

�
� �

�

��
�������

������������
������������

���	
�

�
�

�
�

�
�

�
���� �
�

�
�

�
�

(b) Evolved policies

Figure 1.4: Overview of Tangled Program Graphs. Decision-making in each time
step (frame) begins at the root team and follows the edge with the winning program
bid (output) until an atomic action is reached. The initial population contains only
single-team polices (a). Multi-team graphs emerge as evolution progresses (b).

the use of heuristics and competitive coevolution [122], an alternative solution might

be to use emergent modularity [107] to adaptively complexify policies through in-

teraction with the task environment. This idea motivates the second hierarchical

representation proposed and investigated in this thesis: Emergent Tangled Program

Graphs (TPG).

In TPG, evolution begins with a population of simple teams, Figure 1.4(a), which

are then further developed by adding, removing, and modifying individual programs.

TPG extends the SBB approach to team GP to enable emergent behavioural modu-

larity from a single cycle of evolution by adaptively recombining multiple teams into

variably deep/wide directed graph structures, or policy graphs, Figure 1.4(b). The

behaviour of each program, complement of programs per team, complement of teams

per graph, and the connectivity within each graph are all emergent properties of an

open-ended evolutionary process. The benefits of this approach are twofold:

1. A single policy graph may eventually evolve to include hundreds of teams, where

each represents a simple, specialized behaviour (Figure 1.4(b)). However, map-

ping a state observation to an action requires traversing only one path through

the graph from root (team) to leaf (action). Thus, the representation is capable

of compartmentalizing many behaviours and recalling only those relevant to the

current environmental conditions. This allows TPG to scale to complex, high-

dimensional task environments while maintaining a relatively low computational

15

cost per decision.

2. The programs in each team will collectively index a small, unique subset of the

state space. As multi-team policy graphs emerge, only specific regions of the

state space that are important for decision-making will be indexed by the graph

as a whole. Thus, emergent modularity allows the policy to simultaneously

decompose the task spatially and behaviorally, detecting important regions of

the state space and optimizing the decisions made in different regions. This

minimizes the requirement for a priori crafting task-specific features, and lets

TGP perform both feature construction and policy discovery simultaneously.

The RoboCup and Ms. Pac-Man tasks employed for the study of Policy Trees both

assume relatively low-dimensional, human-engineered inputs (e.g. distance and an-

gle measurements) and both tasks are manually decomposable into simpler subtasks,

allowing for intuitive formulation of task transfer. The second large empirical study

in this thesis investigates the utility of TPG under the challenging problem of scal-

ing RL to dynamic, high-dimensional, and partially observable environments which

are not easily decomposable a priori. Significant attention is being paid to frame-

works from deep learning, which scale to high-dimensional data by decomposing the

task through multi-layered neural networks. While effective, the representation is

complex and computationally demanding. In the challenging Atari video game en-

vironment, TPG is compared with several deep reinforcement learning frameworks

as well as more traditional reinforcement learning frameworks based on a priori en-

gineered inputs. Results indicate that the proposed approach matches the quality

of deep learning while being a minimum of three orders of magnitude simpler with

respect to model complexity. This results in real-time operation of the champion RL

agent without recourse to specialized hardware support. Moreover, the approach is

capable of evolving solutions to multiple game titles simultaneously (i.e. Multi-Task

Learning) with no additional computational cost. In this case, agent behaviours for

an individual game as well as single agents capable of playing up to 5 games emerge

from the same evolutionary run [72, 73].

16

1.6 Chapter by Chapter Thesis Outline

This thesis is organized as follows:

Chapter 2 presents the methodological foundations supporting the evolution of

Policy Trees and Tangled Program Graphs. Specific topics reviewed include Hier-

archical Reinforcement Learning (HRL), Cooperative Coevolution and Modularity,

Transfer Learning, and Diversity Maintenance.

Chapter 3 introduces the RoboCup and Ms. Pac-Man task domains and explains

why they are interesting benchmark environments for scalable policy search and trans-

fer learning in particular.

Chapter 4 describes the Symbiotic Bid-Based (SBB) algorithm, detailing the rep-

resentation for teams of programs. SBB is the starting point for both Policy Trees

(Chapter 5) and Tangled Program Graphs (Chapter 8).

Chapter 5 describes the algorithm for code reuse through Policy Trees. Emphasis

is placed on how the architecture is extended to support transfer learning and the

approach taken for defining task-agnostic diversity measures.

Chapter 6 documents an empirical evaluation of transfer learning using Policy

Trees in the RoboCup and Ms. Pac-Man task environments. A direct comparison

is made with Sara (RoboCup) and Neuro-evolution (Ms. Pac-Man) and Policy Trees

are shown to produce highly competitive policies while being much more efficient to

deploy post-training.

Chapter 7 describes the Arcade Learning Environment (ALE), a suite of Atari

2600 video games equipped with an interface for benchmarking high-dimensional vi-

sual reinforcement learning agents. This chapter also reviews recent approaches to

developing both single-task and multi-task Atari game playing agents through deep

learning, neuro-evolution, and temporal difference learning methods.

Chapter 8 describes the Emergent Tangled Program Graph (TPG) algorithm,

detailing how SBB is extended to support open-ended evolution of policy graphs,

and why this development makes sense in the context of high-dimensional, visual

reinforcement learning environments.

Chapter 9 documents an empirical evaluation of TPG in the Arcade Learning

Environment, highlighting TPG’s capability to build both single-task and multi-task

policies that are competitive with results from a variety of deep learning approaches.

17

More importantly, TPG policies are shown to be significantly more efficient to train

and deploy post-training.

Chapter 10 concludes the thesis, summarizes the research contributions, and looks

toward future work.

Chapter 2

Foundations

This chapter presents a review of the fundamental concepts and building blocks sup-

porting the algorithms considered in this thesis. It is by no means an exhaustive

account of research surrounding any particular concept, but rather an introductory

overview of the fundamentals, with references to research that specifically informed

or inspired the work herein.

2.1 Modularity and Hierarchical Models

In this thesis, the term modularity is primarily used to describe a system that is

incrementally constructed from multiple subsystems which were initially developed

independently, or more specifically compositional evolution [158]. An overarching

goal in this research is to propose how two critical properties of such a system can

be automated: 1) The identification of stable building blocks, or subsystems; and

2) Establishing the nature of the interaction among subsystems within a hierarchical

decision-making policy, or module interdependence.

Relative to the first property to be automated, i.e. discovery of stable build-

ing blocks, Herbert Simon [119] suggested that the presence of stable intermediate

structures speeds up evolution by providing building blocks from which increasingly

complex hierarchies may be constructed. Put simply, Simon points out that if a com-

plex system is built from structurally modular building blocks, its development is less

likely to require a restart from scratch should an error be introduced during construc-

tion (See Simon’s famous Watchmaker’s Parable for an illustrative example of this

concept). In other words, modularity helps promote stability in an evolving organism,

preventing a particular genome from being a “House of Cards” [76] in which a single

variation might bring it tumbling down. Ultimately, Simon’s suggestion is that mod-

ular systems are more evolvable, that is, more capable of continuously discovering new

organisms with higher fitness than their parents. This theory has been investigated

18

19

widely among evolutionary biologists [162, 106]. Indeed, the concept has motivated

a breadth of cross-disciplinary research between evolutionary biology and computer

science, with the potential to address fundamental problems in both disciplines [156].

As for the second property to be automated, or the nature of interaction among

subsystems, Watson et al. [158] emphasize that structural modularity (i.e. structural

complexity encapsulated such that dependencies between subsystems are weaker than

dependencies within subsystems) does not imply independence of subsystems. Specifi-

cally, functional interdependence among subsystems is critical for hierarchies in which

all levels of organization are meaningful. In the simplest sense, if we assume that an

organism’s incremental acquisition of modules leads to an incremental improvement

in fitness, then a relationship between modularity and evolvability is obvious. How-

ever, Watson points out that simply accumulating multiple building blocks into an

aggregate system does not capture the full potential of modularity. Although he does

not use the term, he ultimately expresses that module interdependence is essential

for emergence because without interdependence, a hierarchy of subsystems is nothing

more than the sum of its parts (See the analysis of Herbert Simon’s lock picking

example [158] for a clear illustration of the importance of module interdependence).

Watson proposes a formal definition for module interdependence, and argues that

systems with strong module interdependence are evolvable under certain conditions,

namely composition evolution [29].

Regarding the specific approach to GP teaming employed within this work, the

above characterization of modularity implies that a single team of programs represents

the simplest possible subsystem, or module. That is, a team represents the simplest

stand-alone entity capable of being developed independently1. From this starting

point, this thesis investigates two approaches to building artificial behavioural agents

through compositional evolution, or the automated organization of multiple teams

into increasingly complex systems. The first approach, Policy Trees, emphasizes sup-

port for scaling to complex tasks through transfer learning (Section 2.5). In this

context, diversity maintenance (Section 2.3) helps to promote module interdepen-

dence by ensuring subsystems are unique partial solutions. The second approach,

1This perspective does not discount the modularity inherent within a team of programs, it simply
defines the module boundaries at a higher level of abstraction, i.e. stand-alone decision-making
entities.

20

Tangled Program Graphs, introduces a specialized mutation operator and additional

representational rules which allow for a more open-ended form of compositional evo-

lution (Section 2.3.4). In both cases, task domains are assumed in which the general

goal is to identify an agent capable of operating under RL and Multi-Task Learning

in high-dimensional environments.

2.2 Modular Genetic Programming

Modular architectures are a recurring theme in GP, primarily motivated by the ob-

servation that many problems can be solved more efficiently by decomposing them

into sub-problems which may be solved independently, and then assembling the solu-

tions for sub-problems hierarchically to form an overall solution. Early approaches,

for example Koza’s Automatically Defined Functions (ADFs) [80], explored various

methods of supporting automatic encapsulation of code in subroutines which could

then be reused within the evolving programs. Initially, the structure of subroutines

(e.g. the number and type of arguments accepted) were defined a priori and could not

change during evolution. Furthermore, the appropriate number of subroutines for a

particular problem was guessed a priori and specific to a single evolving program, that

is, a single program could reuse its own subroutines but there was no sharing of code

between programs unless crossover at the root of a subroutine’s tree happened to oc-

cur. Furthermore, ADFs force evolution to begin from the most complex structures,

i.e. initial individuals have a full complement of ADFs. This biases the nature of

emergent and self-organizing properties. Koza himself documented the issue of ADFs

making it more difficult to find solutions to tasks than without (Chapter 5 in [80]).

Indeed, ADFs are no silver bullet, for example, including ADFs for the relatively sim-

ple truck reversal task completely failed to identify solutions (Appendix A in [68]).

Extensive prior input with respect to solution modularity is problematic because it

constrains evolution to a potentially erroneous division of labour [107]. As such, sub-

sequent methodologies aimed to minimize the amount of prior knowledge required to

define the modularity appropriate for a particular task. Less constrained approaches

were proposed by Koza [81] and others, for example Coevolving Functions in GP

[2], Adaptive Representations through Learning [115], as well as Tag-Based Modules

[125] all found ways of leveraging modularity to speed up evolution and/or scale GP to

21

more complex tasks. In proposing their Module Acquisition framework [7], Angeline

and Pollack articulate a perspective on modularity to which this thesis subscribes,

specifically, they emphasize that the complexity and “modularizations” of the repre-

sentation can emerge through direct interaction between the organism (solution) and

its environment (problem).

2.2.1 Teaming and Cooperative Coevolution

Early modular representations for GP focused primarily on evolving single-program

solutions. The principal benefits of modularity were in: 1) encapsulating and pro-

tecting partial solutions during evolution and; 2) supporting code reuse (i.e. sharing

of common knowledge). By contrast to the single-program approach, solutions in this

thesis are composed of multiple cooperating programs, i.e. teams of programs [20].

This implies that solutions (teams) are evolved from multiple interacting, coadapted

subcomponents (programs), i.e cooperative coevolution (CC) [114]. CC maintains

the benefits of modularity already identified, while also directly supporting auto-

matic problem decomposition, i.e. the automated discovery of building blocks. In

this work, the approach to team development takes inspiration from biological sym-

biosis [52] in order to explicitly balance functional and structural modularity within

evolving organisms. The remainder of this section elaborates on this perspective of

modularity in CC, beginning with a brief motivation for adopting a symbiotic coop-

erative coevolutionary model.

2.2.2 On the Utility of Symbiosis

Early formulations for CC made use of knowledge regarding the number of subcom-

ponents required to form a solution, with each subcomponent being associated with

a separate population. For example, given a prior specification for a neural network

topology, then different populations might be associated with each weight in the net-

work [44, 82]. A heuristic is now necessary for choosing representatives from each

population, potentially differentiating between group fitness (e.g., fitness of the re-

sulting neural network) versus fitness of individual subcomponents. In the context of

GP teaming, separate populations could be associated with each program [149], as-

suming that knowledge is available for defining how many programs should participate

22

within a team. However, the issue of selection heuristics again appears, where this

can be performed at the group or subcomponent (program) level. Indeed, alternat-

ing between the two appears to provide robust teams under multi-class classification

tasks [149].

Symbiosis represents the group and subcomponent using independent populations

(host and symbiont respectively). Two works in particular have used such a frame-

work to support CC: 1) SANE (Symbiotic, Adaptive Neuro-Evolution), an architec-

ture for evolving weights (symbiont) and neural networks (host) [101], and; 2) SBB,

where programs are symbionts and teams of programs are hosts [90]. In both cases

the host population is where a complete organism is expressed (and where fitness

evaluation takes place), but in terms of pointers to members of the symbiont pop-

ulation. In effect a combinatorial search is being performed by the host population

for ‘good’ symbiont combinations. If host individuals assume a variable length rep-

resentation (as in [90]), then the number of subcomponents is also evolved. Thus,

broadly speaking, the symbiotic approach to CC automates aspects of building col-

lective decision-making entities that may previously have been fixed a priori. The

composition of a group behaviour is now an entirely evolved property.

2.2.3 Functional Modularity

In the (symbiotic) team GP employed in this thesis, each program defines the context

for one atomic action and an inter-program bidding mechanism resolves which action

to associate with a given observation. Thus, in order to form a complete solution, a

team must identify multiple programs which collectively solve the problem by each

learning the context (i.e. a mapping from environmental observation to scalar bid

value) for their respective action. This amounts to a forced division of labour in

which each program serves a unique function within the group behaviour. In other

words, some degree of functional modularity/specialization is explicitly required in

order for a team to represent a complete solution and achieve a high fitness score.

As such, some amount of problem decomposition is guaranteed and selection can

now identify effective group behaviours through fitness expressed at the team level

23

only2. Such a mechanism conforms to the idea that organisms must be evaluated as a

whole, rather than independent modules, in order to evolve cooperation [149, 91, 161].

However, evolving cooperative behaviours is not that easy. Balancing the need to

develop specialization (a property of a subcomponent) and cooperation (a property

of a collection of subcomponents) is where diversity maintenance and neutrality also

potentially have parts to play (Sections 2.3 and 5.4).

2.2.4 Structural modularity

In the team GP employed here, a team is simply a collection of pointers to its member

programs. As such, the structural complexity within a program’s code is more tightly

coupled than the structural complexity linking programs within the team, or struc-

tural modularity. This is significant because the impact of both team and program

variation operators is now isolated to particular structural modules, resulting in less

likelihood of disruption to all the functional properties of a policy during variation

[156].

In short, functional modularity supports automatic problem decomposition, mak-

ing it possible for credit assignment to identify useful ‘modules’ and associate them

with specific contexts, i.e. the interaction between specialization and modularity [39].

Structural modularity implies that partial solutions can be automatically encapsu-

lated and protected during evolution, as long as they prove useful within a group

behaviour.

2.3 Diversity

All evolutionary computation frameworks include some form of diversity generating

mechanism to ensure the continued production of novel organisms (Figure 1.2). In the

simplest case, this takes the form of a mutation operator introducing errors/variation

into the reproduction of organisms such that children are slightly different than their

parent(s). However, additional effort is often required in order to ensure that mu-

tation (or other diversity generating operators) results in new organisms that are

2It is worth noting that attempts have also been made to define fitness at the program as well
as the team level [149, 161], requiring task-specific definitions for fitness at both the individual and
group levels.

24

measurably different (in a phenotypic and / or genotypic sense) form what exists

in the current population. In particular, explicit maintenance of a diverse solution

population is important to ensure a thorough search of the solution space. Indeed,

diversity maintenance is a well known factor in preventing GP from getting stuck

in local optima, i.e. avoiding premature convergence [113, 24]. Furthermore, if a

policy will ultimately be represented by a group behaviour, then diversity mainte-

nance might be critical in developing individual group members that complement

each other in a group setting, that is, producing individuals that succeed / fail in

different ways [57, 24]. This section identifies three generic approaches to diversity

maintenance, any of which could potentially be used in combination: competitive

coevolution, regularization, and multiple populations.

2.3.1 Competitive coevolution

Competitive coevolution attempts to search for training cases (e.g. game configura-

tions) that in some way ‘discriminate’ between the performance of policies without

resulting in disengagement [59, 25]. Naturally, a balance needs to be struck be-

tween rewarding generalists (those policies that solve the ‘easy’ training cases) versus

specialists (those that solve ‘difficult’ training cases). Indeed, depending on the repre-

sentation (for policies), it might not be possible to resolve the two into a single policy

[118]. Unfortunately, in complex tasks individual training cases are often much less

informative, for example, due to noise in sensors and actuators or other forms of

stochasticity in the environment. Thus, two policies with similar or identical strate-

gies may achieve different levels of success, even if they start from the same initial

environmental configuration.

2.3.2 Regularization

Diversity maintenance through regularization implies that the fitness function incor-

porates discounting for properties other than goal directed task performance. Indeed,

at one extreme is novelty as the objective [85, 28, 34]. In the development of Policy

Trees (Chapter 5), two task-agnostic diversity mechanisms are assumed when evolving

solutions to subtasks. These are motivated in part by the intuition that both struc-

tural diversity and behavioural diversity are likely to promote specialization. Indeed,

25

it has been previously suggested that GP applied to complex problems is likely to

benefit from multiple diversity mechanisms [24, 34]. The specific method adopted in

this work for maintaining structural diversity is inspired by the approach taken in [97]

for promoting diversity under a neuro-evolutionary setting. In addition, promoting

behavioural diversity, or diversity in the observable characteristics of policies as they

interact with the environment, has been shown to significantly improve development

in evolutionary robotics [103]. Moreover, the approach taken to combining multiple

diversity measures also has an impact on the development of modularity. For exam-

ple, instead of all forms of regularization being present all the time, switching between

different objectives can potentially be beneficial [67, 110].

2.3.3 Multi-Population Frameworks

Finally, in the case of Island formulations for multi-population frameworks, the under-

lying motivation is to provide programs with ‘independent errors’ (in their behavioural

traits) [57] such that they complement each other within a group behaviour. However,

the issue of how to identify the optimal group of individuals post training needs to be

explicitly addressed. Moreover, it has been noted that providing more explicit mech-

anisms to maintain diversity (such as regularization, different performance objectives

or CC) may provide a more direct method for maintaining diversity (e.g. [149]).

2.3.4 Open-Ended Evolution

While diversity maintenance is the mechanism ensuring that evolving population(s)

maintain a rich variety of organisms (structurally and/or behaviourally), open-ended

evolution looks at the bigger picture by imagining how a GA might support the contin-

ual, unbounded production of novelty over time [10]. Stepney and Hoverd introduce

the concept by noting that variation operators applied to an organism’s genotype

(e.g mutation, crossover) typically generate a constant supply of “new things” (i.e.

variations on a theme). Open-ended evolution extends this, implying the production

of “new kinds of things” (new species perhaps?) or even “new kinds of new kinds

of things” (major evolutionary transitions, radical novelty) [128]. This characteriza-

tion suggests a critical factor for open-endedness, namely that an open-ended model

is one that allows for the emergence of increasingly complex organisms. However,

26

continuous production of novelty does not imply a continuous/monotonic increase in

complexity, it simply creates the conditions under which increasingly complex/novel

organisms may emerge [147].

A body of research has developed over the past 20 years which explores open-

ended evolution in significant detail, defining terminology and outlining guidelines

for future research [147, 10, 128]. In particular, [10] identifies GP as a fertile area for

further study of open-ended evolution. Indeed, there seems to be a lot of potential

to draw from the wealth of (primarily theoretical) research on open-endedness when

contemplating (bio-inspired) engineering of complex systems. As such, the remainder

of this section makes a case for how the GP representations proposed and studied in

this thesis fall under the scope of open-ended evolution.

The work in this thesis is concerned with open-ended evolution as it pertains to

one form of emergent novelty/complexity in particular, that of a major evolutionary

transition [95], or the hierarchical coordination of a number of previously autonomous

individuals into a new organism. Thus, individual organisms that previously inter-

acted with their environment and reproduced autonomously transition to interact

and reproduce collectively as a whole. Major evolutionary transitions of this nature

are classified as emergent events in the literature [10], and the capability to produce

such events is a marker for open-ended evolution. In this work, Symbiosis (Section

2.2.2) provides the mechanism under which a major transition is simulated and auto-

mated within the GA. However, the two representations explored in this work, Policy

Trees and Tangled Program Graphs, approach the simulation of major transitions in

critically different ways. A high-level discussion of these differences is provided next

with illustrations in Figures 2.1 and 2.2. Note that in both cases, the procedure for

decision-making (mapping state to action) begins at the root team and follows one

directed path to an atomic action. Algorithm details regarding organism development

and decision-making are provided in Chapters 4, 5, and 8.

In the case of Policy Trees, only one major transition event takes place, Figure

2.1. Furthermore, a computational budget for the development of each level in the hi-

erarchy (pre and post transition) is chosen a priori, as is the transition point, i.e. the

generation at which all autonomous organisms (teams) are absorbed by a higher level

27

Figure 2.1: Illustration of a major transition in the Policy Tree representation. The
transition is planned and parameterized as part of the representation. That is, teams
are initialized as autonomous, non-hierarchical entities. Then, at some fixed point
during evolution (vertical dotted line), new teams are initialized and a two-level hi-
erarchical relationship between the new and existing entities is enforced. Specifically,
teams at the new level must define policies entirely through reuse of the cached team
behaviours from the first phase of evolution.

organism. In terms of the open-endedness of the system, this amounts to an imple-

mentation shortcut or “cheat” which limits the generality of the model [10]. However,

the benefit of this shortcut is that transfer learning is now facilitated. Specifically,

lower-level teams can be trained in the source task environment and then reused (after

the evolutionary transition) by higher level teams learning a more general policy in

the more challenging target task environment 3. It will later be suggested (Chapter 5)

that population diversity maintenance is important under the first phase of evolution

in order to develop a diverse range of ’building block’ organisms for later reuse [24, 71].

One implication of this is that it must be possible to explicitly encounter a sufficient

range of such building block organisms. Earlier research had demonstrated this using

competitive coevolution as the diversity mechanism, i.e. start configurations of the

task were also evolved. Specific results using this approach include:

• Policy Trees were capable of generalizing the truck reversal task (with additional

hidden wall) for an arbitrary number of start points, whereas ADFs could not

[88].

3If required, training of lower-level teams in multiple source tasks can be done in parallel. This
is demonstrated in Chapter 6

28

• Policy Trees were also sufficient for matching results by A* for solving the

Acrobot Handstand task and generalizing this to arbitrary start points [35].

• Policy Trees could generalize the Pin Ball task [75].

On the other hand, when the start conditions for the task cannot be controlled and/or

the task is stochastic, the competitive coevolutionary approach is no longer effective

(i.e. organisms are ranked on the basis of their performance on each start condition,

but tasks with stochastic properties disrupt the quality of such a ranking).

In the case of Tangled Program Graphs, an unbounded number of hierarchical

transitions are fully automated, Figure 2.2. No decisions are made a priori regarding

the point at which transitions appear, and TPG allows hierarchical organisms to grow

and shrink. That is, increasingly complex hierarchies can emerge at any time and,

assuming the increased complexity results in some behavioural advantage, survive

indefinitely. However, complex organisms may also incrementally break apart when

they are not stable. Thus, organisms at various stages of development (levels of hi-

erarchical complexity) can exists in the same population. Furthermore, unlike Policy

Trees, teams at any level may reuse lower-level team behaviours and/or access atomic

actions directly, and the interaction among entities is not strictly top-down. Finally,

modularity is abundant on a variety of levels. For example, multiple groups of densely

interconnected entities interact via less-dense “interface” connections [10] (Red lines

in Figure 2.2). For example, groups A, B, and C in Figure 2.2 all represent emergent

modular structures of varying complexity (Section 9.5.3). In short, by contrast with

a policy tree, interconnecting teams in a graph structure allows for a much richer,

modular organization of entities and amounts to a much more open-ended approach

to model building.

While TPG extends the open-endedness of Policy Trees by allowing for emergent

events (major transitions) without recourse to a pre-coded shortcut, it is still by no

means an entirely open-ended system. For example, emergent events in TPG are

explicitly anticipated and captured [10] by prior structural rules (a special mutation

operator in the case of TPG, Chapter 8). A more open-ended approach might include

a means of continuously modifying/adapting structural rules to generate unforeseen

emergent events. Stepney and Hoverd take a step in this direction through their

work on self-modifying and reflective systems [128]. In the specific context of GP,

29

Figure 2.2: Illustration of major transitions and levels of modularity in the Tangled
Program Graph representation. See text for details. This figure is intended to contex-
tualize emergent complexity in TPG policies, an implemented GP system, relative to
the levels of a theoretical open-ended system illustrated in Figure 2 of [10]. The po-
tential richness of structural diversity and levels of organization in TPG as compared
to Policy Trees (Figure 2.1) is apparent.

the idea of concurrently evolving models and diversity-generating mechanisms has

a long history, for example, Meta-Genetic Programming [36, 66], Autoconstructive

Evolution [126], and SMART operators [148]. However, little is known about how

these approaches might lead to emergent novelty/complexity events. In fact, is was

noted that maintaining diversity in systems with evolving genetic operators requires

special attention [36, 126].

2.4 Hierarchical Reinforcement Learning

The principal goal of Hierarchical Reinforcement Learning (HRL) is to allow sequen-

tial decision-making agents to reason at levels of abstraction above the raw sensory

inputs and atomic actions assumed by the agent-environment interface. As such,

HRL represents an approach to scaling RL by mitigating the effect of the curse of

dimensionality [13]. Two types of abstraction are generally considered:

1. State abstraction implies that an agent is able to ignore inputs/state variables

not relevant to the task at hand [131, 5], which potentially improves learning

efficiency by simplifying the input space [60]. Discovering redundancies in this

30

fashion is distinct from learning a mapping from the complete raw input space

to a lower-resolution input representation, as in deep learning [100]. A learned

state abstraction of this sort undoubtedly improves learning but does not capi-

talize on the efficiencies associated with learning when to ignore particular state

variables.

2. Temporal abstraction implies that the policy can encapsulate a sequence of

actions as a single abstract action, or option [137]. Options are typically asso-

ciated with specific subgoals. A higher-level decision-maker is now required in

order to map environmental situations to options. Once identified, the selected

option assumes control until its (sub)goal state is reached. If a suitable task

decomposition is known a priori, multiple options can be trained individually to

solve the (human-specified) subgoals and then reused within a fixed hierarchy

to solve a more complex task [31]. However, subgoals can also be identified

automatically, leading to the automated discovery of options and potentially

also learning the hierarchical policy [129, 96, 32, 33].

In considering HRL from the perspective of learning in biological organisms, i.e.

the study of brain and behaviour, recent work has placed emphasis on temporal

abstractions, and in particular the importance of automatic subgoal and option dis-

covery, where this also implies the emergence of hierarchical structure [18]. From a

psychological perspective, the role of “intrinsic motivation”, or “curiosity” [116], in

motivating an agent’s exploration of action-sequences not explicitly rewarded by the

environment has been suggested as a way of kick-starting option discovery. Indeed,

the concept has shown promise when implemented within HRL [83]. Evolution is also

assumed to play a role in the development of hierarchically organized behaviour in an-

imals [47], and several hybrid TD/GA methods have appeared in the HRL literature.

For example, evolutionary methods have been proposed which search for the useful

(intermediate) reward functions in order for TD methods to reach the overall goal

more efficiently, or “shaping rewards” [37]. More generally, an evolutionary search

could be performed over the space of possible rewards in order to support continual,

systematic exploration [120]. Elfwing et. al. also demonstrate that once subtasks

have been defined and learned using TD methods, GP can be employed to evolve

option hierarchies [38].

31

Regarding the specific representations assumed in this thesis, recall that a team of

programs represents the simplest stand-alone mapping from state to atomic action,

i.e. a stand-alone behaviour. The programs indexed by the team perform their own

state variable selection, with individual programs typically making use of a small

proportion of available inputs (See Section 4.2, Algorithm 1). As such, teams are

capable of identifying redundant inputs and discovering regions of the state space

for which the same atomic action applies. In other words, teams directly support

state abstraction. Furthermore, a single team need not define a holistic policy over

the complete state space. Rather, policies are composed of multiple teams combined

hierarchically, each representing a unique state abstraction. Diversity maintenance

provides the mechanism for persistent exploration of potentially useful state abstrac-

tions, i.e. diverse team behaviours. An argument will be made in Chapter 9 regarding

TPG’s additional support for temporal abstraction. Finally, Dietterich [31] lists sev-

eral desirable characteristics of an HRL system, two of which are addressed directly by

this thesis: 1) State/temporal abstractions learned under a specific task environment

should be re-usable within the hierarchy of policies learning a different but related

task; 2) The hierarchy itself should be learned.

2.5 Transfer Learning

Many tasks are too complex to be approached without some amount of decomposition

into simpler subtasks. Transfer learning in RL refers to the use of solutions from easier

source tasks in an attempt to solve a more difficult target task [143, 142]. The key

issues in transfer learning can be summarized in terms of: 1) what knowledge is

transferred; 2) how to implement the knowledge transfer between tasks that may

differ with respect to sensors, actions, and objectives, and; 3) How to quantify the

utility of transfer. As such, at least from an evolutionary computation perspective,

transfer learning in RL has a broad heritage. In particular we identify incremental

evolution [43] and layered learning [130] as having similar motivation and sharing the

same broad issues.

Incremental evolution assumes that the source tasks follow a sequence (or chain

[17]) in which each source task is incrementally more complex than the last. Naturally,

32

it is only possible to solve the first source task in the sequence tabula rasa.4 Moreover,

the issue of what to transfer was defined in terms of a single champion individual that

is then used to seed the population for the next source task. Thus, variation operators

applied to the genotype of the champion are deemed to provide a suitable starting

point for generating content for the next population. Variations on this theme might

carry the content of the population ‘as is’ between consecutive source tasks (e.g., [1])

or transfer multiple champion individuals [56]. Implicit in this process is the approach

for addressing the issue of ‘how to transfer’, i.e. the a priori sequence of source tasks.

Moreover, there is sufficient similarity between sensors and actions for the champion

individual(s) to directly carry over between consecutive source tasks.

Layered learning [130] is a more recent development and as such captures a wider

range of mechanisms in which task transfer might appear. Specifically, rather than

assume that source tasks represent a sequence of explicitly related tasks of incremental

complexity, layered learning may define source tasks that are initially independent.

For each source task a separate training environment with unique states and / or

actions may appear. At some point, transfer is accomplished through a gating or

switching policy that joins independent solutions to each source task, where such a

switching policy might take the form of a prior decision tree (no learning involved)

or could also be evolved [159].

The final development that task transfer brings is to consider what happens when

some source task action(s) and / or sensors are not present or have altered meaning

in the target task [143, 142]. Layered learning assumes that solutions to source tasks

do not require any reinterpretation by a later target task. Conversely, policies from

source tasks may have incomplete partial alignment, each covering a portion of the

sensors and actions available, but jointly still not covering the complete sensor /

actuator space of the target task. A learned intertask mapping is one method of

addressing this issue [146, 140]. In addition, Hyper-NEAT with a “Bird’s Eye View”

[154] has been proposed as a way to evolve generalized state representations such that

an agent can transfer to more complex tasks without additional learning, assuming

the objective remains the same.

In both incremental and layered learning, entire (autonomous) decision-making

4Solving a task ‘tabula rasa’ implies the direct application of RL to a task without any attempt
to provide any a priori decomposition into simpler task(s).

