
STREAM GENETIC PROGRAMMING
FOR BOTNET DETECTION

by

Sara Khanchi

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

November 2019

c© Copyright by Sara Khanchi, 2019

To my beloved Mom and Dad,

Farangis and Mahdi,

for their unconditional love, inspiration and gracious support

ii

Table of Contents

List of Tables . vii

List of Figures . xi

Abstract . xv

List of Abbreviations . xvi

Acknowledgements . xx

Chapter 1 Introduction . 1

1.1 Genetic Programming . 3

1.2 Botnet . 4

1.3 Objective . 5
1.3.1 Streaming Classification . 5
1.3.2 Network Behaviour Detection 6

1.4 Contributions . 8

1.5 Thesis Outline . 10

Chapter 2 Related Work . 11

2.1 Non-evolutionary Methods . 11

2.2 Evolutionary Methods . 14

2.3 Network Methods . 16

2.4 Summary . 24

Chapter 3 Framework for Streaming GP Teams 27

3.1 Streaming Data Environment Under a Label Budget 27

3.2 Overall Framework . 28

3.3 Sampling Policy . 30

3.4 Archiving Policy . 31

iii

3.5 Champion Classifier Identification . 34

3.6 Symbiotic Bid-based GP . 35

3.7 Summary . 37

Chapter 4 Evaluation methodology 39

4.1 Datasets . 39
4.1.1 CTU-13 . 39
4.1.2 CTU13-mixed . 42
4.1.3 ISOT . 43
4.1.4 NSL-KDD . 44

4.2 Comparator Algorithms . 44
4.2.1 Naive Bayes . 45
4.2.2 Decision Trees . 46

CART . 46
Hoeffding Tree . 48
Random Forest . 50

4.3 Comparator Frameworks . 51
4.3.1 Massive Online Analysis (MOA) 52
4.3.2 Apache Spark Streaming . 53

4.4 Performance Metrics . 54

4.5 Experimental Design and Parameterization 56

4.6 Statistical Significance Testing . 59
4.6.1 Wilcoxon-Mann-Whitney Test 59
4.6.2 Friedman Test . 59
4.6.3 Bonfferoni-Dunn Post-hoc Test 60
4.6.4 Nemenyi Post-hoc Test . 60

4.7 Summary . 61

Chapter 5 Results . 62

5.1 Botnet Detection in Real-world Network Traffic 62
5.1.1 Overall Performance Evaluation 64
5.1.2 Detection Rate Dynamics: Comparing the Best Streaming Clas-

sifiers . 67
5.1.3 Detection Rate Dynamics: Stream-GP Sampling and Archiving

Policies . 73
5.1.4 Capacity for Detecting Botnet Signals 78
5.1.5 Capacity for Detecting Botnet C&C Signals 79

iv

5.1.6 Distribution of Minor Classes 80
5.1.7 Real-time Operation . 82
5.1.8 Summary . 84

5.2 Botnet Detection in Multi-bot Network Traffic 85
5.2.1 Overall Performance Evaluation 86
5.2.2 Detection Rate Dynamics: Comparing the Best Streaming Clas-

sifiers . 88
5.2.3 Capacity for Detecting Botnet Signals 93
5.2.4 Capacity for Detecting Botnet C&C Signals 96
5.2.5 Feature Selection by Stream-GP Champion 98
5.2.6 Real-time Operation . 100
5.2.7 Summary . 102

5.3 Network Security in Real-world Network Traffic 103
5.3.1 Overall Performance Evaluation 103
5.3.2 Detection Rate Dynamics: Comparing the Best Streaming Clas-

sifiers . 104
5.3.3 Summary . 108

5.4 A Comparison to the Apache Spark Streaming Network Tool 109
5.4.1 Overall Performance Evaluation 110

Streaming Simulation Scenario 111
Classical Scenario . 113
Comparison of the Top Performing Algorithms: 114

5.4.2 Dynamic Properties of the Detection Rate 115
Streaming Simulation Scenario 115
Classical Scenario . 122

5.4.3 Capacity for Detecting Botnet Signals 126
5.4.4 Capacity for Detecting Botnet C&C Signals 127
5.4.5 Feature Selection by Decision Tree 128
5.4.6 Computational Cost of Streaming Classifier Operation 130
5.4.7 Complexity of Algorithms . 133
5.4.8 Summary . 135

5.5 Network Analytic Applications . 136
5.5.1 Traffic Analysis . 136
5.5.2 Summary . 139

5.6 Summary . 141

Chapter 6 Conclusion and Future Work 143

6.1 Conclusion . 143

6.2 Future Works . 145

v

Appendix A Flow Features . 146

A.1 ISOT Flow Features . 146

A.2 NSL-KDD Packet Features . 146

Bibliography . 147

vi

List of Tables

2.1 Existing network related works (architecture and learning pro-
cess), Arch.: Architecture, Data P.: Data Processing, MC: Multi-
Class, CD: Change Detection, DI: Data Imbalance, LB: Label
Budget . 22

2.2 Existing network related works (application and metric), Sec.:Security,
Mon.:Monitoring, BD,ID,ITD:Botnet,Intrusion,Insider Threat De-
tection . 23

4.1 Argus flow features for the CTU-13 dataset 40

4.2 Generic properties of the CTU-13 streaming datasets. N car-
dinality, and k is the total number of classes over the entire
duration of the stream. Each dataset has D = 8 flow attributes.
Classes are represented in the order: Background, Normal, Bot-
net and Botnet C&C. A combined Botnet/C&C label was as-
sumed in the case of datasets in which the C&C class represents
less than 0.01% of the original dataset (Capture 3, 4, 10, 11, 12). 41

4.3 Generic properties of the CTU13-mixed dataset. 7 types of Bot-
net behaviour are available. Classes are represented in the order:
Background, Normal, Botnet and Botnet C&C. N is the Cardi-
nality, and the class distribution is expressed in percentages. . 43

4.4 Generic properties of the ISOT streaming datasets. N cardinal-
ity, and k is the total number of classes over the entire duration
of the stream. Each dataset has D = 79 flow attributes. 43

4.5 Generic properties of the NSL-KDD streaming datasets. N car-
dinality, and k is the total number of classes over the entire
duration of the stream. Each dataset has D = 22 packet at-
tributes. 44

4.6 Decision Tree Algorithms . 47

4.7 Comparator algorithms List. 51

4.8 Best case configurations of MOA comparator algorithms for op-
eration under drifting streaming data with label budgets [106]. 52

vii

4.9 Stream-GP algorithms with their corresponding configurations.
Uniform implies the identification of either sampling or archiving
data using uniform sampling (Sections 3.3 and 3.4, respectively).
Biased refers to either sampling or archiving data that happens
under the corresponding biased algorithms (Algorithms 1 and 2
respectively). 57

4.10 Stream-GP Parameters. Mutation specifies the rate of adding/deleting
programs from a learner or changing the action. Gap(Tgap) de-
notes the number of records in the Data subset (teams) to be
deleted at each non-overlapping window location. For each Data
subset update, τ generations are performed. 57

4.11 Stream Dataset Parameters. Label Budget (β) is defined as a
function of the window size W (i) where for each non-overlapping
window location there can only be Gap size (20) samples. . . . 58

5.1 Algorithm ranks w.r.t. streaming AvDR metric under a 5% label
budget. Bracketed entries represent median AvDR values to 1
decimal place. Naive Bayes (NB) and Hoeffding tree classifiers
(from MOA) appear with either ‘split’ or ‘variable’ sampling
policies. Table 4.9 declares the 4 sampling/replacement policies
for stream-GP. Rj denotes the average rank across all datasets. 64

5.2 Algorithm ranks w.r.t. streaming AvDR metric under a 1% la-
bel budget. Bracketed entries represent median AvDR values to
1 decimal place. Naive Bayes (NB) and Hoeffding tree classifiers
(from MOA) appear with either ‘split’ or ‘variable’ sampling pro-
tocols. Table 4.9 declares the 4 sampling/replacement policies
for stream SBB. Rj denotes the average rank across all datasets. 65

5.3 Algorithm ranks w.r.t. streaming AvDR metric under a 0.5%
label budget. Naive Bayes (NB) and Hoeffding tree classifiers
(from MOA) appear with either ‘split’ or ‘variable’ sampling
policies. Table 4.9 declares the 4 sampling/replacement policies
for stream SBB. Rj denotes the average rank across all datasets. 65

5.4 Result of Friedman test χ2
F and corresponding value for F-distribution

FF . The critical value of F (7, 84) for α = 0.01 is 2.86, so the
null-hypothesis is rejected in each case. 66

5.5 Ranks for the Botnet class streaming AvDR alone. 78

5.6 χ2
F and FF values for different label budgets. Assuming α = 0.01

returns a critical value of F (7, 84) < 2.86, the null-hypothesis (of
random ranking) is rejected. 78

viii

5.7 Ranks for Botnet C&C class streaming AvDR alone. 79

5.8 χ2
F and FF values for different label budgets. Assuming an
α = 0.01 returns a critical value of F (7, 84) < 2.86, the null-
hypothesis (of random ranking) is rejected. 79

5.9 Median values w.r.t. streaming AvDR metric, under 0.5% and
5% label budgets. Three Stream-GP configurations are declared
in Table 4.9. Hoeffding Tree and Naive Bayes (from MOA) ap-
pear with the ‘variable’ sampling policy, the CTU13-mixed dataset 87

5.10 p-value from Mann-Whitney U test for Stream-GP and MOA
algorithms, for the 5.0% label budget 88

5.11 p-value from the Mann-Whitney U test for the Stream-GP and
MOA algorithms for the 0.5% label budget 88

5.12 median values w.r.t. streaming Botnet AvDR metric under
0.5% and 5% label budgets. Three Stream-GP configurations
are given in Table 4.9. Hoeffding Tree and Naive Bayes (from
MOA) appear with the ‘variable’ sampling policy, CTU13-mixed
dataset . 93

5.13 p-value from the the Mann-Whitney U test for the Stream-GP
and MOA algorithms based on Botnet median AvDR for the
5.0% label budget . 95

5.14 p-value from the Mann-Whitney U test for the Stream-GP and
MOA algorithms based on Botnet median AvDR, for the 0.5%
label budget . 95

5.15 median values w.r.t. streaming Botnet C&C AvDR metric under
0.5% and 5% label budgets. Three Stream-GP configurations
are declared in Table 4.9. Hoeffding Tree and Naive Bayes (from
MOA) appear with the ‘variable’ sampling policy, CTU13-mixed
dataset . 96

5.16 p-value from the Mann-Whitney U test for the Stream-GP and
MOA algorithms based on Botnet C&C median AvDR for the
5.0% label budget . 98

5.17 p-value from Mann-Whitney U test for Stream-GP and MOA
algorithms based on Botnet C&C median AvDR, for the 0.5%
label budget . 98

5.18 Algorithm ranks w.r.t. the streaming AvDR metric under a 5.0%
label budget. Bracketed entries represent median AvDR values
to 1 decimal place. 104

ix

5.19 Result of Friedman test χ2
F and corresponding value for F-distribution

FF . The critical value of F (2, 28 for α = 0.01 is 2.503, so the
null-hypothesis is rejected in each case. 105

5.20 Median values, under a 5% label budget. The best Stream-GP
configuration (GP–Hybrid) and the best Apache Spark Algo-
rithm (Decision Tree), CTU13-mixed dataset 115

5.21 p-value from the Mann-Whitney U test for the Stream-GP and
Spark best algorithms for the 5.0% label budget 115

5.22 Median values for Botnet AvDR metric, under the 5% label bud-
get. The best Stream-GP configuration (GP–Hybrid) and the
best Apache Spark Algorithm (Decision Tree), CTU13-mixed
dataset . 126

5.23 p-value from the Mann-Whitney U test for the Stream-GP and
Spark best algorithms based on Botnet median AvDR, for the
5.0% label budget, 95% confidence level 126

5.24 Median values for the Botnet C&C AvDR metric under the 5%
label budget. The best Stream-GP configuration (GP–Hybrid)
and the best Apache Spark Algorithm (Decision Tree), CTU13-
mixed dataset . 128

5.25 p-value from the Mann-Whitney U test for the Stream-GP (GP–
Hybrid) algorithm vs. the comparator Apache Spark and MOA
algorithms based on Botnet C&C median AvDR, for the 5.0%
label budget, 95% confidence level 128

x

List of Figures

1.1 Botnet architectures [115] . 5

2.1 Network streaming applications 17

2.2 Data mining categories . 17

3.1 Overall Stream-GP framework. Sampling policy, (S) deter-
mines which exemplars will be quarried for their true labels
(under label budget constraint β). Archiving policy, (A) keeps
a finite size Data Subset, (DS), where ‘Gap’ records are sub-
ject to replacement. On the update of DS with Gap(i) labelled
records, τ generations of GP are performed. At anytime, a sin-
gle champion individual is available to predict the labels, y(t),
which may influence the Sampling policy operation. 29

3.2 Symbiotic Bid-Based GP. Each team indexes a different combi-
nation of programs, but the same program may appear in mul-
tiple teams. The action (class label) of a program is expressed
through colour. 36

4.1 Apache Spark architecture. 53

5.1 Overall structure of GP-Stream evaluations and comparisons . 63

5.2 Capture 5 class-wise Detection rate through the stream. 5%
versus 0.5% label budget. 68

5.3 Capture 6 class-wise Detection rate through the stream. 5%
versus 0.5% label budget. 69

5.4 Capture 8 class-wise Detection rate through the stream. 5%
versus 0.5% label budget. 70

5.5 Capture 9 class-wise Detection rate through the stream. 5%
versus 0.5% label budget. 71

5.6 Class-wise Detection rate for Stream-GP sampling and archiv-
ing policies on the Capture 1 dataset at a 5.0% label budget. . 74

5.7 Class-wise False positive rate for Stream-GP sampling and archiv-
ing policies on the Capture 1 dataset at a 5.0% label budget. . 75

xi

5.8 Typical Distribution of classes present in the Data Subset for
Stream-GP sampling and archiving policies on the Capture 1
dataset at a 5.0% label budget. 76