33

policies are transfered from the source to target task, where they either continue

adaptation under the more challenging task environment (incremental evolution) or

are reused as-is within a hierarchical switching policy (layered learning). Both ap-

proaches are adopted separately in this thesis to address distinct goals relative to

the utility of transfer. In the empirical evaluation of Policy Trees (Chapter 6), a

form or layered learning is used to build behavioural agents for tasks in which Pol-

icy Trees would otherwise fail to reach state-of-the-art levels of performance. In the

empirical evaluation of Tangled Program Graphs (Chapter 9), a form of incremental

evolution is used to enable Multi-Task Learning, i.e. the focus is on building general

behavioural agents that are capable of performing multiple tasks at state-of-the-art

levels of performance.

2.6 Summary

This chapter has outlined methodological building blocks supporting the design and

analysis of algorithms within this thesis. Specifically, the proposed representations

emphasize modular, hierarchical decision-making agents developed through cooper-

ative coevolution. Code reuse and transfer learning provide the basis for scaling

to complex tasks (Chapters 5 and 6) and enabling multi-task learning (Chapters 8

and 9, Section 9.6). In order to include tasks with stochastic and / or little control

over initial state, multiple forms of diversity maintenance through genotypic / pheno-

typic properties will be emphasized (Section 5.4). Moreover, a general push toward

open-endedness supports continual exploration of the search space and emergent com-

plexity (Section 9.5.3). The agents’ ability to reason at different levels of abstraction

is consistent with formulations for HRL, which informs the analysis of their adapted

sensory interface (Section 9.5.4) and temporal task decomposition (Section 9.5.7).

Chapter 3

Domain Descriptions: RoboCup and Ms. Pac-Man

3.1 Overview

RoboCup 2D Simulated Soccer [134] and Ms. Pac-Man [117] are two widely-used video

game domains for evaluating reinforcement learning systems. Both are representa-

tive of high-dimensional, dynamic, and stochastic sequential decision-making environ-

ments that are significantly more challenging than traditional control-style RL bench-

marks (e.g. Multi-Pole Pendulum [44], Acrobot, Mountain Car [135]). This chapter

provides a detailed description of each domain and motivates their use as benchmark

environments for addressing the problem of scaling to complex tasks through transfer

learning. In both RoboCup and Ms. Pac-Man, the learning agent interacts with the

environment via a human-crafted sensory interface that includes only pre-processed

state variables expected to be useful for decision-making. These include things like

distance and angle measurements to other game entities and global information such

as the number of opponents present at any given time (Ms. Pac-Man). This is in con-

trast to the visual RL domain described in Chapter 7, in which the agent interacts

directly via raw pixel content of the video game screen. Given the simplified input

space, the primary challenge in defining strong decision-making policies for RoboCup

and Ms. Pac-Man lies in developing multiple modes of behaviour within a single

agent. For example, a strong soccer-playing agent requires ball-handling and scoring

capabilities, while a strong Ms. Pac-Man agent must know how to evade opponents

(ghosts) when they are threats and hunt them when they become edible (i.e. sources

for a large number of points). Both domains have seen interest from different sets

of machine learning researchers. The RoboCup simulated soccer task has frequently

been used for investigations into task transfer and multi-agent systems [65, 143]. The

Ms. Pac-Man environment has been used for IEEE CEC Competitions and has there-

fore a range of different approaches demonstrated (Monte Carlo Tree Search [111, 4],

Neuro-evolution [117]). The availability of previous results over a cross-section of

34

35

machine learning methods will facilitate empirical comparison with the methodology

proposed in this thesis (Chapter 6).

3.2 RoboCup Domain Description

In RoboCup 2D Soccer, researchers have primarily focused on subtasks of the full

game, such as Keepaway [133], in order to more directly assess the specific contri-

butions of various innovations while maintaining essential aspects of the soccer task

domain [134, 132, 65, 97, 160, 64, 154]. These tasks are of general relevance to RL

because they are:

1. multi-agent, implying that different agents will need to decide on which role

they will need to prioritize at different parts of the game;

2. highly dynamic and stochastic;

3. utilizing real-valued state variables; and

4. can be parameterized to represent a family of incrementally more difficult tasks.

It is the latter property that has seen their recommendation as a benchmark

for assessing the utility of RL algorithms in general and task transfer in particular

[143, 132, 65]. We focus on three specific subtasks: Goal Scoring, Keepaway, and Half

Field Offense (HFO).

In Keepaway, a team of K keepers tries to maintain possession of the ball for as

long as possible while an opposing team of K − 1 takers attempt to gain possession

[132]. The game ends if the ball is kicked out of bounds or captured by the takers,

at which point each keeper receives the game duration in milliseconds as a reward

signal. Thus, the task objective is for keepers to learn a policy to maximize the length

of play against the takers, which follow an a priori strategy.1

This work specifically targets a 4 versus 3 (4v3), or K = 4, version of the task.

The version of 4v3 Keepaway in this work is played on a 60× 60 meter field, instead

of the more common 25 × 25 meter bounding box, as the ultimate objective is the

1The use of an a priori strategy leads to constant benchmarking practices. The default strategy
for takers in the Keepaway task is simple: the two takers closest to the ball head directly for it and
attempt to gain possession, while the third taker attempts to block passes.

36

Figure 3.1: Initial positions for keepaway players at the beginning of an episode.
Keepers are yellow, takers are blue. Keeper in centre has possession of the ball.
White square marks the pay area. See Figure 3.4 and Appendix B, Table B.1 for a
description of player state observations.

HFO task as opposed to Keepaway.2 The game is initialized with keepers in three

corners and the centre of a 15× 15 meter square at centre field, the ball placed near

one keeper, and the takers in the remaining corner, Figure 3.1. Keepers learn to

deploy a set of domain-specific macro-actions {Hold,Pass(k)}, at discrete time steps

of 100 milliseconds, Figure 3.2. Each macro-action may last more than one time step,

and control is returned to the player when the macro-action terminates. A keeper in

possession of the ball has the option of either Hold or Pass(k), where k indexes one

of its K − 1 teammates. Keepers not in possession of the ball assume the GetOpen

macro-action.

At each time step, keepers receive state information in the form of 11 (egocen-

tric) real-valued distance and angle sensor inputs (state variables) that describe the

location of other players on the field (Appendix B, Table B.1). The sensors are noisy,

thus players must cope with inaccurate state information. Furthermore, the players’

2Generalization between different Keepaway field sizes has been demonstrated [70, 154]. How-
ever, it is more difficult to evolve behaviours for smaller fields, where this comes at a considerable
computational cost.

37

Figure 3.2: Decision tree assumed by RoboCup agents. At each timestep, the agent
in possession of the ball selects one macro-action from {Hold, Pass(k)} (Keepaway)
or {Dribble, Pass(k), Shoot} (Scoring/HFO). Players not in possession follow either
GetOpen or GoToBall.

actuators are unreliable, often resulting in inaccurate passes and fumbled attempts to

hold the ball3. The presence of noisy sensors and actuators makes credit assignment

particularly difficult and represents one of the issues specifically addressed by the

proposed approach.

Half Field Offense is another subtask of RoboCup Soccer with significantly

more complexity than Keepaway [65]. In HFO, a team of offense players tries to

manoeuvre the ball past a defending team and around the goalie in order to score. A

game ends if:

1. the ball is kicked out of bounds,

2. the ball is captured by an outfield defense player,

3. the ball is intercepted by the goalie, or

4. a goal is scored.

3The level of noise in state variables is parameterized in the soccer server configuration (Appendix
A, Table A.1). In general, the reliability of observations w.r.t. game entities decreases proportional
to their distance from the agent. Actuator noise does not replace a particular discrete action with
another, but affects the outcome of the selected action. For example, if the agent chooses action
pass to player 2, the ball’s trajectory may be imprecise, forcing player 2 to chase the ball or even
fumbling the pass altogether.

38

Figure 3.3: Initial positions for players at the beginning of an episode of Half-Field
Offense. Offense players are yellow, defense players are blue, goalie is pink. The
offense player at bottom left has possession of the ball. See Figure 3.4 and Appendix
B, Table B.1 for a description of player state observations.

The defense team in HFO follow a pre-specified behaviour defined by the original

task [65]4. Each offense player receives one reward signal of either {0.8, 0.8, 0.9, 2}5

for each of the above end-game conditions.

We are specifically interested in 4 versus 4 (4v4) HFO, in which the offense team

has 4 players while the defense team is made up of 3 outfield defenders plus a goalie.

HFO is played on one half of the full soccer field. All outfield players are initialized

within a 15× 15 meter square as in Keepaway, but in HFO the centre of the initial-

ization box is stochastically placed somewhere on the field roughly 55 meters from

the goal, Figure 3.3. Naturally, the goalie is initialized in the goal region.

Offense players in HFO learn to deploy a somewhat different set of macro-actions

than in the Keepaway task. Their options at each time step are {Dribble, Pass(k),

Shoot}. Thus, an offense player in possession of the ball has the option to either

4The behaviour of the defense team in HFO is the same as for the takers in Keepaway with the
addition of a goalie to guard the net.

5This reward structure was obtained by adding 1 to the rewards used by Sarsa under the same
task [65], thus defining reward in terms of positive values alone. We do not claim any optimality for
these values from an evolutionary computation perspective.

39

Figure 3.4: Example sensor inputs for the RoboCup environment. See descriptions
in Appendix B, Table B.1. Sensors that reference the goal or goalie are specific to
the Half-field Offense task. Pj denote players whereas Pp is the special case of the
player from which egocentric measurements are made, G is the special case of the
‘goalie’ opponent, Oi denote opponents. Equivalent measurements are repeated for
each player. Used by permission, c©2017 IEEE.

dribble towards the goal, pass to a teammate, or shooting on goal, Figure 3.2. As

per the Keepaway task, each macro-action may last more than one time step and

control is returned to the player when the macro-action terminates. The HFO task

has the same 11 sensors available in Keepaway, plus 6 additional sensor inputs that

summarize distance to the goal for each offense player and the angle of the maximum

scoring window for the player with the ball, i.e. how open the net is (Figure 3.4 and

Appendix B, Table B.1). As in Keepaway, all sensor inputs and actuators are unre-

liable. Readers are refereed to the original HFO paper for a more detailed definition

of the task [65].

The Goal Scoring task is similar to the HFO environment except that the initial

position of players is restricted to within 15 meters of the goal. While some passing

and ball handling will still be necessary from this position, offense players no longer

need to manoeuvre the ball down field and can therefore concentrate on scoring goals.

3.3 Related Work in RoboCup

Keepaway is the most widely used subtask of RoboCup soccer, representing a bench-

mark for both multi-agent and reinforcement learning / policy search in general

40

[133, 134, 98, 160]. Given that a decision maker is necessary for each keeper, rein-

forcement learning approaches have adopted a heterogeneous assignment of learners

to keepers6, where this is a function of the overhead in attempting to update a single

function approximator w.r.t. multiple keepers [160]. Conversely, (evolutionary) pol-

icy search generally assumes a homogeneous assignment, where this is a reflection of

the lack of specialization required in the keeper policies [157]. Homogeneous teams are

developed in this thesis under all three RoboCup subtasks, primarily due to the sim-

plicity of implementation and minimal computational cost relative to heterogeneous

teams.

In applying value function optimization methods to learn Keepaway policies, the

first obstacle to be addressed was how to formulate the task such that credit assign-

ment mechanisms such as Sarsa(λ) could be applied [133, 134]. With this achieved,

most emphasis has been on the type of function approximation used to model Q-

values. Thus, function approximation based on tile coding [133, 134] has been su-

perseded by the use of Radial Basis Functions [160] or kernel methods [61]. Several

approaches to neuro-evolution have also been applied to the Keepaway task, including

NEAT [145, 160] and EANT [98]. It is worth noting that all neuro-evolution schemes

make extensive use of genotypic diversity for maintaining multiple species during a

run.

Having established some benchmark capabilities for a variety of value function op-

timization and policy search methods, the complexity of RoboCup tasks subsequently

motivated a shift in focus towards leveraging transfer learning in order to scale policy

development. In the earliest of this work, the key to transfer was a hand-coded map-

ping between the differing state and action spaces of increasingly complex tasks, for

example [144, 146]. Later work introduced various approaches to automating trans-

fer, for example [154, 40], and even considered reusing experience from outside of the

RoboCup domain [141].

In the case of GP, a layered learning approach has been adopted in the past to

facilitate the incremental evolution of tree structured GP, with and without ADFs [48,

56]. However, these results are reported for a different soccer simulator (TeamBots)

and hence different atomic actions. Layered learning, as a form of transfer learning,

6Heterogeneous teams imply that a unique policy is developed specifically for each player on a
team. Conversely, homogeneous teams imply that the same policy controls all players.

41

assumes that the task undergoes some prior decomposition with training performed

relative to the simpler tasks first. However, it was also necessary to enforce a prior

discretization of the state variables (i.e., a simplification of the task) and limit the

number of takers to 1 (i.e., 3-versus-1 keepaway).

At the time of this writing, the HFO task has received significantly less attention

than Keepaway. The most successful approach to HFO has been from the Sarsa(λ)

value function method, where studies have explored the utility of inter-agent commu-

nication [65] and ad hoc teamwork [50, 12]. While not identical to HFO, Torrey et.

al. [150] define a similar RoboCup task they call “Breakaway” for which they em-

ploy transfer learning from multiple simpler source tasks, specifically Keepaway and

a custom “MoveDownField” subtask. Unlike the work in this thesis, their approach

relies on a human-coded mapping which specifies the similarities between the source

and target tasks.

Unfortunately, RoboCup has not received a significant amount of attention in

very recent years, probably due to the programming overhead required to establish a

reliable agent-environment interface and/or the computational costs associated with

evaluation in multi-agent domains [50, 139]. However, notable works have appeared,

for example, recent results from Deep Q-Learning for the keepaway task represent the

best score reported to date [84]. Interestingly, the authors found that some aspects

of the algorithm were over-kill, for example, a shallow network with just two hidden

layers was sufficient. Tavafi’s work on scaling GP to the full RoboCup 2D simulation

task [139] is also notable. To do so, Tavafi first identified and hand-labeled examples of

’good’ decision-making, or “snapshots”, by observing the strategies of champion teams

from the RoboCup 2016 competition. Evolution in his GP framework was divided

into two phases. In the first phase, GP individuals were trained through supervised

learning of snapshots, essentially learning to model a champion player’s policy. In the

second phase, the best individuals from the first phase were developed further through

direct interaction with the task. In contrast to the state representation assumed in

this thesis (Appendix B, Table B.1), Tavafi used high-level inputs that specifically

encode ’good’ and ’bad’ states such as “weAreWinning” and “ballInDangerArea”, i.e.

a significant prior task simplification.

In this work, the goal is to scale the capability of Policy Trees to HFO through

42

transfer learning. Agents will begin by learning Keepaway and Scoring source tasks

separately, and then transfer this experience to Half Field Offense. Keepaway and

Goal Scoring are clearly subtasks of HFO. For example, from the stochastic start

position in HFO, offensive players essentially have to maintain possession and dribble

towards the goal before trying to score. However, the ball-handling skills under

HFO are different from Keepaway, requiring the players to maintain possession of

the ball and create goal scoring opportunities. Furthermore, players that only have

experience in the Scoring task, having only observed the environment near the goal

region, will need to cope with larger distance and angle sensor readings under the

HFO task. Thus, success in the HFO environment requires additional capabilities

and reinterpretation of skills learned from the source tasks.

3.4 Ms. Pac-Man Domain Description

The Ms. Pac-Man simulation assumed in this work is a close approximation of the

1982 arcade version of the game, which is one of the most popular video games of all

time. The objective is to identify a policy for guiding Ms. Pac-Man through a series

of 4 mazes, each scattered with multiple regular pills and 4 power pills, Figure 3.5.

When Ms. Pac-Man finds a pill, she eats it, gaining 10 points per regular pill and

50 points per power pill. When all pills have been eaten, Ms. Pac-Man advances to

the next maze. However, the game includes 4 opponents, or ghosts, which emerge

sequentially from a Lair in the centre of each maze and pursue Ms. Pac-Man. If a

ghost touches her, she loses a life. Ghosts behave non-deterministically, necessitating a

responsive strategy to out-maneuver them, rather than simply memorizing an effective

trajectory through the maze. Normally, Ms. Pac-Man and the ghosts move at the

same speed. However, when Ms. Pac-Man eats a power pill, all ghosts become edible

and reduce their speed by 50%, making it possible for Ms. Pac-Man to catch and

eat them. The 1st, 2nd, 3rd, and 4th ghosts eaten are worth 200, 400, 800, and 1600

points, respectively. Ms. Pac-Man is therefore a predator-prey scenario that requires

the agent to switch between multiple modes of behaviour throughout an episode.

The agent must assume the role of predator and prey at different times, actively

pursuing ghosts when they are edible and evading ghosts when they are threats [117].

Multi-modal behaviour of this nature is similar to the the ball-handling and scoring

43

(a) Maze 1 (b) Maze 2 (c) Maze 3 (d) Maze 4

Figure 3.5: 4 unique mazes and initial positions for Ms. Pac-Man.

requirement in the Half Field Offense subtask of RoboCup soccer. However, unlike

HFO, multiple mode transitions are explicitly required in Ms. Pac-Man. This, coupled

with the fact that a single game in Ms. Pac-Man requires thousands of decisions

from the agent, places additional burden on credit assignment and makes the task

particularly difficult.

In each time step, there are a total of 95 sensors: 7 non-directional sensors (e.g.

number of regular pills left in maze, number of edible ghosts, remaining edible ghost

time) and 22 directed sensors for each of the 4 directions (e.g. distances to the 1st,

2nd, 3rd, and 4th closest ghosts, whether each ghost is approaching, distance to nearest

power pill and maze junction). Tables C.1 and C.2 in Appendix C list all undirected

and directed sensors respectively. For a more detailed description of each sensor, see

’Conflict Sensors’ in [117].

3.5 Related Work in Ms. Pac-Man

Best results on this task to date have all benefited from incorporating some form

of task-specific bias. Specific examples include assumptions regarding the optimal

amount of modularity to include under modular neuro-evolution [117], or providing

appropriate end game tactics for use under Monte-Carlo Tree Search [111]. Schrum

and Miikkulainen [117] provide two key insights into learning Ms. Pac-Man agents:

1. Ms. Pac-Man can be formulated as a multi-objective problem in which maxi-

mizing the number of pills and ghosts eaten are treated as distinct objectives,

and

44

2. Explicitly encouraging modularity in the learning representation facilitates the

discovery of multi-modal behaviour.

The prior task decomposition required by the former insight suggests that trans-

fer learning may be applicable to this domain. Furthermore, the requirement for

modularity is perfectly suited to the team GP method proposed in this work.

Similar to decomposing the objective space a priori, various GP methods have

made effective use of prior game knowledge in configuring the environment. Alhejali

and Lucas [3] designed multiple tightly-constrained game scenarios, or training camps,

in which the agent was trained relative to specific objectives prior to attempting to

learn a more general controller. Their GP also employed high-level sensors, such as

those directly alerting Ms. Pac-Man to dangerous states, and high-level actions that,

for example, may assume control for multiple time steps and lead Ms. Pac-Man out

of dangerous states. However, GP restricted to low-level actions and sensors has also

been successful in this task [21]. Low-level sensors include only general information

like ‘distance to the nearest pill’, and thus do not imply a specific interpretation by

the agent, ie. ‘good’ and ‘bad’ states. Low-level actions imply that the Ms. Pac-Man

controller simply selects a direction to move (UP, DOWN, LEFT, or RIGHT) in each

time step of the game. Brandstetter et al. [21] demonstrated how a GP individual

with low-level actions and sensors can be designed to evaluate and rate each direction,

then simply move in the direction with maximum rating. Our work extends this to

the case in which polices consist of multiple cooperative GP individuals, or teams.

As such, the experiments in this thesis assume low-level actions and sensors for Ms.

Pac-Man.

In this thesis, Ms. Pac-Man is framed as a suitable case for transfer learning in

which the 2 broad objectives of the game, eating pills and eating ghosts, are treated

as source tasks with simple reward signals equal to the number of pills/ghost eaten,

with overall game score as the target task. While both source objectives must be

maximized to achieve high scores, the relative benefit in pursuing one objective over

the other needs to be managed effectively by the agent under the target task. For

example, eating pills too aggressively would result in clearing the maze before all the

ghosts are eaten, missing out on significant scoring opportunities, while eating ghosts

too aggressively leaves Ms. Pac-Man vulnerable to threat ghosts as she clears pills

45

from difficult regions of the maze. As such, behaviours developed under the source

task(s) must be adapted, or re-contextualized under the target environment. Further-

more, Ms. Pac-Man requires specific skills for evading threat ghosts and luring both

threat and edible ghosts into disadvantaged positions, neither of which are explicitly

rewarded in either the source or target objective functions.

3.6 Summary

This chapter has aimed to provide a complete but concise overview of the two task

domains used to evaluate Policy Trees in Chapter 6, paying specific attention to why

they present interesting benchmarks for the application of transfer learning. Both

domain simulators have complex dynamics and extensive procedural rules defining

gameplay and opponent behaviours. However, since the subject of this research is

primarily bio-inspired engineering of complex systems as opposed to (video) game

theory, an exhaustive description of gameplay is unnecessary for understanding the

contributions herein. Further details for Robocup Soccer and Ms. Pac-Man are avail-

able from [130, 65] and [117] respectively.

Chapter 4

Algorithm Description: Teams of Programs

4.1 Overview

The two representations considered in this thesis, Policy Trees and Tangled Program

Graphs, provide different approaches to constructing hierarchical decision-making

policies by developing the interdependence between multiple teams of programs. In

both cases, evolution begins with policies in their simplest form, i.e. each organ-

ism/agent is a single team of programs as defined by the SBB algorithm [88]. This

chapter provides a technical specification for individual programs, the group decision-

making process within a team (i.e. the process for a team to map a state observation

to an action), as well as initialization and variation procedures for both team and

program. These are the aspects of team GP that are common to both Policy Trees

and TPG, and will therefore be established generically here and referenced later with

respect to the differences between the two approaches. In particular, Policy Trees

and TPG have slightly different rules with respect to applying variation operators at

the team-level, resulting in the development of significantly different kinds of struc-

tural modularity and hierarchy (See Chapter 2, Figures 2.1 and 2.2). Furthermore,

team development in Policy Trees and TPG is driven by significantly different over-

all training algorithms. Thus, from the perspective of evolutionary model building,

this chapter establishes the variation operators and representations for individual

programs and teams or programs (i.e. the GP)1 while Chapters 5 and 8 detail the

higher-level procedure for building (hierarchical) models through interaction with the

task environment (i.e. the GA).

1The approach to GP teaming described in this chapter is nearly identical to that in [88] and is
reproduced here with slight modification to accommodate a more general approach to the hierarchical
construction of policies.

46

47

4.2 Teams of Programs

The two basic entities of this model, teams and programs, are stored in separate

populations and coevolved (See Figure 1.3(a)). A team is simply a set of pointers

to members of the program population, while programs represent value functions for

state/action pairs. Thus, each program’s role within the team is to define a unique

context for one discrete action. In this work, programs are linear register machines

[20] (See Algorithm 1)2. In order to map a state observation to an action in sequential

decision-making tasks, each program in the team will execute relative to the current

state, �s(t), and return a single real valued ‘bid’, i.e. the content of register R[0] after

execution. The team then deploys the action of the program with the highest output,

or the winning bid. 3

Algorithm 1 Example program in which execution is sequential. Programs may
include two-argument instructions of the form R[i] ← R[x] ◦ R[y] in which ◦ ∈
{+,−,×,÷}; single-argument instructions of the form R[i] ← ◦(R[y]) in which
◦ ∈ {cos, ln, exp}; and a conditional statement of the the form IF (R[i] < R[y])
THEN R[i] ← −R[i]. R[i] is a reference to an internal register, while R[x] and R[y]
may reference internal registers or state variables (sensor inputs). All registers are
set to 0 prior to program execution. If the result of an operation is undefined, e.g.,
division by zero, then zero is stored in the destination register. Determining which of
the available state variables are actually used in the program, as well as the number
of instructions and their operations, are both emergent properties of the evolutionary
process.

1: R[0] ← R[0]−R[3]
2: R[1] ← R[0]÷R[7]
3: R[1] ← Log(R[1])
4: IF (R[0] < R[1]) THEN R[0] ← −R[0]
5: RETURN R[0]

4.2.1 Initialization

A two-part process is assumed for initializing the team and program populations:

2Any GP representation could be employed, the important innovation is that context and action
are represented independently.

3If programs were not organized into teams, in which case all programs within the same population
would compete for the right to suggest their action, it is very likely that degenerate individuals
(programs that bid high for every state), would disrupt otherwise effective bidding strategies [89]

48

1. New teams are created such that each team contains two new programs (Pro-

gram initialization is detailed in Section 4.3). The program actions are uni-

formly selected from an action set A′4 under the constraint that each program

(within the same team) has a different action. Thus, after part one of the ini-

tialization process, the program population is exactly twice the size of the team

population, Figure 4.1(a)

2. The target size for each new team is selected with uniform probability from

[2, ..., ω], where ω is the initial maximum team size. A program mixing heuristic

is then applied to add new team-program pointers such that each program is

(initially) a member of roughly the same number of teams. Specifically, for each

new team, the mixing procedure uniformly selects two programs at a time from

the set of programs not already part of the team, adds whichever program is

currently a member of the fewest teams, and repeats the process until the new

team reaches its target size, Figure 4.1(b).

Thus, after part two, the size of the program population remains at twice the size of

the team population, but each program potentially appears in multiple teams. This is

significant because programs that appear in multiple teams are evaluated in multiple

group behaviours, giving the evolutionary search a better chance of discovering a

particular group in which they prove useful.

4.2.2 Variation

Variation of existing genetic material is the mechanism through which novel organisms

are generated within evolving populations. In this work, team variation operators are

asexual and take the form of a set of mutation operators incrementally applied to a

team and some of its programs. GP has been demonstrated without any crossover

(i.e. sexual recombination of individuals) and empirically found to perform as well

as GP with crossover if multiple forms of mutation are included [26]. The forms of

mutation adopted in this work facilitate the exchange of programs between teams.

4When referring to the set of actions available to programs, the convention in this thesis is to
use A to denote the set of atomic actions assumed by the task environment, and A′ to denote a
generic action set. Depending on the context, A′ will either be equivalent to A or, in the case of
team hierarchies, A′ may refer to a set of teams.

49

����
���� ����

���� ����
����

�������

���	����

����

���	����

���
� �
�

�
�

�
�

(a)

����
���� ����

���� ����
����

�
�

�
�

�
�

(b)

Figure 4.1: Two-step initialization procedure for team and program populations.
Each team is initialized with two new programs, each associated with a different
action (a). A program mixing heuristic is then applied to add new team-program
pointers (red lines), distributing each program among multiple teams (b).

Hence, we are able to promote the circulation of ’useful’ programs between parents

and offspring, i.e. inheritance is supported.

In this work, the absence of a crossover operation implies that symbiosis (Section

2.2.2) is the only process through which genetic material from two independent or-

ganisms is combined and (hopefully) exploited such that the new organism is greater

than the sum of parts. In particular, Chapters 5 and 8 will extend these variation

algorithms to establish how mutation operators lead to hierarchical symbiosis, poten-

tially combining multiple previously independent teams. In any case, the variation

operators applied to a team tmi assume the following sequence of operations:

1. Add program(s) to tmi: Adding programs to teams implies that we sample from

the set of programs available after deleting the worst teams and any ‘orphaned’

programs. Thus, the only programs left are those that are currently associated

with the best performing teams. Such a process promotes the reuse of the more

‘successful’ programs.

2. Remove program(s) from tmi: Provides a path for revisiting team program

complement. That is to say, as programs are added to a team, redundancies

might occur. In the worst case, hitchhiking programs can appear that never

contribute a winning bid.

3. Mutate program(s) within tmi: Represents a process for maintaining diversity

at the level of programs as opposed to teams.

50

The add, remove, and mutate program procedures are described in detail below.

Table 4.1 provides a description of team variation parameters.

Adding or Removing Programs

Algorithm 2 defines the procedure for adding or removing a program from a team.

Following the variation sequence above, at least one program will be added and one

program will be removed from the team. That is, Algorithm 2 will be called twice,

once with op = remove and once with op = add.

Algorithm 2 Procedure for adding or removing a program to/from team tmi. op ∈
{add, remove} defines which operation is performed. At least one program will be
affected. Thereafter the likelihood of repeating the operation decreases by a factor of
pma. P represents the current program population. The function rand(0, 1) returns
a uniformly selected real value in the interval [0, 1.0). Parameters are listed in Table
4.1

1: procedure MutateTeam(tmi,op)
2: b = 1
3: while b > rand(0, 1) and tmi has between 3 and Ω programs do
4: if op = add then
5: uniformly sample pi ∈ P : pi /∈ tmi

6: add pointer from tmi to pi
7: b = b× pma

8: else
9: uniformly sample pi ∈ tmi

10: remove pointer from tmi to pi
11: b = b× pmd

12: end if
13: end while
14: end procedure

Mutating a Program

Algorithm 3 defines the procedure for mutating a program within a team. Again, at

least one program will be affected. Every program in the team is considered for mu-

tation with probability pmm. The program is cloned prior to mutation and the cloned

program’s bidding behaviour is modified (Section 4.3). The cloned program’s action

pointer is modified with probability pmn. Cloning the program prior to mutation

51

ensures that other teams in which the selected program may appear are unaffected

by the mutation.

Algorithm 3 Procedure for mutating program(s) in team tmi. Each program pi ∈
tmi is considered in turn and mutated with probability pmm. Note that programs are
removed from the team and copied prior to mutation, where the copy is inserted back
into the team and then modified (Lines 5 - 7). P is the current program population.
When modifying a program’s action, A′ represents the action set from which to sample
the new action. The function rand(0, 1) returns a uniformly selected real value in
the interval [0, 1.0). The process for modifying bid programs, Line 8, is detailed in
Algorithm 4. action(pi) refers to the action associated with program pi. Parameters
are listed in Table 4.1.

1: procedure MutateProgram(tmi)
2: do
3: for all pi ∈ tmi do
4: if rand(0, 1) < pmm then
5: copy pi into p′i
6: remove pointer from tmi to pi
7: add pointer from tmi to p′i
8: mutate bid program of p′i � See Algorithm 4
9: if rand(0, 1) < pmn then
10: change action(p′i) to a uniformly selected action a ∈ A′

11: end if
12: insert p′i into P
13: end if
14: end for
15: while no program has been modified
16: end procedure

Table 4.1: Parameters associated with creating and modifying teams.

Parameter Description

pmd Probability of program deletion
pma Probability of program addition
pmm Probability of program mutation (bidding behaviour)
pmn Probability of program mutation (action pointer)
ω Maximum initial team size
Ω Maximum team size

52

4.3 Linear GP Implementation

Programs in this work are linear register machines [20], Algorithm 1. Their imple-

mentation is nearly identical to previous work [88]. Implementation details from [88]

are reproduced here to ensure the algorithm description in this thesis is self-contained

and complete.

4.3.1 Encoding

Instructions are encoded as fixed bit strings with the following four fields:

1. destination (3 bits): encodes the register index x where the first operand is

located and where the result of the operation is stored.

2. source (16 bits): encodes index y where the second operand is located. y may

refer to either a register or an input depending on the instruction mode.

3. mode (1 bit): encodes whether index y is a reference to a register or input.

4. operation (3 bits): encodes the function to be applied to the values indexed by

x and y.

A program is then defined as a linear sequence of instructions operating on inputs

(state variables) and internal registers, Algorithm 1. Note that the caption of Algo-

rithm 1 also provides the complete instruction set used in this thesis.

4.3.2 Initialization and Variation

New programs are created through a simple two-step process (parameters associated

with creating and modifying programs are listed in Table 4.2):

1. Select the program size, or number of instructions, with uniform probability in

{1, 2, ...,maxProgSize}.

2. Set each bit in the new program to a random value selected with uniform prob-

ability.

Algorithm 4 defines the procedure to modify the bidding behaviour of a program

(bid mutation step in Line 8 of Algorithm 3).

53

Algorithm 4 Procedure for modifying the bidding behaviour of program pi. The
function rand(0, 1) returns a uniformly selected real value in the interval [0, 1.0).
Parameters are listed in Table 4.2

1: procedure MutateBidBehaviour(pi)
2: if pi has more than one instruction and rand(0, 1) < pdelete then
3: delete a uniformly selected instruction
4: end if
5: if pi has less than maxProgSize instructions and rand(0, 1) < padd then
6: create new instruction ii with uniformly selected bit values
7: insert ii into pi at uniformly selected location
8: end if
9: if rand(0, 1) < pmutate then
10: flip uniformly selected bit in pi
11: end if
12: if pi has more than one instruction and rand(0, 1) < pswap then
13: swap the locations of two uniformly selected instructions
14: end if
15: end procedure

4.3.3 Neutrality Test

When variation operators introduce changes to a program, there is no guarantee

that the change will: 1) result in a behavioural change, and 2) even if a behavioural

change results, it will be unique relative to the current set of programs. Point 1 is

still useful as it results in the potential for multiple code changes to be incrementally

built up before they appear, or neutral networks [20]. However, this can also result

in wasted evaluation cycles because there is no functional difference relative to the

parent. Given that fitness evaluation is expensive, we therefore test for behavioural

uniqueness. Specifically, a set of the most recent state observations over all teams

are retained in a global archive5. When a program is modified or a new program

is created, its bid for each state in the archive is compared against the bid of every

program in the current population. As long as all bid values from the new program

are not within τ of all bids from any other program in the current population, the new

program is accepted. If the new program fails the test, then the program variation

operations (Algorithm 4) and neutrality test are repeated.

5Each state observation made by any team during evaluation is added to the archive with prob-
ability parchive. The archive assumes a first-in-last-out structure with max size arcsize.

54

Table 4.2: Parameters associated with creating and modifying programs.

Parameter Description

numRegisters Number of registers
maxProgSize Maximum program size
pdelete Probability of instruction deletion
padd Probability of instruction addition
pmutate Probability of flipping a single bit
pswap Probability of swapping two instructions
parchive Probability of adding state observation to archive (Section 4.3.3)
arcsize Size of global observation archive used for neutrality test
τ Bid similarity threshold

4.3.4 Identification of Ineffective Code

In practice, 60 − 70% of program instructions may have no effect on the program’s

output [20]. These ’introns’ can be identified and marked prior to evaluation. As

such, introns can be skipped during program execution, significantly reducing the

computational cost of evaluating policies. The procedure for identifying introns is

detailed in Algorithm 5. Note that introns are important for the development of

programs and are never removed. For example, introns protect effective program

code from potentially detrimental variation and support neutral variations, allowing

variation operators to make several incremental modifications to a program before

their (cumulative) affect on behaviour appears [20]. The procedure for identifying

introns is detailed in Algorithm 5.

55

Algorithm 5 Algorithm for identifying instructions that have no effect on program
output, or the content of register 0 after execution. The variable ip is an instruction
pointer, ∗ip denotes an instruction, and the program size is N . The procedures in
lines 5 and 8 are used to extract the destination and source registers respectively,
while line 7 tests if the y operand refers to a register. The introns are recorded in set
I.

1: procedure FindIntrons

2: I = ∅ � Set of introns.
3: T = {0} � Set of target registers.
4: for ip = N − 1 to 0 do
5: x = GetDestination(∗ip)
6: if x ∈ T then � Instruction ∗ip is effective.
7: if yIsRegister(∗ip) then
8: y = GetSource(∗ip)
9: T = T ∪ {y}
10: end if
11: else � Instruction ∗ip is an intron.
12: I = I ∪ ip
13: end if
14: end for
15: end procedure

Chapter 5

Algorithm Description: Policy Trees

5.1 Overview

Having established a general specification for teams of programs in chapter 4, this

chapter describes the hierarchical organization of multiple teams into policy trees. In

particular, teams of programs are coevolved over two distinct phases of evolution.

The first phase produces a library of diverse, specialist teams of limited capability

(Phase 1, Figure 5.1). The second phase builds more general and robust policies by

reusing the library, essentially building generalist strategies from multiple specialists

(Phase 2, Figure 5.1). Thus, diversity maintenance is critical during the first phase

of evolution to ensure the identification of a wide range of specialist behaviours.

This chapter proceeds as follows to describe the complete algorithm for developing

policy trees. Section 5.2 defines how the team initialization and variation procedures

are extended to support policy trees constructed over two phases of evolution. Sec-

tion 5.3 defines the procedure for decision-making, or how policy trees interact with

the task environment during evaluation. Section 5.4 details how results of evaluation

are used to determine which policies will survive to reproduce, or the selection pro-

cedure. This is where diversity maintenance through fitness regularization plays a

critical role. In particular, in phase 1 of evolution selection pressure is applied based

on performance in the task and novelty with respect to other policies in the same

population. Finally, Section 5.6 establishes how the entire GA procedure (Figure

1.2) is repeated over two phases of evolution to specifically enable transfer learning.

In phase 1, multiple initializations run in parallel to develop solutions for multiple

source tasks. In phase 2, a single GA develops hierarchical policy trees that reuse the

solutions for source tasks to solve a more complex target task.

56

57

��������������	
���
�
���������

��
��	�
��
�

�����	

���� ���� ���� ���� �������	

����	

�
�

�
	

�
�

����
	

�
�

�
�

�
�

���������	��

������
����	����

���	��!

�����

��������

	�
��

������

���

��

���� ���� ���� ����

���� ���� ����

�	�
������

��

�������
���������

����
��
�

�
���� �
�
�
�
�
�

������

�
�

�
�

�
�

������������

�����
��������

�������

Figure 5.1: Illustration of the primary concepts in the development of policy trees:
1) Hierarchical policies are developed over two phases of evolution separated by a
single (major) transition event; 2) Phase 1 evolves single-team policies with diversity
maintenance, resulting in a library of specialist behaviours. Phase 2 evolves policy
trees that reuse the library. Policy trees are evolved without diversity maintenance
to encourage progress to the ultimate objective; 3) Transfer learning is enabled by
increasing the task complexity between phases. Phase-1 policies learn a simpler source
task while phase-2 policies learn a more difficult target task.

5.2 Initialization and Variation

From a structural perspective, the only difference between phase-1 and phase-2 poli-

cies is the action set available to programs. Thus, the generic team initialization and

variation procedures (Sections 4.2.1 and 4.2.2) apply directly to both phases of the

evolution of policy trees, where the action set A′ for evolving programs is depen-

dent on the phase. Specifically, programs in phase 1 are limited to atomic actions

defined by the task environment. In phase 2, program actions refer exclusively to

team behaviours evolved during phase 1. As such, the transition from phase 1 to

phase 2 represents a major evolutionary transition from single-team to hierarchical,

multi-team organisms, or policy trees (Figure 5.1).

5.3 Decision-Making in Policy Trees (Evaluation)

Decision-making in a policy tree follows the same bidding mechanism established in

Section 4.2 for a single team of program, but in policy trees decision-making is a

recursive procedure beginning at the root team and following one path through the

tree (of teams) until an atomic action is reached, Algorithm 6. The process begins

58

with the identification of a winning program in the root team relative to the current

state observation. However, at this point the action is a previously evolved team as

discovered during phase 1, i.e. a meta action. Thus, the meta action is now executed

for the same state variables, with the winning program this time referencing an atomic

action from the task environment. In sequential decision-making tasks, evaluation

for the current policy begins in a start state defined by the task environment (See

Chapter 3) and continues until an episodic end state is encountered i.e., for each new

state of the task, the policy tree executes Algorithm 6 to select an atomic action, in

each case potentially updating the state of the task. At the end of an episode, the

task environment returns a final reward signal that characterizes the quality of the

policy’s decision-making during that episode. In order to mitigate the effect of noisy

evaluations in stochastic tasks, the fitness of a policy is often defined by the mean

reward across multiple evaluations in the task environment.

Algorithm 6 Generic process for selecting an atomic action with a single team of
programs (phase 1) or through traversal of a policy tree (phase 2). tmi is the current
team (initially the root node in the case of a policy tree). �s(t) is the vector of state
variables representing the current environmental observation at time t. A is the set
of atomic actions. First, all programs in tmi are executed relative to the current state
�s(t) (Lines 2,3). The algorithm then identifies the winning program as that with the
maximum bid (Line 5). If the winning program has an atomic action, the action is
returned (Line 7). Otherwise, action(pi) is a reference to a previously evolved (source)
policy/team, hence the process is called recursively on that team (Line 9).

1: procedure SelectAction(tmi, �s(t))
2: for all pi ∈ tmi do
3: bid(pi) = exec(pi, �s(t)) � run program on �s(t) and save result
4: end for
5: p∗i = argpi∈tmi

max[bid(pi)] � identify program with maximum bid
6: if action(p∗i) ∈ A then
7: return action(p∗i) � atomic reached
8: else
9: return SelectAction(action(pi), �s(t)) � call to source policy
10: end if
11: end procedure

59

5.4 Specialization and Diversity Maintenance

In order to promote population diversity, a policy’s proficiency at interacting with

the task environment (Section 5.3) as well as its novelty must factor into the selec-

tion process, where novelty refers to the degree of similarity between a policy and

all other members of the same population. The intuition behind explicit diversity

maintenance is that searching for good things as well as different kinds of things has

two key benefits: 1) diversity helps prevent premature (team) convergence; and 2)

when developing a library of reusable code, a diverse population represents a versa-

tile toolbox for subsequent reuse [75] (See Phase 1, Figure 5.1). As such, two broad

approaches to diversity maintenance are assumed in this work: regularization and

multiple (source task) populations.

5.4.1 Fitness Regularization

Diversity through regularization implies that the teams are selected for policies that

produce high rewards and exhibit unique qualities relative to all other members of

the same population. Rather than assuming a single metric to quantify the similarity

of two policies, this work adopts two different metrics and switches between them,

selecting either metric with equal probability at each generation. Switching between

dissimilar distance metrics: a) avoids introducing yet another scalar weighting param-

eter; b) has been shown to be as effective as combining metrics in a multi-objective

formulation [34]; and, c) actively encourages the development of modularity [67, 110].

Such metrics are also ideally task-agnostic.

A Program-Utility Distance Metric is used to characterize diversity across

the programs that are ‘active’ within a team, and as such defines diversity as a group

property. A program is considered active if it contributes an action at least once

during the life of a team. The distance between teams is summarized as the ratio of

active programs common to both teams. Thus, the Program-Utility Distance between

teams i and k is

dist(tmi, tmk) = 1−
Progactive(tmi) ∩ Progactive(tmk)

Progactive(tmi) ∪ Progactive(tmk)
(5.1)

where Progactive(tmx) represents the set of active programs in team x. There is

60

nothing task-specific in this metric.

A Behavioural Distance Metric characterizes a team by how it interacts with

the environment. At each decision point in a game, the state and subsequent ac-

tion taken by the team are recorded. Each state variable is discretized to [0, 1, 2],

or low, medium, high. Thus, for each training game a profile vector is recorded,

�p = [{a(ts), �sd(ts)}, ts ∈ T], where a(ts) is the atomic action taken, �sd(ts) is the dis-

cretized state observation, and T represents every decision point in the associated

game. Teams maintain a historical record of the profile �p for every game played dur-

ing training. We define �P to be the concatenation of all profile vectors �p in a team’s

historical record. Let Z(�P) be the compressed length1 (in bytes) of profile vector �P .

The behavioural distance between a pair of teams can now be summarized as the

Normalized Compression Distance (NCD) [45] between their corresponding profiles:

NCD(�Pi, �Pk) =
Z(�Pi

�Pk)−min(Z(�Pi), Z(�Pk))

max(Z(�Pi), Z(�Pk))
(5.2)

where Z(�Pi
�Pk) is the compressed length of the two profile vectors, �Pi and �Pk, con-

catenated. NCD returns a real number between 0 and ≈ 1.2 that characterizes the

difference between profile vectors. Equation (5.2) leverages the ability of compression

algorithms to filter redundancies in data. For example, if �Pi and �Pk are very similar,

then Z(�Pi
�Pk) ≈ Z(�Pi) ≈ Z(�Pk), in which case NCD(�Pi, �Pk) ≈ 0. NCD is informative

even when comparing vectors that differ in length, which is important because each

team’s profile will contain a variety of episodes with different outcomes.

Balancing Fitness and Novelty can be achieved in several ways, including

fitness sharing [92], linear weighted sum of fitness and novelty [28, 71], or multi-

objective optimization [34]. In this work, a simple two-objective approach based on a

Pareto dominance relation balances task fitness with novelty as measured using one

of the above diversity measures. Thus, two objectives are identified:

• Fit(tmi) is the mean reward over all games in which tmi has been evaluated.

• Nov(tmi) is the mean distance, as measured with either diversity metric (Eqn.

(5.1) or (5.2)), between tmi and the knn = 15 nearest neighbours in the same

1This work uses the bzip2 data compression library for calculating the length (in bytes) of a
compressed sequence of integers.

61

population2. For each generation, we choose which diversity metric to assume

throughout that generation with equal probability.

A team tmi is said to dominate another team tmj, if tmi is better that tmj in at

least one objective and no worse in the others.3 Finally, each team is ranked prior

to selection, where we assume that more desirable teams will be dominated by fewer

individuals:

Rank(tmi) = 1−
Dom(tmi)

Popsize
(5.3)

where Dom(tmi) is the number of teams in the same population that dominate tmi.

5.5 Overall Policy Tree Training Algorithm

Algorithm 7 describes the overall training algorithm for the development of policy

trees, which applies to both phases of evolution. Parameters are listed in Table 5.1.

The procedure begins by initializing Popsize−Popgap teams. This is followed immedi-

ately by the repeated application of variation operators inside the main training loop,

creating new team offspring until the team population size reaches Popsize (Lines 5 -

9). Next, all team policies are evaluated in the task environment, where each records

the final reward signal and profile vector (Section 5.4.1) for each episode (Line 12). In

phase 1, fitness regularization is then applied to rank teams, i.e diversity maintenance

(Lines 14 - 16). In phase 2, teams are simply ranked by the mean final reward from

all evaluation episodes. From there, policy development is driven by a generational

GA such that a fixed number of the least desirable (lowest ranked) teams are deleted

in each generation and replaced by the offspring of surviving teams. One implication

of this selection process is that the GA is driven by group-level selection, i.e. the

team is judged as a whole rather than by the performance of individual components

(Section 1.5.1). As such, programs have no individual fitness. At each generation,

orphaned programs – those that are no longer a member of any team – are assumed

to be ineffective and deleted (Line 21).

2knn = 15 was selected as a reasonable value based on empirical tuning prior to the experiments
described in this work.

3Formally, a solution ai dominates another solution aj if ∀k[fk(ai) ≥ fk(aj)]∧∃k[fk(ai) > fk(aj)].

62

Algorithm 7 The overall Policy Tree training algorithm applied at each phase of
evolution. T t refers to the root-level team population at time t. P t refers to the
program population at time t. tmax is the number of generations for this phase.
variation is a reference to the team variation procedure detailed in Section 4.2.2.
Policies are evaluated in teval episodes per generation, up to a max of leval episodes
per lifetime. numEval(tmi) returns the number of evaluations for tmi so far. When
the cost of evaluations is high, these parameters can be set such that weak policies
are identified and replaced early, while promising policies are verified with additional
evaluations. Note that the program population is updated and modified implicitly
through team variation operators (Line 8). When teams are deleted in Line 20,
programs with no remaining team membership are also deleted (Line 21). task refers
to the task environment.

1: procedure Train

2: t = 0
3: initialize Popsize − Popgap teams, add to T t (add new programs to P t)
4: while t ≤ tmax do
5: while T t contains less than Popsize teams do � Variation
6: uniformly sample parent team tmi ∈ T t

7: copy tmi into tmj

8: tm′
j ← variation(tmj)

9: add tm′
j to T t

10: end while
11: for all tmi ∈ T t : numEval(tmi) < leval do � Evaluation
12: deploy tmi for teval evaluations in task (see Algorithm 6)
13: end for
14: if phase == 1 then � Diversity maintenance
15: select either diversity metric with equal probability
16: apply Pareto ranking to T t (see Section 5.4.1)
17: else
18: rank teams in T t by their mean episode outcome
19: end if
20: delete Popgap lowest ranked teams from T t � Selection
21: delete from P t programs that are not part of any team
22: t = t+ 1
23: end while
24: end procedure

63

Another implication of this selection procedure relates to the exploration/exploitation

trade-off common to search and optimization algorithms. That is, a balance needs to

be struck between the resource spent exploring the search space versus resource spent

exploiting solutions found so far [153]. In Algorithm 7 this balance is controlled by

the Popgap parameter, which specifies the proportion of the team population (Popsize)

that is deleted in each generation to make room for new offspring. If Popgap is high,

then the balance is shifted toward exploration, since more resource in each generation

is spent producing offspring through application of the variation operators. On the

other hand, the GA used here is elitist in that the least desirable teams are determin-

istically deleted (Line 20), i.e. a team is only deleted after variation operators have

discovered something more desirable (from the perspective the cost function). As

such, with the best performing teams protected, a relatively high Popgap is adopted

in this work on the assumption that exploration leads to diversity, which is essential

to constructing meaningful hierarchies.

Table 5.1: Parameters associated with the overall Policy Tree training procedure,
Algorithm 7, in addition to parameters outlined in Chapter 4

Parameter Description

Popsize Team population size
Popgap Number of teams deleted and introduced in each generation
tmax Number of generations
teval Number of evaluation episodes per team in each generation
leval Maximum number of evaluation episodes per team

5.6 Multiple Populations and Transfer Learning

Relative to previous work with SBB in RL tasks [35, 75, 92, 70, 71], the algorithm

described in this chapter explicitly addresses how the bottom-up, incremental devel-

opment of a policy tree provides natural opportunities for task transfer since each

level of the hierarchy can be developed relative to different components of the task,

e.g. different environments or objectives. Specifically, phase 1 identifies a diverse set

of relatively simple ‘source’ policies while phase 2 learns how to reuse phase 1 source

policies for solving a different, more complex target task. A user may have multiple

candidate source tasks in mind, but no way of a priori prioritizing or selecting which

64

source tasks to employ in practice. In this work it is assumed that all candidate source

tasks will be developed in parallel during independent instances of phase-1 evolution.

Note that in this case the parallel, multi-population model serves two purposes:

1. Parallel development of multiple source task policies.

2. Additional diversity maintenance since isolated populations are less likely to

converge to similar solutions (Section 2.3).

Phase 2 will then identify which specific source policies to deploy and how. The com-

plete procedure for Policy Tree development/training is depicted in Figure 5.2. The

case of ‘Transfer’ implies that multiple different source tasks are learned in phase 1,

where the alternative is to simply assume the target task throughout, or ‘Baseline’ in

Figure 5.2. In effect, the Transfer case requires prior information to inform the iden-

tification of code for reuse. Conversely, the Baseline scenario assumes that diversity

maintenance is sufficient for this purpose. The complete process is summarized as

follows assuming two source tasks have been identified:

1. Phase 1: Coevolve N1 independent, non-hierarchical team-program populations

for source tasks A and B in parallel (Algorithm 7). The action set available to

programs is the set of atomic actions from the (source) task environments.

2. Combine the independent team-program populations from phase 1 into a master

set of policies for each source task, A and B.

3. Rank the policies in sets A and B based on mean training reward (i.e. no

diversity regularization) and delete all but the PopGap best individuals from

each set.

4. Combine sets A and B into a single pool of source policies. This pool now

represents the library of source policies for reuse during phase 2. Source policies

are not modified any further.

5. Phase 2: Coevolve N2 independent, root team-program populations (i.e. policy

trees) under the target task environment (Algorithm 7). The library of phase-1

source policies represents the action set available to phase-2 programs.

65

�������	
���

�������	
���� �
�
������

�
�

���
�
�

���
�
�

���
�
�

����

������

��������

	
�����
	
��

� � � � �

��

��

�����
�
������

�
�

���
�
�

����

������

��������

	
�����
	
��

��

�
�
������

�
�

	
�����	
��

��
����
�����
�����

��
����
�����
�����

	�
�����

�
������

Figure 5.2: Selecting ‘source’ policies from Phase 1 of evolution for recombination at
Phase 2. N1 is the number of independent team-program population pairs coevolved
in Phase 1 for each source task. Popgap is the final number of policies produced from
each population. � symbolizes the filtering process in which policies are ranked and
selected based on average training reward. In the empirical evaluation of Transfer
(Chapter 6), Phase 1 is parameterized such that Transfer and Baseline cases are
allocated equivalent computational resources.

Note that in phase 2, the root team is essentially a switching policy that learns

under what environmental situations to reuse policies from phase 1. No information

is provided regarding which source policies were developed under which source task,

nor any information regarding their quality or specialization. There is also no prior

state or action mapping function used to define how the meaning of state variables

and/or actions changes between source and target task. Thus, the nature of code

reuse in phase 2 is developed entirely through environmental interaction.

5.7 Additional Domain-Specific Details

In RoboCup Soccer (Section 3.2), the process for a policy to map a state observation

to a task-specific atomic action in each time step follows the generic procedure in

Algorithm 6. This applies to the ego-centric state observation and task-specific macro

actions available to the player currently in possession of the ball, while other players

assume prior macro actions as per the decision tree in Figure 3.2. However, in Ms.

Pac-Man the policy needs to evaluate each direction separately then decide in which

direction to move (Section 3.4). Thus, decision-making is now a two-part process.

First, the policy (tree) is used to map the state observation from each legal direction

to one of two atomic actions in {Accept, Reject}. The winning bid value for each

66

decision is also recorded. The policy then moves in the accepted direction with the

highest bid. If no direction is accepted, the policy moves in the rejected direction

with the lowest bid. In other words, the policy either moves in the direction that is

most-accepted, or least-rejected. The process for a policy to select a move relative to

each direction at any given time step is detailed in Algorithm 8.

Algorithm 8 Procedure to select a move for Ms. Pac-Man, given a team policy tmi.
DL is the set of legal directions (not leading into a wall from the current location).
Programs in source policies (Figure 5.1) assume one of two atomic actions from the
action set A = {Accept, Reject}. To select a move, the policy considers each legal
direction in isolation, selecting an atomic action for each direction di ∈ DL (Lines
2 - 5). Note that the atomic action and the wining program bid are saved for each
direction as act(di) and bid(di) respectively. The policy then moves in the accepted
direction with the highest bid value (Line 7). If no directions are accepted, the policy
moves in the rejected direction with the lowest bid (Line 9).

1: procedure SelectMove(tmi, D
L)

2: for all di ∈ DL do
3: �s(t) ← state variables for direction di
4: {act(di), bid(di)} = SelectAction(tmi, �s(t)) � Algorithm 6
5: end for
6: if ∃di ∈ DL : act(di) == Accept then
7: Move ← argdi∈DL max(bid(di) : act(di) == Accept)
8: else
9: Move ← argdi∈DL min(bid(di) : act(di) == Reject)
10: end if
11: return Move
12: end procedure

Chapter 6

Empirical Evaluation: Policy Trees

6.1 Overview

This chapter describes experiments carried out with the Policy Tree algorithm (Chap-

ter 5) in the RoboCup and Ms Pac-Man task domain. The purpose of these exper-

iments is to demonstrate how Policy Trees support transfer learning as a means of

scaling to difficult task domains. As brief review, policy trees are constructed hier-

archically over independent phases of evolution. First, a diverse group of lower-level

source policies are evolved for related but different source task(s). A second phase of

evolution is conducted to learn how to reuse the source policies under the target task

by evolving a higher-level switching policy. Such a process enables policies from mul-

tiple source tasks to be recombined to solve the overall target task. Moreover, source

tasks may be ‘automatically’ discovered through mechanisms such as behavioural

diversity / novelty [85, 34].

In this work, the utility of supporting transfer learning through code reuse is ini-

tially demonstrated under the challenging multi-agent soccer domain of Half Field

Offense (HFO). In Phase 1, policies are evolved under two independent source tasks:

Keepaway (which evolves policies for retaining possession of the ball) and Goal Scor-

ing. Phase 2 evolves a policy for the Half-Field Offense (HFO) target task by learn-

ing how to reuse a subset of the previously evolved behaviours, or a switching policy

(Chapter 3 provides detailed source and target task descriptions). HFO is much closer

to the full-scale RoboCup soccer task and requires one team to defend their goal and

the other team to score (the offense team has no goal or goalie). The objective, state,

and action spaces are not the same for source and target tasks, a further criterion for

meaningful task transfer [143, 142]. Furthermore, the agent’s sensors and actuators

are noisy, making the problem highly stochastic and partially observable. The final

policy tree achieves an equivalent level of performance as the current RL state-of-

the-art, but at a fraction of the model complexity. Next, the identical Policy Tree

67

68

framework is applied to the popular Ms. Pac-Man video game, where most previous

research, including the current state-of-the-art learning algorithm [117], relies on a

similar prior task decomposition into multiple source tasks (Chapter 3 provides details

on the source and target tasks in Ms. Pac-Man). We demonstrate that hierarchical

code reuse with diversity maintenance alone is sufficient to exceed the best results

published to date. Additional decomposition through prior specification of source

tasks improves on this. Furthermore, GP solutions are again shown to be simpler and

more efficient than previous champions developed by neuro-evolution.

In summary, the scope of this chapter is to demonstrate the ability to learn high-

quality behavioural agents for challenging game environments with minimal prior

knowledge. The use of Policy Trees in constructing behaviours through task transfer

implies that source task selection can be less constrained or even automated (see

results under Ms. Pac-Man, Section 6.4), and multiple source tasks can be considered.

As the policy tree evolves, evolution determines which source policies are of merit

and which are not. Ultimately, source policies might have been originally developed

from the perspective of say, goal scoring, but utilized for maintaining possession

(this actually transpired in practice, see Section 6.6). Thus, pursuing the proposed

approach to task transfer enables the discovery of effective/novel policies that would

otherwise never have been possible.

Animations under both RoboCup and Ms. Pac-Man, which illustrate how the

modular GP strategies support decision-making during gameplay, are included with

this thesis (See files PolicyTree-HFO.mp4 and PolicyTree-MsPacMan.mp4).

6.2 Experimental Setup

A representative comparator algorithm establishes a comparative measure of perfor-

mance for each task domain as follows:

• SarsaRBF: The Sarsa Temporal Difference Method with Radial Basis Func-

tions. SarsaRBF represents the current state-of-the-art in the HFO task [65].

• MM-NEAT: Modular Multi-objective NEAT with 2 modules, representing the

current state-of-the-art in the Ms. Pac-Man task [117].

69

Table 6.1: Algorithms benchmarked in Section 6.2. SarsaRBF and HAND are com-
parison algorithms for HFO soccer. MM-NEAT is a comparison algorithm for Ms.
Pac-Man. Shaded rows indicate experiments conducted only in HFO soccer, all other
SBB treatments are tested in both domains. Used by permission, c©2017 IEEE.

Label Description

SBB.TD SBB with transfer and switching diversity maintenance
SBB.T SBB with transfer, no diversity maintenance

SBB.D SBB no transfer, with switching diversity maintenance
SBB.D.B SBB no transfer, Behavioural diversity maintenance only
SBB.D.P SBB no transfer, Prog-Utility diversity maintenance only
SBB SBB no transfer, no diversity maintenance

SarsaRBF Sarsa with Radial Basis Function Approximator
HAND Hand-crafted HFO policy

MM-NEAT Modular Multi-objective NEAT with 2 Modules

In both cases we assume the parameterization/source code from the original imple-

mentations.

Recall that the Policy Tree algorithm described in this thesis is an extension of the

Symbiotic Bid-Based (SBB) approach to GP [88]. In naming the various extensions

explored in this chapter, we refer to the original algorithm for building policy trees as

simply SBB, while the addition of transfer learning is denoted by a “.T” extension,

and the addition of diversity maintenance (as described in Section 5.4) is denoted

with a “.D” extension1. This work establishes the utility of transfer learning and

diversity maintenance independently and in combination. Table 6.1 summarizes all

experimental cases. See Figure 5.2 for a illustration of the SBB model with and

without transfer, and Section 5.4 for a detailed description of the approach to diversity

maintenance proposed. Note that when no diversity is enforced, teams are selected

based on training reward alone, or Fit(hi) in Section 5.4 (Balancing Fitness and

Novelty).

Table 6.2 summarizes the parameterization assumed for SBB.T. Values specific

to Ms. Pac-Man are in parentheses, while all other parameters are common to both

domains. The maximum number of evaluations (emax) is a function of the popula-

tion size, number of generations, and number of evaluations for each individual per

1The results presented in this chapter are published in [74]. The naming scheme for policy tree
variants in this thesis is consistent with that article.

70

Table 6.2: Parameterization of team and program populations. pmx denotes a mu-
tation operator in which: x ∈ {d, a} are the prob. of deleting or adding a program
respectively; x ∈ {m,n} are the prob. of creating a new program or changing the
program action respectively. emax is the maximum number of evaluations over all pop-
ulations (See Figure 5.2) per phase. Parameters for Ms. Pac-Man are in parentheses.
Used by permission, c©2017 IEEE.

Team (GA) population

Parameter Value Parameter Value
N1 10 N2 20 (10)

emax Phase 1 84,150 (90,900) T 50 (3)
emax Phase 2 56,700 (45,450) etest 1000 (100)

Popsize 180 Mgap 50%
pmd, pma 0.7 ω/Ω 30
pmm 0.2 pmn 0.1

Program population

numRegisters 8 maxProgSize 96
pdelete, padd 0.5 pmutate, pswap 1.0

generation. These parameters can be modified based on the nature of the task. For

example, the Goal Scoring source task was easier to learn than the Keepaway source

task, and thus required fewer generations. The number of generations and number of

evaluations for each individual per generation (teval)
2 for a single phase in each task

were as follows:

• Scoring: 60 generations, teval = 25

• Keepaway: 125 generations, teval = 10

• HFO: 125 generations, teval = 10

• All Ms. Pac-Man tasks: 100 generations, teval = 10

In order to keep the maximum number of evaluations constant over all experi-

ments, SBB assumes the same parameterization as SBB.T except in the case of the

Phase 1 generation limit. When multiple source tasks are not employed at phase 1

(Baseline in Figure 5.2), the generation limit is increased such that emax for phase 1 is

equivalent across all experiments in the respective task domain. In HFO, SarsaRBF

2Each individual was only evaluated in a single generation, thus leval = teval (Table 5.1).

71

learning curves appeared to plateau after roughly 20,000 episodes, at which point

training was stopped and policies saved for evaluation under test conditions.3 MM-

NEAT evolved a population of 100 individuals with 10 evaluations each over 200

generations, for a total of 100× 10× 200 = 200, 000 evaluations.

Due to the abundant sources of noise in RoboCup4 and Ms. Pac-Man5, post-

training test games (etest, Table 6.2) are required to provide an accurate measure of

performance for the single champion policy from each run. However, the computa-

tional cost of evaluations precludes testing an entire population over a large number of

games in order to identify such a champion. Thus, the best policy in any population

is identified by first identifying the single policy with the highest training reward in

each of the final T generations. If the policy with highest training reward has already

been saved, the next-best policy is identified. These T unique cached policies are

then tested in etest games, and the highest scoring policy represents the population

champion assumed for test.

6.3 Half Field Offense Test Performance

Figure 6.1 reports test performance for the four SBB configurations under the HFO

task (first 6 rows of Table 6.1), along with SarsaRBF and the hand-crafted policy.

It is apparent that both SarsaRBF and SBB.T reach similar levels of performance.

Indeed, there is no statistical difference between SarsaRBF and either of the SBB.T

distributions in Figure 6.1 (Mann-Whitney rank test, P < 0.05), as indicated by

the Grey bracket across the top of the figure grouping these distributions. Diversity

maintenance does not provide a significant benefit when task-transfer is used in the

HFO task, nor is it harmful. The fact that diversity does not make a significant

difference here is likely a further testament to the utility of knowledge transfer. Source

policy reuse provides enough leverage to overshadow the contribution of diversity

maintenance, with all SBB.T cases reaching state-of-the-art performance. Indeed,

neither SBB case without transfer is able to reach a competitive level with SarsaRBF

(SBB and SBB.D in Figure 6.1). However, diversity maintenance becomes important

3Under test, SarsaRBF selects actions strictly according to its value function (see [160]).
4Sensor and actuator noise, as well as random start conditions for takers, keepers, and ball in

each game.
5Stochasticity in ghost behaviours and path-finding algorithms from which sensors are derived.