5.9 Distribution of minor classes over the course of the stream for
the five capture datasets appearing in Sections 5.1.2 and 5.1.3.
Note the use of a log scale and the colour coding, which cor-
responds to that adopted for the original Stream DR figures.
Background class is omitted for clarity (always 90 to 99%). Nor-
mal class represents ‘normal’ traffic corresponding to the CTU
filters, represents Botnet and represents Botnet C&C. The log
scale also implies that 10−2 is synonymous with zero content
(e.g. the earliest that Botnet C&C appears at the 40% point in
Captures 5 and 9). 81

5.10 Wall clock time for (a) champion individual to make predictions
and (b) fitness evaluation to update the content of the popula-
tion on a new non-overlapping window location for the Capture
3 dataset on a 2.67 GHz CPU. 83

5.11 Violin plots for a 5% label budget based on streaming AvDR
metric (Average of 20 runs) 87

5.12 Class-wise Detection rate through the stream at a 5% label
budget based on streaming AvDR metric (Average of 20 runs) 89

5.13 False positive rate through the stream at a 5% label budget
(Average of 20 runs) . 90

5.14 Typical Distribution of classes present in the Data Subset for
the GP–Archive and GP–Both algorithms on the CTU13-mixed
dataset at a 5.0% label budget. 92

5.15 Botnet distributions at each 10% of the CTU13-mixed dataset 93

5.16 Violin plots for comparison of algorithms in Botnet detection,
0.5% and 5% label budgets. 94

5.17 Violin plots for the comparison of algorithms in Botnet C&C
detection, 0.5% and 5% label budgets. 97

5.18 Overview of the features used by the GP–Archive champion
throughout the stream, 5% label budget 99

5.19 Overview of the features used by the GP–Archive champion
throughout the stream based on action, 5% label budget . . . 99

xii

5.20 The average number of execution code lines based on action
(class label), 5% label budget 100

5.21 Wall clock time for (a) the champion individual to make pre-
dictions and (b) the fitness evaluation to update the content of
the population on a new non-overlapping window location for
the CTU13-mixed dataset on a 2.67GHz CPU. 101

5.22 NSL-KDD class-wise Detection rate through the stream at a 5%
label budget based on the streaming AvDR metric (Average of
20 runs) . 106

5.23 ISOT class-wise Detection rate through the stream at a 5%
label budget based on the streaming AvDR metric (Average of
20 runs) . 107

5.24 GP–Archive class-wise false positive rate through the stream
at a 5% label budget based on the streaming AvDR metric
(Average of 20 runs) . 108

5.25 Apache Spark Experiments flowchart. 110

5.26 CTU13-mixed class-wise Detection rate through the stream.
Stream simulation scenario. 5.0% label budget. The Y-axis
shows the Split where training data are sampled from. 112

5.27 CTU13-mixed class-wise Detection rate in the training phase.
5.0% label budget. The Y-axis shows the Split where training
data are sampled from. 113

5.28 CTU13-mixed class-wise Detection rate through the stream.
Classical scenario. 5.0% label budget. The Y-axis shows the
algorithms. 114

5.29 CTU13-mixed class-wise Detection rate through the stream.
Stream simulation scenario. Split 9. 5.0% label budget (Av-
erage of 10 runs) . 118

5.30 CTU13 mixed class-wise False positive rate through the stream.
Stream simulation scenario. Split 9. 5.0% label budget (Aver-
age of 10 runs) . 119

5.31 CTU13 mixed class-wise Detection rate through the stream.
Stream simulation scenario. Split 7. 5.0% label budget (Av-
erage of 10 runs) . 120

xiii

5.32 CTU13-mixed class-wise False positive rate through the stream.
Stream simulation scenario. Split 7. 5.0% label budget (Aver-
age of 10 runs) . 121

5.33 CTU13-mixed Class-wise Detection rate through the stream at
a 5% label budget based on the streaming AvDR metric (Av-
erage of 10 runs) . 123

5.34 CTU13 mixed class-wise Detection rate through the stream.
Classic Scenario. 5.0% label budget (Average of 10 runs) . . . 124

5.35 CTU13 mixed class-wise False positive rate through the stream.
Classic Scenario. 5.0% label budget (Average of 10 runs) . . . 125

5.36 CTU13 mixed class-wise Detection rate through the stream.
5.0% label budget. 127

5.37 Overview of the Apache Spark Decision Tree in a stream simu-
lation scenario for a run on split 7, 5% label budget 129

5.38 Wall clock time, GP–Archive (a) champion individual to make
predictions and (b) fitness evaluation to update the content of
the population on a new non-overlapping window location for
the CTU13-mixed dataset on a 2.67GHz CPU. 131

5.39 Wall clock time (a) model to make predictions for each exemplar
and (b) Off-line model that is trained on the training set for the
CTU13-mixed dataset on a 2.67GHz CPU. 132

5.40 GP–Archive average number of execution codes, whole number
and effective number, for the champion throughout the stream.
5% label budget. 134

5.41 GP–Archive average champion team size throughout the stream.
5% label budget. 134

5.42 Distribution of Ground Truth traffic, CTU13-mixed dataset,
Labels: Normal (1), Botnet C&C (2) and Botnet (3) 137

5.43 Botnet activities in ground truth traffic, CTU13-mixed dataset,
Labels: Normal (1), Botnet C&C (2) and Botnet (3) 138

5.44 Stream-GP analytics on malicious botnet activities, CTU13-mixed

dataset, Labels: Normal (1), Botnet C&C (2) and Botnet (3) . . . 140

xiv

Abstract

Algorithms for constructing classification models in streaming data scenarios are at-

tracting more attention in the era of artificial intelligence and machine learning for

data analysis. The huge volumes of streaming data necessitate a learning framework

with timely and accurate processing. For a streaming classifier to be deployed in the

real world, multiple challenges exist such as 1) Concept drift, 2) Imbalanced data;

and 3) Costly labelling processes. These challenges become more crucial when they

occur in sensitive fields of operation such as network security. The objective of this

thesis is to provide a team-based genetic programming (GP) framework to explore

and address these challenges with regard to network-based services. The GP classifier

incrementally introduces changes to the model throughout the course of the stream to

adapt to the content of the stream. The framework is based on an active learning ap-

proach where the learning process happens in interaction with a data subset to build

a model. Thus, the design of the system is founded on the introduction of sampling

and archiving policies to decouple the stream distribution from the training data sub-

set. These policies work with no prior information on the distribution of classes and

true labels. Benchmarking is conducted with real-world network security datasets

with label budgets in the order of 5 to 0.5 percent and significant class imbalance.

Evaluations for the detection of minor classes have been performed that represent the

classifier behaviour in case of attacks. Comparisons to the current streaming algo-

rithms and specifically network state-of-the-art frameworks for streaming processing

under label budgets demonstrate the effectiveness of the proposed GP framework to

address the challenges related to streaming data. Furthermore, the applicability of

the proposed framework in network and security analytics is demonstrated.

xv

List of abbreviations

ANOVA Analysis of variance

API Application Programming Interface

AUC Area Under the Curve

AvDR Average Detection Rate

CART Classification and Regression Tree

C&C Command and Control

CC Corner Classification

CD Critical Difference

CPU Central Processing Unit

DoS Denial of Service

DDoS Distributed Denial of Service

DNS Domain Name System

DR Detection Rate

DS Data Subset

FPR False Positive Rate

GB Giga Byte

GHz Giga Hertz

GP Genetic Programming

GT Ground Truth

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

xvi

ICMP Internet Control Message Protocol

IP Internet Protocol

IRC Internet Relay Chat

IT Information Technology

k-NN k Nearest Neighbour

LCS Learning Classifier System

MAP Maximum A Priori

ML Machine Learning

MLP Multi Layer Perceptron

MoA Massive Online Analysis

NB Naive Bayes

NTMA Network Traffic Monitoring and Analysis

P2P Peer to Peer

Prec Precision

R2L Remote to Local

RAM Random Access Memory

Rnd Random

SBB Symbiotic Bid Based

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SSH Secure Shell

TPG Tangled Program Graph

U2R User to Remote

xvii

UDP User Datagram Protocol

WEKA Waikato Environment for Knowledge Analysis

xviii

Symbols

β Label budget

τ Generations per data subset

A Archiving policy

d Dimension of stream

k Number of algorithms

n Number of datasets

S Sampling policy

y Model prediction

xix

Acknowledgements

First and foremost, I would like to express my greatest gratitude to my supervisor,

Dr. Nur Zincir-Heywood, for her dedicated support throughout my PhD, for her

patience, encouragement and positive energy. She has been a tremendous mentor

and provides an excellent example of a successful and powerful Woman in Tech.

Also, I would like to thank my co-supervisor, Dr. Malcolm Heywood, for his

guidance, caring and thorough vision. He has aroused my interest in an amazing

Artificial Intelligence (AI) field, Genetic Programming. Moreover, he has taught me

new technical and scientific methods as well as how to see life’s philosophy from a

brand-new perspective. I have been blessed to have them both Nur and Malcolm

as my supervisors. They have provided a welcoming atmosphere for me away from

home.

A very special gratitude goes out to the rest of my thesis committee: Dr. Uyen

Trang Nguyen, Dr. Srinivas Sampalli, and Dr. Andrew McIntyre, for generously

offering their time, interest and helpful comments. I would also like to recognize the

technical contributions of my fellow office mates, Ali Vahdat, Stephan Kelly, and Duc

Le.

Hereby, I would like to thank my friends for their emotional support, which has

always helped me stand up stronger after times of difficulty.

Finally, I would like to thank my family. I am so grateful for all the sacrifices

they have made, in raising me and supporting me in all my pursuits. Words cannot

express how much I appreciate their efforts.

xx

Chapter 1

Introduction

Streaming data refers to the continuous, unbounded flow of data that is mostly subject

to non-stationary properties such as concept drift [101, 37, 59, 76]. A concept drift

occurs when the statistical properties of a label change over time in unpredictable

ways. In other words, consider records (−→x) that arrive sequentially at discrete points

in time, t, where p(−→x , d) is the joint probability and d refers to the record’s unknown

true label. If there exist times t and t+ 1 where pt(
−→x , d) 6= pt+1(

−→x , d), then concept

drift has occurred. The changes could happen gradually or suddenly, and are subject

to repetition which may affect various subsets of classes at different points in the

stream. Concept drift is encountered in many real-world scenarios such as surveil-

lance systems, financial fraud detection, weather prediction and analyzing customer

preferences. Currently, classifiers are available that work perfectly under a static data

environment where the whole dataset is available for learning. Static environments

refer to environments where the distribution of data do not change throughout time,

whereas dynamic environments are subject to change. The classifiers that work on

static data are able to work on large-scale datasets with high accuracy, but they are

unable to perform in non-stationary environments. Recently, many research studies

have explored learning methods in dynamic environments in which the primary asset

is the ability to detect concept drift.

The goal of a classifier operating on these streams is therefore multifaceted. The

classifier should be able to suggest labels for multiple classes in real time throughout

the course of the stream. There should also be a mechanism to recommend what data

to learn from as in a non-stationary environment, as the training data are interactively

selected from the stream. The selection of data is also subject to a limitation, as a

human expert is needed to suggest the ground truth label for the training data.

Because providing the ground truth is costly, a small fraction of data would be offered

for labelling according to a predefined label budget. This constraint is available in

1

2

many applications, such as satellite data labelling and financial services [119].

In this thesis, the focus is concentrated on the discovery of multiple behaviours

such as different botnets in network traffic. Network traffic precisely reveals the

characteristics of a stream under a non-stationary environment. This task is difficult

due to the following reasons:

1. Network load and application mix are time-varying parameters.

2. Some applications suddenly switch between modes of operation; e.g. services

like Tor and Skype are trying to hide their transactions.

3. Malicious behaviours are combined with legitimate (normal) behaviours.

4. Normal behaviour encompasses a broad category in which users also have dif-

ferent normal behaviours.

5. Different versions of the same application coexist, which may create different

‘fingerprints’ of the same application.

6. The malicious behaviours ratio is very low in comparison with the non-malicious

behaviours ratio.

Another focus point of current data stream processing studies is performance

under class imbalance issues. The nature of the data stream implies that classes may

appear in different distributions during the course of the stream. This is apparent

when streaming data encounters the ‘burst’ of one class, in which a simple one-bit

state machine classifier outperforms many other sophisticated models. Therefore,

along with the label budget and class imbalance constraints, the sensitivity of the

classifier performance under multi-class scenarios is examined in this thesis.

The network behaviour detection is framed as follows. For network security ap-

plications, the time when malicious behaviours appear cannot be known a priori

when normal and malicious traffic are mixed together. The normal behaviour is non-

stationary and changes due to variants such as users, applications, etc. Therefore, it

is not feasible to pre-train a model and then apply it to the rest of the stream. During

this time, the trained model would become outdated and useless when changes occur

in the stream. Human experts provide labels for small subsets of stream data, based

3

on the label budget, during the course of the stream. Keeping the human in the loop

of machine learning is necessary, as attacks to the machine learning leads the attack

behaviours to be considered normal by manipulating the stream data [7, 6]. The

proposed Stream-GP framework is responsible for introducing data points to human

experts for providing ground truth labels. The human experts are assumed to be

trustworthy; otherwise, they will mislead the Stream-GP framework (similar to an

attack to the ML). A GP champion should be available at all times to predict labels

before any queries for the true labels. This way, the Stream-GP framework is contin-

uously interacting with the stream, labelling the stream content and then querying

a fraction of the stream based on the label budget. Then, the data with their true

labels are used by the learning process to update the model throughout the stream.

The proposed framework is able to be applied on the incoming/outgoing traffic of a

wide range of network devices such as servers, routers and client devices. It could

be utilized by financial, medical or any other type of institution with the support of

human security to act as a reliable source of label information. IT security companies

could use the proposed framework to provide anytime classifiers to service subscribers

and retain the other components of the architecture.