72

●

●

●
●

380
374

●

372

358

343

333

312

●●

300

S
a

rs
a

R
B

F

S
B

B
.T

S
B

B
.T

D

S
B

B
.D

S
B

B
.D

.B

H
A

N
D

S
B

B

S
B

B
.D

.P

250

300

350

400

450

G
o

a
ls

 s
c
o

re
d

 i
n

 1
0

0
0

 t
e

s
t

g
a

m
e

s

Figure 6.1: Post-training test results over 1000 games. SarsaRBF represents a current
state-of-the-art reinforcement learner for the HFO task; SBB denotes hierarchical
SBB cases as outlined in Table 6.1. HAND represents a third party hand-crafted (i.e.
human-designed) HFO policy native to the HFO environment. Box plots summarize
the quartile distribution over 20 independent runs. Grey bracket groups distributions
with no statistically significant difference, P > 0.05 from Mann-Whitney rank test.
Used by permission, c©2017 IEEE.

in the absence of task transfer, where only the SBB case with diversity maintenance

(SBB.D) was able to outperform the hand-crafted policy. Finally, in order to test the

utility of stochastically switching distance metrics within the diversity mechanism

(Section 5.4), we performed one run with strictly behavioural diversity (SBB.D.B)

and one run with strictly Program-Utility diversity (SBB.D.P). While standalone

Behavioural Distance worked better than Program-Utility, stochastically switching

between metrics proved important, as neither metric worked well enough alone to

outperform the hand-crafted baseline.

73

6.4 Ms. Pac-Man Test Performance

Several constraints are placed on the Ms. Pac-Man environment in order to minimize

the computational cost of evaluations during training. As such, Ms. Pac-Man is

limited to a single life, a single visit to each of 4 mazes, and a maximum of 8000 time

steps to complete each maze. A game ends when any of these limits expire. However,

a much less-constrained version of Ms. Pac-Man is used to test the quality of learned

behaviours post training. This version closely matches that used in the Ms. Pac-Man

versus Ghosts competition (MPMvsG). Additional rules under the MPMvsG task are:

1) Ms. Pac-Man starts with 3 lives and gains an extra life after earning 10,000 points;

2) Completing the 4th maze returns Ms. Pac-Man to the first maze until each maze is

visited 4 times, for a total of 16 levels; 3) the per-level time limit is 3000 time steps,

but rather than being killed when time runs out, she receives half the score from the

remaining pills and advances to the next level; and 4) Ms. Pac-Man has a time limit

of 40ms to return an action in each time step. If an action is not returned in time,

the action from the previous time step is assumed.

In keeping with the Ms. Pac-Man literature, we report the mean and max cham-

pion test scores for the four SBB configurations (first 4 rows of Table 6.1) under the

MPMvsG task along with MM-NEAT, Figures 6.2 and 6.3 respectively. There is no

statistical difference between the mean score for any of the SBB configurations (See

the Grey bracket extending over the first 4 columns of Figure 6.2). However, both

SBB cases with diversity maintenance significantly outperform MM-NEAT.6 The fact

that SBB manages to exceed the performance of MM-NEAT even without task trans-

fer implies that prior task decomposition, or the separation of pill score and ghost

score employed under SBB.T and in the multi-objective component of MM-NEAT, is

unnecessary. However, diversity maintenance is critical for effective code reuse. That

said, the combined task-transfer and switched diversity maintenance scheme is still

the most consistent performing model.

The maximum scores for all SBB cases are significantly better than MM-NEAT,

Figure 6.3. Again, diversity maintenance appears to be more important than task

6The lower Grey bracket in Figure 6.2 indicates no statistical difference between MM-NEAT and
SBB treatments without diversity maintenance, but does not include SBB cases with diversity.

74

62015
60787

52129

48791

36932

S
B

B
.T

D

S
B

B
.D

S
B

B
.T

S
B

B

M
M

.N
E

A
T

0

20000

40000

60000

80000

M
e

a
n

 G
a

m
e

 S
c
o

re

Figure 6.2: Mean post-training test scores over 100 games in the MPMvsG task.
MM-NEAT represents a current state-of-the-art learner for the Ms. Pac-Man task;
SBB denotes hierarchical SBB cases as outlined in Table 6.1. Box plots summarize
the quartile distribution over 10 independent runs. Grey bracket groups distributions
with no statistically significant difference, P > 0.05 from Mann-Whitney rank test.
Used by permission, c©2017 IEEE.

75

134092
131740

128270

117442

65422

S
B

B
.D

S
B

B
.T

D

S
B

B
.T

S
B

B

M
M

.N
E

A
T

40000

60000

80000

100000

120000

140000

160000

M
a
x
 G

a
m

e
 S

c
o
re

Figure 6.3: Max post-training test scores over 100 games in the MPMvsG task. MM-
NEAT represents a current state-of-the-art learner for the Ms. Pac-Man task; SBB
denotes hierarchical SBB cases as outlined in Table 6.1. Box plots summarize the
quartile distribution over 10 independent runs. Grey bracket groups distributions
with no statistically significant difference, P > 0.05 from Mann-Whitney rank test.
Used by permission, c©2017 IEEE.

76

transfer in this domain, as only the cases with diversity (SBB.D and SBB.TD) pro-

duce better results than the SBB baseline. Note that the SBB.TD and SBB.D results

are also competitive with policy discovery through Monte Carlo Tree Search (MCTS),

i.e. a search process that requires considerably more task specific information than

any formulation of SBB. Specifically, the corresponding average and max. post train-

ing performance for MCTS are 107,561 and 127,945 respectively [111]. Attempting

to use GP to identify heuristics to guide MCTS resulted in average and best perfor-

mance metrics of 32,641 and 62,630 [4], which is significantly lower than any SBB

configuration.

6.5 Significance of Policy Tree Variants

There are a total of four Policy Tree configurations considered across both HFO and

Ms. Pac-Man task domains (SBB.TD, SBB.D, SBB.T, SBB). The Friedman rank

based non-parametric test may be employed to summarize the relative significance

of the configurations [30]. Table 6.3 summarizes the initial ranks. The Friedman

statistic for k = 4, N = 2 is χ2 = 5.4. Re-normalizing for the F-distribution provides

FF = 9. This is greater than the corresponding critical value of F (3, 3) = 5.391 at

a p-value of 0.1; hence we are able to reject the null-hypothesis. Finally, applying

the Nemenyi post hoc test defines the performance of any two classifiers as being

significantly different if the average ranks differ by a critical difference (CD) defined as

qα(
k(k+1)
6N

)
1

2 = 2.96 for q0.1 = 2.291. Thus, Policy Trees configured without transfer or

diversity maintenance is consistently inferior to including both diversity and transfer.

Table 6.3: Rank based summary of SBB.TD, SBB.D, SBB.T, SBB Policy Tree con-
figurations over each task. Used by permission, c©2017 IEEE.

Domain SBB.TD SBB.D SBB.T SBB

HFO 1 3 2 4
Ms.Pac-Man 1 2 3 4
Avg. Rank 1 2.5 2.5 4

77

� � �

� � � �

	

		

� �

� 	

�

�

�

�

	

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

�
�

�
�

�	 �����	

���
��
��
	

��
��
�

��
��
�

��
��

�

��
��
�

�
�

�
�

��
��
	

��
��
�

��
��

�

��
��
�

��
��
�

��
��
�

��
��
�

�
�

�
�

���������

��� ����

��!�"�������

��� ����

Figure 6.4: Step-by-step HFO game played by a champion policy tree from the
SBB.TD experiment. This policy was able to win the game after only 7 ’moves’.
The policy controls yellow players (offense team) only. Opponents (defense team) are
blue, and goalie is pink. Used by permission, c©2017 IEEE.

6.6 HFO Solution Analysis

In order to provide some insight into the behaviour of policy trees in the HFO task,

we can analyze a single champion policy tree from the SBB.TD experiment, Figure

6.4. This individual scored in 394 of 1000 test games. The policy tree has 4 active

programs at the root of the policy tree, 2 of which index Keepaway source policies

(K1, K2) and 2 index Scoring source policies (S1, S2). There are a total of 15 active

programs across all source policies, covering the full scope of domain-specific atomic

actions. We evolved homogeneous teams, thus any offense player in possession of the

ball is controlled by the same policy tree.

To understand the behaviour of this policy tree, we can trace the sequence of source

policies and atomic actions deployed at each decision point during a specific HFO

game, as shown in Figure 6.4. This particular game proceeded as per the following

play-by-play, in which the components of the policy tree are explicitly annotated:

78

1. The game is initialized with offense player 2 in possession of the ball.

2. Program 4 has the highest bid in the top level HFO switching policy and thus

deploys source policy K2, where program 1 outbids the others to deploy the

dribble atomic action.

3. Program 4 is again selected by the HFO switching policy, deploying K2, where

program 4 now has the highest bid. Offense player 2 thus passes to its closest

teammate (pass1).

4. Player 1 immediately passes to its second closest teammate, this time using

Scoring source policy S1.

5. Player 3 dribbles toward the goal using K1.

6. Player 3 loses control due to actuator noise, and is forced to chase the ball up

to the top right corner of the field (with an opponent in close pursuit).

7. Player 3 passes down to player 4 (i.e., the second closest teammate).

8. Player 4 shoots and scores.

Clearly, this HFO policy interleaves different Keepaway and Scoring source policies

while approaching the goal and achieving the winning shot. The high-level task

decomposition does not follow the simplistic division of labour (ball handling and

scoring) suggested by the source task configurations. Interestingly, at the lower level,

K1 and K2 developed different contexts for the dribble atomic action, both of which

proved useful. Similarly, S1 and S2 developed different contexts for the pass2 atomic

action. Indeed, all programs in this policy produce a winning bid at least once over

25 games. An animation of this policy can be viewed in the file PolicyTree-HFO.mp4

included with this thesis.

6.7 Ms. Pac-Man Solution Analysis

Figure 6.5 depicts a policy tree from the SBB.TD experimental case, which yielded

the highest median score in the MPMvsG task (Figure 6.2). This policy includes 4

programs as part of the root team, 2 of which index source teams trained relative to

79

the pill score objective (P0 and P1) while the other 2 index source teams trained on

the ghost score objective (G0 and G1).

Figure 6.5: Example policy tree from the SBB.TD (Ms. Pac-Man) experimental
case, which yielded the highest median scores in the MPMvsG task (See Figure 6.2).
(% use) is the fraction of all time steps for which each program produced a winning
bid under test. Used by permission, c©2017 IEEE.

The process for an SBB policy to follow a root-to-leaf path and ultimately select

an action for Ms. Pac-Man is the same as under HFO (Section 6.6). However, the

domain-specific atomic actions are different and the team needs to evaluate each

direction separately then make a decision [117]. Thus, programs in a team collectively

decide to accept or reject each direction, where each decision also includes a bid value.

The policy then moves in the accepted direction with the highest bid. If no direction

is accepted, the policy moves in the rejected direction with the lowest bid. In other

words, the policy either moves in the direction that is most-accepted, or least-rejected.

The process for a policy tree to select a move relative to the legal directions at any

given time step is detailed in Chapter 5, Algorithm 8.

All source teams in the policy of Figure 6.5 have roughly a 50/50 mix of programs

with the Accept and Reject atomic action. The frequency of use for each program,

relative to a single game of MPMvsG, is shown in parentheses. Clearly, this policy

favours source policy G1 (used in 83% of decisions) while the other source teams

are switched in to achieve specific behaviours. Interestingly, P0 is often used when

eating power pills and P1 is often used at the moment ghosts are eaten. Both these

behaviours are intuitively associated with the ghost objective, rather than the pill

objective under which these source teams were developed. The highest degree of

switching occurs in two specific circumstances: 1) when Ms. Pac-Man is oscillating

80

back and forth to remain in the same position7 while luring threat ghosts; and 2) when

Ms. Pac-Man is in a dangerous situation, for example, with threat ghosts approaching

from multiple directions. Frequent source team switching indicates a high degree of

interaction and cooperation among source teams, which collectively achieve luring and

escape behaviours for Ms. Pac-Man in this case. An animation of this policy playing

the MPMvsG game is included with this thesis in the file PolicyTree-MsPacMan.mp4,

in which Ms. Pac-Man survives to level 15 (of 16) and achieves a score of 100,480.

6.8 Comparison of Policy Tree Solution Complexity with SarsaRBF and

MM-NEAT

All SBB policy trees are teams of programs working cooperatively within a hierar-

chical policy tree. The number of programs per team and specific complement of

programs forming a team are all identified during evolution. Programs are simple lin-

ear register machines in which each instruction consists of a single arithmetic operator,

function, or conditional statement (See Chapters 4 and 5). Thus, we can describe the

complexity of a solution by counting the total number of program instructions over

all programs referenced by a policy tree.

The policy tree in Figure 6.4 has a total of 19 programs (4 at the top level and

15 in the lower level), with a total of 880 instructions across all programs. However,

the policy tree only follows one path from root to leaf node in order to suggest an

action relative to the current state observation, which can be clearly seen in the

policy animation (See PolicyTree-HFO.mp4). Indeed, while there was a median of

414 instructions in each SBB.TD policy for HFO, an average of only 116 instructions

were executed in each time step during test games. In contrast, each SarsaRBF policy

contains 16, 320 weight / RBF pairs, all of which require execution at every time step.

MM-NEAT solutions under Ms. Pac-Man assume a neural network representation

with an average of ≈ 47 nodes and ≈ 90 links in the champion networks. Each

node computes the sum of products over some portion of the links, followed by the

tanh activation function8. If we assume 5 operations for the activation function at

7Ms. Pac-Man is required to move in every time step, thus oscillating back and forth is the only
way to remain in the same maze location over multiple time steps.

8tanh(x) = ex−e−x

ex+e−x

81

●

3.43

● 0.07

SarsaRBF SBB.T.D11

0

1

2

3

4

M
ill

is
e
c
o
n
d
s

Single Decision

●

27.59

● 0.78

SarsaRBF SBB.T.D11

0

10

20

30

40

Game

Figure 6.6: CPU time for the champion/final policy to select an action in a single
time-step (Single Decision) and over an entire game of HFO (Game), averaged from
1000 test games. Box plots give the distribution over 20 independent runs for each
algorithm. The nature of the RoboCup socket interface, as well as the fact that
both SBB and SarsaRBF are programmed in c++, makes this direct comparison
possible. A similar empirical comparison with MM-NEAT is not possible as MM-
NEAT assumes a Java code base. Used by permission, c©2017 IEEE.

each node, and a total of 2 operations per link for the sum of products, then the

number of operations at each time step is links× 2+nodes× 5 = 415. In short, SBB

policies are more efficient to implement post training, with the modular nature of the

policy tree providing the basis for this simplicity. Figure 6.6 places this into context

by reporting the average CPU time required for SarsaRBF and SBB.TD to make a

decision at each time-step over 1000 test games in the HFO environment. Indeed,

decision-making under SBB is several orders of magnitude faster.

6.9 Summary

The SBB framework for evolving policy trees has been extended to facilitate the uti-

lization of task transfer, which represents a methodology for taking policies identified

under source tasks and then learning how to reuse them to provide policies under

a more difficult target task. Two task domains were considered. In the first case,

the Half Field Offense subtask of RoboCup soccer was used as the target task, where

HFO represents a benchmark known to be more difficult than the Keepaway task pre-

viously employed under task transfer (e.g. [146, 154]). SBB as originally formulated

82

was used as a control, and was not able to solve this task directly. The methodology

for task transfer under SBB proposed the following: 1) use multiple source tasks; and

2) evolve source task policies with diversity maintenance. Providing multiple source

tasks enables the user to cover a ‘range’ of potentially useful starting points to con-

struct solutions to the target task policy. The policy trees that were identified using

task transfer achieved HFO performance competitive with the current state-of-the-art

SarsaRBF, and were significantly simpler, resulting in execution times several orders

of magnitude faster. This can be particularly important in real-time environments

as more computational resources can be dedicated to other issues, such as strategic

decision making, which are typically given a lower computational priority.

The second empirical study, in which we consider the game of Ms. Pac-Man, rein-

forces the observations made under RoboCup. Previous learning agents in Ms. Pac-

Man have relied on prior knowledge to achieve state-of-the-art performance. However,

the process for incrementally constructing policy trees adopted in this work is able

to discover reusable code both with and without support for source tasks identified

with prior information. Indeed, results are competitive with schemes that assume

much more a priori information, such as Monte Carlo Tree Search. Finally, defining

solutions in the form of policy trees provides a very efficient scheme for post training

deployment.

From the perspective of constructing behavioural agents in general, the SBB Policy

Tree framework enables a designer to incorporate prior biases through task transfer,

while simultaneously supporting diversity maintenance. Task transfer may make the

difference between discovering effective agent behaviours or not (with or without

diversity). Diversity maintenance is never detrimental in the experiments herein,

and is a must when no prior information is available for task transfer. Moreover,

the diversity mechanisms adopted here are task-agnostic, thus independent of the

particular application.

Chapter 7

Domain Description: Arcade Learning Environment

7.1 Overview

Released in 1977, the Atari 2600 has been a popular home video game console that

was capable of running a large variety of games, each stored on interchangeable ROM

cartridges. Hundreds of games were compatible with the console, bringing the diver-

sity of an Arcade experience into the home through a single device. As each game is

designed to be unique and challenging for human players, the Atari 2600 provides an

interesting test domain for general artificial decision-making agents, Figure 7.1.

The Arcade Learning Environment or ALE [14] is an Atari 2600 video game emu-

lator designed specifically to benchmark RL algorithms. The ALE allows RL agents

to interact with hundreds of classic video games using the same interface as experi-

enced by human players. That is, an RL agent is limited to interacting with the game

using state, �s(t), as defined by the game screen, and 18 discrete (atomic) actions, i.e.

the set of Atari console joystick directions including ‘no action’, in combination with

/ without the fire button. Each game screen is defined by a 210 × 160 pixel matrix

with 128 potential colours per pixel, refreshed at a frame rate of 60 Hz. Thus, in the

most general case, ALE represents a high-dimensional visual reinforcement learning

(a) (b) (c)

Figure 7.1: Example Atari game environments. A diverse set of tasks are available,
including first-person shooter games (a), maze tasks (b), adventure games (c), and
many more.

83

84

challenge. While various methods have been proposed for hand-crafting sensory repre-

sentations from the raw Atari screen frames, including game-specific background and

object detection [14, 49, 86], the focus of this work is learning from high-dimensional,

task-independent sensory representation. However, in practice the raw screen frames

are preprocessed prior to being presented to an RL agent (See Section 7.2.1 for a

summary of approaches assumed to date, and Section 9.3 for the specific approach

assumed in this work).

Agent-environment interactions within the ALE are episodic. Each episode begins

with the agent in a start state defined by the particular game title and continues over

a sequence of discrete time steps until a ’game over’ signal is received. Time steps are

analogous to the 60Hz frame rate. In each step (frame) the agent observes the state of

the game, �s(t), and selects an action a ∈ A. The ’game over’ signal is accompanied by

a final reward, or game score, which reflects the quality of the agent’s decision-making

during that episode.

Interestingly, important game entities often appear intermittently over sequential

frames, creating visible screen flicker. This was a common technique game designers

used to work around memory limitations in the original Atari hardware. However,

it presents a challenge for RL because it implies that Atari game environments are

partially observable. That is to say, it is often impossible to capture the complete

game state from a single frame. Partial observability can be mitigated by averaging

pixel colours across each pair of sequential frames [94], or even “frame stacking” [100],

which concatenates previous frames with the current frame in order to reduce partial

observability and make it possible for the agent to detect the direction in which

objects are moving. However, these preprocessing steps are not used in this work.

The ALE is deterministic. That is, each game episode begins in the same start

state and episode outcomes are fully determined by the state and action taken in each

time step. Specifically, given a game stats s and action a, there is a deterministic next

state s′, or p(s′|s, a) = 1 [94]. As such, in some game titles it is possible to achieve

a high score simply my memorizing an effective action sequence. There are several

approaches to introducing variation and/or stochasticity into gameplay, where the

two most commonly used in the literature are no-op and sticky actions.

• no-op [100] implies that diverse initial conditions are achieved by forcing the

85

agent to select ‘no action’ for the first no-op frames of each game, where

no− op ∈ [0, 30], selected with uniform probability at the start of each game.

However, some game titles will be more affected than others. For example,

titles such as Ms. Pac-Man play a song for the first ≈ 70 game frames while

the agent’s actions are ignored (thus no-op has no effect), while the agent takes

control immediately in other game titles. Furthermore, after the initial no-op

period the environments becomes fully deterministic.1

• Sticky Actions [94] implies that agents stochastically skip screen frames with

probability p = 0.25, with the previous action being repeated on skipped frames.

This achieves two goals: 1) Artificial agents are limited to roughly the same

reaction time as a human player; and 2) Stochasticity is introduced throughout

the entire episode of gameplay.

Sticky actions are currently the recommended method of implementing stochasticity

in the ALE [94], and are therefore assumed throughout this work. no-op is adopted

in certain cases in order to make comparison with earlier work, in particular the

well-known Deep Q-Networks (DQN) [100], as fair as possible.

7.2 Related Work in the Arcade Learning Environment

7.2.1 RL in the ALE

Historically, approaches to RL have relied on a priori designed task-specific state rep-

resentations (inputs). This changed with the introduction of the Deep Q-Network

or DQN ([100]). DQN employs a deep convolutional neural network architecture to

encode a representation directly from screen capture (thus a task specific represen-

tation). A multi-layer perceptron is simultaneously trained from this representation

to estimate a value function (the action selector) through Q-learning. Image prepro-

cessing was still necessary and took the form of down sampling the original 210× 160

RGB frame data to 84× 84 and extracting the luminance channel. Moreover, a tem-

poral sliding window was assumed in which the input to the first convolution layer

1An alternative test scenario has also appeared in which the RL agent takes over from game state
identified by a human player in an attempt to introduce further diversity into RL agent start state
selection [105, 99].

86

was actually a sequence of the four most recently appearing frames. This reduced the

partial observability of the task, as all the game state should now be visible.

In assuming Q-learning, DQN is an off-policy method, for which one of the most

critical elements is support for replay memory. As such, performance might be sen-

sitive to the specific content of this memory (the ‘memories’ replayed are randomly

sampled). The General Reinforcement Learning Architecture (or Gorila) extended

the approach of DQN with a massively parallel distributed infrastructure (100’s of

GPUs) to support the simultaneous development of multiple DQN learners [105]. The

contributions from the distributed learners periodically update a central ‘parameter

server’ that ultimately represents the solution. Gorila performed better than DQN

on most game titles, but not in all cases, indicating that there are possibly still

sensitivities to replay memory content.

Q-learning is also known to potentially result in action values that are excessively

high. Such ‘overestimations’ were recently shown to be associated with inaccuracies

in the action values, where this is likely to be the norm during the initial stages of

training [151]. A solution proposed for addressing this issue was to introduce two

sets of weights, one for action selection and one for policy evaluation [151]. This was

engineered into the DQN architecture by associating the two roles with DQN’s online

network and target network respectively.2 The resulting Double DQN framework

improved on the original DQN results for more than half of the 49 game titles from

the ALE task.

Hierarchical Reinforcement Learning has also recently demonstrated improve-

ments over DQN. Vezhnevets et al. proposed using parallel interacting learners oper-

ating at different timescales in order to separate the learning of subgoals (long time

scale) from learning the decision-making policy (short time scale, defines the frame-

to-action mapping) [155]. In particular, their approach made progress in the game

Montezuma’s Revenge, an environment known to be especially challenging due to

its sparse reward signal. The subgoal learner, or “Manager”, was able to establish

intermediate intrinsic rewards that helped guide the policy learner, or “Worker”, to

the first extrinsic reward, or picking up the key in the first room (a task that requires

a long sequence of actions before any extrinsic reward signal from the environment).

2The ‘online’ network in DQN maintains the master copy of the MLP, whereas the target network
is updated during ‘experience replay’ [100].

87

Most recently, on-policy methods (e.g., Sarsa) have appeared in which multiple

independent policies are trained in parallel [99]. Each agents’ experience of the en-

vironment is entirely independent (no attempt is made to enforce the centralization

of memory/experience). This means that the set of RL agents collectively experience

a wider range of states. The resulting evaluation under the Atari task demonstrated

significant reductions to computational requirements3 and better agent strategies.

That said, in all cases, the deep learning architecture is specified a priori and subject

to prior parameter tuning on a subset of game titles.

Neuro-evolution represents one of the most widely investigated techniques within

the context of agent discovery for games. Hausknecht et al. [49] performed a com-

parison of different neuro-evolutionary frameworks under two state representations:

game-specific objects versus screen capture. Pre-processing for screen capture took

the form of down sampling the original 210× 160 RGB frame data to produce eight

‘substrates’ of dimension 16 × 21 = 336; each substrate corresponding to one of the

eight colours present in a SECAM representation (provided by the ALE). If the colour

is present in the original frame data, it appears at a corresponding substrate node.

[49] compared Hyper-NEAT, NEAT and two simpler schemes for evolving neural net-

works under the suite of Atari game titles. Hyper-NEAT provides a developmental

approach for describing large neural network architectures efficiently,4 while NEAT

provides a scheme for discovering arbitrary neural topologies as well as weight values,

beginning with a single fully connected neuron. NEAT was more effective under the

low dimensional object representation, whereas Hyper-NEAT was preferable for the

substrate representation.

Finally, [87] revisit the design of task-specific state information using a hypothesis

regarding the action of the convolutional neuron in deep learning. This resulted in a

state space in the order of 110 million state variables when applied to Atari screen

capture, but simplified decision-making to a linear model. Thus, an RL agent could be

identified using the on-policy Temporal Difference method of Sarsa. In comparison

to deep learning, the computational requirements for training and deployment are

considerably lower, but the models produced are only as good as the ability to engineer

appropriate inputs.

3A 16 core CPU as opposed to a GPU.
4In this case just over 900,000 weights in the case of screen capture input.

88

7.2.2 Multi-task RL in the ALE

The approaches reviewed in Section 7.2.1 assumed that a single RL agent was trained

on each game title. Conversely, multi-task RL (MTRL) attempts to take this further

and develop a single RL agent that is able to play multiple game titles. As such,

MTRL is a step towards ’artificial general intelligence’, and represents a much more

difficult task for at least two reasons: 1) MTRL agents must not ‘forget’ any of their

policy for playing a previous game while learning a policy for playing a new game,

and; 2) during test, an MTRL agent must be able to distinguish between game titles

without recourse to additional state information.

To date, two deep learning approaches have been proposed for this task. Parisotto

et al. first learn each game title independently and then use this to train a single

architecture for playing multiple titles [109]. More recently [77] proposed a modi-

fication to Double DQN in which subsets of weights (particularly in the MLP) are

associated with different tasks and subject to lower learning rates than weights not

already associated with previously learned tasks. They were able to learn to play up

to 6 game titles at a level comparable with the original DQN (trained on each title

independently), albeit when the game titles are selected from the set of games for

which DQN was known to perform well on.

7.3 Summary

Scaling RL to real-world tasks requires a representation that is: 1) Able to cope with

high-dimensional sensor data; and 2) General enough to be applied to a wide variety

of tasks without extensive parameter tuning. Video games in the ALE provide an

interesting test domain for scalable RL. In particular, they cover a diverse range of dy-

namic task environments, all through a common high-dimensional visual interface, or

the game screen. As such, a growing body of research has been employing the suite of

Atari video game titles to study scalability and generalization from two perspectives:

domain-independent reinforcement learning, and, more recently, multi-task RL. The

empirical study documented in Chapter 9 considers both approaches to generalization

in evaluating the Tangled Program Graph algorithm (Chapter 8).

Chapter 8

Algorithm Description: Tangled Program Graphs

8.1 Overview

The algorithm described in this section, Tangled Program Graphs (TPG), addresses

the question of how the hierarchical interdependency between teams of programs can

be established entirely through interaction with the task environment. To do so, TPG

provides a complete framework for organizing multiple teams into variably deep/wide

directed graph structures, or policy graphs. Policies are initialized in their simplest

form and are then capable of self-organizing into complex structures through contin-

uous, open-ended evolution. Thus, more complex topologies can naturally emerge as

soon as they perform better than simpler solutions.

As in the Policy Tree approach (Chapter 5), a single team of programs represents

the smallest stand-alone decision-making entity, or behavioural module. Constructing

policy graphs through emergent (behavioural) modularity [107] implies that multiple

independent teams are recombined with no prior knowledge regarding how many to

include, which teams might work well together, or how to combine them. Unlike Pol-

icy Trees, organisms in TPG are developed over a single phase of evolution. Emergent

events (i.e. major transitions) may occur at any time and the topology of the graph

is unconstrained (See Figure 8.1(b) or 2.2). For example, policy graphs can interact

with the task environment at various levels of abstraction simultaneously, referencing

atomic actions directly or operating through an arbitrarily deep hierarchy of policies.

This means that as TPG solutions become more capable and their interactions with

the environment potentially uncover aspects of the task that could not be reached

before, the policy graph is not restricted to operating through lower-level structures

developed prior to the environmental change. This is distinct from the Policy Tree

approach in which it was assumed that sufficient prior knowledge existed to design

source tasks with sufficient diversity for solving the target task. Furthermore, as pro-

grams composing a team typically index different subsets of the state space (i.e., the

89

90

screen in the case of visual reinforcement learning), the resulting policy graph will

incrementally adapt, indexing more or less of the state space and defining the types

of decisions made in different regions.

The following sections describe the complete TPG algorithm by first establish-

ing the procedures for team initialization, variation, and evaluation, followed by a

description of the overall GA used in policy development.

8.2 Initialization and Variation

Evolution begins with a program population in which program actions are limited to

the task specific (atomic) actions, Figure 8.1(a). The team initialization procedure is

identical to that previously established in Section 4.2.1. In order to provide for the

evolution of hierarchically organized code under a completely open-ended process of

evolution (i.e. emergent modularity), program variation operators (Algorithm 3) are

allowed to introduce actions that index other teams within the team population. To

do so, when a program’s action is modified, it has a probability (patomic) of referencing

either a different atomic action or any other team created in a previous generation.

Specifically, the action set from which new program actions are sampled (A′ in Line

10 of Algorithm 3) will correspond to the set of atomic actions, A, with probability

patomic, and will otherwise correspond to the set of teams present from any previous

generation, H. Notice that the previous generation constraint avoids new root nodes

from being immediately subsumed within a policy graph before ever being evaluated

in the task environment (and surviving a round of selection). In short, variation op-

erators have the ability to incrementally construct multi-team graphs, Figure 8.1(b).

Each vertex in the graph is a team, while each team member, or program, represents

one outgoing edge leading either to another team or an atomic action.

8.3 Decision-Making in Policy Graphs (Evaluation)

Algorithm 9 details the process for decision-making with the TPG policy graph, which

is repeated at every time step until an end-of-game state is encountered and fitness

for the policy graph can be expressed. Naturally, decision-making in a policy graph

begins at the root team (e.g. t3 in Figure 8.1(b)), where each program in the team

91

����
����

����

����

�
�	���

��
����

�
�	���

�
� �

�

�
�	 �

�
�

�
�

�
�

���

� �
�
�

�
�

�

(a) Initial policies

����
����

����

����
����

�
�

�
� �

�

������	���

������������
������������

���	
�

�
�

�
�

�
�

������ 	
�
	
�
	
�

(b) Emergence of policy graphs

Figure 8.1: TPG Policies. Decision-making in each time step begins at the root team
and follows the edge with the winning program bid (output) until an atomic action
is reached. The initial population contains only single-team policies, i.e. program
actions refer exclusively to actions defined by the task environment (a). During
evolution, program variation operators may introduce actions that reference other
teams, indicated by the red lines in (b). Mutations of this nature correspond to
major hierarchical transitions, or emergent events, which may result in an increase or
decrease in the complexity of the organism.

will produce one bid relative to the current state observation, �s(t). Graph traversal

then follows the program / edge with the largest bid, repeating the bidding process

for the same state, �s(t), at every team / vertex along the path until an atomic action

is reached. Thus, in sequential decision-making tasks, the policy graph computes one

path from root to action at every time step, where only a subset of programs in the

graph (i.e those in teams/vertexes along the path) require execution. Cycles may

exist in the graph, but they are never followed during execution. That is, a team is

never visited twice per decision. The single visit constraint is enforced through a test

for vertex uniqueness. If the action of the program with highest output corresponds

to a previously visited vertex, then the next highest bid is selected and the vertex

uniqueness test is repeated for the next candidate vertex. Variation operators are

constrained such that each team maintains at least one program that has an atomic

action, hence guaranteeing cycles never appear during evaluation. This constraint is

enforced within team variation operators through two simple rules:

1. Never remove from a team the only team member (program) with an atomic

action. Thus, the sampling procedure in Line 9 of Algorithm 2 will be repeated

until a legal program is identified.

92

2. When mutating the action of a program, if it is the only team member with

an atomic action, then the new action is also sampled from the set of atomic

actions (Line 10 of Algorithm 3).

Algorithm 9 Selecting an action through traversal of a policy graph. P is the current
program population. A is the set of atomic actions. tmi is the current team (initially
a root node). �s(t) is the state observation at time t. V is the set of teams visited
throughout this traversal (initially empty). First, all programs in tmi are executed
relative to the current state �s(t) (Lines 3,4). The algorithm then considers each
program in order of bid (highest to lowest, Line 7). If the program has an atomic
action, the action is returned (Line 8). Otherwise, if the program’s action points
to a team that has not yet been visited, the procedure is called recursively on that
team. Thus, while a policy graph may contain cycles, they are not followed during
traversal. In order to ensure an atomic is always found, team variation operators are
constrained such that each team maintains at least one program that has an atomic
action.

1: procedure SelectAction(tmi, �s(t), V)
2: V = V ∪ tmi � add tmi to visited teams
3: for all pi ∈ tmi do
4: bid(pi) = exec(pi, �s(t)) � run program on �s(t) and save result
5: end for
6: tm′

i = sort(tmi) � sort programs by bid, highest to lowest
7: for all pi ∈ tm′

i do
8: if action(pi) ∈ A then return action(pi) � atomic action reached
9: else if action(pi) /∈ V then
10: return SelectAction(action(pi), �s(t), V) � follow graph edge
11: end if
12: end for
13: end procedure

8.4 Overall TPG Training Algorithm

As multi-team policy graphs emerge, an increasingly tangled web of connectivity de-

velops between the team and program populations. The number of unique solutions,

or policy graphs, at any given generation is equal to the number of root nodes (i.e.

teams that are not referenced as any program’s action) in the team population. Only

these root teams are candidates to have their fitness evaluated, and are subject to

modification by the variation operators. As such, rather than pre-specify the desired

93

team population size, only the number of root teams to maintain in the population,

or Rsize, requires prior specification. Evolution is driven by a generational GA (Al-

gorithm 10) such that in each generation Rgap of the root teams, rti, are deleted and

replaced by offspring of the surviving roots. The process for generating team offspring

(Lines 5 - 9) uniformly samples and clones a root team, then applies mutation-based

variation operators to the cloned team which remove, add, and mutate some of its

programs (Section 4.2.2 with modifications detailed in Section 8.2). The team gener-

ation process introduces new root nodes until the number of roots in the population

reaches Rsize. The total number of sampling steps for generating offspring fluctuates,

as root teams (along with the lower policy graph) are sometimes ‘subsumed’ by a

new team. Conversely, graphs can be separated, for example through program action

mutation, resulting in new root nodes / policies. This implies that after initializa-

tion, both team and program population size varies. Furthermore, while the number

of root teams remains fixed, the number of teams that become ‘archived’ as internal

nodes (i.e. a library of reusable code) fluctuates.

Limiting evaluation, selection, and variation to root teams only has 2 critical

benefits:

1. The cost of evaluation and the size of the search space remains low because only

a fraction of the team population (root teams) represent unique policies to be

evaluated and modified in each generation.

2. Since only root teams are deleted, introduced, or modified, policy graphs are

incrementally developed from the bottom up. As such, lower-level complex

structures within a policy graph are protected as long as they contribute to an

overall strong policy.

Table 8.1: Parameters associated with the TPG training procedure, in addition to
those outlined in Chapter 4

Parameter Description

Rsize Number of root teams to maintain in the team population.
Rgap Number of root teams deleted and introduced in each generation
patomic Probability of modified program action referencing an atomic action
teval Number of evaluations per team in each generation
leval Maximum number of evaluations per team

94

Algorithm 10 The overall TPG training algorithm. Parameters are listed in Table
8.1. After initialization (Line 3), the GA continues in a loop until being terminated
due to an external resource budget, for example, a wall-clock time constraint. T t and
P t refer to the team and program populations at time t. variation is a reference
to the team variation procedure detailed in Section 4.2.2 with additional support for
TPG outlined in Section 8.2. Policies are evaluated in teval episodes per generation,
up to a max of leval episodes per lifetime. numEval(rti) returns the number of
evaluations for root team (policy) rti so far. When the cost of evaluations is high,
these parameters can be set such that weak policies are identified and replaced early,
while promising policies are verified with additional evaluations. Note that teams are
evaluated as a whole, i.e. programs have no concept of individual fitness. As such,
the program population is updated and modified implicitly through team variation
operators, (Line 8) and selection (Line 15). When teams are deleted in Line 15,
programs with no remaining team membership are also deleted. task refers to the
task environment. Episode outcome refers to the final reward for an episode (e.g. the
game score in the ALE).

1: procedure Train

2: t = 0
3: initialize Rsize −Rgap teams, add to T t (add new programs to P t)
4: loop
5: while T t contains less than Rsize root teams do � Variation
6: uniformly sample parent root team rti ∈ T t

7: copy rti into rtj
8: rt′j ← variation(rtj)
9: add rt′j to T t

10: end while
11: for all root teams rti ∈ T t : numEval(rti) < leval do � Evaluation
12: deploy rti for teval episodes in task (Algorithm 9)
13: Rank(rti) ← mean episode outcome for rti
14: end for
15: delete Rgap lowest ranked root teams from T t � Selection
16: delete from P t programs that are not part of any team
17: t = t+ 1
18: end loop
19: end procedure

95

8.5 On Diversity Maintenance

No explicit diversity maintenance is employed in the development of policy graphs.

Initial experiments with the framework had adopted an approach to fitness regulariza-

tion similar to that described in Section 5.4.1, but no significant benefit was observed.

This is most likely due to the high-dimensionality of the visual reinforcement learning

task under which TPG is benchmarked. In particular, a large input space implies that

initial programs are more likely to specialize in particular regions without explicitly

enforcing selective pressure to do so. Furthermore, the neutrality test (Section 4.3.3)

is still in effect, and while this does not necessarily imply diversity of team behaviours,

it at least ensures that program bidding behaviours are unique. Finally, the diversity-

generating capacity of TPG is significantly more open-ended than under the Policy

Tree representation, which potentially mitigates the requirement for explicit diversity

maintenance.

Chapter 9

Empirical Evaluation: Tangled Program Graphs

9.1 Overview

This chapter documents an empirical evaluation of the Tangled Program Graph

(TPG) algorithm (Chapter 8) in the Arcade Learning Environment (ALE), a video

game emulator specifically designed for addressing dynamic, high-dimensional, and

partially observable tasks in RL (Chapter 7). The ALE supports hundreds of game ti-

tles and has recently received significant attention on account of human-competitive

results from deep learning, e.g. deep Q-networks (DQN), [100]. While a range of

comparator algorithms will be considered, the focus will be on a comparison with

DQN, which represents a high-quality baseline RL algorithm with extensive results

under the ALE. DQN also represents the starting point for a variety of deep learning

approaches to video game playing, as reviewed in Chapter 7.

In all the TPG experiments in this chapter, state observations are defined in

terms of direct screen capture, while actions are limited to those of the original Atari

console (Chapter 7). Thus, learning agents interact with games via the same interface

experienced by human players. Two broad approaches to policy development are

investigated:

1. Single-task learning, in which a distinct RL agent is developed for each game

title.

2. Multi-task learning, in which multiple game titles are learned simultaneously,

producing a single RL agent capable of playing multiple game titles from direct

screen capture alone (i.e. agents are not provided any additional information

regarding what game is currently being played).

TPG discovers policies that are competitive with DQN in both cases. However,

unlike deep learning, the proposed TPG framework takes an explicitly emergent,

developmental approach to policy identification. The goal of this study to establish

96

97

to what degree TPG’s capacity for constructing policy graph topologies ‘bottom-

up’ is able to match the quality of deep learning solutions without incurring the

corresponding computational complexity. Specifically, deep learning assumes that

the neural architecture is designed a priori, with the same architecture employed for

each game title. Thus, deep learning always performs millions of calculations per

decision. TPG, on the other hand, has the potential to tune policy complexity to

each task environment, or game title, requiring only ≈ 1000 calculations per decision

in the most complex case, and ≈ 100 calculations in the simpler cases.

In short, the aim of this work is to demonstrate that much simpler solutions can

be discovered to dynamic, high-dimensional, and partially observable environments

in RL without making any prior decisions regarding model complexity. As a conse-

quence, the computational costs typically associated with deep learning are avoided

without impacting on the quality of the resulting policies, i.e. the cost of training

and deploying a solution is now much lower. Solutions operate in real-time without

any recourse to multi-core or GPU hardware platforms, thus potentially simplifying

the developmental/deployment overhead in posing solutions to challenging RL tasks.

9.2 Experimental Methodology

For comparative purposes, evaluation of TPG will assume the same general approach

as established in the original DQN evaluation [100]. Thus, we assume the same subset

of 49 Atari game titles1. Each game was designed to be interesting and challenging

for human players, and thus task environments with a wide range of properties are

identified. The stochastic version of the ALE is employed throughout this chapter

(i.e., Sticky Actions are present), with the default frame skip probability of 0.25 as-

sumed (See Chapter 7). Each episode (training and test) continues until the simulator

returns a ‘game over’ signal or a maximum of 18,000 frames is reached. Post training,

the champion TPG agents are tested over 30 test episodes initialized with a stochas-

tically selected number of initial no-op actions. In general, no-op results in random

initial start states but does not imply a stochastic environment. The limitations of

the no-op approach (See Chapter 7) imply that training and test results reported for

1A preliminary comparison for TPG on the 20 games for which DQN is known to perform worse
than 75% of a human game tester appears in [72]. The comparator set of algorithms was also limited
to DQN and Hyper-NEAT.

98

DQN in [100] are relative to a deterministic version of ALE. Thus, while adopting

the stochastic version of ALE in this study implies a more challenging environment

than used by the principal DQN study, including stochasticity will make the results

reported herein comparable with the widest range of previous and future studies, as

the settings employed here are now explicitly recommended by the authors of the

ALE [94]. Finally, the available actions per game is also assumed to be known, where

this is usually a subset of the 18 possible atomic actions (joystick positions) in the

ALE.2

Five independent TPG runs are performed per game title, where this appears to

reflect most recent practice for deep learning results.3 The same parameterization

for TPG was used for all games (Section 9.4). The only information provided to the

agents was the number of atomic actions available for each game, the preprocessed

screen frame during play (Section 9.3), and the final game score. Each policy graph

was evaluated in 5 game episodes per generation, up to a maximum of 10 episodes

per lifetime. Fitness for each policy graph is simply the average game score over all

episodes. A single champion policy for each game was identified as that with the

highest training reward at the end of evolution.

9.3 Screen Capture State Space

Based on the observation that the visual input has a lot of redundant information

(i.e. visual game content is designed for maximizing entertainment value, as opposed

to a need to convey content with a minimal amount of information), we adopt a

quantization approach to preprocessing. The following 2-step procedure is applied to

every game frame:

1. A checkered pattern mask is used to sample 50% of the pixels from the raw game

screen (Figure 9.1(b)). Each remaining pixel assumes the 8-colour SECAM

encoding. The SECAM encoding is provided by ALE as an alternative to the

default NSTC 128-colour format. Uniformly skipping 50% of the raw screen

pixels improves the speed of state retrieval while having minimal effect on the

2The study of [87] question this assumption, but find that better performance resulted when RL
agents were constructed with the full action space.

3The original DQN results only reflected a single run per title [100].

99

(a) Raw Game Screen (b) 50% pixel resolution (SECAM)

(c) Decimal State Variables

Figure 9.1: Screen quantization steps, reducing the raw Atari pixel matrix (a) to 1344
decimal state variables (c) using a checkered subsampling scheme (b).

final representation, since important game entities are usually larger than a

single pixel.

2. The frame is subdivided into a 42 × 32 grid.4 Each grid tile is described by

a single byte, in which each bit encodes the presence of one of eight SECAM

colours within that tile. The final quantized screen representation includes

each tile byte as a decimal value, so defining a sensory state space �s(t) of

42 × 32 = 1, 344 decimal state variables in the range of 0 − 255, visualized in

Figure 9.1(c) for the game Up ’N Down at time step (frame) t.

This state representation is inspired by the Basic method defined in [14]. Note,

however, that this method does not use a priori background detection or pairwise

combinations of state variables.

In comparison to the DQN approach (e.g. [100, 105]), no attempt is made to design

out the partially observable properties of game content (see discussion of Section

4Implies that the original 210× 160 screen is divided by 5.

100

7.2.1). Moreover, the deep learning architecture’s three layers of convolution filters

reduce the down sampled 84× 84 = 7, 056 pixel space to a dimension of 3, 136 before

applying a fully connected multi-layer perceptron (MLP).5 It is the combination of

convolution layer and MLP that represents the computational cost of deep learning.

Naturally, this imparts a fixed computational cost of learning as the entire DQN

architecture is specified a priori (Section 9.5.5).

In contrast, TPG evolves a decision-making agent from a 1, 344 dimensional space.

In common with the DQN approach, no feature extraction is performed as part of

the preprocessing step, just a quantization of the original frame data. Implicit in this

is an assumption that the state space is highly redundant. TPG therefore perceives

the state space, �s(t) (Figure 9.1(c)), as read-only memory. Each TPG program then

defines a potentially unique subset of inputs from �s(t) for incorporation into their

decision-making process. The emergent properties of TPG are then required to de-

velop the complexity of a solution, or policy graph, with programs organized into

teams and teams into graphs. Thus, rather than assuming that all screen content

contributes to decision-making, the approach adopted by TPG is to adaptively sub-

sample from the quantized image space. The specific subset of state variables sampled

within each agent policy is an emergent property, discovered through interaction with

the task environment alone. The implications of assuming such an explicitly emergent

approach on computational cost will be revisited in Section 9.5.5.

9.4 Parameterization

Deploying population based algorithms can be expensive on account of the number

of parameters and inter-relation between different parameters. In this work, no at-

tempt has been made to optimize the parameterization, Table 9.1, instead we carry

over a basic parameterization from experience with evolving single teams under a

supervised learning task [91]. This approach is also distinct from most of the genetic

programming literature as applied to games in which a set of task specific operators

are first identified (e.g. [121]). Such an approach is justified on the basis that previous

research also assumes inputs designed for a specific game title. Given that the entire

purview of TPG is to identify solutions under a ‘visual’ RL context, the instruction

5See Appendix E for a detailed explanation of how DQN’s complexity is calculated.

101

set supports arithmetic, trigonometric, logarithmic and a conditional operator. This

also means a common instruction set could be assumed for all experiments in this

thesis. Naturally, no claims are made regarding the optimality of the composition of

instruction set itself.

Table 9.1: Parameterization of TPG.

Neutrality test (Section 4.3.3)
Number of historical samples in diversity test 50

Threshold for bid uniqueness (τ) 10−4

Team population
Number of (root) teams in initial population (Rsize) 360

Number of root nodes that can be replaced per generation (Rgap) 50%
Probability of deleting or adding a program (pmd, pma) 0.7

Max. initial team size (ω) 5
Max. team size (Ω) ∞

Prob. of creating a new program (pmm) 0.2
Prob. of changing a program action (pmn) 0.1

Prob. of defining an action as a team or atomic action (patomic) 0.5
Number of episodes per generation for each root team (teval) 5

Max. number of episodes per lifetime for each root team (leval) 10

Program population
Total number of registers per program (numRegisters) 8

Max. number of instructions a program may take (maxProgSize) 96
Prob. of deleting or adding an instruction within a program (pdelete, padd) 0.5

Prob. of mutating a instruction within a program (pmutate) 1.0
Prob. of swapping a pair of instructions within a program (pswap) 1.0

Three basic categories of parameter are listed: Neutrality test (Section 4.3.3),

Team population, and Program population (Figure 8.2). In the case of the Team

population, the single biggest parameter decisions are the population size, Rsize (how

many root teams to simultaneously support), and how many root teams to replace at

each generation (Rgap). The parameters controlling the application of the variation

operators common to earlier instances of SBB (pmd, pma, pmm, pmn) also assume the

values used under supervised learning tasks [91]. Conversely, patomic represents a

parameter specific to TPG, where this defines the relative chance of mutating an

action to an atomic action versus a pointer to a team (Section 8.2).

Likewise, the parameters controlling properties of the Program population assume

values used for SBB as applied to supervised learning tasks for all but maxProgSize.

102

In essence this has been increased to the point where it is unlikely to be encountered

during evolution.

The computational limit for TPG is defined in terms of a computational resource

time constraint. Thus, experiments ran on a shared cluster with a maximum runtime

of 2 weeks per game title. The nature of some games allowed for > 800 generations,

while others limited evolution to a few hundred. No attempt was made to parallelize

execution within each run (i.e. the TPG code base executes as a single thread), the

cluster merely enabled each run to be made simultaneously. Incidentally, the DQN

results required 12–14 days per game title on a GPU computing platform [105].

9.5 Single-Task Learning

9.5.1 Overview

This section documents TPG’s ability to build decision-making policies in the ALE

from the perspective of domain-independent AI, that is, discovering policies for a

variety of ALE game environments with no task-specific parameter tuning. Before

presenting detailed results, we provide an overview of training performance for TPG

on the suite of 49 ALE titles common to most benchmarking studies (Section 7.2.1).

Figure 9.2 illustrates average TPG training performance (across the 5 runs per game

title) as normalized relative to DQN’s test score from the same game titles (100%)

and random play (0%), [100]. The random agent simply selects actions with uniform

probability at each game frame. Normalized score is calculated as:

100×
TPGscore −RandomPlayscore
DQNscore −RandomPlayscore

(9.1)

Normalizing scores makes it possible to plot TPG’s progress relative to multiple

games together regardless of the scoring scheme in different games, and facilitates

making a direct comparison with DQN.

Under test conditions, TPG exceeds DQN’s score in 27 games (Figure 9.2(a)),

while DQN maintains the highest score in 21 games (Figure 9.2(b)). Thus, TPG and

DQN are broadly comparable from a performance perspective, each matching/beating

the other in a subset of game environments. Indeed, there is no statistical difference

between TPG and DQN test scores over all 49 games, Section 9.5.2. However, TPG

103

●● Alien

●

Asteroids

●

●
●

● Bowling

●

● Centipede

●

●

●

●

●

●

●

●

●

●

●

Ms. Pac−Man

●

●

●

●

●

●

●

0 200 400 600 800

1

5

10

50

100

500

1000

5000

%
 D

Q
N

 L
e
ve

l

Generation

(a)

●●

Amidar
●

●

●

●

●

●

●

●

●

●

●

● Q*Bert

●

●

●

●

Space Invaders

●

●

● Video Pinball

●

0 200 400 600 800

Generation

(b)

Figure 9.2: TPG training curves, each normalized relative to DQN’s score in the same
game (100%) and random play (0%). (a) shows curves for the 27 games in which TPG
ultimately exceeded the level of DQN under test conditions. (b) shows curves for the
21 games in which TPG did not reach DQN level during test. Note that in several
games, TPG began with random policies (generation 1) that exceeded the level of
DQN. Note that these are training scores averaged over 5 episodes in the given game
title, and are thus not as robust as DQN’s test score used for normalization. Also,
these policies were often degenerate. For example, in Centipede, it is possible to get
a score of 12,890 by selecting the ‘up-right-fire’ action in every frame. While com-
pletely un-interesting, this strategy exceeds the test score reported for DQN (8,390)
and the reported test score for a human professional video game tester (11,963) [100].
Regardless of their starting point, TPG policies improve throughout evolution to be-
come more responsive and interesting. Note also that in Video Pinball, TPG exceeded
DQN’s score during training but not under test. Curve for Montezuma’s Revenge not
pictured, a game in which neither algorithm scores any points.

104

produces much simpler solutions in all cases, largely due to its emergent modular

representation, which automatically scales through interaction with the task environ-

ment. That is to say, concurrent to learning a strategy for gameplay, TPG explicitly

answers the question of: 1) what to index from the state representation for each

game; and, 2) what components from other candidate policies to potentially incorpo-

rate within a larger policy. Conversely, DQN assumes a particular architecture, based

on a specific deep learning–MLP combination, in which all state information always

contributes.

9.5.2 Detailed Results

In this section, performance of TPG policies are compared under post-training test

conditions against a representative set of comparator algorithms. Two sets of com-

parator algorithms are considered:

• Screen capture state: construct models from game state, �s(t), defined in

terms of some form of screen capture input.6 These include the original DQN

deep learning results [100], DQN as deployed through a massive distributed

search [105], double DQN [151], and hyper-NEAT [49]. While the original DQN

report emphasized comparison with a human professional game tester [100],

we avoid such a comparison here primarily because the human results are not

reproducible.

• Engineered features: define game state, �s(t), in terms of features designed

a priori; thus, significantly simplifying the task of finding effective policies for

game play, but potentially introducing unwanted biases. Specifically, the Hyper-

NEAT and NEAT results use hand crafted ‘Object’ features specific to each

game title in which different ‘substrates’ denote the presence and location of

different classes of object (see [49] and the discussion of Section 7.2.1). The

Blob-PROST results assume features designed from an attempt to reverse engi-

neer the process performed by DQN [87]. The resulting state space is a vector

of ≈ 110 × 106 variables from which a linear RL agent is constructed (Sarsa).

Finally, the best performing Sarsa RL agent (Conti-Sarsa) is included from the

6Reviewed in Section 7.2.1 for comparator algorithms and detailed in Section 9.3 for TPG.

105

DQN study [100] where this assumes the availability of ‘contingency awareness’

features [15].

In each case TPG based on screen capture will be compared to the set of compara-

tor models across a common set of 49 Atari game titles. Statistical significance will

be assessed using the Friedman test, where this is a non-parametric form of ANOVA

[30, 58]. Specifically, parametric hypothesis tests assume commensurability of perfor-

mance measures. This would imply that averaging results across multiple game titles

makes sense. However, given that the score step size and types of property measured

in each title are typically different, then averaging Null test performance across mul-

tiple titles is no longer commensurable. Conversely, the Friedman test establishes

whether or not there is a pattern to the ranks. Rejecting the Null hypothesis implies

that there is a pattern, and the Nemenyi post hoc test can be applied to assess the

significance [30, 58].

In the case of RL agents derived from screen capture state information (Table D.1,

Appendix D), the Friedman test returns a χ2
F = 21.41 which for the purposes of the

Null hypothesis has an equivalent value from the F-distribution of FF = 5.89 [30]. The

corresponding critical value F (α = 0.01, 4, 192) is 3.48, hence the Null hypothesis is

rejected. Applying the post hoc Nemenyi test (α = 0.05) provides a critical difference

of 0.871. Thus, relative to the best ranked algorithm (Gorila), only Hyper-NEAT

is explicitly identified as outside the set of equivalently performing algorithms (or

2.63 + 0.871 < 3.87). This conclusion is also borne out by the number of game titles

that each RL agent provides best case performance; Hyper-NEAT provides 4 best

case game titles, whereas TPG, Double DQN and Gorila return at least 11 best title

scores each (Table D.1, Appendix D).

Repeating the process for the comparison of TPG7 to RL agents trained under

hand crafted features (Table D.2, Appendix D), the Friedman test returns a χ2
F =

80.59 and an equivalent value from the F-distribution of FF = 33.52. The critical

value is unchanged as the number of models compared and game titles is unchanged,

hence the Null hypothesis is rejected. Likewise the critical difference from the post hoc

Nemenyi test (α = 0.05) is also unchanged 0.871. This time only the performance of

the Conti-Sarsa algorithm is identified as significantly worse (or 2.16+0.871 < 4.76).

7TPG still assumes screen capture state.

106

In summary, these results mean that TPG is able to provide an RL agent that

performs as well as current state-of-the-art, despite having to develop all the archi-

tectural properties of a solution. Conversely, DQN assumes a common pre-specified

deep learning topology consisting of millions of weights. Likewise, Hyper-NEAT as-

sumes a pre-specified model complexity of ≈ 900, 000 weights, irrespective of game

title. As will become apparent in the next section, TPG is capable of evolving policy

complexities that reflect the difficulty of the task.

9.5.3 Simplicity Through Emergent Modularity

As discussed in Section 8.2, the simplest stand-alone decision-making entity in TPG

is a single team of programs, where all policies are initialized as a single-team of be-

tween 2 and ω programs. Throughout evolution, search operators may incrementally

combine teams to form policy graphs. By compartmentalizing decision-making over

multiple independent modules (teams), and incrementally combining modules into

policy graphs, two critical benefits are achieved:

Adaptive Complexity: The number and complement of programs per team

and teams per graph is an emergent, open-ended property driven by interaction with

the task environment. That is, policies are initialized in their simplest form and only

complexify when/if simpler solutions are outperformed.

State Space Selectivity: Each program indexes a small proportion of the state

space. As the the number of teams and programs in each policy increases, the policy

will index more of the state space and optimize the decisions made in each region.

However, recall form section 8.3 that a single decision, or mapping from state obser-

vation to atomic action, requires traversing a single path from root node to atomic

action. As such, while the decision-making capacity of the policy graph expands

through environment-driven complexification, the modular nature of a graph repre-

sentation implies that the cost of making each decision, as measured by the number

of teams/programs which require execution, remains relatively low

Figures 9.3 and 9.4 quantify these properties by examining, for the champion

policy throughout evolution from game titles in which TPG matched or exceeded the

score from DQN (Figure 9.2(a) and Table D.1, Appendix D), the number of teams per

policy vs. teams visited per decision (Figure 9.3) and the proportion of input space

107

covered by the policy as a whole vs. the proportion indexed per decision (Figure 9.4).

Development of modularity for TPG policies is non-monotonic, and the speci-

ficity of team compliment as a function of game environment is readily apparent in

Figure 9.3. For example, a game such as Asteroids may see very little in the way

of increases to team complement as generations increase. Conversely, Ms. Pac-Man,

which is known to be a complex task [111, 117], saw the development of a policy

graph incorporating ≈ 200 teams. Importantly, making a decision in any single time

step requires following one path from the root team to atomic action. Thus, the cost

in mapping a single game frame to an atomic action is not linearly correlated to the

graph size. For example, while the number of teams in the Alien policy was ≈ 60, on

average only 4 teams were visited per graph traversal during test (See × symbols in

Figure 9.3). Indeed, while the total number of teams in champion TPG policy graphs

ranges from 7 (Asteroids) to 300 (Bowling), the average number of teams visited per

decision is typically less than 5, Figure 9.3. The trajectory denoted by ‘Random’

in Figure 9.3 refers to a run in which policies were assigned random fitness values.

The lack of development confirms that complex policies emerge by selective pressure

rather than drift or other potential biases.

9.5.4 Evolving Adapted Visual Fields

Each Atari game represents a unique graphical environment, with important events

occurring in different areas of the screen, at different resolutions, and from different

perspectives (e.g. global maze view versus first-person shooter). Part of the challenge

with high-dimensional visual input data is determining what information is relevant

to the task. Naturally, as TPG policy graphs develop, they will incrementally index

more of the state space. This is likely one reason why they grow more in certain

environments. Figure 9.4 plots the proportion of input space indexed by champion

policy graphs throughout development, where this naturally correlates with the policy

graph development shown in Figure 9.3. Thus, the emergent developmental approach

to model building in TPG can also be examined from the perspective of the efficiency

with which information from the state space, �s(t) is employed. In essence, TPG

policies have the capacity to develop their own Adapted Visual Fields (AVF).

For example, Figure 9.5 shows the Adapted Visual Field (AVF) of champion

108

●● Alien

● Asteroids

●

●

●

● Bowling

● Boxing

●

●

●

●

●

●

●

●●

●

●

●

Ms. Pac−Man

●

●

●

●

●

●

●

● Rand

0 200 400 600 800

1

2

5

10

20

50

100

200

N
u
m

b
e
r

o
f
T
e
a
m

s

Generation

● Entire champion policy graph
Visited per decision during test

Figure 9.3: Development of the number of teams per champion TPG policy graph as
a function of generation and game title. The run labeled ‘Rand’ reflects the number
of teams per policy when selection pressure is removed, confirming that module emer-
gence is driven by selective pressure rather than drift or other potential biases. Black
circles indicate the total number of teams in each champion policy, while × indicates
the average number of teams visited to make each single decision during test. For
clarity only the 27 game titles with TPG agent performance ≥ DQN are depicted.

109

●● Alien

●

Asteroids

●

●

●

● Bowling

● Boxing

●

●

●

●
●

●

●

●

●

●

●

●

Ms. Pac−Man

●

●

●

●

●

●

●

0 200 400 600 800

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f
S

e
n

s
o

r
S

p
a

c
e

 I
n

d
e
xe

d

Generation

● Entire champion policy graph
Average single decision during test

Figure 9.4: Development of the proportion of input space indexed by champion TPG
policies. Black circles indicate the total proportion indexed by each champion policy,
while × indicates the average proportion observed to make each single decision during
test. For clarity only the 27 game titles with TPG agent performance ≥ DQN are
depicted.

110

(a) Ms. Pac-Man Screen (b) Ms. Pac-Man AVF

(c) Battle Zone Screen (d) Battle Zone AVF

Figure 9.5: Adapted Visual Field (AVF) of champion TPG policies in Ms.Pac-Man
and Battle Zone. Grey regions indicate areas of the screen not indexed by the policy.

TPG agents in Ms. Pac-Man and Battle Zone. In the case of Ms. Pac-Man, the

game defines a 2-dimensional maze environment that the player navigates in order to

collect pills, where the pills are evenly distributed throughout the maze. Relatively

high resolution is required in order to distinguish objects such as the agent’s avatar

and pills from the maze walls, and near-complete screen coverage is required to locate

all the active pills and guide the avatar to/from any maze location. On the other

hand, Battle Zone is a first person shooter game in which the agent can swivel left or

right to position targets at centre-screen before shooting. While even screen coverage

is helpful in locating targets and determining the direction to swivel, targets are large

and thus low-resolution coverage is sufficient. Interestingly, Battle Zone includes a

high-resolution global radar view in the top centre of the screen, which the champion

policy’s low-resolution AVF did not make efficient use of. Nonetheless, the bare-bones

policy was able to out-perform DQN (and the human video game tester from [100])

without this advantage.

111

While the proportion of the visual field (input space) covered by a policy’s AVF

scales to the task environment, ranging from about 10% (Asteroids) to 100% (Bowl-

ing), the average proportion required to make each decision remains low, or less than

30% (See × symbols Figure 9.4). Figure 9.6 provides an illustration of the AVF as

experienced by a single TPG team (c) versus the AVF for an entire champion TPG

policy graph (d) in the game “Up ‘N Down”. This is a driving game in which the

player steers a Dune Buggy along a track that zig-zags vertically up and down the

screen. The goal is to collect flags along the route and avoid hitting other vehicles.

The player can smash opponent cars by jumping on them using the joystick fire but-

ton, but looses a turn upon accidentally hitting a car or jumping off the track. TPG

was able to exceed the level of DQN in Up and Down (test games consistently ended

due to the 18,000 frame limit rather than agent error) with a policy graph that in-

dexed only 42% of the screen in total, and an average 12% of the screen per decision

(See column %SP in Table 9.3). The zig-zagging patterns that constitute important

game areas are clearly visible in the policy’s AVF. In this case, the policy learned

a simplified sensor representation well tailored to the task environment. It is also

apparent that in the case of the single TPG team, the AVF does not index state

information from a specific local region, but instead samples from a diverse spatial

range across the entire image (Figure 9.6(c)).