1.1 Genetic Programming

Genetic Programming (GP) is a special case of a genetic algorithm where the popu-

lation individuals are computer programs [75]. It is a biologically-inspired approach

to Machine Learning, which generalizes the basic biological evolutionary process to

identify sophisticated prediction models. It begins with a population of simple pro-

grams that are randomly generated in basic GP. Then, the programs evolve to more

complex versions after generations, which fit to the task definition. The evolution

is directed toward the task goal by computing fitness score at each generation. The

worst performing individuals are removed, and some individuals are sampled from the

remaining population based on a pre-determined probability, which is then modified

to make the next generation’s population. This process is done using three main

operators: 1) Selection, 2) Crossover, and 3) Mutation. In selection phase, some

individuals are selected probabilistically based on fitness. That means the better per-

forming individuals are more likely to be selected to have children. Then variation

4

operators, crossover and mutation, are applied on the selected population to gener-

ate new individuals for the next generation. The crossover is mostly done on two

selected individuals and merge them to create new individuals. However, mutation is

a random change to one individual to create an offspring with modified behaviours.

Generally speaking, there are various advantages in adopting GP. Specifically,

programs are capable of representing complex and non-linear functions. As well,

the teaming solution makes it possible to decompose the sophisticated problems into

smaller parts (divide & conquer) and assign several programs to solve each specific

part. Moreover, GP has an implicit embedded approach for variable selection. This

internal capability helps GP to select different variable sets based on the changes in

the environment during the learning process.

1.2 Botnet

A botnet is a number of Internet-connected devices (bots) that form a network that is

used for malicious activities such as (Distributed) Denial of Service attacks, sending

spam, stealing data and accessing a victim’s device. The word “botnet” is derived

from the words “robot” and “network”. Bots communicate with each other through

Command and Control (C&C) communication protocols to send/receive commands.

The most commonly used protocols are IRC, HTTP and DNS. In terms of architec-

ture, botnets are either client/server models or P2P. Recent botnets rely on the latter

architecture. Figure 1.1 depicts the types of botnet architectures.

The use of botnets is rapidly increasing, and their behaviour is becoming more

complex. Nowadays, they are trying to hide their identity by concealing inside the

traffic of the most commonly used protocols like HTTP and DNS (fast fluxing [122]).

Encrypted communication is another way of keeping botnet behaviour from being

detected [30].

5

(a) Client/Server model (b) Peer-to-Peer

Figure 1.1: Botnet architectures [115]

1.3 Objective

The primary objective of this research is to provide a team-based GP streaming

classifier that works under class imbalance and label budgets simultaneously. The

application of the proposed framework is investigated specifically in relation to net-

work behaviour identification. Therefore, the objective is reviewed in two separate

aspects: 1) Streaming classification in general;, and 2) Network behaviour detection

specifically.

1.3.1 Streaming Classification

The generic challenges a streaming classifier encounters are listed; the proposed

streaming classifier provides a solution that covers them all.

Non-stationary process: Streaming data are usually generated by a non-stationary

process. This leads to gradual or sudden changes in points throughout the

stream, which is called “concept drift”.

6

Partial observability: Access to the content of the stream is limited to a window

location, that is sliding or non-overlapping. Therefore, the overall characteristics

of the stream may not be met at any time and only some properties of the

stream will be revealed. Consequently, the model should deal with this partial

observability during the learning process.

Anytime operation: A model, ‘GP champion’, should be available at any time

throughout the course of the stream to predict the label.

Single-pass operation: As the stream passes, the previous data in the stream are

not revisited. As a result, the ML model only has one opportunity to predict

any exemplar’s label.

Label budget: The volume of data in streaming applications is enormous, which

makes labelling all the data impossible or extremely costly. To reduce the cost

of the learning process, only a small fraction of the stream is asked for their

true label. The queried exemplars for the ground truth information act as the

‘train’ dataset.

Class imbalance: The probability of the imbalanced distribution of the classes in

streaming data is extremely high. The imbalanced data situation could happen

locally at each window as well, where only a limited number of classes are

available at that window.

Classes (re)appearance: Some classes may continuously drop in and out of the

stream, which is in contrast with the regular presence of other classes.

Generally speaking, the proposed framework should tackle the mentioned chal-

lenges as a verified streaming classifier.

1.3.2 Network Behaviour Detection

The applicability of the proposed framework under real-world scenarios is evaluated in

network applications. The goal is to benchmark the performance of the system in the

detection of network behaviours on real-world network streaming traffic. Network

traffic corresponds to the definition of streaming data and its special constraints.

7

One of the most important fields in detecting network behaviours relates to network

security investigations, in which finding malicious behaviours is essential. Detecting

the malicious behaviours in network traffic is like finding a needle in haystack. The

reasons why detecting behaviours in network (security) traffic is a perfect match for

consideration as a difficult real-world streaming processing application are as follows.

Non-stationary environment: The network traffic undergoes many changes through-

out the stream. These changes are due to a combination of user and application

influences on the content of the stream. Every time a new user is added to or

leaves the network, it will change the behaviour of the network traffic. Not only

does adding a user cause a change, but also any user’s behaviour also changes

throughout the time, and their preferences change as well. The application’s ef-

fect on the traffic can be based on introducing new software, updating currently

available applications and the co-existence of different versions of applications.

The interference of these changes ultimately causes the nature of network traffic

to be continuously dynamic. In the special case of network security, the same

formula exists with regard to attack types. For example, in Botnet detection,

not only are there different botnet architectures, but stronger bots are also in-

troduced to the network time. This evolving botnet trend introduces complex

behaviours that put at risk the reliability or, in an even broader perspective,

the social behaviour of the network.

Other streaming constraints: The tremendous volume of network traffic makes

its processing a challenge. The network hardware becomes more powerful, which

makes it necessary to process and route traffic at a high speed. Providing

labels for all the content of the traffic is practically impossible. Moreover,

the distribution of classes is not likely to be balanced. In network security in

particular, most of the traffic is Normal behaviour, which, at times, becomes

mixed with malicious behaviour. The malicious behaviour is not only rare in

the context of the class distribution, but it also happens in varying periods of

time, so it drops in and out of the stream repeatedly or just once.

Encryption: The other factor in network traffic that makes the detection of be-

haviours difficult is use of encryption techniques to hide the content of the

8

packet. The packet payload is not useful in such a case, and only the header

information is a reliable source.

Considering the described circumstances, the goal of this thesis is to provide a

framework that can detect multiple network behaviours under the a highly imbalanced

stream of network traffic. The primary target is to identify very rare classes whose

miss-classification is costly. In network security, the minor classes are related to high-

risk malicious activities. Failing to detect these classes leads to destructive effects

that may not be possible to recover from completely. The network flow information

is used to address the encrypted payload without causing privacy-related concerns for

the traffic under analysis.

1.4 Contributions

The main contribution of this thesis is the provision of a team-based GP streaming

classifier to handle the streaming constraints mentioned earlier in the objective section

(Section 1.3). To the best of the author’s knowledge, this is the first time that both

class imbalance and label budget issues have been considered in a streaming classifier

for network security behaviour analysis. The thesis contributions are summarized as

follows.

1. Designing sampling/archiving policies: The proposed streaming classifier,

Stream-GP, uses an active learning approach to decouple the stream distribution

from the training data distribution. To make a more balanced data subset

for training the classifier, intelligent policies are needed to sample/archive the

exemplars to/from the data subset. In this research, sampling/archiving policies

are introduced to make the training subset more balanced under the limitation

of a label budget [68, 69]. The combination of these policies leads to algorithms

with interesting behaviours that could be used in different applications.

2. Application of the framework under real-world network traffic: Net-

work traffic has been explained to demonstrate the streaming data challenges

as well. Despite this fact, few works have applied streaming learning in the

network domain (reviewed in Chapter 2). Even these research studies have also

9

lacked the advantage of working in a non-stationary imbalanced environment

with a label budget. Thus, this thesis provides the opportunity to introduce a

framework to deal with the dynamics of network behaviour classification. To

this end, the framework was first benchmarked for its effectiveness in working

on specific streaming datasets that aim to reveal the strength of the proposed

streaming classifier under general streaming classification challenges [68, 69].

The success on the general streaming classification problem led to the main

focus of this thesis, in which the classifier is applied to network streaming ap-

plications [71, 70]. Several empirical evaluations are done on different network

security datasets and compared to the streaming algorithms. A specific metric

is used for the classifier’s evaluation which works under class imbalance whereas

other research studies used accuracy as their evaluation metric.

3. Investigating the learner behaviour on re-ocurring patterns: A chal-

lenging mixed botnet dataset is introduced that consists of several variations

of botnet behaviours [71]. It is designed to create gaps within the same botnet

traffic. The ability of the proposed classifier to remember previously learned

behaviours is investigated.

4. Comparison against a state-of-the-art network streaming tool: A thor-

ough comparison of Stream-GP with Apache Spark Streaming as a current

state-of-the-art streaming toolset in network application is done. The evalua-

tion is performed on the challenging mixed multi-bot dataset mentioned earlier.

This comparison demonstrates the gaps a network streaming tool is facing and

suggests the Stream-GP classifier as a solution.

5. Demonstarte the ability to work on other types of data: The effec-

tiveness of the Stream-GP classifier is investigated under other network appli-

cations. Firstly, an empirical study was conducted in which the applicability

of Stream-GP as an streaming classifier to identify insider threat detection is

demonstrated [78]. The dataset features in this case are not traffic features but

the user behaviours logged throughout the time. The comparison to the clas-

sical off-line GP approaches investigates the possibility of using Stream-GP in

a non-stationary environment. In another study, Stream-GP is used to reveal

10

the unknown behaviours in the context of the Background traffic in the mixed

multi-bot dataset [72].

1.5 Thesis Outline

The thesis is organized as follows.

Chapter 2 reviews studies on streaming processing. Existing works are investi-

gated from three aspects: Non-evolutionary, Evolutionary and Network methods.

Chapter 3 describes the proposed GP framework (Stream-GP) for handling the

streaming classification under label budget and class imbalance constraints. An active

learning method is designed for this purpose, and its corresponding sampling and

archiving policies are explained. The process of choosing a GP champion in each

window location to label the rest of the stream is described. Ultimately, the specific

GP framework (SBB) in general is explained.

Chapter 4 contains the necessary definition and parameters settings for the eval-

uation of the proposed framework (Stream-GP). The datasets and comparator algo-

rithms that have been utilized are explained. In addition, the parameter setting of

Stream-GP and its comparator algorithms are also described in this section. More-

over, the multi-class metric and statistical methods used to calculate the performance

of the algorithms and their significance are also described.

Chapter 5 documents the empirical evaluations of the Stream-GP framework and

its comparison to the other available streaming systems. The evaluations are done

under challenging scenarios targeting network security.

Finally, Chapter 6 concludes the thesis, summarizes the research contributions,

and discusses future work.

Chapter 2

Related Work

Several recent surveys have overviewed model building for the classification of non-

stationary streaming data [37, 59, 76]. In this section, highlights of the streaming

classification issues for streaming classification under imbalanced data streams are

reviewed. Section 2.1 discusses the methods under imbalanced data, change detec-

tion and (online) active learning issues, whereas Section 2.2 overviews the same in

evolutionary methodologies. Section 2.3 investigates the current solutions used in

a variety of network applications. Finally, Section 2.4 summarizes related works in

streaming processing.

2.1 Non-evolutionary Methods

Change detection is a mechanism used to trigger the necessity of model reconstruc-

tion in streaming applications. In this category, after a change is detected, the model

is subject to be updated or replaced. In the latter case, an outdated model is re-

placed with a new model reflecting the observed change. Also, the model building is

decoupled from the need to provide label information. For instance, Lindstrom et al.

define a process in which a reference distribution is constructed and used to calibrate

the model [81]. As the stream passes, a divergence measure (expressing the model

confidence independent from the label information) is calculated to trigger the model

reconstruction. When the trigger is activated, model is rebuilt based on the latest

window content. The model is evaluated on two spam datasets collected from [31] as a

natural concept drift source. Three text datasets are also utilized both in imbalanced

and balanced modes, Reuters1, 20 Newsgroups2 and their custom dataset called News

Sources. In this study, labels are only requested in the case of change occurrence.

1http://www.daviddlewis.com/resources/testcollections/reuters21578
2http://people.csail.mit.edu/jrennie/20Newsgroups

11

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://people.csail.mit.edu/jrennie/20Newsgroups

12

However, they assume that change happens with regard to the unconditional distri-

bution of data p(~x). Therefore, any variation to the posterior distributions of the

data p(y|~x) remains undetected [106]. Wozniak handles the changes in the stream

by changing the line-up of the classifier ensemble and assigning weights to the base

classifiers [117]. There is no explicit change detector in his method. For each chunk

of data, a new classifier is trained, and then the system selects the most valuable

ensemble to continue with. The update of the ensemble happens in a mixture of two

ways: 1) Dynamic combiners: individual classifiers are trained in advance and will

not change. The combination of rule parameters changes. 2) Changing the ensemble

line-up: Outdated classifiers are replaced with new ones trained on the most recent

data. They used MOA platform [14] to implement their own software. Three bench-

marking data streams are used to evaluate the system under three main drift types

in the stream: HYP (incremental), LED (gradual) and SEA (sudden). Hammer et

al. use the Anti-Baysian technique to classify the dynamic data streams [55]. In this

method, quantile tracking is done instead of the mean value. This is shown to be

more robust in the case of outliers in comparison to the Baysian models. Synthetic

data are used to showcase their method in different outlier happenings. Gautam et al.

propose a kernel-based one-class extreme learning machine (ELM) classifier for the

detection of outliers [51]. They compared their system on both stationary and non-

stationary data with batch learning-based and online one-class classifiers respectively.

Two synthetic and six real-time datasets are used for the stationary environment and

16 synthetic and four real-time datasets are used for the non-stationary environment.