The proportion of visual input space used for decision-making under test is in-

cluded within a more detailed discussion of complexity in Section 9.5.6. In order to

provide more detail relative to Adapted Visual Fields, the reader is referred ahead

to column %SP in Table 9.3, which gives the percent of state space (screen) indexed

by the policy as a whole and per decision. Maze tasks, in which the goal involves

directing an avatar through a series of 2-D mazes (eg. Bank Heist, Ms. Pac-Man, Ven-

ture) typically require near-complete screen coverage in order to navigate all regions

of the maze, and relatively high-resolution is important to distinguish various game

entities from maze walls. However, while the policy as a whole may index most of

the screen, the modular nature of the representation implies that no more than 27%

of the indexed space is considered before making each decision (Table 9.3, Column

%SP), significantly improving the run-time complexity of the policy. Furthermore,

adapting the visual field implies that extensive screen coverage is only used when

112

(a) Raw Game Screen (b) Preprocessed Screen

(c) Single Team AVF (d) Policy AVF

Figure 9.6: Adapted Visual Field (AVF) of champion TPG policy graph in Up ’N
Down. Black regions indicate areas of the screen not indexed by the policy. (a) shows
the raw game screen. (b) shows the preprocessed state space, where each decimal
state variable (0-255) is mapped to a unique colour. (c) shows the AVF for a single
team along the active path through the policy graph at this time step, while (d) shows
the AVF for the policy graph as a whole. Both AVFs exhibit patterns of sensitivity
consistent with important regularities of the environment, specifically the zig-zagging
track.

113

necessary. Indeed, in 10 of the 27 games for which TPG exceeded the score of DQN,

it did so while indexing less that 50% of the screen, further minimizing the number

of instructions required per decision.

9.5.5 Computational Cost

This section investigates the issue of computational cost to build solutions, while

Section 9.5.6 will consider the cost of decision-making post training. The budget for

model building in DQN was to assume a fixed number of decision-making frames

per game title (50 million). The cost of making each decision in deep learning is also

fixed a priori, a function of the preprocessed image (Section 9.5.5) and the complexity

of a multi-layer preceptron (MLP). Simply put, the former provides an encoding of

the original state space into a lower dimensional space, the latter represents the

decision-making mechanism. Appendix E provides a detailed calculation of DQN’s

computational complexity.

As noted in Section 9.4, TPG runs are limited to a fixed computational time of 2

weeks per game title. However, under TPG the cost of decision-making is variable as

solutions do not assume a fixed topology. We can now express computational cost in

terms of the cost to reach the DQN performance threshold (27 game titles), and the

typical cost over the two week period (remaining 21 game titles). Specifically, let T

be the generation at which a TPG run exceed the performance of DQN. P (t) denotes

the number of policies in the population at generation t. Let i(t) be the average

number of instructions required by each policy to make a decision, and let f(t) be

the total number of frames observed over all policies at generation t, then the total

number of operations required by TPG to discover a decision-making policy for each

game is
∑T

t=1 P (t) × i(t) × f(t). When viewed step-wise, this implies that compu-

tational cost can increase or decrease relative to the previous generation, depending

on the complexity of evaluating TPG individuals (which are potentially all unique

topologies).

Figure 9.7 plots the number of instructions required for each game over all decision-

making frames observed by agents during training. Figure 9.7(a) characterizes com-

putational cost in terms of solutions to the 27 game titles that reached the DQN

performance threshold, i.e. the computational cost of reaching the DQN performance

114

5 × 10
6

5 × 10
7

5 × 10
8

10
10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

●

●

● 4 × 10
11

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

TPG

0.8 × 10
14DQN

O
p
e
ra

ti
o
n
s

Frame

(a)

5 × 10
6

5 × 10
7

5 × 10
8

10
10

●

●

●

●

●

●

0.9 × 10
12

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

TPG

0.8 × 10
14DQN

Frame

(b)

Figure 9.7: Number of operations per frame (y-axis) over all game frames observed
during training (x-axis). (a) shows the subset of games up to the point where TPG
exceeded DQN test score. (b) shows games for which TPG did not reach DQN
test score. Red diamonds denote the most complex cases, with text indicating the
cumulative number of operations required to train each algorithm up to that point.
DQN’s architecture is fixed a priori, thus cumulative computational cost at each frame
is simply a sum over the number of operations executed up to that frame. TPG’s
complexity is adaptive, thus produces a unique development curve and max operations
for each game title. Frame limit for DQN was 50 million (5 × 107). Frame limit for
TPG, imposed by a cluster resource time constraint of 2 weeks, is only reached in
(b).

115

threshold. Conversely, Figure 9.7(b) illustrates the computational cost for games

that never reached the DQN performance threshold, i.e. terminated at the 2-week

limit. As such this is representative of the overall cost of model building in TPG

for the ALE task given a two week computational budget. In general, cost increases

with an increasing number of (decision-making) frames, but the cost benefit of the

non-monotonic, adaptive nature of the policy development is also apparent.

It is also readily apparent that TPG typically employed more than the DQN

budget for decision-making frames (5×107). However, the cost of model construction

is also a function of the operations per decision. For example, the parameterization

adopted by DQN results in an MLP hidden layer consisting of 1, 605, 632 weights,

or a total computational cost in the order of 0.8 × 1014 over all 50, 000, 000 training

frames. The total cost of TPG model building is 4 × 1011 in the worst case (Figure

9.7(a)). Thus, the cost of the MLP step, without incorporating the cost of performing

the deep learning convolution encoding (> 3 million calculations at layer 1 for the

parameterization of [100]), exceeds TPG by several orders of magnitude. Moreover,

this does not reflect the additional cost of performing a single weight update, i.e. the

backward pass.

9.5.6 Cost of Real-Time Decision Making

Table 9.2 summarizes the cost / resource requirement when making decisions post

training, i.e. the cost of deploying an agent. Liang et al. report figures for the

memory and wall clock time of Blob-PROST on a 3.2GHz Intel Core i7-4790S CPU

[87]. Computational cost for DQN is essentially static due to a fixed architecture

being assumed for all games. Blob-PROST complexity is a function of the diversity

of colour pallet in the game title. Apparently the 9GB figure was the worst case, with

3.7GB representing the next largest memory requirement. It is apparent that TPG

solutions are typically 2 to 3 orders of magnitude faster than DQN and an order of

magnitude faster than Blob-PROST.

TPG model complexity is an evolved trait (Section 9.5.3) and only a fraction of

the resulting policy graph is ever visited per decision. Table 9.3 provides a charac-

terization of this in terms of three properties of champion team for each game title:

• Teams (Tm) – both the total number of teams per champion and corresponding

116

Table 9.2: Wall clock time for making each decision and memory requirement. † Val-
ues for TPG reflect the memory utilized to support the entire population whereas
only one champion agent is deployed post training, i.e. tens to hundreds of kilobytes.
TPG wall-clock time is measured on a 2.2GHz Intel Xeon E5-2650 CPU.

Method Decisions per sec Frames per sec Memory
DQN 5 20 9.8 GB

Blob-PROST 56 – 300 280 – 1500 50MB – 9GB
TPG 758 – 2853 3032 – 11412 118MB – 146MB†

average number of teams visited per decision.

• Instructions per decision (Ins) – the average number of instructions executed

per agent decision. Note that as a linear genetic programming representation is

assumed, most intron code can be readily identified and skipped for the purposes

of program execution [20]. Thus, ‘Ins’ reflects the code actually executed.

• Proportion of visual field (%SP) – the proportion of the state space (Section 9.3)

indexed by the entire policy graph versus that actually indexed per decision.

This reflects the fact that GP individuals, unlike deep learning or Blob-PROST,

are never forced to explicitly index all of the state space. Instead the parts of

the state space utilized per program is an emergent property (discussed in detail

in Section 9.5.4).

It is now apparent that on average only 4 teams require evaluation per decision

(parenthesis value in Tm column, Table 9.3). This also means that decisions are

typically made on the basis of 3− 27% of the available state space (parenthesis value

in %SP column, Table 9.3). Likewise, the number of instructions executed is strongly

dependent on the game title. The TPG agent for Time Pilot executed over a thousand

instructions per action, whereas the TPG agent for Asteroids only executed 96. In

short, rather than having to assume a fixed decision-making topology with hundreds

of thousands of parameters, TPG is capable of discovering emergent representations

appropriate for each task.

117

Table 9.3: Characterizing overall TPG complexity. Tm denotes the total number of
teams in champions versus the average number of teams visited per decision (value in
parenthesis). Ins denotes the average number of instructions executed to make each
decision. %SP denotes the total proportion of the state space covered by the policy
versus (value in parenthesis).

Title Tm Ins %SP Title Tm Ins %SP

Alien 67(4) 498 68(13) Amidar 132(6) 1066 87(23)
Assault 37(4) 420 50(14) Asterix 77(5) 739 73(20)
Asteroids 7(2) 96 10(4) Atlantis 39(4) 939 64(22)
Bank Heist 94(3) 532 75(15) Battle Zone 15(2) 191 24(6)
Beam Rider 115(4) 443 83(13) Bowling 300(4) 927 100(26)

Boxing 102(6) 1156 79(26) Breakout 6(3) 158 8(6)
Centipede 36(4) 587 48(18) C. Command 49(4) 464 54(15)

Crazy Climber 150(3) 1076 99(28) Demon Attack 19(3) 311 26(8)
Double Dunk 10(2) 98 20(3) Enduro 24(3) 381 37(10)
Fishing Derby 33(3) 472 50(15) Freeway 18(4) 296 26(11)

Frostbite 45(4) 434 53(13) Gopher 4(2) 156 8(5)
Gravitar 49(4) 499 62(14) H.E.R.O 96(5) 979 75(24)

Ice Hockey 29(4) 442 39(14) James Bond 41(4) 973 59(22)
Kangaroo 52(4) 877 64(21) Krull 62(4) 376 58(10)

Kung-Fu Master 31(2) 137 44(5) M’s Revenge 403(2) 722 100(22)
Ms. Pac-Man 197(5) 603 95(19) Name This Game 93(3) 361 77(13)

Pong 12(4) 283 20(10) Private Eye 71(7) 761 64(17)
Q*Bert 255(8) 2346 99(46) River Raid 7(3) 286 15(9)

Road Runner 86(7) 1169 74(27) Robotank 42(2) 252 47(8)
Seaquest 58(4) 579 60(15) Space Invader 68(4) 624 65(17)

Star Gunner 17(4) 516 35(15) Tennis 3(2) 71 5(3)
Time Pilot 189(5) 1134 95(27) Tutankham 36(2) 464 58(14)

Up and Down 28(3) 425 42(12) Venture 77(6) 1262 74(23)
Video Pinball 38(3) 399 55(13) Wizard of Wor 23(4) 433 36(12)

Zaxxon 81(4) 613 68(16)

118

9.5.7 Characterization of Learned Strategies

Files TPG-Up_N_Down.mp4 and TPG-Frostbite.mp4 included with this thesis provide

examples of how a TPG policy interacts with Atari games. The animations show the

active path through the graph at each time step (Right), along with the preprocessed

state variables indexed by all teams along the active path (Bottom Left), and the raw

game screen (Upper Left). As the game state changes, a different path through the

graph is used to select an atomic action, thus a different subset of the state variables

are also used (Bottom Left).

As described in Section 9.5.4, the game Up ’N Down is a driving game in which

the player steers a Dune Buggy along a track that zig-zags vertically up and down the

screen. The goal is to collect flags along the route and avoid hitting other vehicles.

The player can smash opponent cars by jumping on them using the joystick fire

button, but looses a turn upon accidentally hitting a car or jumping off the track.

The Up / Down actions increment or decrement the dune buggy’s acceleration in

the given direction, while the addition of the Fire button causes the dune buggy to

jump. The champion policy graph for Up ’N Down uses only Fire, Up-Fire, and

No-Action in defining a simple yet effective policy, which exceeds the test score of

DQN, but not Hyper-NEAT (Table D.1, Appendix D). This policy graph contains 28

teams8 and indexes 42% of the state space. However, on average only 3 teams, 425

instructions, and 12% of the available state variables are used to make each decision

(See Table 9.3). Thus, a division of labor among the programs in the graph effectively

decomposes the task. The resulting strategy throttles the upward acceleration of the

dune buggy by toggling Up-Fire and No-Action, gaining points by jumping on other

cars to destroy them but never loosing a life by hitting them head-on. The policy also

manages to collect most of the flags and only rarely looses a life by leaving the track.

Indeed, the episode ends due to the 18, 000 frame limit rather than agent error.

The objective in the game Frostbite is to build igloos by jumping on floating

blocks of ice, while trying to avoid hazards such as clams and polar bears. The

champion policy graph in Frostbite is slightly more complex than in Up ’N Down,

but the cost per decision is similar. The policy graph contains 45 teams and indexes

53% of the state space. However, on average only 4 teams, 434 instructions, and

8Note that only the graph nodes that were active during this game episode are pictured.

119

(a) TPG policy graph for the game Frostbite

(b) Team switching during single episode of play

(c) Screen colours frames 0 - 5922 (d) Screen colours frames > 5922

Figure 9.8: Temporal switching of TPG policy substructures (teams) during game-
play. The champion policy graph for the game Frostbite is illustrated in (a), where
only teams that contributed to decision-making during test are shown. (b) plots
which teams contributed to each decision (frame) over a single episode of play. The
environment’s colour scheme before and after frame 5922 are shown in (c) and (d),
an environmental change that activates the left side of the policy graph (teams 5, 4,
and 2).

120

13% of the available state variables are used to make each decision (See Table 9.3).

The policy defines an effective long-term strategy, using a variety of atomic actions

to move around the environment while jumping on ice blocks. As soon as the igloo

is complete, the agent navigates directly inside to accumulate a wealth of points. As

a complement to the video TPG-frostbite.mp4, Figure 9.8 provides an illustration

of the temporal switching of policy substructures during a single episode of play in

the game Frostbite. Interestingly, for the first ≈ 3.5 minutes of play (5922 frames)

only one region of the policy graph is active (right-side of the root team, or teams 7,

6, 3, and 1). During this time, team 7 switches between a variety of atomic actions

and often defers decision-making to team 6, which in turn switches between atomics

and teams 3 and 1. At about 3:37 in the video, the colour scheme of the environment

changes and the policy begins using the rest of its graph (left of the root node,

or teams 5,4, and 2). This is an example of how the modular structure of TPG’s

representation allows a policy to combine and organize a variety of decision-making

structures, recalling only those relevant to the current environmental conditions.

As in the frostbite example, it is common for a specific substructure within a pol-

icy graph to be active across contiguous states in a decision-making sequence. This

implies that a higher-level team has learned which states to map to this particular sub-

structure, or using the terminology of the options framework for temporal abstractions

[137], the higher-level team learns the initiation set and termination condition for the

substructure. Furthermore, complete structures of this nature, which now consist of

the three components necessary for temporally abstract knowledge (i.e. a policy, an

initiation set, and a termination condition) may be exchanged between organisms

through team variation operators during evolution. This allows credit assignment

to identify policy substructures responsible for temporally-extended decision-making.

(Indeed, the substructure consisting of teams 5, 4, and 2 in Figure 9.8(a) appeared

in 19 other teams from the same population and was used for the same temporally

contiguous region of the state space). These preliminary observations suggest that

the representation supports the evolution of temporal abstractions (without a prior

definition of subgoals). More research is required to determine how frequently this

occurs and how beneficial it actually is to the learning process, but it is worth noting

that TPG test scores in Frostbite, Ms. Pac-Man, and Alien were competitive with the

121

maximum (training) score reported by another HRL model that explicitly addressed

the temporal credit assignment problem [155].

9.6 Multi-Task Learning

9.6.1 Overview

Up to this point this chapter has demonstrated the ability of TPG to build strong

single-task decision-making policies, where a unique policy graph was trained from

scratch for each Atari game title. This section reports on TPG’s ability to learn

multiple tasks simultaneously, or Multi-task Reinforcement Learning (MTRL). MTRL

operates with the same state representation as single-task learning. That is, state

variables consist of raw screen capture with no additional information regarding which

game is currently being played. Furthermore, the full Atari action set is available to

agents at all times. Previous work has established the capability of TPG to learn

3 Atari games simultaneously using MTRL [73]. This section extends that work

by simplifying the MTRL methodology and increasing the task set to 5 Atari titles.

When the TPG population is trained on multiple Atari games simultaneously, a single

run can produce multiple champion policies, one for each game title, that match or

exceed the level of play reported for DQN. In some cases, a multi-task policy (i.e.

a single policy graph capable of playing multiple titles) also emerges that plays all

games at the level of DQN. Furthermore, the training cost for TPG under MTRL

is no greater than task-specific learning, and the complexity of champion multi-task

TPG policies is still significantly less than task-specific solutions from deep learning.

9.6.2 Task Groups

In order to investigate TPG’s ability to learn multiple Atari game titles simultane-

ously, a variety of task groupings, i.e. specific game titles to be learned simultaneously,

are created from the set of games for which single-task runs of TPG performed well.

Relative to the four comparison algorithms which use a screen capture state rep-

resentation, TPG achieved the best reported test score in 15 of the 49 Atari game

titles considered (Table D.1, Appendix D). Thus, task groupings for MTRL can be

created in an unbiased way by partitioning the list of 15 titles in alphabetical order.

122

Table 9.4: Task groups used in multi-task reinforcement learning experiments. Each
group represents a set of games to be learned simultaneously. See text for an expla-
nation of the groupings.

3-Title Groups Game 5-Title Groups

3.1
Alien

5.1
Asteroids
Bank Heist

3.2
Battle Zone
Bowling
Centipede

5.23.3
Chopper Command

Fishing Derby
Frostbite

3.4
Kangaroo
Krull

5.3
Kung-Fu Master

3.5
Ms. Pac-Man
Private Eye
Time Pilot

Specifically, Table 9.4 identifies 5 groups of 3 games each and 3 groups of 5 games

each.

Importantly, while it is possible to categorize Atari games by hand in order to sup-

port incremental learning [22], no attempt was made here to organize game groups

based on perceived similarity or multi-task compatibility. Such a process would be

labour intensive and potentially misleading, as each Atari game title defines its own

graphical environment, colour scheme, physics, objective(s), and scoring scheme. Fur-

thermore, joystick actions are not necessarily correlated between game titles. For ex-

ample, the ’down’ joystick position generally causes the avatar to move vertically down

the screen in maze games (eg. Ms. Pac-Man, Alien), but might be interpreted as ’pull-

up’ in flying games (Zaxxon), or even cause a spaceship avatar to enter hyperspace,

disappearing and reappearing at a random screen location (Asteroids). However, even

with such diversity in the nature of Atari games, it is useful to test for inter-game

regularities in each game group. To do so, champion TPG policies as developed and

reported in Section 9.5.2 are re-evaluated over all games within each group, with

the resulting test scores shown in Figure 9.9 (3-title groups) and Figure 9.10 (5-title

groups). Each policy in Figures 9.9 and 9.10 was exposed to a single game title during

123

evolution and is tested on the other titles within the group in which it appears. With

one exception, no policy is able to achieve significant scores in any game other than

the title it experienced during training. The exception to this is the policy trained

for Time Pilot, which is able to exceed the level of DQN in the game Private Eye

with no prior training experience in that game title (See Figures 9.9(e) and 9.10(c)).

However, the policy trained for Private Eye does not exhibit any significant ability

in Time pilot. Thus, with the exception of T imePilot → PrivateEye, proficiency in

any single game title does not directly transfer to any other game within the same

group.

9.6.3 Task Switching

As in single-task learning, each policy is evaluated in 5 episodes per generation. How-

ever, under MTRL, new policies are first evaluated in one episode under each game

title in the current task group. Thereafter, the game title for each training episode

is selected with uniform probability from the set of titles in the task group. The

maximum training episodes for each policy is 5 episodes under each game title. For

each consecutive block of 10 generations, one title is selected with uniform probability

to be the active title for which selective pressure is applied. Thus, while a policy may

store the final score from up to 5 training episodes for each title, fitness at any given

generation is the average score over up to 5 episodes in the active title only. Thus,

selective pressure is only explicitly applied relative to a single game title. However,

stochastically switching the active title at regular intervals throughout evolution im-

plies that a policy’s long-term survival is dependent on a level of competence in all

games.

9.6.4 Elitism

There is no multi-objective fitness component in the formulation of MTRL proposed

in this work. However, a simple form of elitism is used to ensure the population as a

whole never entirely forgets any individual game title. As such, the single policy with

the best average score in each title is protected from deletion, regardless of which title

is currently active for selection. Note that this simple form of elitism does not protect

multi-task policies, which may not have the highest score for any single task, but are

124

Alien Asteroids Bank Heist

Training Game

%
 D

Q
N

 L
e
ve

l

0

50

100

150

200

250
Test Game

Alien

Asteroids

Bank Heist

(a)

Battle Zone Bowling Centipede

Training Game

%
 D

Q
N

 L
e
ve

l

0

200

400

600

800
Test Game

Battle Zone

Bowling

Centipede

(b)

C. Command Fishing Derby Frostbite

Training Game

%
 D

Q
N

 L
e
ve

l

0

500

1000

1500

2000
Test Game

C. Command

Fishing Derby

Frostbite

(c)

Kangaroo Krull Kung−Fu Master

Training Game

%
 D

Q
N

 L
e
ve

l

0

100

200

300

400

500
Test Game

Kangaroo

Krull

Kung−Fu Master

(d)

Ms. Pac−Man Private Eye Time Pilot

Training Game

%
 D

Q
N

 L
e
ve

l

0

200

400

600

800 Test Game

Ms. Pac−Man

Private Eye

Time Pilot

(e)

Figure 9.9: Test results without MTRL for 3-title game groups. The champion (game-
specific) TPG policy for each game from Section 9.5.2 is re-tested in 30 episodes under
each game title and mean scores are reported. x-axis indicates which game the policy
was trained for, while shading of bars indicates the active game under test. (i.e. Each
policy was trained for one game and has never seen the other two before). All scores
are normalized relative to DQN’s score in the same game (100%) and a random agent
(0%). DQN scores are from [100].

125

Alien Asteroids Bank Heist Battle Zone Bowling

Training Game

%
 D

Q
N

 L
e
ve

l
0

200

400

600

800

Test Game

Alien

Asteroids

Bank Heist

Battle Zone

Bowling

(a)

Centipede C. Command F. Derby Frostbite Kangaroo

Training Game

%
 D

Q
N

 L
e
ve

l

0

500

1000

1500

2000
Test Game

Centipede

C. Command

F. Derby

Frostbite

Kangaroo

(b)

Krull KF Master Ms. Pac−Man Private Eye Time Pilot

Training Game

%
 D

Q
N

 L
e
ve

l

0

200

400

600

800
Test Game

Krull

KF Master

Ms. Pac−Man

Private Eye

Time Pilot

(c)

Figure 9.10: Test results without MTRL for 5-title game groups. The champion
(game-specific) TPG policy for each game from Section 9.5.2 is re-tested in 30 episodes
under each game title and mean scores are reported. x-axis indicates which game the
policy was trained for, while shading of bars indicates the active game under test.
(i.e. Each policy was trained for one game and has never seen the other four before).
All scores are normalized relative to DQN’s score in the same game (100%) and a
random agent (0%). DQN scores are from [100].

126

able to perform relatively well on multiple tasks. Failing to protect multi-task policies

became problematic under the methodology of our first MTRL study [73]. Thus, a

simple form of multi-task elitism is employed in this work. The elite multi-task team

is identified in each generation using the following 2-step procedure:

1. Normalize each policy’s mean score on each task relative to the rest of the

current population. Normalized score for team tmi on task tj, or sc
n(tmi, tj), is

calculated as (sc(tmi, tj)−scmin(tj))/(scmax(tj)−scmin(tj)), where sc(tmi, tj) is

the mean score for team tmi on task tj and scmin,max(tj) are the population-wide

min and max mean scores for task tj.

2. Identify the multi-task elite policy as that with the highest minimum normal-

ized score over all tasks. Relative to all root teams in the current popula-

tion, R, the elite multi-task team is identified as tmi ∈ R | ∀tmk ∈ R :

min(scn(tmi, t{1..n}) > min(scn(tmk, t{1..n}), where min(scn(tmi, t{1..n}) is the

minimum normalized score for team tmi over all tasks in the game group and

n denotes the number of titles in the group.

Thus, in each generation, elitism identifies 1 champion team for each game title and 1

multi-task champion, where elite teams are protected from deletion in that generation.

9.6.5 Detailed Results

The parameterization used for TPG under multi-task reinforcement learning is iden-

tical to that described in Table 9.1 with the exception of Rsize parameter, or the

number of root teams to maintain in the population. Under MTRL, the population

size was reduced to 90 (1/4 of the size used under single-task learning) in order to

speed up evolution and allow more task switching cycles to occur throughout the

given training period9. A total of 5 independent runs were conducted for each task

group in Table 9.4. Multi-task elite teams represent the champions from each run at

any point during development. Post training, the final champions from each run are

subject to the same test procedure as identified in Section 9.2 for each game title.

9As under single-task experiments, the computational limit for MTRL is defined in terms of
a computational resource time constraint. Experiments ran on a shared cluster with a maximum
runtime of 1 week per run.

127

Figure 9.11 reports the training and test performance for task group 3.2, where

all TPG scores are normalized relative to scores reported for DQN in [100]. By

generation ≈ 140, the best multi-task policy is able to play all 3 game titles at the

level reported for DQN10. The runs were terminated at generation ≈ 200, although

multi-task policies were still improving for most tasks. Under test, the multi-task

champion (ie. a single policy that plays all game titles at a high level) exceeds DQN

in all 3 games titles, Figure 9.11(b). Note that in the case of task group 3.2, only one

run managed to produce a multi-task champion of this quality (highlighted in black

in Figure 9.11(b)), while most other runs produced multi-task champions that play

2/3 games at the level of DQN (grey data points in Figure 9.11(b)).

While the primary focus of MTRL is to produce multi-task policies, a byproduct

of the methodology employed here (i.e. task-switching and elitism rather than multi-

objective methods) is that each run also produces high-quality single-task policies (i.e.

policies that excel at one game title). Test results for these game-specific specialists,

which are simply the 3 elite single-task policies at the end of evolution, is reported in

Figure 9.11(c). While not as proficient as policies trained on a single task (Section

9.5.2), at least one single-task champion emerges from MTRL in task group 3.2 that

matches or exceeds the score from DQN in each game title.

Figure 9.12 reports the MTRL training and test performance for TPG relative to

game group 5.3. In this case, the training performance of the single best multi-task

policy matches or exceeds the level of DQN in all 5 game titles by generation ≈ 750,

Figure 9.12(a). Under test, the multi-task champion exceeds DQN in 4 of the 5

games, while reaching over 90% of DQN’s score in the remaining title (Krull), Figure

9.12(b). Again, only one run produced a multi-task policy capable of matching DQN

in all 5 tasks. However, all runs produce a single-task champion for all game titles

that matches or exceeds the level of DQN, Figure 9.12(c)

Detailed multi-task training and test results for TPG under the remaining game

groups (Table 9.4) are included in Appendix F. Table 9.5 provides a summary

overview of test scores for the champion multi-task and single-task policy relative

to each game group. Test scores that match or exceed that of DQN are highlighted in

grey. For the 3-title groups, TPG produced multi-task champions capable of playing

10Note that training scores reported for TPG in Figure 9.11(a) are averaged from a max of 5
episodes in each game title, and are thus not as robust as the test scores reported in Figure 9.11(b)

128

0 50 100 150 200

25

50

100

200

400

600

800

Generation

%
 D

Q
N

 L
e
ve

l

Battle Zone

Bowling

Centipede

(a) MTRL Train

● ●

●

Battle Zone Bowling Centipede

30

50

100

200

400

600

800

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

Battle Zone Bowling Centipede

30

50

100

200

400

600

800

(c) Single-Task Test

Figure 9.11: TPG multi-task reinforcement learning results for task group 3.2. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

129

0 200 400 600 800

1

5

10

50

100

500

1000

Generation

%
 D

Q
N

 L
e
ve

l
Krull

Kung−Fu Master

Ms. Pac−Man

Private Eye

Time Pilot

(a) MTRL Train

●

●

●

●

●

Kru
ll

Kun
g−

Fu
M

as
te

r

M
s.
 P

ac
−M

an

Priv
at

e
Eye

Tim
e

Pilo
t

25

50

100

300

500

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

●

●

Kru
ll

Kun
g−

Fu
M

as
te

r

M
s.
 P

ac
−M

an

Priv
at

e
Eye

Tim
e

Pilo
t

25

50

100

300

500

(c) Single-Task Test

Figure 9.12: TPG multi-task reinforcement learning results for game group 5.3. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

130

Table 9.5: Summary of multi-task learning results over all task groups. MT and ST
report test scores for the single best multi-task (MT) and single-task (ST) policy for
each game group over all 5 independent runs. Scores that match or exceed the test
score reported for DQN in [100] are highlighted in grey (The MT score for Krull in
group 5.3 is 90% of DQN’s score, and is considered a match).

MT ST Group Game Group MT ST

864 1494.3
3.1

Alien

5.1

346.7 759

2176 2151 Asteroids 1707 2181.3

1085 1085 Bank Heist 724 724

36166 37100
3.2

Battle Zone 11800 30466.7

197 197 Bowling 107 212

13431.2 22374.6 Centipede

5.2

9256.9 20480.2
3173.3 3266.7

3.3
Chopper Command 1450 2716.7

-66.6 -38.4 Fishing Derby 24.967 27.7

2900.7 4216 Frostbite 2087.3 4283.3

11200 10940
3.4

Kangaroo 11200 11893.3

4921.3 17846.7 Krull

5.3

3644.3 6099.7

25600 42480 Kung-Fu Master 25393.3 34273.3

3067.7 3164.7
3.5

Ms. Pac-Man 3312.3 3430

14665 14734.7 Private Eye 4000 15000

7846.7 8193.3 Time Pilot 7270 8570

131

all 3 games titles in groups 3.2, 3.4, and 3.5, while the multi-task champions learned

2/3 titles in group 3.1 and only 1/3 titles in group 3.3. For the 5-title groups, TPG

produced multi-task champions capable of playing all 5 titles in group 5.3, 4/5 titles

in group 5.2, and 3/5 titles in group 5.1. It seems that Alien and Chopper Command

are two game titles that TPG had difficulty learning under the MTRL methodology

adopted here (neither multi-task or single-task policies emerged for either game title).

Interestingly, while Fishing Derby was difficult to learn when grouped with Frostbite

and Chopper Command (group 3.3), adding 2 additional game titles to the task

switching procedure (i.e. group 5.2) seems to have been helpful to learning Fishing

Derby. Note that test scores from policies developed under the MTRL methodology

are generally not as high as scores achieved through single-task learning for the same

game titles (Section 9.5.2). This is primarily due to the extra challenge of learning

multiple task simultaneously. However, it is important to note that the population

size for MTRL experiments was 1/4 of that used for single-task experiments and the

computational budget for MTRL was half that of single-task experiments. Indeed, the

MTRL results here represent a proof of concept for TPG’s multi-task ability rather

than an exhaustive study of its full potential.

9.6.6 Modular Task Decomposition

Problem decomposition takes place at two levels in TPG: 1) Program-level, in which

individual programs within a team each define a unique context for deploying a single

action; and 2) Team-level, in which individual teams within a policy graph each define

a unique program complement, and therefore represent a unique mapping from state

observation to action. Moreover, since each program typically indexes only a small

portion of the state space, the resulting mapping will be sensitive to a specific region

of the state space. This section examines how modularity at the team-level supports

the development of multi-task policies.

As TPG policy graphs develop, they will subsume an increasing number of stand-

alone decision-making modules (teams) into a hierarchical decision-making structure.

Recall from Section 8.4 that only root teams are subject to modification by variation

operators. Thus, teams that are subsumed as interior nodes of a policy graph undergo

no modification. This property allows a policy graph to avoid (quickly) unlearning

132

tasks that were experienced in the past under task switching but are not currently the

active task. This represents an alternative approach to avoiding ”catastrophic forget-

ting“ [77] during the continual, sequential learning of multiple tasks. The degree to

which individual teams specialize relative to each objective experienced during evolu-

tion, i.e. the game titles in a particular game group, can be characterized by looking

at which teams contribute to decision-making at least once during test, relative to

each game title.