Active learning implies that only a fraction of data is requested for their true

labels. Therefore, a change mechanism or uncertainty threshold is employed to initiate

label requests. Several authors have proposed bias/variance minimization schemes for

this purpose [73, 86, 101, 116, 124]. Empirical benchmarking has demonstrated that

uniform sampling (under label budget) could effectively work under the data stream

in case the data is well mixed [106, 124]. Z̆liobaitė et al. introduced a combined

sampling policy where model uncertainty and uniform sampling are used to cover both

p(~x) and p(y|~x) changes under a label budget. This generic mechanism is suitable

to be applied to the modified streaming version of the Hoeffding Tree and Naive

Bayes classification models. The performance of the models is demonstrated in three

13

real data sets: Electricity [56], Cover Type [47] and Airlines, which they created

based on the inspiration of [63]. Moreover, they extended the evaluations based on

three text data sets: IMDB-E and IMDB-D, which are constructed based on IMDB,

which originates from the MEKA repository3 and Reuters. The proposed streaming

algorithms are gathered in a platform called MOA for the researchers to work with

[14]. Ksieniewicz et al. introduced active learning to the neural networks [77]. They

used catastrophic forgetting in a neural network to smoothly adapt to the changes in

the stream. Their system is compared to both semi-supervised and fully-supervised

methods. The MOA platform is used for the implementation of their system, in which

they utilized an MLP, Multi-layer Perceptron classifier in a scikit-learn library, where

they optimized the log-loss function. Three separate label budgets were used: 30%,

50% and 70%.

Several studies focus on the challenge of imbalanced data in streaming applica-

tions. Some consider a bagging solution with under or oversampling of the data to

create the ‘Data Subset’, and the model is built upon that [36, 112]. The data sub-

set decouples the distribution of data from the direct stream distribution. In this

category, Ditzler et al. emphasize incremental (i.e. batch) updating while providing

anytime labelling, whereas the work by Wang et al emphasizes online (i.e. exemplar-

wise) updating. Although Ditzler et al. assumed SMOTE algorithm working on

the stationary data with class imbalance [24], this is not the most effective solution

under non-stationary data [36]. They use their own prepared datasets to showcase

their methods under specific conditions. Wang et al. produce 12 two-class data sets

with different distributions and class imbalance rates. Ditzler et al use four synthetic

data sets (drifting Gaussians, rotating checker board, shifting hyperplane, and rotating

spirals) and two real-world data sets: Electricity and new weather prediction. The

second category of solution for data imbalance constraints is to dynamically reweigh

the class cost[89, 52]. This solution has been utilized in active learning algorithms

as well [15]. More recently, some research studies have concentrated on scenarios in

which classes drop in and out of the stream against a background pattern of classes

on a continuous bias [102]. However, in these scenarios, all the class labels are avail-

able; also, the overall number of classes is also known (i.e. attack or normal) but the

3Available at http://meka.sourceforge.net/.

http://meka.sourceforge.net/

14

information on when they appear in the stream is unknown.

Several semi-supervised methods are proposed for the streaming data context;

and provide a framework for working with labelled and unlabelled data [42, 61, 104];

i.e. the algorithm starts with an initial labelled data stream to build a primary

model and then changes to an ‘online’ mode for labelling the data in an unsupervised

methodology. Specific points of interest include operation under class imbalance and

non-stationary data. However, the utilization of the unsupervised methodology makes

this solution susceptible to adverserial attacks [7, 6]. Moreover, a claim was recently

made that the Naive Bayes algorithm has privacy leakages [120]. It was stated that

an attacker can infer information, so there is leakage of sensitive information in this

case. Adding a little noise has been introduced as a simple solution for this problem.

2.2 Evolutionary Methods

Model building for streaming tasks has not been extensively investigated using evo-

lutionary algorithms as a non-evolutionary counterpart. Some GP works have been

done on tasks such as financial forecasting [66], which is considered a kind of stream-

ing classification. The goal of this task is to predict the direction of movement in the

next temporal time. However, these tasks are not targeted to be limited by the label

budget, and the label information is available after a time delay. Folino and Papuzzo

propose a distributed GP ensemble to use to cope with changes in non-stationary data

stream classification [45]. A change detection mechanism is used based on the statis-

tical differences between two consecutive windows. The proposed model could only

detect changes in p(~x) but not in p(y|~x). Furthermore, another parallel framework

was necessary to rebuild the GP ensemble. For the verification of their system, they

modified the dataset generator4 and simulated data sets that consisted of the circle

function, the sine function, the SEA moving hyperplane [100] and the STAGGER

boolean concept [98]. Evaluations were performed on the datasets they generated.

Dempsey et al. investigate the role of genotype-to-phenotype mapping under dy-

namic environments (stock market data in particular) [32]. Specifically, the emphasis

is more on the significance of evolvability/plasticity in facilitating adaptation under

non-stationary data.

4www.cs.bham.ac.uk/~flm/opensource/DriftGenerator.zip

www.cs.bham.ac.uk/~flm/opensource/DriftGenerator.zip

15

Earlier works using the framework drawn on in this thesis assumed that GP teams

are evolved from: 1) a Data Subset that is available to decouple the model training

from the cardinality of the stream, 2) a Sampling policy that specifies which exemplars

are to be selected from the stream and placed in the data subset, and 3) an Archiving

policy to determine which exemplars from the data subset are to be replaced. The

initial attempt to utilize Pareto archiving as the archiving policy demonstrates that

label error (a form of noise disrupting the ability to accurately model p(y|~x)) has a

significant negative impact on building robust models [4]. Adding a uniform sampling

as the sampling policy to the framework under a label budget introduced a more

robust starting point [108], though full label information was necessary to keep the

data subset balanced. Moreover, it has been shown that a GP teaming solution is

more effective in detecting changes than using the monolithic GP individual as a

solution [107]. Ultimately, the issue of class imbalance in the data subset was noted

to have an impact on the quality of the GP model in the preliminary steps of this

thesis [68, 69]. The earlier works were evaluated on the artificial datasets, which

were explicitly designed to benchmark the efficiency of the models under various

non-stationary streaming data. In this thesis, the GP classification is focused on a

specific cybersecurity problem, namely botnet detection. This is a highly challenging

problem given the streaming network traffic data. Such data are very imbalanced

data because botnet traffic constitutes a low percentage of the network traffic, in fact

botnet command and control (C&C) traffic is usually less than half a percent of the

traffic seen. Moreover, different types of applications and attacks (classes) appear

and disappear. This results in a significant cost for miss-classification, and low label

budgets. The GP framework is considered for this purpose as it is able to solve

the complex problem by decomposing it to smaller easier problems and solve them.

The programs in GP are capable of representing complicated, non-linear functions.

Moreover, GP has the ability for implicit feature selection based on the data. Thus,

it does not require other approaches for feature selection throughout the course of

the stream.

Several earlier works were based on prototype-style representations, such as learn-

ing classifier systems (LCSs). Dam et al. focus their research on the reaction time

of the LCS on the ‘multiplexer’ problem with modifications on p(~x). They proposed

16

that population reinitialization is the best strategy when a change is detected [29].

Also, The real-6-multiplexer problem with/without noise is utilized to showcase their

system. Behdad and French investigate an approach on an LCS in which the exploit

and explore phases are reversed in comparison to the traditional off-line batch learn-

ing [8]. A random subset of a corpus dataset [87] is used that contains email messages

of senior managers of the company. Also, there is an approach that utilizes k -NN in

an evolutionary mode using swarm optimizatioich potentially has been applied to the

data stream classification tasks [23]. Two artificial data sets(SEA and Checkerboard

[43]) and two real data sets (Electricity and weather prediction [43]) are employed for

evaluation. All the methods in this category fulfill just a number of the constraints

that have been covered in this thesis.

2.3 Network Methods

Streaming applications in the network area are gaining more interest as streaming

data constraints are applied more precisely to network traffic. However, this is a

new topic for network managers, and few works are available in this area. Network

streaming applications are widely categorized in four main groups, as shown in Figure

2.1. All categories may utilize machine learning algorithms to some extent, but the

red-coloured area is where it is mostly used. The classical network style, the blue-

coloured categories, is mostly done by performing aggregations on traffic or applying

SQL-based queries on passing traffic where no learning is demanded.

Data mining in general is divided into batch or stream processing and can be done

on a centralized or a distributed architecture. Figure 2.2 illustrates the hierarchy and

available tools in each category. This is a general overview, and the tools might be

more or less utilized in network applications.

Several research studies are available on network security that are based on cen-

tralized processing architecture. Masud et al. propose a multi-partition multi-chunk

ensemble method to detect botnets in the network traffic stream [85]. They demon-

strate that their system is capable of detecting drift changes, p(~x), where the hypoth-

esis is that labels are available and the class distribution is consistent throughout the

course of the stream. They create a dataset, based on a hyperplane simulator with

the same parameters as [111], to illustrate the effectiveness of their model in change

17

detection. Also, they generate a botnet dataset based on Nugache bot to showcase

their system under the botnet detection area.

Figure 2.1: Network streaming applications

Figure 2.2: Data mining categories

Garg et al. propose an on-line peer-to-peer Botnet detection system that relies

on failure and communication traffic [50]. In their proposed system, network traffic

is divided into small time-based chunks where decisions are made based upon each

18

chunk separately. The benchmarking is done on a variety of botnets and popular

P2P applications. They conclude that only the first phase of the botnet traffic could

be detected based on the predefined patterns. Moreover, their methodology does not

adapt to the changes in the network traffic.

Baer et al. introduce a streaming warehouse, DBStream, that is tailored for

Network Traffic Monitoring and Analysis (NTMA) applications [5]. The data are

processed in the order of sliding windows where SQL queries are defined to be ap-

plied to the content of each window. These query jobs are controlled by a scheduler.

In addition, a classification plugin is available that connects the DBStream to the

WEKA toolkit5. Using this module, they classify Machine-to-Machine (M2M) traf-

fic in a cellular network. They compare DBStream to Apache Spark in this specific

scenario. Their system is a data stream management system, but the provided ML

is not streaming itself.

Le et al. demonstrate the application of evolutionary solutions to Insider threat

detection under stationary and non-stationary data assumptions [78]. In the non-

stationary data assumption, the framework of this thesis is utilized.

Some works focus on benchmarking the streaming classification ML algorithms pro-

vided by the MOA open-source toolset. Desale et al. benchmark four streaming

classification algorithms in intrusion detection on the NSL-KDD dataset [34]. They

end up with Naive Bayes and Hoeffding Tree as the best-performing algorithms. Mor-

gan et al. [90], likewise, benchmarked MOA classification algorithms’ performances

on publicly available network botnet datasets. The algorithms are evaluated against

four sets of data: KDD Cup’99, two sets of NIMS collections6 and ISOT 7.

Several works benchmark machine learning classification algorithms in a dis-

tributed processing architecture for Intrusion Detection purposes. Gupta et al. use

the Apache Spark toolset in a batch mode to benchmark several classification al-

gorithms in the MLlib library of Apache Spark8 on detecting intrusions in network

5https://www.cs.waikato.ac.nz/ml/weka/
6https://projects.cs.dal.ca/projectx/data/NIMS.arff.zip
7http://www.isot.ece.uvic.ca/dataset/isot_botnet.php
8http://spark.apache.org/

https://www.cs.waikato.ac.nz/ml/weka/
https://projects.cs.dal.ca/projectx/data/NIMS.arff.zip
http://www.isot.ece.uvic.ca/dataset/isot_botnet.php
http://spark.apache.org/

19

traffic [54]. The KDD Cup’99 9 and NSL-KDD datasets are used for their evaluations.

Belouch et al. apply the similar benchmarking of five algorithms in Apache Spark on

the UNSW-NB15 dataset [10]. Vimalkumar et al. use Apache Spark for detecting

intrusions in smart grids [109]. Manzoor et al. followed the same approach as [10]

but with a different tool, Apache Storm, in a batch learning mode [84]. The above

studies are based on a batch learning process in which the model is then applied to

a huge volume of data for classification.

Mylavarapu et al. use Apache Storm as the streaming platform to detect attacks in

network traffic [91]. Corner Classification (CC4) and Multi Layer Perceptron (MLP)

algorithms are used to detect unknown and known attacks, respectively. The models

are trained prior to the utilization by the Storm streaming toolset. Wang et al. use

Apache Storm to implement their own methodologies on the streaming architecture

[113]. They target two types of intrusions: 1) a small number of large network flows,

and 2) a large number of small network flows. Three methods are proposed, and their

results are aggregated to get a final decision. Both these methods apply an ML model

on streaming data for classification. The former uses a trained model for this purpose

whereas the latter approach utilizes streaming learning methodologies as well, but it

is not open-source.

There are several tools that provide opportunities to process data in a streaming

mode in which network managers base their utilization and implementation on them.

A review of the tools in distributed streaming processing based on Map-Reduce (in-

troduced by Google [62]) is found in [9]. Based on available platforms that provide the

opportunity to do stream processing, the work of Z̆liobaitė et al. [106], available in the

MOA toolset, is extended to be embedded to the distributed streaming architectures

that are commonly used as network tools to provide streaming ML algorithms on

network traffic. StormMOA is a project that combines MOA with Apache Storm to

provide a scalable implementation of streaming ML frameworks10. Apache SAMOA

is an open-source framework that provides mining of big data streams [12, 74]. It can

be run on top of Apache Flink/Storm/Samza tools. There is also a demonstration of

StreamDM which provides streaming algorithms on top of Apache Spark Streaming

9https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
10StormMOA: https://github.com/vpa1977/stormmoa

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/vpa1977/stormmoa

20

[11]. All these implementations were originally based on MOA ML algorithms, which

the proposed algorithms in this thesis are evaluated against and compared to.

Moreover, Casas et al. introduce a big data analytics framework named BigDAMA

for network monitoring applications [21]. Their system uses Apache Spark Streaming

for stream-based analysis, Apache Spark for batch analysis and Apache Cassandra

for query and storage. They test their system to utilize five models to detect five

different attack types on MAWILAB network datasets [46]. They build a binary-based

detection on each of the attacks in a 10-fold cross validation. The ten top features

from the feature correlation graph are extracted and used out of all 245 features

available. Cermak et al. proposed a pattern-matching framework based on Apache

Spark Streaming to detect SSH authentication attacks [22]. Their framework keeps

known patterns for the specific SSH attacks and processes flows of data to find these

malicious patterns. They broaden their matching scheme by employing a similarity-

based approach to detect new attacks as well. No learning process is involved in this

approach, and fixed patterns are defined prior to the stream processing.

Some semi-supervised solutions are also provided for network streaming data.

Raja et al. use an ensemble of similarity-based and online GA classifiers using a slid-

ing window over the network packet stream [95]. They apply their proposed method to

detect intrusions in KDD Cup’99. Chen et al. utilize the Flume and Spark streaming

framework to perform network monitoring and intrusion detection [25]. They apply a

combination of streaming K-means and fuzzy C-means to detect abnormal activities.

As mentioned earlier, these solutions are in danger of being misled by adversarial

attacks.

Specific use-cases of streaming processing are available that specifically operate on

graph algorithms [65, 26]. Example applications of this area include social networks,

sensor networks and traffic flow networks where the relationships in the data generated

are represented as graphs. GraphX [118] and Giraph [27] are Graph APIs that provide

the opportunity to work on graph stream applications in Spark Streaming/Flink and

Storm, respectively. Video streaming classification topic, is another available topic

in the context of streaming classification. This relates to algorithms that stream the

21

content of a video online [39, 40, 114, 92]. The focus of this thesis is far from these

two specific areas.

Tables 2.1 and 2.2 represent the overall review of the existing works on streaming

processing from a network perspective. This table demonstrates that there is still

a gap in the network area to actually apply streaming ML classification algorithms

that could encounter the constraints associated with streaming data. Either they

use the streaming tools with the idea of stationary data in which an off-line model

can be applied throughout the whole stream, or there is no learning included, and

SQL-based queries or statistical operations are performed on the stream of data for

network monitoring and analytical purposes.

22

Table 2.1: Existing network related works (architecture and learning process), Arch.:
Architecture, Data P.: Data Processing, MC: Multi-Class, CD: Change Detection,
DI: Data Imbalance, LB: Label Budget

R
ef.

M
L

T
y
p

e
A

rch
.

D
ata

P
.

L
earn

in
g

L
earn

in
g

p
rop

erties
M

C
C

D
D

I
L

B

[8
5
]

C
la

ssifi
ca

tio
n

C
en

tralized
S

tream
S

tream
×

X
×

×
[5

0
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

N
/A

×
×

×
×

[5
]

C
la

ssifi
ca

tio
n

C
en

tralized
S

tream
B

atch
×

×
×

×
[7

8
]

C
la

ssifi
ca

tio
n

C
en

tralized
S

tream
S

tream
X

X
X

X
[3

4
]

C
la

ssifi
ca

tio
n

C
en

tralized
S

tream
S

tream
×

X
×

X
[9

0
]

C
la

ssifi
ca

tio
n

C
en

tralized
S

tream
S

tream
X

X
×

X
[5

4
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

B
atch

×
×

×
×

[1
0
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

B
atch

×
×

×
×

[1
0
9
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

B
atch

X
×

×
×

[8
4
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

B
atch

×
×

×
×

[9
1
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

S
tream

×
X

×
×

[1
1
3
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

S
tream

X
×

×
[2

1
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

B
atch

×
×

×
×

[2
2
]

C
la

ssifi
ca

tio
n

D
istrib

u
ted

S
tream

N
/A

×
×

×
×

[9
5
]

C
lu

sterin
g

C
en

tralized
S

tream
S

tream
X

X
×

×
[2

5
]

C
lu

sterin
g

C
en

tralized
S

tream
S

tream
×

X
×

×

23

Table 2.2: Existing network related works (application and metric), Sec.:Security,
Mon.:Monitoring, BD,ID,ITD:Botnet,Intrusion,Insider Threat Detection

R
ef.

A
p

p
lica

tio
n

O
p

en
S

ou
rce/T

o
ol

D
ataset

M
etric

[8
5
]

S
ec.

(B
D

)
×

/
(N

/A
)

P
2P

B
otn

et
(p

rivate)
[5

0
]

S
ec.

(B
D

)
×

/
H

ad
o
op

P
2P

B
otn

et
(p

rivate)
[5

]
M

o
n

.
X

/
D

B
S

tream
M

E
T

A
W

IN
[7

8
]

S
ec.

(IT
D

)
×

C
E

R
T

[3
4
]

S
ec.

(ID
)

X
/
M

O
A

N
S

L
-K

D
D

A
cc,K

ap
p

a,T
im

e
[9

0
]

S
ec.

(B
D

)
X

/
M

O
A

K
D

D
C

u
p

’99/N
IM

S
/IS

O
T

A
cc,D

r
[5

4
]

S
ec.

(ID
)

X
(S

p
ark

)
K

D
D

C
u

p
’99/N

S
L

-K
D

D
A

cc,D
r,S

p
ecifi

city,T
im

e
[1

0
]

S
ec.

(ID
)

X
(S

p
ark

)
U

N
S

W
-N

B
15

A
cc,D

r,S
p

ecifi
city,T

im
e

[1
0
9
]

S
ec.

(ID
)

X
(S

p
ark

)
sy

n
ch

rop
h

asor
(p

rivate)
A

cc,F
R

,D
r,S

p
ecifi

city,T
im

e
[8

4
]

S
ec.

(ID
)

X
(S

torm
)

K
D

D
C

u
p

’99
C

on
fu

sion
m

atrix
[9

1
]

S
ec.

(ID
)

×
(S

torm
)

IS
C

X
2012

F
P

,F
N

[1
1
3
]

S
ec.

(ID
)

×
(S

torm
)

C
E

R
N

E
T

2+
an

om
aly

m
ean

,std
[2

1
]

S
ec.

(ID
)

X
(S

p
ark

S
tream

in
g)

M
A

W
IL

A
B

R
O

C
,T

im
e

[2
2
]

S
ec.

(ID
)

X
(S

p
ark

S
tream

in
g)

S
tream

4F
low

(p
u

b
lic)

A
cc,P

rec,R
ecall

[9
5
]

S
ec.

(ID
)

×
K

D
D

C
u

p
’99

T
P

R
,F

P
R

,P
rec,R

ecall,F
-m

easu
re

[2
5
]

S
ec.

(ID
)

×
K

D
D

C
u

p
’99

R
O

C
,T

im
e

24

2.4 Summary

The related works on building models for streaming data classification and the role of

streaming processing in the network field are reviewed in this chapter. The review is

classified into three main types of solutions: 1) Non-evolutionary algorithms, 2) Evo-

lutionary solutions, and 3) Network applications. The summary of the investigations

comes next.

Non-evolutionary streaming classification solutions are reviewed based on the main

characteristics of streaming processing challenges: 1) Change detection, 2) Label bud-

get, 3) Class imbalance, and 4) Others. The first category investigates the solutions

provided to detect the changes throughout the stream to be able to update or replace

the model. A variety of changes in data or their associated labels could occur that

some research studies have deficiencies in detecting. This is a crucial part of stream-

ing processing in non-stationary areas, specially in the network field.

Secondly, active learning methods are introduced in which implicitly only a fraction

of the data is queried for their true labels. These algorithms decouple the stream

complexity from the model evaluations by keeping a subset of data from the stream.

They repeatedly update this subset with the content from the stream. The data are

considered uniformly balanced in these solutions.

The third category in this group of algorithms focuses on dealing with imbalanced

data in the stream. Under or oversampling solutions are part of these solutions. The

research studies in this category consider that data labels are available for all data

throughout the stream. In reality, this is not feasible, as the labelling process is costly.

Last, another challenging characteristic of the streaming classification is dropping in

and out of the stream. The access for data labels are for-granted in these solutions.

Semi-supervised solutions are also provided that target the class imbalance and non-

stationary data, but they are shown to be susceptible to adversarial attacks.

All solutions in the non-evolutionary algorithms provide the requirement of streaming

processing to some extent, but no work is available that gathers them all in one place.

Evolutionary methods are not as extensive as non-evolutionary methods in this

area. Some works are utilized in areas such as financial and forecasting fields where the

label information is available after a period of time and the labels are fully available

after a delay. The earlier GP works that this thesis is based on, started with change

25

detection in streaming scenarios and reached a point of applying a label budget on

top. In these previous solutions, class imbalance is not considered a factor. Moreover,

there are approaches such as LCS and swarm intelligent systems that consider some

stream challenges.

Network-oriented solutions regarding streaming data are then introduced exten-

sively. Research studies in this category are mostly focused on the currently used and

applied systems on the network traffic in a streaming mode. The network stream-

ing applications are divided into four main categories: 1) Monitoring, 2) Statistics,

3) Security, and 4) Video/Games. The streaming tools are also categorized in two

main centralized and distributed groups, where each could also be classified in a

Batch and Stream mode. The investigation on network streaming tools reveals that

they mainly provide a framework for streaming processing of network traffic, but the

models are fixed and pre-trained before being applied on the stream. These solu-

tions are only applicable in stationary environments (usch as Monitoring, Statistics

and Video/Games), but in a non-stationary stream (Security), they are not appli-

cable because they cannot update its model based on the new changes. Few works

have applied stream learning models on streaming data, but they are not available as

open-source solutions. Therefore, the network solutions are either not using streaming

learning models or not available in open source solutions.

In summary, general streaming solutions focus intensely on the streaming pro-

cessing of data and building streaming models. However, they do not consider all

streaming classification constraints in one place. In addition, evolutionary solutions

are not extensively researched in this regard. On the other hand, network stream-

ing platforms provided for streaming processing are mostly focused on speeding up

the process of predicting in real-time without considering the explicit challenges as-

sociated with streaming classification, e.g. change detection, class imbalance, label

budget, etc. These shortcomings necessitates a framework as an integrated solution

to provide the main streaming classification constraints, which are pre-requisite of

network streaming processing.

In the next chapter, the proposed GP active learning framework is explained to

provide a desirable system. This solution specifically considers non-stationary data,

class imbalance, and label budgets in comparison with other requirements for stream

26

classification such as any-time operation, one-time pass, partial observability and

classes (re)appearance. It also prevents the adversarial attacks by keeping the human

expert in the loop for the learning process.

Chapter 3

Framework for Streaming GP Teams

3.1 Streaming Data Environment Under a Label Budget

Streaming algorithms are either categorized as online [88] or incremental [93]. Online

algorithms perform on the the content of the sliding window of sequential instances in

an exemplar-wise manner.1 On the other hand, incremental learning will perform on

the ‘chunks’ of data from the non-overlapping window where the latest content of the

stream is available. All the queries and processes take place in that specific window

location (sliding or non-overlapping). These criteria will ensure that the implicit

memory constraint of streaming processing is fulfilled. In this thesis, the incremental

non-overlapping approach is utilized (Figure 3.1). The incremental approach is used

to require low label budgets. The label budget specifies the window size. The lower

the label budget is, the larger the size of the window would be. For an exemplar-wise

algorithm, the window size needs to be one, so it is useful when the ground truth is

available for all data, which is not the case in practice most of the time.

The stream is defined as a d -dimensional continual sequence of records ..., x(t), x(t+

1), ... where t represents the temporal index. Streaming data implies that t → ∞.

Each exemplar in the stream has a (true) label, d(t), which is not available until

explicitly requested. The label is requested under two conditions: 1) Only from the

current window, W (i) and 2) Based on the label budget criteria, β. The β = 0.5

label budget declares that half of exemplars (50%) in the stream could be asked for

their true labels.

The operation under label budget criteria requires a sampling policy, S, to be

available that identifies which exemplars are to be selected for true label inquiries.

This policy only works on the current window location, W (i), and an exemplar could

not be revisited once a decision has been made. However, anytime operation ensures

1As in FIFO data structure, ‘First-in-First-out’ queuing, where one exemplar enters the queue
from one side pushes the oldest exemplar out from the other side.

27

28

that for each exemplar, x(t), in the current window, a label prediction, y(t), is made

in (real-time) by the streaming classifier. A population-based paradigm is used (GP

in this research), which implies that a champion classifier (i.e. an individual from

the population) has to be available to predict the labels before they appear in the

window. Figure 3.1 illustrates the relation of these concepts in this work.

The above formulation of the streaming classification task implies that:

• All of the data in the stream have their labels predicted firstly by the champion

classifier. Any changes to the GP population takes place only after the champion

classifier suggests its labels, y(t);

• The training phase is an interactive process in which the stream-GP framework

decides which exemplar’s true label is requested under the label budget, β.

• Records arrive based on the properties of the underlying process, so class balance

is not likely met within the local region of the stream.

• The champion is changed by the stream-GP framework but once the change

takes place, the new champion does not revisit the previous labelling decision(s).

3.2 Overall Framework

The overall framework is assumed to be what is depicted in Figure 3.1. The Sampling

policy specifies a Gap number of records to be asked for their true labels, d(t), under

label budget constraint (β). After their true labels are identified, they are replaced

with some records in the Data subset (DS(i)). This is the Archiving policy’s duty

to mark a fixed number of records in the Data Subset to be replaced by the new

labelled records. The Data Subset provides the opportunity to introduce biases to

the representation of classes.

An ‘incremental’ learning process is assumed in which the Data Subset decouples

the fitness evaluation from the cardinality of the stream. This implies that only after

the ‘Gap’ replacement in the Data Subset can the fitness evaluation be performed.

Thus, DS(i) denotes the point where the replacement happens and an updated Data

Subset is available. A τ number of GP generations are performed and a new champion

29

individual is selected for future predictions. Streaming operations begin with a cold

start that is necessary to identify the first champion individual. Note that the rate

of champion identification does not exceed the DS updates, but it is not necessarily

the same.