Figure 9.13 shows the champion multi-task TPG policy graph from the group 3.2

experiment (Figure 9.11). The Venn diagram indicates which teams are visited at

least once while playing each game, over all test episodes. Naturally, the root team

contributes to every decision (black circle in the graph, center of Venn diagram). 5

teams contribute to playing both Bowling and Centipede, while the rest of the teams

specialize for a specific game title. In short, both generalist and specialist teams

appear within the same policy and collectively define a policy capable of playing

multiple game titles. Appendix G repeats the analysis for the case of Groups 3.4 and

3.5, where these correspond to the other two most effective multi-task solutions under

3 game titles (Table 9.5).

Figure 9.14 depicts the champion multi-task policy graph from the group 5.3

experiment (i.e. a single policy graph capable of playing 5 games titles). Not surpris-

ingly, this policy is significantly more complex than the example 3-task policy graph

(Figure 9.13). Of the 32 active teams in this graph, only two contribute to every task,

while the rest specialize on between 1 and 4 tasks (8 different combinations in total).

Krull (Game A in the graph) is the only title for which any team specializes exclu-

sively. Naturally, teams that are active for Time Pilot (Game D in the graph) are

almost always shared with Private Eye (game E in the graph), reflecting the known

regularity between these titles (see Figure 9.10(c)).

Finally, the importance of team-level modularity to multi-task TPG development

can be confirmed by testing the effect of the patomic parameter, which influences the

rate at which policy graphs develop. The default setting of patomic = 0.5 has been used

in all experiments so far, meaning that when a program’s action pointer is modified,

it has an equal probability of referencing either an atomic action or another team

(created in any previous generation). A setting of patomic = 1.0 implies that action

133

{ }
{ }

{ }

{ }

{ }{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

{ }

{ }

{ }{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

{ }

{ }

{ }{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

Battle Zone

Bowling Centipede

40 5

2

00

1

���
�������	
����
��	����	�
��	����
����

Figure 9.13: Champion multi-task TPG policy graph from the group 3.2 experiment.
Decision-making in a policy graph begins at the root node (black circle) and follows
one path through the graph until an atomic action (joystick position) is reached (See
Algorithm 9). Venn diagram indicates which teams are visited while playing each
game, over all test episodes. Note that only graph nodes (teams and programs) that
contributed to decision-making during test are shown. Figure requires viewing in
colour.

134

Figure 9.14: Champion multi-task TPG policy graph from the group 5.3 experiment.
Decision-making in a policy graph begins at the root node (top of graph) and follows
one path through the graph until an atomic action (joystick position) is reached
(See Algorithm 9). Letters inside team nodes indicates which teams are visited while
playing each game (alphabetical order), over all test episodes. Note that only graph
nodes (teams and programs) that contributed to decision-making during test are
shown.

135

●

●

●

●

●

Kru
ll

Kun
g−

Fu
M

as
te

r

M
s.
 P

ac
−M

an

Priv
at

e
Eye

Tim
e

Pilo
t

5

10

20

50

100

200

500

%
 D

Q
N

 L
e
ve

l

●

patomic

0.5

0.7

0.9

1.0

Figure 9.15: Test results for champion policy graphs from 4 independent MTRL
experiments in the task group 5.3, each with a unique setting for the patomic parameter.
Each experiment included 5 independent runs with a budget of 750 generations each.
Post training, the elite multi-task policies from each run was tested in 30 episodes
under each task as per established test procedure (Section 9.2). Test performance for
the single best policy from each experiment is shown in the plot. The line connecting
points emphasizes that scores are from the same (multi-task) policy.

pointers will always refer to atomic actions, and thus multi-team graphs will never

emerge. Figure 9.15 reports the test performance of the single best policy from four

independent MTRL experiments for the task group 5.3, each with a different patomic

setting. Note that even runs in which policies were restricted to a single team of

programs (patomic = 1.0) managed to produce one policy capable of playing the game

Kung-Fu Master11. However, without the ability to build multi-team policy graphs,

as is the case when patomic = 1.0, no multi-task policies emerged from any of the

runs. By contrast, all runs with the capability to build policy graphs where able to

discovered multi-task policies capable of playing at least 3 game titles.

11This single-team policy for Kung-Fu Master was simple but surprisingly effective. Kung-Fu
Master is a side-scrolling fighting game. In addition to moving Left and Right, the player’s actions
include kick, punch, crouch, and jump. This policy simply crouched down continuously (avoiding
the objects being thrown at it) and punched all opponent players as they approached. Eventually,
enough objects are thrown toward the player at a low enough angle that crouching doesn’t help, and
since the policy does not jump to avoid them, the player eventually dies.

136

Complexity of Multi-Task Policy Graphs

Table 9.6 reports the average number of teams, instructions, and proportion of state

space contributing to each decision for the multi-task champion during test. Interest-

ingly, even for an evolved multi-task policy graph (i.e post-training), the number of

instructions executed depends on the game in play, for example, ranging from 200 in

Kangaroo to 512 in Kung-Fu Master for the Group 3.4 champion. While the complex-

ity/cost of decision-making varies depending on the game in play, the average number

of instructions per decision for the group 5.3 champion is 610, not significantly differ-

ent from the average of 602 required by task-specific policies when playing the same

games (See Table 9.3). Furthermore, the group 5.3 champion multi-task policy aver-

aged 1832 - 2342 decisions per second during test, which is significantly faster than

single-task policies from both DQN and Blob-PROST (See Table 9.2). Finally, as

the parametrization for TPG under MTRL is identical to task-specific experiments

with a significantly smaller population size (90 vs. 360), and the number of genera-

tions is similar in both cases12, we can conclude that the cost of development is not

significantly greater under MTRL.

9.7 Summary

Applying RL directly to high-dimensional decision-making tasks has previously been

demonstrated using both neuro-evolution and multiple deep learning architectures.

To do so, neuro-evolution assumed an a priori parameterization for model complexity

whereas deep learning had the entire architecture pre-specified. Moreover, both previ-

ous approaches assume that all the state space should be indexed in order to compose

solutions. In this work, an entirely emergent approach to evolution, or Tangled Pro-

gram Graphs, is proposed in which the overall decision-making policy, including its

topology and state space indexing, are evolved in an open-ended manner.

This chapter has demonstrated that TPG is able to evolve solutions to a suite

of 49 Atari game titles that match the quality of those discovered by deep learning

at a fraction of the model complexity. To do so, TPG begins with single teams of

programs and incrementally discovers a graph of interconnectivity, potentially linking

12MTRL runs lasted 200 - 750 generations, which is roughly the range of generations reached
for the single-task runs (See Figure9.2(a))

137

Table 9.6: Complexity of champion multi-task policy graphs from each game group
in which all tasks were covered by a single policy. The cost of making each decision
is relative to the average number of teams visited per decision (Tm), average number
of instructions executed per decision (Ins), and proportion of state space indexed per
decision (%SP). TPG wall-clock time is measured on a 2.2GHz Intel Xeon E5-2650
CPU.

Group Title Tm Ins %SP Decisions per sec

3.2
Battle Zone 3 413 11 2687
Bowling 4 499 15 2922
Centipede 2 595 15 2592

3.4
Kangaroo 2 200 6 3141
Krull 2 394 11 2502

Kung-Fu Master 2 512 12 2551

3.5
Ms. Pac-Man 3 532 14 2070
Private Eye 4 804 18 1857
Time Pilot 5 869 19 1982

5.3

Krull 5 782 18 1832
Kung-Fu Master 2 455 13 2342
Ms. Pac-Man 5 673 16 1989
Private Eye 3 481 13 2192
Time Pilot 4 657 16 2306

138

hundreds of teams by the time competitive solutions are found. However, as each

team can only have one action (per state), very few of the teams composing a TPG

solution are evaluated in order to make each decision. This provides the basis for

efficient real-time operation without recourse to specialized computing hardware. A

simple methodology for multi-task learning with the TPG representation has also

been demonstrated. Champion multi-task TPG agents can potentially play multiple

games titles from direct screen capture, all at the level of deep learning, without

incurring any additional training cost or solution complexity.

Chapter 10

Conclusions and Future Work

10.1 Summary of Goals, Methods, and Observations

Broadly speaking, the goal of this research is to investigate methods of applying

machine learning, and GP in particular, to the construction of behavioural agents

that scale to complex sequential decision-making tasks without extensive prior (task-

specific) knowledge, and while also maintaining minimal model complexity. To this

end, the utility of modularity and open-endedness / emergence has been considered

through two related but independent approaches to hierarchical team-based GP: Pol-

icy Trees and Tangled Program Graphs. This section will summarize the goals and

methodology behind both algorithms, and discuss how the experimental observations

from each approach relate to one another.

In the case of Policy Trees, a methodology for transfer learning was proposed and

evaluated in two challenging task environments. A suitable task decomposition is

known a priori for both task environments. This study represents the first application

of transfer learning within the SBB architecture. The general approach exploited the

modular nature of SBB Policy Trees, and their incremental development over two

phases of evolution. In testing this proposed methodology (detailed in Chapters 4, 5,

and 6), the following observations are made:

• In the specific case of RoboCup, in which the goal was to transfer behaviours

from the Keepaway and Scoring tasks to the more challenging task of Half-

Field Offense, the transfer methodology outlined in Section 5.6 was shown to

be a critical factor in scaling Policy Trees to match state of the art levels of

play in HFO. Conversely, Policy Trees without transfer were not able to reach

equivalent performance.

• Also in the case of RoboCup, explicit diversity maintenance (Section 5.4.1) dur-

ing the development of source task policies played a critical role in successful

139

140

transfer. In particular, two task-agnostic metrics for quantifying the difference

between policies, one specific to team GP and one purely behavioural (i.e. ap-

plicable to any type of behavioural agent), were proposed. Their combination

within a diversity switching scheme implies that both types of novelty might

be maintained within an evolving population without requiring a parameter to

explicitly balance any potential trade-offs. Indeed, while neither type of novelty

was especially effective alone, their combination made the difference between

success or failure for Policy Trees under the HFO task.

• Under the Ms. Pac-Man task, the same diversity maintenance mechanism (Sec-

tion 5.4.1) was applied during the evolution of source task policies. In this

case, the diversity mechanism effectively removed the need for human-defined

subtasks. That is, assuming the proposed diversity mechanism during the devel-

opment of independent, single-team policies during phase 1 of evolution resulted

in a useful degree of specialization among ’source’ policies. The policy trees de-

veloped during phase 2 of evolution were then able to identify a useful division

of labour over source policies, ultimately discovering generalist policies that

exceeded the current state of the art from neuro-evolution.

• Champion policy trees in both HFO and Ms. Pac-Man were shown to be signif-

icantly more efficient to deploy post-training than respective comparator algo-

rithms in each domain. As a population-based (evolutionary) model, the sample

complexity of policy tree development (i.e. the total number of observation-

action-reward cycles experienced during training, Figure 1.1) is significantly

greater than the Sarsa temporal difference method that represented the state

of the art in HFO. However, champion policy trees for HFO were shown to be

significantly more efficient to deploy post-training. This is a direct result of

their modular structure, and the specific property that only a portion of the

full decision-making structure of the policy is required for each individual deci-

sion. Likewise, final policy trees in Ms. Pac-Man were shown to be significantly

simpler than solutions from neuro-evolution.

In summary, modularity (and by extensions hierarchy) in SBB Policy Trees is the

141

single most important property that facilitates transfer learning through the recom-

bination of diverse building blocks. Furthermore, modularity was shown to be the

basis for efficient decision-making in policy trees. However, the nature of modularity

in policy trees is constrained by two limitations outlined in Section 2.3.4:

1. Emergent events, in this case hierarchical transitions, are anticipated and pa-

rameterized by the human designer. This implies that the algorithm is not free

to discover the appropriate degree of hierarchical complexity appropriate for a

given task.

2. Hierarchical development in Policy Trees is strictly bottom-up. That is, only

root-level policies are subject to variation in any phase of evolution, while lower-

level structures represent a ’frozen’ library of reusable code. Furthermore, the

decision-making path from root team to atomic action must operate through

every level of the hierarchy. Thus, without the ability to modify the library,

the Policy Tree algorithm would not easily support the sequential learning of

multiple tasks.

These limitations motivate the second approach explored in this thesis, or Tangled

Program Graphs. In this case the basic SBB approach to teaming (Chapter 4) is

extended through simple modifications to program variation operators (Section 8.2)

and team-level decision-making (Algorithm 9), such that the degree of hierarchical

modularity becomes an entirely open-ended, emergent property. TPG is benchmarked

under the Arcade Learning Environment, in which agents observe their environment

through a high-dimensional, visual sensory interface. The major observations from

this study include:

• TPG produced high-quality behavioural agents in the Arcade Learning Envi-

ronment over a diverse set of 49 game titles, all from direct screen capture

state and without any task-specific tuning of learning parameters. From the

perspective of game-playing ability, the quality of TPG policies were broadly

equivalent to a set of deep learning and neuro-evolution approaches from the

ALE literature (Section 9.5.2).

• Emergent events (hierarchical transitions) in TPG can happen at any time, and

while development is bottom-up (i.e. solutions start simple and incrementally

142

complexify), hierarchical development is not monotonic. That is, hierarchical

structures grow and break down throughout evolution. Ultimately, this allows

the degree of modularity in TPG to be adaptively scaled based on interaction

with the task environment. Section 9.5.3 provides empirical evidence of this

property.

• An implication of the emergent modularity described in the previous point is

that TPG policies scale to high-dimensional visual inputs by learning to ignore

regions of the state space that are not relevant to decision-making. Section 9.5.4

provides an analysis of this property.

• Emergent modularity in the TPG representation supports multi-task learning in

the ALE. Specifically, an MTRL methodology is proposed in Section 9.6 through

which TPG develops multi-task policies capable of playing up to 5 game titles

at the level of a recent deep learning approach (DQN).

• Finally, and most importantly, TPG policies are shown to be significantly less

computationally demanding than solutions from deep learning. This is true from

the perspective of development (i.e. training, Section 9.5.5) and deployment

post-training (Section 9.5.6).

In summary, this thesis has made contributions to evolutionary reinforcement

learning by providing a working example for the theoretical / conceptual models

of modularity and open-ended evolution reviewed in Chapter 2. From the broader

perspective of reinforcement learning in general, this work represents a different per-

spective from the neural network models that are currently receiving widespread at-

tention. In adopting a GP approach, the focus has been on emergent model building

and, more specifically, the ability to adapt the behaviour and complexity of solutions

through interaction with the task environment. In doing so, this work has proposed

methodologies for important research topics in RL, namely domain independent AI,

transfer learning, and multi-task learning.

143

10.2 Future Work

The following list of open questions represents possible directions for future research,

primarily with respect to the TPG representation:

• The empirical evaluation of TPG in a visual reinforcement learning domain

(Chapter 9) employed a screen quantization procedure that reduced the dimen-

sionality of state observations prior to being presented to the agent. While a

similar preprocessing step is employed by most RL approaches in the ALE, re-

cent work has suggested that TPG may be capable of scaling to significantly

higher-dimension RL tasks [123]. Determining the limits of this scalability in

visual RL domains is one avenue for future work.

• In the case of high-dimensional visual input, there may be utility in enforcing

different spatial constraints on the state variables indexed by different programs

at initialization. At present any program may index any state variable. How-

ever, programs/teams might instead be initialized under a spatial constraint

such that they only index state variables within a certain locality. Would such

biases be useful for specific image processing tasks?

• The agents developed in this work have been purely reactive. That is, they

represent a sensory-motor mapping from state to action. While the resulting

policies were robust to some amount of partial observability (e.g. Section 7.1 de-

scribes partial observability in the ALE), addressing tasks with more significant,

longer time-scale partial observability will likely require some form of temporal

memory mechanism. Neural network research has made extensive use of ’Long

Short Term Memory (LSTM) to address this issue (e.g. [8]) and proposed Neu-

ral Turing Machines to equip neural networks with external memory [46]. TPG

faces unique opportunities and challenges with respect to supporting memory.

One possibility is to make program registers stateful by not clearing register

content prior to each execution. This will result in local memory, specific to

each program. However, it does not address how to share memory between

different teams (nodes) within the same graph. Given that TPG structures

are emergent, what memory architectures would scale most gracefully with the

144

emergent properties? In short, TPG carries spatial decomposition to new levels,

what is the analogue for the decomposition of (temporal) memory?

• It would be interesting to know what happens to TPG under tasks described

purely in terms of novelty as an objective. Would evolution converge to one

ultimately novel individual graph that subsumes all other attempts at novelty,

or would the result be a population of unique policy graphs?

• With respect to the suite of ALE tasks considered in Chapter 9, the complexity

of champion TPG policies tended to plateau at roughly the same point as their

fitness (See Figures 9.2 and 9.3). However, the team population size as a whole

often continued to grow beyond this point. This implies that the search space

for constructing policy graphs would also increase, and may eventually present

a barrier to making further progress on the task. Future work could investigate

this property.

• TPG’s capacity for the sequential learning of multiple tasks was demonstrated

in Section 9.6. Might the representation also help with non-stationary tasks?

Teaming (or ensembles) has been widely recognized as particularly appropriate

for streaming applications with non-stationary processes [53]. Does the exten-

sion to graphs provide further utility under streaming applications?

Bibliography

[1] Alexandros Agapitos, Julian Togelius, and Simon Mark Lucas. Evolving con-
trollers for simulated car racing using object oriented genetic programming. In
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ’07, pages 1543–1550. ACM, 2007.

[2] Manu Ahluwalia and Lawrence Bull. Co-evolving functions in genetic program-
ming: Dynamic adf creation using glib. In Proceedings of the 7th International
Conference on Evolutionary Programming VII, pages 809–818. Springer-Verlag,
1998.

[3] Atif M. Alhejali and Simon M. Lucas. Using a training camp with Genetic
Programming to evolve Ms Pac-Man agents. In IEEE Symposium on Compu-
tational Intelligence and Games, pages 118–125, 2011.

[4] Atif M. Alhejali and Simon M. Lucas. Using genetic programming to evolve
heuristics for a Monte Carlo Tree Search Ms Pac-Man agent. In IEEE Sympo-
sium on Computational Intelligence and Games, pages 1–8, 2013.

[5] David Andre and Stuart J. Russell. State abstraction for programmable re-
inforcement learning agents. In Eighteenth National Conference on Artificial
Intelligence, pages 119–125. American Association for Artificial Intelligence,
2002.

[6] Peter Angeline. Advances in genetic programming. chapter Genetic Program-
ming and Emergent Intelligence, pages 75–97. MIT Press, 1994.

[7] Peter Angeline and Jordan Pollack. Evolutionary module acquisition. In Pro-
ceedings of the Second Annual Conference on Evolutionary Programming, pages
154–163. MIT Press, 1993.

[8] Bram Bakker. Reinforcement learning with long short-term memory. In Pro-
ceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic, NIPS’01, pages 1475–1482. MIT Press, 2001.

[9] Wolfgang Banzhaf. Genetic programming and emergence. Genetic Programming
and Evolvable Machines, 15(1):63–73, 2014.

[10] Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat,
James A. Foster, Barry McMullin, Vinicius Veloso de Melo, Thomas Miconi,
Lee Spector, Susan Stepney, and Roger White. Defining and simulating open-
ended novelty: requirements, guidelines, and challenges. Theory in Biosciences,
135(3):131–161, 2016.

145

146

[11] André da Motta Salles Barreto, Douglas Adriano Augusto, and Helio JC Bar-
bosa. On the Characteristics of Sequential Decision Problems and Their Impact
on Evolutionary Computation and Reinforcement Learning. In Artificial Evo-
lution, pages 194–205. Springer, 2009.

[12] Samuel Barrett and Peter Stone. Cooperating with unknown teammates in
robot soccer. In AAMAS Autonomous Robots and Multirobot Systems Workshop
(ARMS 2014), 2014.

[13] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.

[14] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
arcade learning environment: An evaluation platform for general agents. In
Proceedings of the 24th International Conference on Artificial Intelligence, IJ-
CAI’15, pages 4148–4152. AAAI Press, 2015.

[15] Marc G. Bellemare, Joel Veness, and Michael Bowling. Investigating contin-
gency awareness using atari 2600 games. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 864–871. AAAI Press, 2012.

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, 2006.

[17] Josh Bongard. Behavior chaining - incremental behavior integration for evolu-
tionary robotics. In Artificial Life XI: International Conference on the Synthesis
and Simulation of Living Systems, pages 64–71, 2008.

[18] Matthew M. Botvinick, Yael Niv, and Andrew C. Barto. Hierarchically orga-
nized behavior and its neural foundations: A reinforcement learning perspective.
Cognition, 113(3):262–280, 2009.

[19] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT
Press, 1986.

[20] Markus Brameier and Wolgang Banzhaf. Linear Genetic Programming.
Springer, 2007.

[21] Matthias F. Brandstetter and Samad Ahmadi. Reactive control of Ms. Pac
Man using information retrieval based on genetic programming. In 2012 IEEE
Conference on Computational Intelligence and Games, pages 250–256, 2012.

[22] Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen.
Reuse of neural modules for general video game playing. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pages 353–359. AAAI
Press, 2016.

[23] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
47(1):139 – 159, 1991.

147

[24] Edmund K. Burke, Steven Gustafson, and Graham Kendall. Diversity in genetic
programming: An analysis of measures and correlation with fitness. Transac-
tions on Evolutionary Computation, 8(1):47–62, 2004.

[25] John Cartlidge and Seth Bullock. Combating cevolutionary disengagement by
reducing parasite virulence. Evolutionary Computation, 12(2):193–222, 2004.

[26] Kumar Chellapilla. Evolving computer programs without subtree crossover.
Transactions on Evolutionary Computation, 1(3):209–216, 1997.

[27] William J. Clancey. Situated Cognition: On Human Knowledge and Computer
Representations. Cambridge University Press, 1997.

[28] Giuseppe Cuccu and Faustino Gomez. When novelty is not enough. In Pro-
ceedings of the 2011 International Conference on Applications of Evolutionary
Computation - Volume Part I, pages 234–243. Springer-Verlag, 2011.

[29] Edwin D. de Jong, Dirk Thierens, and Richard A. Watson. Hierarchical genetic
algorithms. In Parallel Problem Solving from Nature - PPSN VIII, pages 232–
241. Springer Berlin Heidelberg, 2004.

[30] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(1):1–30, 2006.

[31] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of Artificial Intelligence Research, 13(1):227–
303, 2000.

[32] Bruce Digney. Emergent hierarchical control structures: Learning reactive /
hierarchical relationships in reinforcement environments. In Proceedings of the
Fourth Conference on the Simulation of Adaptive Behavior, January 1996.

[33] Bruce Digney. Learning hierarchical control structure for multiple tasks and
changing environments. In Proceedings of the Fifth Conference on the Simula-
tion of Adaptive Behavior: SAB 98, January 1998.

[34] Stephane Doncieux and Jean-Baptiste Mouret. Behavioral diversity with mul-
tiple behavioral distances. In IEEE Congress on Evolutionary Computation,
pages 1427–1434, 2013.

[35] John A. Doucette, Peter Lichodzijewski, and Malcolm I. Heywood. Hierarchical
task decomposition through symbiosis in reinforcement learning. In Proceedings
of the ACM Genetic and Evolutionary Computation Conference, pages 97–104,
2012.

[36] Bruce Edmonds. Meta-genetic programming: co-evolving the operators of varia-
tion. Technical report, CPM Report 9832, Centre for Policy Modelling, Manch-
ester Metropolitan University, 1998.

148

[37] Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. Co-
evolution of shaping rewards and meta-parameters in reinforcement learning.
Adaptive Behavior, 16(6):400–412, 2008.

[38] Stepfan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. Evolu-
tionary development of hierarchical learning structures. IEEE Transactions on
Evolutionary Computation, 11(2):249–264, 2007.

[39] Carlos Espinosa-Soto and Andreas Wagner. Specialization can drive the evolu-
tion of modularity. PLoS Computational Biology, 6(3):e1000719, 2010.

[40] Anestis Fachantidis, Ioannis Partalas, Matthew E. Taylor, and Ioannis Vla-
havas. An Autonomous Transfer Learning Algorithm for TD-Learners, pages
57–70. Springer International Publishing, 2014.

[41] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David
Ha, Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evo-
lution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734, 2017.

[42] James J. Gibson. The ecological approach to visual perception. Psychology
Press, 2nd edition, 1986.

[43] F. Gomez and R. Miikkulainen. Incremental evolution of complex general be-
havior. Adaptive Behavior, 5(3-4):317–342, 1997.

[44] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolu-
tion through cooperatively coevolved synapses. Journal of Machine Learning
Research, 9:937–965, 2008.

[45] Faustino Gomez. Sustaining diversity using behavioral information distance.
In Proceedings of the ACM Genetic and Evolutionary Computation Conference,
pages 113–120, 2009.

[46] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[47] Patricia M. Greenfield. Language, tools and brain: The ontogeny and phylogeny
of hierarchically organized sequential behavior. Behavioral and Brain Sciences,
14(4):531551, 1991.

[48] Steven M. Guastafson and William H. Hsu. Layered learning in genetic pro-
gramming for a cooperative robot soccer problem. In European Conference on
Genetic Prgramming, volume 2038, pages 291–301, 2001.

[49] Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A
neuroevolution approach to general Atari game playing. IEEE Transactions on
Computational Intelligence and AI in Games, 6(4):355–366, 2014.

149

[50] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram
Kalyanakrishnan, and Peter Stone. Half field offense: An environment for mul-
tiagent learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop, May 2016.

[51] Matthew Hausknecht and Peter Stone. The impact of determinism on learning
atari 2600 games. In Workshop at the AAAI Conference on Artificial Intelli-
gence, 2015.

[52] M. I. Heywood and P. Lichodzijewski. Symbiogenesis as a mechanism for build-
ing complex adaptive systems: A review. In EvoApplications – Part I, volume
6024 of LNCS, pages 51–60, 2010.

[53] Malcolm I. Heywood. Evolutionary model building under streaming data for
classification tasks: opportunities and challenges. Genetic Programming and
Evolvable Machines, 16(3):283–326, 2015.

[54] Philip Hingston. A Turing Test for computer game bots. IEEE Transactions
on Computational Intelligence and AI in Games, 1(3):169–177, 2009.

[55] John H. Holland. Properties of the bucket brigade. In Proceedings of the 1st
International Conference on Genetic Algorithms, pages 1–7, 1985.

[56] William H. Hsu, Scott J. Harmon, Edwin Rodriguez, and Christopher Zhong.
Empirical comparison of incremental reuse strategies in genetic programming
for keep-away soccer. In Genetic and Evolutionary Computation Conference –
Late Breaking Papers, 2004.

[57] K. Imamura, T. Soule, R. B. Heckendorn, and J. A. Foster. Behavioural di-
versity and probabilistically optimal GP ensemble. Genetic Programming and
Evolvable Machines, 4(3):235–254, 2003.

[58] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms. Cam-
bridge University Press, 2011.

[59] Edwin D. de Jong. A monotonic archive for pareto-coevolution. Evolutionary
Computation, 15(1):61–93, 2007.

[60] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant
state variables. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pages 752–757, August 2005.

[61] Tobias Jung and Daniel Polani. Learning RoboCup-Keepaway with kernels.
Journal of Machine Learning Research - Proceedings Track, 1:33–57, 2007.

[62] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep
learning for video game playing. arXiv preprint arXiv:1708.07902, 2017.

150

[63] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,
1996.

[64] S. Kalyanakrishnan and P. Stone. An empirical analysis of value function-based
and policy search reinforcement learning. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, pages 749–756,
2009.

[65] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. Half field offense in
robocup soccer: A multiagent reinforcement learning case study. In Gerhard
Lakemeyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi Takahashi, edi-
tors, RoboCup-2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes
in Artificial Intelligence, pages 72–85. Springer, 2007.

[66] Wolfgang Kantschik, Peter Dittrich, Markus Brameier, and Wolfgang Banzhaf.
Meta-evolution in graph gp. In Proceedings of the Second European Workshop
on Genetic Programming, pages 15–28. Springer-Verlag, 1999.

[67] Nadav Kashtan, Elad Noor, and Uri Alon. Varying environments can speed
up evolution. Proceedings of the National Academy of Sciences, 104(34):13711–
13716, 2007.

[68] Stephen Kelly. On developmental variation in hierarchical symbiotic policy
search. Master’s thesis, Faculty of Computer Science, Dalhousie University,
2012.

[69] Stephen Kelly and Malcolm I. Heywood. Genotypic versus behavioural diversity
for teams of programs under the 4-v-3 keepaway soccer task. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 3110–3111, 2014.

[70] Stephen Kelly and Malcolm I. Heywood. On diversity, teaming, and hierarchical
policies: Observations from the keepaway soccer task. In European Conference
on Genetic Programming, volume 8599 of LNCS, pages 75–86. Springer, 2014.

[71] Stephen Kelly and Malcolm I. Heywood. Knowledge transfer from keepaway
soccer to half-field offense through program symbiosis: Building simple pro-
grams for a complex task. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 1143–1150, 2015.

[72] Stephen Kelly and Malcolm I. Heywood. Emergent tangled graph represen-
tations for atari game playing agents. In European Conference on Genetic
Programming, volume 10196 of LNCS, pages 64–79, 2017.

[73] Stephen Kelly and Malcolm I. Heywood. Multi-task learning in atari video
games with emergent tangled program graphs. In Proceedings of the ACM
Genetic and Evolutionary Computation Conference, 2017.

151

[74] Stephen Kelly and Malcolm I. Heywood. Discovering agent behaviors through
code reuse: Examples from half-field offense and ms. pac-man. IEEE Transac-
tions on Games, 10(2):195–208, 2018.

[75] Stephen Kelly, Peter Lichodzijewski, and Malcolm I. Heywood. On run time
libraries and hierarchical symbiosis. In IEEE Congress on Evolutionary Com-
putation, pages 3245–3252, 2012.

[76] John F. C. Kingman. A simple model for the balance between selection and
mutation. Journal of Applied Probability, 15(1):112, 1978.

[77] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic forgetting in neural net-
works. arXiv preprint 1612.00796, 2016.

[78] Jens Kober and Jan Peters. Reinforcement learning in robotics: A survey. In
M. Wiering and M. van Otterio, editors, Reinforcement Learning, pages 579–
610. Springer, 2012.

[79] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[80] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, 1994.

[81] John R. Koza, David Andre, Forrest H. Bennett, and Martin A. Keane. Genetic
Programming III: Darwinian Invention & Problem Solving. Morgan Kaufmann
Publishers Inc., 1st edition, 1999.

[82] Krzysztof Krawiec and Bir Bhanu. Visual Learning by Evolutionary and Coevo-
lutionary Feature Synthesis. IEEE Transactions on Evolutionary Computation,
11(5):635–650, 2007.

[83] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenen-
baum. Hierarchical deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation. arXiv preprint arXiv:1604.06057, 2016.

[84] Mateusz Kurek and Wojciech Jakowski. Heterogeneous team deep q-learning
in low-dimensional multi-agent environments. In IEEE Conference on Compu-
tational Intelligence and Games, pages 201–208. IEEE, 2016.

[85] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation, 19(2):189–
223, 2011.

152

[86] John Levine, Clair B. Congdon, Marc Ebner, Graham Kendall, Simon M. Lucas,
Risto Miikkulainen, Tom Schaul, and Tommy Thompson. General Video Game
Playing. In Artificial and Computational Intelligence in Games, volume 6, pages
77–83. 2013.

[87] Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State
of the art control of Atari games using shallow reinforcement learning. In
Proceedings of the ACM International Conference on Autonomous Agents and
Multiagent Systems, pages 485–493, 2016.

[88] Peter Lichodzijewski. A symbiotic bid-based framework for problem decompo-
sition using Genetic Programming. PhD thesis, Faculty of Computer Science,
Dalhousie University, 2011.

[89] Peter Lichodzijewski and Malcolm I. Heywood. Coevolutionary bid-based ge-
netic programming for problem decomposition in classification. Genetic Pro-
gramming and Evolvable Machines, 9:331–365, 2008.

[90] Peter Lichodzijewski and Malcolm I. Heywood. Managing team-based problem
solving with symbiotic bid-based genetic programming. In Proceedings of the
ACM Genetic and Evolutionary Computation Conference, pages 863–870, 2008.

[91] Peter Lichodzijewski and Malcolm I. Heywood. Symbiosis, complexification
and simplicity under GP. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 853–860, 2010.

[92] Peter Lichodzijewski and Malcolm I. Heywood. The Rubik Cube and GP tem-
poral sequence learning: an initial study. In Genetic Programming Theory and
Practice VIII, chapter 3, pages 35–54. Springer, 2011.

[93] Mee Hong Ling, Kok-Lim Alvin Yau, Junaid Qadir, Geong Sen Poh, and Qiang
Ni. Application of reinforcement learning for security enhancement in cognitive
radio networks. Applied Soft Computing, 37(C):809–829, 2015.

[94] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J.
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents. arXiv preprint
arXiv:1709.06009, 2017.

[95] John Maynard-Smith and Eors Szathmary. The Major Transitions in Evolution.
New York: Oxford University Press, 1997.

[96] Elizabeth A. McGovern. Autonomous Discovery of Temporal Abstractions from
Interaction with An Environment. PhD thesis, University of Massachusetts,
2002.

153

[97] Jan Hendrik Metzen, Mark Edgington, Yohannes Kassahun, and Frank Kirch-
ner. Performance evaluation of EANT in the robocup keepaway benchmark. In
IEEE International Conference on Machine Learning and Applications, pages
342–347, 2007.

[98] Jan Hendrik Metzen, Mark Edgington, Yohannes Kassahun, and Frank Kirch-
ner. Analysis of an evolutionary reinforcement learning method in a multi-
agent domain. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1, pages 291–298, 2008.

[99] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Proceedings of The 33rd
International Conference on Machine Learning, volume 48, pages 1928–1937,
2016.

[100] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel.
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

[101] David E. Moriarty and Risto Miikkulainen. Forming neural networks through
efficient and adaptive coevolution. Evolutionary Computation, 5:4, 373–399.

[102] David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary al-
gorithms for reinforcement learning. Journal of Artificial Intelligence Research,
11:241–276, 1999.

[103] Jean-Baptiste Mouret and Staphane Doncieux. Encouraging behavioral diver-
sity in evolutionary robotics: an empirical study. Evolutionary computation,
20(1):91–133, 2012.

[104] Yavar Naddaf. Game-independent AI agents for playing Atari 2600 console
games. Masters thesis, University of Alberta, 2010.

[105] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and
David Silver. Massively parallel methods for deep reinforcement learning. arXiv
preprint arXiv:1507.04296, 2015.

[106] Aurora M. Nedelcu, Richard E. Michod, and I. Overview. Evolvability, modu-
larity, and individuality during the transition to multicellularity in volvocalean
green algae. In In Modularity in development and evolution. Chicago Press,
2002.

154

[107] Stefano Nolfi. Using emergent modularity to develop control systems for mobile
robots. Adaptive behavior, 5(3-4):343–363, 1997.

[108] Scott E. Page. Diversity and Complexity. Princeton University Press, 1st edi-
tion, 2010.

[109] Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342,
2015.

[110] M. Parter, N. Kashtan, and U. Alon. Facilitated variation: How evolution
learns from past environments to generalize to new environments. PLoS Com-
putational Biology, 4(11):e1000206, 2008.

[111] T. Pepels and M. H. M. Winands. Enhancements for monte-carlo tree search
in ms pac-man. In IEEE Symposium on Computational Intelligence in Games,
pages 265–272, 2012.

[112] Diego Perez-Liebana, Samothrakis Samothrakis, Julian Togelius, Tom Schaul,
and Simon M. Lucas. General video game ai: Competition, challenges and
opportunities. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[113] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide
to genetic programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008.

[114] Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary Computation,
8(1):1–29, 2000.

[115] Justinian Rosca. Towards automatic discovery of building blocks in genetic
programming. In Working Notes for the AAAI Symposium on Genetic Pro-
gramming, pages 78–85. AAAI, 1995.

[116] Jrgen Schmidhuber. Adaptive confidence and adaptive curiosity. Technical
report, Institut fur Informatik, Technische Universitat Munchen, 1991.

[117] Jacob Schrum and Risto Miikkulainen. Discovering multimodal behavior in Ms.
Pac-Man through evolution of modular neural networks. IEEE Transactions on
Computational Intelligence and AI in Games, 8(1):67–81, 2016.

[118] Siang Yew Chong, P. Tino, and Xin Yao. Relationship Between Generalization
and Diversity in Coevolutionary Learning. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 1(3):214–232, 2009.

[119] Herbert A. Simon. The architecture of complexity. Proceedings of the American
Philosophical Society, 106(6):467–482, 1962.

155

[120] Satinder Singh, Richard L. Lewis, Andrew G. Barto, and Jonathan Sorg. Intrin-
sically motivated reinforcement learning: An evolutionary perspective. IEEE
Trans. on Auton. Ment. Dev., 2(2):70–82, 2010.

[121] Moshe Sipper. Evolved to Win. Lulu, 2011.

[122] Robert J. Smith and Malcolm I. Heywood. Coevolving deep hierarchies of
programs to solve complex tasks. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1009–1016. ACM, 2017.

[123] Robert J. Smith and Malcolm I. Heywood. Scaling tangled program graphs to
visual reinforcement learning in vizdoom. In European Conference on Genetic
Programming, 2018.

[124] Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic
programming. In Proceedings of the 1st Annual Conference on Genetic Pro-
gramming, pages 215–223. MIT Press, 1996.

[125] Lee Spector, Brian Martin, Kyle Harrington, and Thomas Helmuth. Tag-based
modules in genetic programming. In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, pages 1419–1426. ACM, 2011.

[126] Lee Spector and Alan Robinson. Genetic programming and autoconstructive
evolution with the push programming language. Genetic Programming and
Evolvable Machines, 3(1):7–40, 2002.

[127] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[128] Susan Stepney and Tim Hoverd. Reflecting on open-ended evolution. In ECAL
’11, Proceedings of the 11th European Conference on Artificial Life, pages 781–
788. MIT Press, 2011.

[129] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In
Proceedings of the 5th International Symposium on Abstraction, Reformulation
and Approximation, pages 212–223. Springer-Verlag, 2002.

[130] P. Stone. Layered learning in multiagent systems. MIT Press, 2000.

[131] Peter Stone. Learning and multiagent reasoning for autonomous agents. In
The 20th International Joint Conference on Artificial Intelligence, pages 13–
30, 2007.

[132] Peter Stone, Gregory Kuhlmann, Matthew Taylor, and Yaxin Liu. Keepaway
soccer: From machine learning testbed to benchmark. In RoboCup 2005: Robot
Soccer World Cup IX, pages 93–105. 2006.

156

[133] Peter Stone and Richard S. Sutton. Scaling reinforcement learning toward
robocup soccer. In The Eighteenth International Conference on Machine Learn-
ing, pages 537–544, 2001.

[134] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learn-
ing for robocup-soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[135] R. R. Sutton and A. G. Barto. Reinforcement Learning: An introduction. MIT
Press, 1998.

[136] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, 1988.

[137] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence, 112(1-2):181–211, 1999.

[138] Istvan. Szita. Reinforcement learning in games. In Reinforcement Learning,
pages 539–577. Springer, 2012.

[139] Amir Tavafi and Wolfgang Banzhaf. A hybrid genetic programming decision
making system for robocup soccer simulation. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1025–1032. ACM, 2017.

[140] Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer
for reinforcement learning. In Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume 1, pages 283–290,
2008.

[141] Matthew E. Taylor and Peter Stone. Cross-domain transfer for reinforcement
learning. In International Conference on Machine Learning, pages 879–886,
2007.

[142] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learn-
ing domains: A survey. Journal of Machine Learning Research, 10(1):1633–
1685, 2009.

[143] Matthew E. Taylor and Peter Stone. An introduction to inter-task transfer for
reinforcement learning. AI Magazine, 32(1):15–34, 2011.

[144] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-
task mappings for temporal difference learning. Journal of Machine Learning
Research, 8(1):2125–2167, 2007.

[145] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Comparing evolution-
ary and temporal difference methods in a reinforcement learning domain. In
Proceedings of the ACM Genetic and Evolutionary Computation Conference,
pages 1321–1328, 2006.

157

[146] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task
mappings in policy search reinforcement learning. In Proceedings of the ACM
International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1–37, 2007.

[147] Tim Taylor. From Artificial Evolution to Artificial Life. PhD thesis, The Uni-
versity of Edinburgh, 1999.

[148] Astro Teller. Evolving programmers: The co-evolution of intelligent recombina-
tion operators. In Advances in Genetic Programming 2, chapter 3, pages 45–68.
MIT Press, 1996.

[149] Russell Thomason and Terence Soule. Novel ways of improving cooperation
and performance in ensemble classifiers. In Proceedings of the ACM Genetic
and Evolutionary Computation Conference, pages 1708–1715, 2007.

[150] Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin. Skill acquisition
via transfer learning and advice taking. In European Conference on Machine
Learning, pages 425–436. Springer, 2006.

[151] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 2094–2100, 2016.

[152] Sjoerd van Steenkiste, Jan Koutńık, Kurt Driessens, and Jürgen Schmidhuber.
A wavelet-based encoding for neuroevolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 517–524, 2016.

[153] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and ex-
ploitation in evolutionary algorithms: A survey. ACM Computing Surveys,
45(3):35:1–35:33, 2013.

[154] Phillip Verbancsics and Kenneth O. Stanley. Evolving static representations for
task transfer. Journal of Machine Learning Research, 11:1737–1769, 2010.

[155] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierar-
chical reinforcement learning. arXiv preprint arXiv:1703.01161, 2017.

[156] Gunter P. Wagner and Lee Altenberg. Perspective: complex adaptations and
the evolution of evolvability. Evolution, 50:967–976, 1996.

[157] M. Waibel, L. Keller, and D. Floreano. Genetic team composition and level of
selection in the evolution of cooperation. IEEE Transactions on Evolutionary
Computation, 13(3):648–660, 2009.

[158] Richard A. Watson and Jordan B. Pollack. Modular interdependency in complex
dynamical systems. Artificial Life, 11(4):445–457, 2005.

158

[159] Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolv-
ing keepaway soccer players through task decomposition. Machine Learning,
59(1):5–30, 2005.

[160] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Critical factors in
the empirical performance of temporal difference and evolutionary methods
for reinforcement learning. Journal of Autonomous Agents and Multi-Agent
Systems, 21(1):1–27, 2009.

[161] Shelly Xiaonan Wu and Wolfgang Banzhaf. Rethinking multilevel selection in
genetic programming. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 1403–1410, 2011.

[162] Andrew S. Yang. Modularity, evolvability, and adaptive radiations: a com-
parison of the hemi- and holometabolous insects. Evolution and Development,
3(2):59–72, 2001.

[163] G. N. Yannakakis and J. Togelius. A panorama of artificial and computational
intelligence in games. IEEE Transactions on Computational Intelligence and
AI in Games, 7(4):317–335, 2015.

Appendices

159

Appendix A

RoboCup Soccer Server Parameters

Table A.1: Soccer server parameter settings used for all RoboCup experiments in this
thesis. Detailed parameter descriptions are provided in the soccer server manual at
https://sourceforge.net/projects/sserver/files/rcssserver/

Parameter Value Parameter Value

half time -1.0 forbid kick off offside 0.0
use offside 0.0 stamina inc max 3500
stamina capacity -1.0 visible angle 360
quantize step 0.1 quantize step l 0.01
team actuator noise false wind random false
kick rand 0.05 kick rand factor l 1.0
kick rand factor r 1.0 player rand 0.1
prand factor l 1.0 prand factor r 1.0
tackle rand factor 2.0 wind rand 0.0
back passes 0.0 ball rand 0.0

160

Appendix B

Robocup Sensors

Table B.1: Sensor inputs (state variables) for the 4v3 Half-field Keepaway task and
4v4 Half-field Offense task. Pp is the player in possession of the ball. The rest of the
players on Pp’s team are numbered relative to their distance from Pp with P1 being
the closest. ‘Opponent’ refers to any taker in the Keepaway task and any ‘defense’
player in the HFO task. All sensor inputs are real-valued. Angle values range from
0 ◦ to 360 ◦ and distance values range from 0 to approximately 85 meters.

Sensor Input Description

K
ee
p
aw

ay

H
a
lf
-fi
el
d
O
ff
en

se

a dist(Pp, P1) Distance from Pp to closest teammate.
b dist(Pp, P2) Distance from Pp to second-closest teammate.
c dist(Pp, P3) Distance from Pp to third-closest teammate
d dist(P1, Omin) Distance from P1 to closest opponent.
e dist(P2, Omin) Distance from P2 to closest opponent.
f dist(P3, Omin) Distance from P3 to closest opponent.
g minangle(P1, Op, Omin) Min. angle, with vertex at Pp, between P1 and

any opponent.
h minangle(P2, Op, Omin) Min. angle, with vertex at Pp, between P2 and

any opponent.
i minangle(P3, Op, Omin) Min. angle, with vertex at Pp, between P3 and

any opponent.
j mindist(Pp, ODcone) Min. distance from Pp to any player in the drib-

ble cone. The dribble cone is a cone with half
angle 60 ◦ with its vertex at Pp and axis passing
through the centre of the goal. Dcone is the set
of defenders in the dribble cone.

k dist(Pp, Omin) Distance from Pp to closest opponent.
l dist(Pp, GL) Distance from Pp to goal line.
m dist(P1, GL) Distance from P1 to goal line.
n dist(P2, GL) Distance from P2 to goal line.
o dist(P3, GL) Distance from P3 to goal line.
p maxangle(Pp, Goal) Max. angle with vertex at Pp, formed by rays

connecting Pp and goalposts or opponents in the
goal cone, which is the triangle formed by Pp and
the two goalposts.

q dist(Pp, Goalie) Distance from Pp to the goalie.

161

Appendix C

Ms. Pac-Man Sensors

Table C.1: Undirected sensor inputs (state variables) for the Ms. Pac-Man task.
Binary sensors are marked by shaded rows. All other sensors are real-valued and
scaled to the range [0, 1].

Sensor Description

0 Proportion of power pills left in maze

1 Proportion of regular pills left in maze

2 Proportion of ghosts that are edible

3 Proportion ghost edible time remaining

4 1 if any ghost is edible, 0 otherwise

5 1 if four threats are outside the lair, 0 otherwise

6 1 if Ms. Pac-Man is within 10 steps of a power pill, 0 otherwise

162

163

Table C.2: Directed sensor inputs (state variables) for the Ms. Pac-Man task. Binary
sensors are marked by shaded rows. All other sensors are real-valued and scaled to
the range [0, 1].

Sensor Description

7 Distance to nearest regular pill (in given direction)

8 Distance to nearest power pill

9 Distance to nearest maze junction

10 Distances to the closest ghost

11 1 if closest ghost is approaching, 0 otherwise

12 1 if a directional path to closest ghost contains no junctions, 0 otherwise

13 1 if closest ghost is edible, 0 otherwise

14 Distances to the second closest ghost

15 1 if second closest ghost is approaching, 0 otherwise

16 1 if a directional path to second closest ghost contains no junctions, 0 otherwise

17 1 if second closest ghost is edible, 0 otherwise

18 Distances to the third closest ghost

19 1 if third closest ghost is approaching, 0 otherwise

20 1 if a directional path to third closest ghost contains no junctions, 0 otherwise

21 1 if third closest ghost is edible, 0 otherwise

22 Distances to the fourth closest ghost

23 1 if fourth closest ghost is approaching, 0 otherwise

24 1 if a directional path to fourth closest ghost contains no junctions, 0 otherwise

25 1 if fourth closest ghost is edible, 0 otherwise

26 Proportion of pills on the path in the given direction that has the most pills

27 Proportion of junctions on the path in the given direction that has the most
junctions

28 Proportion of junctions reachable from next nearest junction that Ms. Pac-
Man is closer to than a threat ghost

Appendix D

ALE Comparator tables

Test performance over all 49 game titles is split between two comparator groups

(Section 9.5.2), those assuming screen capture state information (Table D.1) and

those assuming hand crafted state (Table D.2). TPG uses screen capture state in

both cases.

164

165

Table D.1: Average game score of best agent under test conditions for TPG along with
comparator algorithms in which screen capture represent state information. Figures
in bold represent best score on each game title. Source information for comparator
algorithms is as follows: DQN ([100]), Gorila ([105]), Double DQN ([151]), Hyper-
NEAT ([51]).

Game TPG DQN Gorila Double DQN Hyper-NEAT

Alien 3,382.7 3,069.3 2,621.53 2,907.3 1,586
Amidar 398.4 739.5 1,189.7 702.1 184.4
Assault 2,422 3,359.6 1,450.4 5,022.9 912.6
Asterix 2,400 6,011.7 6,433.3 15,150 2,340
Asteroids 3,050.7 1,629.3 1,047.7 930.3 1,694
Atlantis 89,653 85,950 100,069 64,758 61,260

Bank Heist 1,051 429.7 609 728.3 214
Battle Zone 47,233.4 26,300 25,266.7 25,730 36,200
Beam Rider 1,320.8 6,845.9 3,302.9 7,654 1,412.8
Bowling 223.7 42.4 54 70.5 135.8
Boxing 76.5 71.8 94.9 81.7 16.4

Breakout 12.8 401.2 402.2 375 2.8
Centipede 34,731.7 8,309.4 8,432.3 4,139.4 25,275.2

C. Command 7,070 6,686.7 4,167.5 4,653 3,960
Crazy Climber 8,367 114,103.3 85,919.1 101,874 0
Demon Attack 2,920.4 9,711.2 13,693.1 9,711.9 3,590
Double Dunk 2 -18.1 -10.6 -6.3 2

Enduro 125.9 301.8 114.9 319.5 93.6
Fishing Derby 49 -0.8 20.2 20.3 -49.8

Freeway 28.9 30.3 11.7 31.8 29
Frostbite 8,144.4 328.3 605.2 241.5 2,260
Gopher 581.4 8,520 5,279 8,215.4 364
Gravitar 786.7 306.7 1,054.6 170.5 370
H.E.R.O 16,545.4 19,950.3 14,913.9 20,357 5,090

Ice Hockey 10 -1.6 -0.6 -2.4 10.6

James Bond 3,120 576.7 605 438 5,660

Kangaroo 14,780 6,740 2,547.2 13,651 800
Krull 12,850.4 3,804.7 7,882 4,396.7 12,601.4

Kung-Fu Master 43,353.4 23,270 27,543.3 29,486 7,720
M’s Revenge 0 0 4.3 0 0
Ms. Pac-Man 5,156 2,311 3,233.5 3,210 3,408

Name This Game 3,712 7,256.7 6,182.2 6,997.1 6,742
Pong 6 18.9 18.3 21 -17.4

Private Eye 15,028.3 1,787.6 748.6 670.1 10,747.4
Q*Bert 2,245 10,595.8 10,815.6 14,875 695

River Raid 3,884.7 8,315.7 8,344.8 12,015 2,616
Road Runner 27,410 18,256.7 51,008 48,377 3,220
Robotank 22.9 51.6 36.4 46.7 43.8
Seaquest 1,368 5,286 13,169.1 7,995 716

Space Invader 1,597.2 1,975.5 1,883.4 3,154 1,251
Star Gunner 1,406.7 57,996.7 19,145 65,188 2,720

Tennis 0 -1.6 10.9 1.7 0
Time Pilot 13,540 5,946.7 10,659.3 7,964 7,340
Tutankham 128 186.7 245 190.6 23.6

Up and Down 34,416 8,456.3 12,561.6 16,769.9 43,734

Venture 576.7 380 1,245 0 1,188
Video Pinball 37,954.4 42,684.1 157,550.2 70,009 0
Wizard of Wor 5,196.7 3,393.3 13,731.3 5,204 3,360

Zaxxon 6,233.4 4,976.7 7,129.3 10,182 3,000
Avg. Rank (Ri) 2.74 3.11 2.63 2.64 3.87

166

Table D.2: Average game score of best agent under test conditions for TPG (screen
capture) along with comparator algorithms based on prior object/feature identifica-
tion. Figures in bold represent best score on each game title. Source information for
comparitor algorithms is as follows: Blob-PROST ([87]), Hyper-NEAT ([51]), NEAT
([51]), Conti-Sarsa ([100])

Game TPG Blob-PROST Hyper-NEAT NEAT Conti-Sarsa

Alien 3,382.7 4,886.6 2,246 4,320 103.2
Amidar 398.4 825.6 218.8 325.2 183.6
Assault 2,422 1,829.3 2,396 2,717.2 537
Asterix 2,400 2,965.5 2,550 1,490 1,332
Asteroids 3,050.7 2,229.9 220 4,144 89
Atlantis 89,653 42,937.7 44,200 126,260 852.9

Bank Heist 1,051 793.6 1,308 380 67.4
Battle Zone 47,233.4 37,850 37,600 45,000 16.2
Beam Rider 1,320.8 2,965.5 1,443.2 1,900 1,743
Bowling 223.7 91.1 250.4 231.6 36.4
Boxing 76.5 98.3 91.6 92.8 9.8

Breakout 12.8 190.3 40.8 43.6 6.1
Centipede 34,731.7 21,137 33,326.6 22,469.6 4,647

C. Command 7,070 4,898.9 8,120 4,580 16.9
Crazy Climber 8,367 81,016 12,840 25,060 149.8
Demon Attack 2,920.4 2,166 3,082 3,464 0
Double Dunk 2 -4.1 4 10.8 -16

Enduro 125.9 299.1 112.8 133.8 159.4
Fishing Derby 49 -28.8 -37 -43.8 -85.1

Freeway 28.9 32.6 29.6 30.8 19.7
Frostbite 8,144.4 4,534 2,226 1,452 180.9
Gopher 581.4 7,451.1 6,252 6,029 2,368
Gravitar 786.7 1,709.7 1,990 2,840 429
H.E.R.O 16,545.4 20,273.1 3,638 3,894 7,295

Ice Hockey 10 22.8 9 3.8 -3.2
James Bond 3,120 1,030.5 12,730 2,380 354.1
Kangaroo 14,780 9,492.8 4,880 12,800 8.8

Krull 12,850.4 33,263.4 23,890.2 20,337.8 3,341
Kung-Fu Master 43,353.4 51,007.6 47,820 87,340 29,151
M’s Revenge 0 2,508.4 0 340 259
Ms. Pac-Man 5,156 5,917.9 3,830 4,902 1,227

Name This Game 3,712 7,787 8,346 7,084 2,247
Pong 6 20.5 4 15.2 -17.4

Private Eye 15,028.3 100.3 15,045.2 1,926.4 86
Q*Bert 2,245 14,449.4 810 1,935 960.3

River Raid 3,884.7 14,583.3 4,736 4,718 2,650
Road Runner 27,410 41,828 14,420 9,600 89.1
Robotank 22.9 34.4 42.4 18 12.4
Seaquest 1,368 2,278 2,508 944 675.5

Space Invader 1,597.2 889.8 1,481 1,481 267.9
Star Gunner 1,406.7 1,651.6 4,160 9,580 9.4

Tennis 0 0 0.2 1.2 0
Time Pilot 13,540 5,429.5 15,640 14,320 24.9
Tutankham 128 217.7 110 142.4 98.2

Up and Down 34,416 41,257.8 6,818 10,220 2,449
Venture 576.7 1,397 400 340 0.6

Video Pinball 3,794.4 21,313 82,646 253,986 19,761
Wizard of Wor 5,196.7 5,681.2 3,760 17,700 36.9

Zaxxon 6233.4 11,721.8 4,680 6,460 21.4
Avg. Rank (Ri) 2.81 2.16 2.81 2.47 4.76

Appendix E

Complexity of Deep Q-Network for Reinforcement Learning

in the Arcade Learning Environment

Complexity of the Deep Q-Network use for comparison in Chapter 9 is calculated as

follows (See Methods Section in [100]). Each Atari screen frame was down-sampled

prior to being presented to the DQN agent. This screen preprocessing map converts

each Atari screen frame from the original size of 210× 160 pixels (with a 128-colour

palette) to an 84× 84 pixel map. The 4 most recent frames are stacked, producing a

final preprocessed image size of 84×84×4. The neural network has three convolution

layers, followed by a Multi-Layer Perceptron with two fully connected layers and one

output for each action.

The convolution layers of the network transform 3-dimensional input volumes

(i.e. image data) to 3-dimensional output volumes. The depth, or the number of

”filters“, in each output volume is specified a priori for each convolutional layer. The

size (width/height) of the output from each convolution layer can be computed as a

function of the input size (W), the size of each neuron’s receptive field (F), the stride

with which neurons slide across the input (S), and the amount of zero padding (P)

used around the image border. Given this information, the formula for calculating

the output size (O) from each layer is:

O =
W − F + 2P

S
+ 1 (E.1)

The original DQN paper made no mention of zero padding, and it is therefore

assumed here that none was used. Calculating the output size (width/height) from

each convolution layer of the network proceeds as follows:

• The first convolution layer consists of 32 filters of 8× 8 with stride 4. Applying

Equation E.1 gives a layer 1 output size of 84−8
4

+1 = 20, for a final 3D volume

of 20× 20× 32.

167

168

• The second convolution layer consists of 64 filters of 4×4 with stride 2. Applying

Equation E.1 gives a layer 2 output size of 20−4
2

+ 1 = 9, for a final 3D volume

of 9× 9× 64.

• The third convolutional layer consists of 64 filters of 3×3 with stride 1. Applying

Equation E.1 gives a layer 3 output size of 9− 3 + 1 = 7, for a final 3D volume

of 7× 7× 64.

Thus, the output dimensionality of the final convolution layer is 7×7×64 = 3136.

Fully connecting this volume to the first MLP hidden layer (512 neurons) requires

3136 × 512 = 1, 605, 632 connections (weight parameters). For the purposes of the

comparison made in this thesis, these parameters will be used to represent a snap-

shot of the complexity of DQN when estimating its computational cost in the Arcade

Learning Environment. Specifically, each neuron in the MLP layer computes the dot

product over its inputs, and we can therefore assume one calculation per input for each

forward pass through the network. The total cost of processing 50 million frames (the

frame budget used in [100] for training on each game title) is now at least 8.03× 1013

calculations. This characterization of DQN’s complexity is simple, accurate given the

information available from [100], and very conservative, since it does not account for

the cost of the convolution layers or the computational costs associated with back

propagation, i.e. this is the cost associated with performing the forward pass, at a

single layer of the DQN architecture (associated with the input to the MLP), for the

50 million training frames. For a tutorial on estimating the size of filters in deep

learning architectures see http://cs231n.github.io/convolutional-networks/.

Appendix F

Additional TPG Multi-Task Learning Results

169

170

0 200 400 600 800 1000

0

50

100

150

200

250

Generation

%
 D

Q
N

 L
e
ve

l

Alien

Asteroids

Bank Heist

(a) MTRL Train

●

●

●

Alien Asteroids Bank Heist

5

10

50

100

150

200

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

Alien Asteroids Bank Heist

5

10

50

100

150

200

(c) Single-Task Test

Figure F.1: TPG multi-task reinforcement learning results for game group 3.1. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

171

0 200 400 600 800

1

5

10

50

100

500

1000

Generation

%
 D

Q
N

 L
e
ve

l

Chopper Command

Fishing Derby

Frostbite

(a) MTRL Train

●
●

●

Chopper Command Fishing Derby Frostbite

5

10

25

50

100

200

400

800

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

Chopper Command Fishing Derby Frostbite

5

10

25

50

100

200

400

800

(c) Single-Task Test

Figure F.2: TPG multi-task reinforcement learning results for game group 3.3. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

172

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

Generation

%
 D

Q
N

 L
e
ve

l

Kangaroo

Krull

Kung−Fu Master

(a) MTRL Train

●

●

●

Kangaroo Krull Kung−Fu Master

75

100

200

300

400

500

600

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

Kangaroo Krull Kung−Fu Master

75

100

200

300

400

500

600

(c) Single-Task Test

Figure F.3: TPG multi-task reinforcement learning results for game group 3.4. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

173

0 100 200 300 400 500

1

5

10

50

100

500

1000

Generation

%
 D

Q
N

 L
e
ve

l

Ms. Pac−Man

Private Eye

Time Pilot

(a) MTRL Train

●

●

●

Ms. Pac−Man Private Eye Time Pilot

25

50

100

200

300

400
500
600

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

Ms. Pac−Man Private Eye Time Pilot

25

50

100

200

300

400
500
600

(c) Single-Task Test

Figure F.4: TPG multi-task reinforcement learning results for game group 3.5. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

174

0 100 200 300 400 500

1

2

5

10

20

50

100

200

500

Generation

%
 D

Q
N

 L
e
ve

l

Alien

Asteroids

Bank Heist

Battle Zone

Bowling

(a) MTRL Train

●

●

●

●

●

Alie
n

Ast
er

oi
ds

Ban
k
H
ei
st

Bat
tle

 Z
on

e

Bow
lin

g

1

5

10

50

100

500

1000

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

●

●

Alie
n

Ast
er

oi
ds

Ban
k
H
ei
st

Bat
tle

 Z
on

e

Bow
lin

g

1

5

10

50

100

500

1000

(c) Single-Task Test

Figure F.5: TPG multi-task reinforcement learning results for game group 5.1. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

175

0 100 200 300 400 500

1

2

5

10

20

50

100

200

500

Generation

%
 D

Q
N

 L
e
ve

l

Centipede

Chopper Command

Fishing Derby

Frostbite

Kangaroo

(a) MTRL Train

●

●

●

●

●

C
en

tip
ed

e

C
ho

pp
er

 C
om

m
an

d

Fis
hi
ng

 D
er

by

Fro
st
bi
te

Kan
ga

ro
o

1

5

10

50

100

500

1000

%
 D

Q
N

 L
e
ve

l

(b) Multi-Task Test

●

●

●

●

●

C
en

tip
ed

e

C
ho

pp
er

 C
om

m
an

d

Fis
hi
ng

 D
er

by

Fro
st
bi
te

Kan
ga

ro
o

1

5

10

50

100

500

1000

(c) Single-Task Test

Figure F.6: TPG multi-task reinforcement learning results for game group 5.2. Each
run identifies one elite multi-task policy per generation. The training performance of
this policy relative to each game title is plotted in (a), where each curve represents
the mean score in each game title for the single best multi-task policy over all 5
independent runs. Note that multi-task implies that the scores reported at each
generation are all from the same policy. Test scores for the final multi-task champion
from each of 5 runs is plotted in (b), with the single best in black. Test scores for the
single-task champions from each run are plotted in (c). Note that single-task implies
the scores are potentially all from different policies. All TPG scores are normalized
relative to DQN’s score in the same game (100%) and a random agent (0%). Training
scores in (a) represent the policy’s average score over a max of 5 episodes in each title.
Test scores in (b) and (c) are the average game score over 30 test episodes in the given
game title (The line connecting points in (b) emphasizes that scores are from the same
multi-task policy). DQN scores are from [100].

Appendix G

Additional Multi-Task Policy Graphs

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Ms. Pac−Man

Private Eye Time Pilot

11 0

2

02

3

���
�������	
����
��	����	�
��	����
����

Figure G.1: Champion multi-task TPG policy graph from the group 3.5 experiment.
Decision-making in a policy graph begins at the root node (black circle) and follows
one path through the graph until an atomic action (joystick position) is reached (See
Algorithm 9). Venn diagram indicates which teams are visited while playing each
game, over all test episodes. Note that only graph nodes (teams and programs) that
contributed to decision-making during test are shown. Figure requires viewing in
colour.

176

177

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }
{ }{ }

Kangaroo

Krull Kung−Fu Master

01 1

0

01

1

���
�������	
����
��	����	�
��	����
����

Figure G.2: Champion multi-task TPG policy graph from the group 3.4 experiment.
Decision-making in a policy graph begins at the root node (black circle) and follows
one path through the graph until an atomic action (joystick position) is reached (See
Algorithm 9). Venn diagram indicates which teams are visited while playing each
game, over all test episodes. Note that only graph nodes (teams and programs) that
contributed to decision-making during test are shown. Figure requires viewing in
colour.