Figure 3.1: Overall Stream-GP framework. Sampling policy, (S) determines which
exemplars will be quarried for their true labels (under label budget constraint β).
Archiving policy, (A) keeps a finite size Data Subset, (DS), where ‘Gap’ records are
subject to replacement. On the update of DS with Gap(i) labelled records, τ gener-
ations of GP are performed. At anytime, a single champion individual is available to
predict the labels, y(t), which may influence the Sampling policy operation.

A Simbiotic Bid-Based (SBB) formulation is assumed for defining the solution in

the form of GP teams [79]. Such a framework co-evolves GP individuals through a

bidding process that identifies the context for an action, class label in this study. Each

program is associated with an action that is assigned randomly at the initialization

step. Teams and programs are separate independent populations. There are only

two constraints available in building a team: 1) At least two programs should be

members of a team, and 2) At least two different actions should be available among

the same team members (programs). The SBB framework can be used for multi-class

classification without any modification.

Previous works have demonstrated that the SBB framework is more effective than

monolithic (canonical) GP solutions on off-line classification tasks [80] and streaming

classification [107]. The focus of this thesis is on defining Sampling and Archiv-

ing policies to make the framework suitable to be applied in network applications,

specifically the network security field. The proposed sampling and archiving policies

30

are independent of the underlying GP framework. A detailed description of SBB

architecture and how it works is found in Section 3.6.

Sections 3.3 and 3.4 explore the definitions of the proposed Sampling and Archiv-

ing policies. One main characteristic of network security traffic, as our target applica-

tion, is its very imbalanced nature. The attack percentage is highly low in comparison

to the normal transactions but costly to dismiss as well. Therefore, the goal is to build

classifiers that are robust to the imbalanced stream of data. This robustness could

be introduced to the classifier by introducing a bias to the content of the data subset

in an active learning methodology. Moreover, it is notable that there is always a

trade-off between keeping the data subset content balanced and losing the sensitivity

towards the most frequent records. The theme of the research is to maintain this bal-

ance as much as possible and represent various policies with regard to the evaluation

of this balance. Finally, Section 3.5 explains the mechanism of champion individual

identification. The champion individual is then utilized to predict label y(t) for a

given x(t).

3.3 Sampling Policy

The sampling policy determines which exemplars from the window (W (i)) are to be

selected under the label budget constraint to request their true labels. In this section,

the proposed sampling policies used in this thesis are explained.

A uniform sampling policy is assumed as the baseline or control approach.

This policy samples data from the (non-overlapping) window, W (i), based on uniform

probability before any label information is available. In other words, the record x(t)

is sampled uniformly with β probability from the window W (i). Previous works have

shown that this policy as a start point is not necessarily better when more complex

algorithms are encountered [124, 106].

On the other hand, another sampling policy is introduced that takes advantage of

GP champion prediction in favour of weighting the records for sampling. In this case,

the GP champion individual at the time, gp∗, suggests its label for a record in the (non-

overlapping) window. Once the champion individual predicts a record as one of the

under-represented classes (based on the content of the data subset), it is prioritized by

the sampling policy to be selected (subject to label budget β). This helps to promote

31

records that could possibly lead the process to lean toward re-balancing the content

of the data subset, DS(i). As the performance of the Stream-GP classifier relies on

the distribution of classes in the data subset, this sampling policy, which actively

addresses the issue, is proposed without relying on the true label information. The

proposed sampling policy is referred to as biased sampling policy hereafter.

Algorithm 1 introduces a summary of the process in a pseudo-code format. The

content of the previous Data Subset, DS(i − 1), is required to be characterized be-

forehand. Let C denote the number of classes currently present in DS(i − 1) and c

be the set of classes appearing with frequency ≥ ‖DS‖
C

in DS(i − 1), where ‖DS‖ is

the size of the Data Subset (identifies the over represented class(es)).

The content of the non-overlapping window, W (i), is marked based on the pre-

dicted label, y(t) /∈ c (Step 1). If less marked instances are available than the capacity

of Gap, the true labels of the marked ones are requested and placed in the Data Subset

(Step 2). The rest of the Gap capacity is filled with random sampling of non-marked

records from the window, W (i), if there is any (Step 2b). In case more instances are

marked than the capacity of Gap, then the selection happens in a roulette wheel of

the marked ones from W (i) (Step 3). The roulette wheel samples from W (i) with th

frequency inversely proportional to (marked) DS(i− 1) class content.

The only exception is in the case of a cold start where no GP champion individual

is available to suggest its predictions. In this case, the uniform sampling policy is

considered for W (i == 0).

3.4 Archiving Policy

In active-learning architecture (Figure 3.1), a Data Subset, (DS), is utilized with

a limited capacity. The data subset keeps the training instances, the Stream-GP

classifier is updated based on them. Once it gets full, a mechanism to free up Gap

records is necessary to let the content be updated with the new records from the

stream from W (i). This is the Archiving Policy that determines which exemplars

from the data subset are to be replaced by the newer records. Again, two policies

are considered for this purpose. The uniform archiving policy is assumed as the

base/control case where Gap records are identified for replacement from DS(i) with

uniform probability.

32

Algorithm 1 Biased Sampling Policy. Let rnd(A) return a randomly sampled in-

stance from set A without a replacement. roulette(A, b) returns a randomly sampled

instance (without a replacement) from the subset A∧ b with frequency inversely pro-

portional to DS(i−1) class content. Gap(i) is the set of records transferred to DS(i)

(Figure 3.1) at a non-overlapping window location i.

Input: The current content of the (non-overlapping) window W (i) and predicted

labels, y(t). The set c of over represented classes from the Data subset DS(i− 1);

Initial state: Gap(i) = ∅; cnt1 = cnt2 = 0

1. For all t ∈ W (i)

(a) IF y(t) /∈ c THEN Mt = 1 AND cnt1 = cnt1 + 1

ELSE Mt = 0

2. IF cnt1 ≤ Gap THEN

(a) For all t in which Mt == 1

i. Request d(t)

ii. Gap(i) = Gap(i) ∪ (~x(t), d(t))

(b) WHILE cnt1 < Gap

i. t = rnd(W (i)) subject to Mt == 0

ii. Request d(t)

iii. Gap(i) = Gap(i) ∪ (~x(t), d(t))

iv. cnt1 = cnt1 + 1

3. ELSE

(a) For any t in which Mt == 1

i. (~x(t), d(t))← roulette(W (i),Mt)

ii. Request d(t)

iii. Gap(i) = Gap(i) ∪ (~x(t), d(t))

iv. Mt = 0, cnt2 = cnt2 + 1

(b) Repeat Step 3a WHILE cnt2 < Gap

33

The biased archiving policy is defined to incrementally (re)balance the content

of the data subset. Once a record is placed in the data subset, its true label is revealed.

The label information is utilized to proportionally remove the over-represented records

in the data subset. The detailed process is summarized in 2. Firstly, all the records

in the data subset are grouped into class categories and ranked in a descending order

based on their ‘age’ (Step 1). The ‘age’ of a point indicates the number of generations

since it is added to the point population. The number of records, ck, for each class in

counted (Step 2a). The number of extra records that exceeds the count of a class in an

ideal balanced data subset, i.e. DS−Gap
C

, for each class is calculated (Step 3a). Under-

represented classes are not targeted for record deletion (Step 3b), hence additional

records can be accumulated. For each class, over represented records (relative to the

ideal distribution) are removed from the data subset where older classes are prioritized

(Step 4a). Finally, the content of DS(i−1) after removal of the Gap records is added

to the DS(i).

3.5 Champion Classifier Identification

A champion classifier, gp∗, is identified by applying a robust performance metric to

evaluate the operation of the population based on the content of the current Data

Subset, DS(i). The data subset content is the only source with true labels. The

performance metric in this thesis is assumed to be multi-class Detection rate (DR),

or

DR =
1

C

∑
DRC

j=1 and DRj =
tpj

tpj + fnj
(3.1)

where C is the count of classes present in DS(i); tpj and fnj are the counts of true

positive and false negative for class j, again with respect to the class distribution

present in DS(i).

The champion classifier could be changed based on the content of the data subset

(i.e. relative to the content of DS by index i). This rate never exceeds the data

subset update rate, which is another reflection of incremental and online algorithms.

Once the first champion classifier is identified, the anytime operation guarantees that

a champion classifier is available at all t times. Therefore, the delay in introducing

34

the new champion will not interrupt the labelling process in the stream.

Algorithm 2 Biased Archiving Policy. Let aj be the ‘age’ of record j in DS(i− 1),

where this is a scalar count for how long record j has appeared in the Data Subset.

ck is a count of the number of class k instances in DS(i − 1). C is the number of

different classes currently represented in DS(i−1). T is the total number of instances

removed from the over-represented classes.

Input: Set of labelled instances Gap(i) and the last available Data Subset, DS(i−1)

Initial state: T = 0

1. For all j ∈ DS(i− 1) identify class and rank w.r.t. record ‘age’ aj;

2. For each class k present in DS(i− 1)

(a) Count the number of records with class k in DS(i−1). Let ck be the count

for class k.

3. For k = 1 to C

(a) removek = ck − DS−Gap
C

(b) IF removek > 0 THEN T = T + removek

ELSE removek = 0

4. For k = 1 to C

(a) Delete the oldest Gap× removek
T

records of class k from DS(i− 1)

5. DS(i)← Add(DS(i− 1), Gap(i))

3.6 Symbiotic Bid-based GP

The Symbiotic Bid-Based (SBB) GP provides a solution in a team formulation. In

this formulation, the task could be broken down into smaller ones and separately

solved by team members. The SBB GP consists of two separate populations, teams

and programs, with a symbiotic relation between them [60]. Linear GP formulation is

35

assumed in the program population for the sake of ease where the ‘intron’ codes could

be identified and skipped during the fitness evaluation [16]. Each program produces

a scalar value named ‘bid’ in this context. The bid is representative of the program

performance based on the fitness evaluation. Moreover, each program is associated

with an action, a, which in this case a = 1, 2, ..., C is the class label and C is the

number of classes. The action is initially assigned to the program randomly.

Figure 3.2: Symbiotic Bid-Based GP. Each team indexes a different combination of
programs, but the same program may appear in multiple teams. The action (class
label) of a program is expressed through colour.

The team population represents similar identification as of the variable length GA.

Each team tmi contains a list of indexes pointing to the programs in the program

population. For a given record ~x(t) and a team tmi, all the programs in the team are

evaluated and their ‘bid’ is announced. The program with the highest bid indicates

the ‘winning’ program in team tmi for the record ~x(t). The winner program has

the right to suggest its action, class label here. As the team is represented like a

variable length chromosome, the team size and also the team complement evolve.

This flexibility is of high importance, as no prior decision on the decomposition of

the task is necessary. In a three-class classification problem, even the requirement

to have at least three distinct programs introduces a poor learning bias. Instead, in

SBB, each team evolves so it firstly identifies the ‘easiest’ classes and then adds the

complex ones to its solution complements. Thus, it is common to share the same

program in multiple teams. The only two constraints are: 1) each team has at least

36

two programs, and 2) two different actions should be present in each individual team.

The fitness evaluation is calculated at the team population level. All programs

across the team population are evaluated, then sorted based on the fitness value and

Tgap programs from the bottom of the list are deleted. The same number of programs

are then added to the team population from the offsprings of the surviving individ-

uals (i.e., a breeder model of selection/replacement). Before team reproduction, the

individuals from the program population are inspected to find any program(s) that do

not receive any index from a team. These individuals are removed from the program

population. Variation operations operate hierarchically and probabilistically delete or

clone (add) programs (Table 4.10). Only cloned programs see further modifications

and only these programs are added to the new teams.2 This way, there is no disrup-

tion to the operation of the surviving programs in generations. Also, it implicates

that only the team population is limited in size, explicitly limited to Psize, and there

is no limitation on the number of individuals in the program population.

3.7 Summary

An active learning framework based on streaming GP teams is proposed. This solution

is considered an incremental learner working on a non-overlapping window. limiting

the access of the streaming classifier to the window location guarantees the memory

limitation of streaming data processing. The active learning method keeps a limited

capacity of stream content as a data subset. Two policies are needed to change the

content of a data subset: a sampling policy and an archiving policy. The Sampling

policy is based on a label budget constraint. These two policies could be utilized to

overcome the imbalanced stream problem by introducing a more balanced data subset

decoupled from the stream content. The focus of this thesis is on tuning these two

policies and trying to benchmark the different combinations of them to determine

how they affect dealing with the imbalanced stream of data in network applications

and impact the overall performance of the Stream-GP classifier. The definition of the

policies and the process of selecting a champion classifier to predict the upcoming

data are discussed in this chapter. In addition, a description of the Simbiotic Bid-

Based (SBB) GP is also provided to give a rough idea of the teaming GP used by the

2For example, having the program action changed, or instructions randomly modified.

37

framework in this area. The Stream-GP framework alongside the mentioned policies

define a whole system that could deal with the streaming challenges in an aggregated

approach.

The definition of comparator algorithms, datasets, metrics and other settings are

explained in detail in the next chapter.

Chapter 4

Evaluation methodology

In this chapter, the definitions of all the parameters, datasets and algorithms used to

evaluate the performance of the proposed system are given.

4.1 Datasets

In this section, the network datasets used to evaluate the streaming systems are

introduced.

4.1.1 CTU-13

The CTU-13 dataset is a real-world public dataset that has been collected in the

University of Czech Republic [49]. The dataset consists of four main classes: Back-

ground, Normal, Botnet and Botnet C&C. The dominant class is the Background

(Table 4.2), which demonstrates that the network traffic has been captured in a real-

world scenario. In the past, Normal traffic was characterized as the most difficult

to express accurately, which results in using benchmark datasets where Normal de-

tection is much easier than in real-world situations, see for example [83]. It is then

difficult to label Normal and Attack behaviours because the Background traffic may

actually consist of attack behaviours as well.

The solution provided by the network community in this regard is to label all

the network traffic as ‘Background’. Then apply specific filters that clearly identify

Normal behaviour [97, 99]. Any portion of Background traffic that corresponds to

the Normal filters is labelled as Normal. Then, the attacks using (Botnet) tools are

injected to the (virtual) network from specific IP addresses, which explicitly identifies

the attack behaviour. In the specific case of CTU-13, the Botnet attacks are labelled

separately as Botnet and Botnet C&C, with the latter specifically identifying the

Botnet Command and Control signals. The attack is first run using Botnet C&C

signals ruled by Botnet masters to command the slaves to perform specific types

38

39

Table 4.1: Argus flow features for the CTU-13 dataset

Feature Description
stime Start time
ltime End time
dur Duration
saddr Source IP address
sport Source port number
proto Protocol
dir Direction of transaction
daddr Destination IP address
dport Destination port number
State Transaction state
SToS Source ToS byte value
DToS Destination ToS byte value
pkts Total transaction packet count
bytes Total transaction bytes
srcBytes Total source transaction bytes

of attacks on the victims’ systems. Therefore, it is undeniable that the sooner the

Botnet masters are detected, the lower the damage costs will be.

All Thirteen datasets in the CTU-13 collection [49] will be used in this research;

and are hereafter referred as Capture 1 to 13.1 Botnet and Botnet C&C classes

are combined in the case of Captures 3, 4, 10, 11, 12.2 Each dataset consists of

network flow information with 15 features extracted per flow by the Argus network

flow analyzer.3 The flow features with their corresponding description are listed in

Table 4.1.

However, out of 15 features, the start/end times, State, IP addresses and Port

numbers are excluded, as they are not reliable sources of information. IP addresses

can be spoofed by attackers to operate malicious behaviours or by proxies in legitimate

utilization to protect user identities on the Internet. Port addresses also could not

be assured as belonging to a certain service, as many applications (Voice over IP,

social media and network-based games) dynamically change their corresponding port

1https://mcfp.felk.cvut.cz/publicDatasets/CTU-13-Dataset/CTU-13-Dataset.tar.bz2
2The combined label is used in the case of data sets in which the Botnet C&C class represents

less than 0.01% of the original data set.
3http://qosient.com/argus/

https://mcfp.felk.cvut.cz/publicDatasets/CTU-13-Dataset/CTU-13-Dataset.tar.bz2
http://qosient.com/argus/

40

Table 4.2: Generic properties of the CTU-13 streaming datasets. N cardinality, and
k is the total number of classes over the entire duration of the stream. Each dataset
has D = 8 flow attributes. Classes are represented in the order: Background, Normal,
Botnet and Botnet C&C. A combined Botnet/C&C label was assumed in the case of
datasets in which the C&C class represents less than 0.01% of the original dataset
(Capture 3, 4, 10, 11, 12).

Dataset Botnet Botnet Architecture N ≈ Class Distribution (%)
Capture 1 Neris Centralized 2,824,637 [97.47, 1.08, 1.438, 0.01]
Capture 2 Neris Centralized 1,808,123 [98.34, 0.5, 1.12, 0.04]
Capture 3 Rbot Centralized 4,710,638 [96.95, 2.48, 0.57]
Capture 4 Rbot Centralized 1,121,077 [97.52, 2.25, 0.23]
Capture 5 Virut Centralized 129,833 [95.70, 3.6, 0.67, 0.02]
Capture 6 Menti Centralized 558,920 [97.83, 1.34, 0.79, 0.04]
Capture 7 Sogou Centralized 114,078 [98.47, 1.47, 0.03, 0.02]
Capture 8 Murlo Centralized 2,954,230 [97.33, 2.47, 0.17, 0.04]
Capture 9 Neris Centralized 2,087,508 [89.7, 1.44, 8.72, 0.14]
Capture 10 Rbot Centralized 1,309,792 [90.67, 1.21, 8.12]
Capture 11 Rbot Centralized 107,251 [89.85, 2.54, 7.61]
Capture 12 NSIS.ay P2P 325,472 [96.99, 2.34, 0.657]
Capture 13 Virut Centralized 1,925,150 [96.26, 1.66, 2.05, 0.03]

numbers when they are blocked or unavailable. Therefore, classifiers could not rely

on this information due to retaining their ability to generalize in real world.

From a network security perspective the following malicious behaviours are present

in each group of datasets based on the Botnet type activated on there:

Captures 1, 2, 9: consist of instances of the Neris Botnet, hence traffic content per-

taining to Internet Relay Chat (IRC), spam, click fraud and scanning activities

are explicitly present.

Captures 5, 13: consist of instances of the Virut Botnet, hence traffic content per-

taining to Distributed Denial of Service (DDoS), spam, fraud and data theft

attacks are explicitly present.

Capture 6: consists of instances of the Menti Botnet, hence traffic content pertain-

ing to identity theft and login credentials are explicitly present.

41

Capture 7: consists of instances of the Sogou Botnet, hence traffic content pertain-

ing to spam and popup adware to collect personal information are present.

Capture 8: consists of instances of the Murlo Botnet, hence traffic content pertain-

ing to the use of scanning activities and proprietary mechanisms for establishing

C&C.

Captures 3, 4, 10, 11: consist of instances of the Rbot Botnet, hence traffic con-

tent pertaining to IRC and Internet Control Message Protocol (ICMP) based

DDoS attacks are explicitly present.

Captures 12: consists of instances of the NSIS.ay Botnet, hence traffic content per-

taining to identity theft and login credentials by using extra payloads are ex-

plicitly present.

Table 4.2 depicts how highly imbalanced the datasets are, as all but the major class

appear and disappear throughout the course of the stream (Section 5.1.6).

4.1.2 CTU13-mixed

The CTU13-mixed dataset is generated by concatenating CTU-13 traffic captures to

produce a more challenging dataset for the study of multi-bot scenarios. The goal of

generating this dataset is to study how algorithms perform when there is more than a

Botnet behaviour available throughout the course of the stream. To gain this insight,

the order of the Capture files from CTU-13 are arranged in a way to put ‘distance’

between Captures with the same type of Botnet. Thus, as a result, the 13 indepen-

dent CTU-13 datasets are concatenated into a single stream, sequenced as follows:

Capture5 (Virut), Capture6 (Menti), Capture3 (Rbot), Capture1 (Neris), Capture4

(Rbot), Capture7 (Sogou), Capture2 (Neris), Capture10 (Rbot), Capture8 (Murlo),

Capture9 (Neris), Capture11 (Rbot), Capture12 (NSIS) and Capture13 (Virut). The

outcome dataset consists of over 19 million network flows and 7 different types of

Botnet. Moreover, more than 95% of the dataset are ‘Background’ traffic in which,

conversely, other classes are considered minor classes (Table 4.3).

42

Table 4.3: Generic properties of the CTU13-mixed dataset. 7 types of Botnet be-
haviour are available. Classes are represented in the order: Background, Normal,
Botnet and Botnet C&C. N is the Cardinality, and the class distribution is expressed
in percentages.

Dataset Botnet N ≈ Class Distribution (%)

Mixed CTU-13
Neris, Rbot, Virut, Menti,

19,175,568 [95.99 , 1.78, 2.2, 0.03]
Sogou, Murlo, NSIS.ay

4.1.3 ISOT

The public ISOT dataset is created based on a combination of several malicious and

non-malicious datasets to represent a semi-real-world Botnet dataset [123]. It con-

tains traces of Storm and Waledac botnets where it is mainly categorized under ‘UDP

flooding’ and ‘SMTP Spam’. Waledac is one of the most prevalent P2P botnets and is

considered the successor of the Storm botnet with a more decentralized communica-

tion protocol. It utilizes HTTP communication and a fast-flux-based DNS network.

The legitimated part is from two sources: the Traffic Lab at Ericsson Research in

Hungary [103] and the Lawrence Berkeley National Laboratory (LBNL) in the U.S.4

The dataset is originally provided in Pcap format with relative information on how

to label the dataset accordingly. To provide the network flow-based version of the

dataset for the research, the Tranalyzer network flow exporter [20] is utilized. After

conversion to the flow version, the labels are assigned based on the provided informa-

tion. Each dataset record consists of 79 features of network flow with the class label.

The first 15% of the dataset is truncated as it contains no attack types.

Table 4.4: Generic properties of the ISOT streaming datasets. N cardinality, and k
is the total number of classes over the entire duration of the stream. Each dataset
has D = 79 flow attributes.

N D k
Class Distribution (%)

[Normal, SMTP spam, UDP flooding]

254,291 79 3 [79%, 13%, 8%]

4LBNL Enterprise Trace Repository: http://www.icir.org/enterprise-tracing

http://www.icir.org/enterprise-tracing

43

Table 4.4 represents the statistics for the ISOT dataset.The list of flow features ex-

tracted for this dataset is available at Section A.1.

4.1.4 NSL-KDD

The NSL-KDD dataset is an improvement of the KDD’99 dataset [105], and it con-

tains the packet-based information of network traffic. The original KDD’99 dataset

contains almost five million connections. Each connection has 41 attributes and a

class type, and some attributes are gathered throughout the time for some specific

lengthy attacks. 22 different attack types are available that can be categorized in

four main categories: 1) DoS (Denial of Service), 2) R2L (Remote to Local), 3) U2R

(User to Root) and 4) Port Scanning (Probe). In NSL-KDD, duplicates are removed

from KDD’99 to minimize the classification biases [105]. Several arrangements of

the dataset are prepared for various learning purposes. For the streaming classifi-

cation, the concatenation of the training partition (KDDTrain+) and test partition

(KDDTest+) is used as a single new dataset in this thesis.

Table 4.5: Generic properties of the NSL-KDD streaming datasets. N cardinality,
and k is the total number of classes over the entire duration of the stream. Each
dataset has D = 22 packet attributes.

N D k
Class Distribution (%)

[Normal,DoS,Probe,R2L,U2R]

148,515 41 5 [52%, 35%, 9%, 3%, ∼1%]

Table 4.5 represents the NSL-KDD classes’ distribution. The two slow, lengthy

types of attacks (R2L and U2R) with the Probe attack types are the minor classes

in this dataset. The list of the features of this dataset is available in Section A.2.

4.2 Comparator Algorithms

Stream-GP is compared to many state-of-the-art classification algorithms, which vary

from streaming learning models to the classical off-line learned models. This section

describes the comparator algorithms solely, irrespective of details such as the evalu-

ation methodology, which will be discussed in Section 4.3. Stream-GP is compared

to two types of algorithms. One group is related to the streaming algorithms, in

which the model is updated throughout the stream based on the content and changes

44

that have appeared throughout the stream. These algorithms are rarely applied on

network streaming traffic. On the other hand, some algorithms are used in network

applications, in which the models are learned off-line and then applied to the stream-

ing network traffic.

4.2.1 Naive Bayes

In both cases of Off-line and Streaming learning models, Naive Bayes is used as

one of the comparator algorithms. The Naive Bayes classifier belongs to the family of

probabilistic classifiers and is based on the Bayes Theorem (Eq. 4.1) with the “naive”

assumption of conditional independence between each pair of features given the value

of the class variable [121].

Let (x1, ..., xn) be the list of attribute values where xi is the value of attribute

Xi. Moreover, C represents the class label where c is its value. The probability of

(x1, ..., xn) belonging to class c is:

P (c|x1, ..., xn) =
P (c)P (x1, ..., xn|c)

P (x1, ..., xn)
(4.1)

for which the naive conditional assumption is

P (xi|c, x1, ..., xi−1, xi+1, ..., xn) = P (xi|c) (4.2)

for all i, the relationship is simplified to

P (c|x1, ..., xn) =
P (c)

∏n
i=1 P (xi|c)

P (x1, ..., xn)
(4.3)

Since P (x1, ..., xn) is a constant value, the following classification rule can be used:

P (c|x1, ..., xn) ∝ P (c)
n∏
i=1

P (xi|c)→ ĉ = argmaxP (c)
c

n∏
i=1

P (xi|c) (4.4)

Now, the Maximum A Posteriori (MAP) estimation can be used to estimate P (c)

and P (xi|c) where the former is the relative frequency of class c in the training set.

The Naive Bayes classifier selects the class label with the highest probability that

results in minimum error.

For the classical utilization of Naive Bayes, all training information is known a

priori, so all the calculations and estimations can be done before the label predication.

45

However, in streaming learning, there is no insight to the upcoming data in the

stream, which leads to applying Naive Bayes incrementally in streaming applications

[96]. The streaming learning process starts with an initial training set and computes

two parameters: prior probability (P (c)) and conditional probability (P (x|c)). As the

stream goes on, these two parameters are updated based on the new training data. So,

the class label prediction is done at any time based on the available information (a.k.a.

the corresponding parameters) to calculate the post probability (P (c|x)). Moreover,

a generalization to the case of operation under label budgets is readily available [106].

4.2.2 Decision Trees

Decision Trees create a hierarchical partitioning of data where at the leaf level, the

partitions are assigned to a class label. The hierarchical partitioning at each level

happens based on “split criteria”. These criteria may be based on a single attribute or

a function of several attributes referred to as univariant and multivarient respectively.

This approach involves maximizing the discrimination between different classes over

different nodes while splitting. This maximization is going to happen if the level

of skew among different classes in a given node be maximized. A measure such as

gini-index or entropy is used to maximize this skew.

In construction of the training model, the splitting happens in a way to minimize

the weighted sum of the gini-index or entropy of the two nodes. The process is

repeated until a termination criterion is met. The obvious termination criterion would

be that all instances of a node belong to one class. More generally, the termination

criterion is either a minimum level of skew or purity or a minimum number of records

exist in a node to prevent overfitting problems. One problem with Decision Trees is

that the time to stop the splitting can not be predicted. Therefore, there are ways of

pruning the tree to avoid overfitting.

Table 4.6 represents the algorithms used in this thesis; their specific description

is next.

CART

The CART, Classification and Regression Trees, algorithm [17] provides a general

framework through which different decision trees can be gained.

46

Table 4.6: Decision Tree Algorithms

Algorithm Type Single/Ensemble
Hoeffding Tree Single
CART univariant Single
Random Forest Ensemble

The CART decision tree is a binary recursive partitioning tree capable of working

with both continuous and nominal attributes as targets. The trees could be stopped

from splitting by a stop criterion or could be expanded completely and pruned af-

terwards. The CART mechanism includes (optional) automatic class balancing and

automatic missing value handling. Some main characteristics of the CART algorithm

are explained briefly in the following [41].

Branching factor: The tree is branched in a binary format (B = 2). The authors

believe that the binary split is preferred, as 1) the data are fragmented more slowly

than the multi-splits, 2) the same split on a value is allowed and can be repeated.

Splitting Rule: It is always in the form of

An instance goes left if CONDITION, and goes right otherwise

where the CONDITION is “attribute Xi <= C” for continuous attributes. For nom-

inal attributes, it is as membership in an explicit list of values.

The Gini impurity algorithm (Eq. 4.5) is used as the metric for splitting criteria

in the training set. It computes how often a randomly selected attribute would be

incorrectly labelled if it was randomly labelled based on the distribution of labels in

the subset.

i(t) = 1−
1∑
t=0

P 2
t (4.5)

The smaller the Gini impurity index is, the better the candidate is to split. Later,

the information gain metric is also added to the algorithm as an optional metric.

In the case of using stop criteria, node splitting continues until it can not create

purer children or a stop criterion is reached. The stopping rules are:

• The depth of the tree reaches the maximum depth.

47

• There is no split candidate, which makes the information gain greater than the

minimum information gain.

• There is no split candidate that produces child nodes that have at least a min-

imum number of instances per node.

The pruning strategy could also be used instead of stop rules. This allows the

tree to completely expand, and then the tree can be pruned afterwards. The pruning

strategy is more costly than the stopping criteria.

Class balancing CART always computes the ratio of class frequency in each

node to the root node. This is equivalent to automatically reweighting the data to

balance the classes. It allows CART to work with imbalanced data.

Greedy Algorithm The decision to split the node is made in a greedy mode in

the direction of minimizing the information gain at a tree node. The optimal solution

at each node is local so there is no assurance that it will lead to a global optimal

solution as well.

Hoeffding Tree

The Hoeffding Tree [38] is designed to work with extremely large (potentially infinite)

datasets. This is unlike classic decision trees like ID3, C4.5 and CART, which assume

that the whole dataset can be stored in the main memory. Loading dataset partially

is possible by considering only a small subset of training data to be kept at each

node. The decision on how many exemplars are needed at each node is based on the

statistical Hoeffding bound.

Consider variable r whose range is R. Suppose n observations of the variable

have been made, and their mean is r̄. The Hoeffding bound states that with 1 − σ
probability the true mean of the variable is at least r̄ − ε, where

ε =

√
R2ln(1/σ)

2n
(4.6)

48

Algorithm 3 Hoeffding Tree algorithm.
Input: S is a sequence of examples, X is a set of discrete attributes, G(.) is a split evaluation

function, δ is one minus the desired probability of choosing the correct attribute at any given node.

Output: HT is a decision tree.

1: procedure HoeffdingTree(S,X,G,δ)

2: Let HT be a tree with a single leaf l1 (the root).

3: Let X1 = X ∪ {Xφ}.
4: Let Ḡ1(Xφ) be the Ḡ obtained by predicting the most frequent class is S.

5: for each class yk do

6: for each value xij of each attribute Xi ∈ X do

7: Let nijk(l1) = 0.

8: end for

9: end for

10: for each sample (x, yk) in S do

11: Sort (x, y) in to a leaf l using HT .

12: for each xij in x such that Xi ∈ Xl do

13: Increment nijk(l).

14: end for

15: Label l with the majority class among the examples seen so far at l.

16: if the examples seen so far at l are not all of the same class, then

17: Compute Ḡl(Xi) for each attribute Xi ∈ Xl −Xφ using the counts nijk(l).

18: Let Xa be the attribute with highest Ḡl.

19: Let Xb be the attribute with second-highest Ḡl.

20: Compute ε using 4.6

21: if Ḡl(Xa)− Ḡl(Xb) > ε and Xa 6= Xφ then,

22: Replace l by an internal node that splits on Xa.

23: for each branch of the split do

24: Add a new leaf lm, and let Xm = X − {Xa}. Let Ḡm(Xφ) be the Ḡ obtained

by predicting the most frequent class at lm.

25: for each class yk do and each value xij of each attribute Xi ∈ Xm − {Xφ}
26: Let nijk(lm) = 0.

27: end for

28: end for

29: end if

30: end if

31: end for

32: Return HT .

33: end procedure

49

The attractive property of the Hoeffding bound is that it is not dependent on the

probability distribution of observations. If G(Xi) is assumed to be the heuristic to

choose test attributes, the goal is to make sure the attribute chosen using n observa-

tions will be chosen when infinite observations are available as well. The Hoeffding

bound guarantees that this will happen.

The algorithm progressively splits the leaves and creates decision nodes, as there

is enough information available at the leaf. It traverses the tree from the node to

the leaf in an exemplar-wise manner and updates the statistics along the way. The

Hoeffding Tree pseudo code taken from [38] is given in Pseudocode 3.

The Hoeffding trees are successfully applied on the streaming applications [48]

and have been utilized under label budget criteria as well [106].

Random Forest

Random Forest is an ensemble classifier algorithm developed by Breiman [18]. In

this algorithm, a number of binary trees are constructed where voting takes place

between these trees on each test exemplar to decide the final decision. Each tree

in the Random Forest is learned on different subsets of the training set, the goal of

which is to decrease the variance. This is actually a modified instance of bagging,

which is a technique used to reduce the variance of an estimated prediction function.

Given X = x1, ..., xn with C = c1, ..., cn as labels, bagging will repeatedly (B

times) sample randomly with replacement from the training set and fit trees with

these sample; so each tree is constructed on a subset of the dataset that is selected

randomly. The first step of the Random Forest algorithm is exactly the same as

bagging, but the next step, splitting the nodes, differs. In each tree, node branching

takes place based on the best feature in a randomly selected subset of features (bagging

uses all features). At each internal node of the tree, a subset of attributes are selected

randomly, and the decision on how to split is determined based on an entropy metric.

After training, the predicted label is given based on the voting of trees’ outcome.

Random Forest offers improvements on the overfitting problem in decision trees [57].

The pseudo code of Random Forest taken from [57] is illustrated in Algorithm 4.

50

Algorithm 4 Random Forest for Classification.

1. For b = 1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by re-cursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:

Classification:Let Ĉb(x) be the class prediction of the bth random-forest tree. Then

ĈB
rf (x) = majority vote{Ĉb(x)}B1

4.3 Comparator Frameworks

In this section, the comparator algorithm’s parameterization is explained. A detailed

description of algorithms were previously given in Section 4.2. Table 4.7 shows the

list of algorithms, the model learning methodology and in which platform they are

used.

Table 4.7: Comparator algorithms List.

Algorithm
Model Toolset

(Off-line or Streaming) (MOA or Apache Spark)
Naive Bayes Both Both
Hoeffding Tree Streaming MOA
Random Forest Off-line Apache Spark
CART Off-line Apache Spark

51

4.3.1 Massive Online Analysis (MOA)

The work of Z̆liobaitė et al. [106] addresses streaming classification under label budget

criteria where changes to the data are expected as well. In their benchmarking study

only one dataset consists of more than two classes. To the best of the author’s

knowledge, no (multi-class) imbalanced streaming classification under a label budget

has been proposed before this thesis (Section 2).

The MOA software suite5 provides the implementation of these algorithms, where

modifications were made to provide reporting using the performance metric from

Section 4.4.

Table 4.8: Best case configurations of MOA comparator algorithms for operation
under drifting streaming data with label budgets [106].

Classifier Policy
Naive Bayes Split
Naive Bayes Variable uncertainty

Hoeffding tree Split
Hoeffding tree Variable uncertainty

Table 4.8 represents the combinations of the classifier and the corresponding sam-

pling policy from the MOA toolset that performed the strongest in the original study

[106]. The algorithms are changed to adapt to the streaming situation where the

models are constructed incrementally throughout the course of the stream. Naive

Bayes and Hoeffding Tree algorithms are explained in Section 4.2.1 and Section 4.2.2,

respectively. Split and Variable Uncertainty are the most effective sampling policies

[106] used to sample a finite set of data based on a label budget to query true label

information. The definition of these sampling policies comes next.

Variable Uncertainty

Variable uncertainty sampling policy relies on the classifier’s confidence. If the con-

fidence is below the threshold, it is asking for true labels. When a change occurs

and there is a need for new labels, the most uncertain ones are asked for true labels

according to the label budget.

5http://moa.cms.waikato.ac.nz

http://moa.cms.waikato.ac.nz

52

Split

In the case of Split, two models are maintained concurrently. One model uses variable

uncertainty as the sampling policy and the other is using uniform sampling. Both

policies are used to request the true label information. Uniform sampling is most

likely to be used if a change is detected in the stream.

4.3.2 Apache Spark Streaming

Apache Spark6 is a clustering framework suitable to be used in big data analysis

and computation. This tool is a state-of-the-art solution for analyzing network be-

haviour from the perspective of network managers. The Spark Streaming component

in Apache Spark provides the streaming processing of data. The process could be a

simple statistical operation or more complicated machine learning processes. In the

case of ML operations, the MLlib library7 provides a distributed ML library on top

of an Apache Spark core. The overall architecture of the Apache Spark is depicted in

Figure 4.1.

Figure 4.1: Apache Spark architecture.

The publicly available MLlib library supports many machine learning algorithms

6Apache Spark: https://spark.apache.org/.
7Apache Spark MLlib, http://spark.apache.org/docs/latest/mllib-guide.html

http://spark.apache.org/docs/latest/mllib-guide.html

53

for the classification, regression or clustering of data. In this research, among the

provided algorithms, Decision Tree, Random Forest and Naive Bayes algorithms are

selected and benchmarked as the most well-known ML classification algorithms used

in the literature [2, 3, 94, 90]. The CART algorithm (Section 4.2.2) is used for building

trees in Decision Tree where Random Forest (Section 4.2.2) uses the ensemble of

CART trees as well. In Decision Tree, the maximum depth of the tree is set to 7

(max depth = 7). Similarly, in Random Forest, the maximum depth of the trees is

set to 4 (max depth = 4) and 50 trees (num trees = 50) are constructed. The rest

of the parameters are set to their default values in both algorithms.

4.4 Performance Metrics

Performance metrics for streaming data classification take one of the three classes of

metrics [82].

The Prequential error metric characterizes the ‘accuracy’ measurement, which

there is a decay relative to the older instances, hence forgetting the older instances.8

The problem with this kind of metric arises when imbalanced data are encountered.

In this case, a simple model that labels all instances as the most frequent class seems

to be more ‘accurate’. Under the network security application, this frequent class is

either ‘Background’ or ‘Normal’ traffic, where a degenerate classifier could get 80%-

90% accuracy (depending on the distribution of the most frequent class, e.g. Tables

4.2, 4.4 and 4.5). In contrast, a better metric is required to quantify the classifier’s

ability to operate under multi-class scenarios.

Measure of (label) autocorrelation characterizes the performance of a classi-

fier based on its ability to defeat a single bit classifier operating on the label space

alone [13]. In other words, when the distribution of the data is not well mixed, there

are some sequences that all have the same label. A one/two bit state machine could

predict these sequences with a low rate of miss classification.9 This is a better metric

than the previous error minimization, but it still does not quantify the ability of the

classifier to work under a multi-class scenario. (i.e., the distribution of labels is mostly

determined by major classes in the imbalanced data scenario).

8The use of the recal rate on the single smallest class also has been proposed [112].
9See for example, the widespread use of one/two-bit finite state machines in branch taken/not

taken sequences for conditional statements associated with loop constructs [58].

54

Rate-based metrics incrementally construct the confusion matrix throughout

the stream [59, 107]. Then, the resulting confusion matrix can be used to obtain any

number of scalar (rate-based) performance metrics, e.g. F-measure, Detection rate,

Precision. Furthermore, this metric explicitly quantifies the performance of classifiers

under a multi-class scenario [64].

As an explicit demonstration of the classifier’s performance could be quantified

using a rate based metric, such a metric is used in this thesis. The AUC metric (Area

Under the Curve) could be used as one solution that illustrates the curve character-

izing the interaction between Detection rate and False positive rate. However, this

metric could only be applied to a two class scenario which also needs a complete

reconstruction for each new window location [19].10

Alternatively, Detection rate (DR) is used in this research and is explicitly com-

puted for each class. Such a metric can be calculated incrementally throughout the

stream and could be visualized with time on the dependent (x) axis and class-wise

performance metric on the independent (y) axis. The champion classifier always has

to predict the labels before any update to the model. Thus, the overall DR could be

obtained by averaging the detection rate of all classes dynamically estimated through-

out the stream [82]. On the other hand, the False positive rate (FPR) is calculated

the same way as the Detection rate.

The streaming estimation of the Detection rate for each class is calculated by:

DRc(t) =
tpc(t)

tpc(t) + fnc(t)
(4.7)

where t is record index and tpc(t), fnc(t) are the online true positive and false positive

rates until that point of the stream.

Also, the streaming estimation of the False positive rate for each class is computed

as:

FPRc(t) =
fpc(t)

fpc(t) + tnc(t)
(4.8)

where t is the record index and fpc(t), tnc(t) are the online false positive and true

10The alternative would be to re-estimate the entire AUC for each time step, limiting its application
to short streams [36].

55

negative rates until that point of the stream.

The multi-class Detection rate is calculated as:

DR(t) =
1

C∗

∑
c=[1,...,C∗]

DRc(t) (4.9)

where C∗ is the true total number of classes at any point in the stream. If this number

is not known from the start of the stream, every time an unseen label is encountered,

a stepwise effect happens in the metric.

Hence, the multi-class Detection rate is the sum of each class detection rate. In

addition, although the stream is considered endless, for benchmarking purposes, a

finite sequence of streaming data is assumed. Therefore, the overall detection rate

is computed as the surface under the multi-class Detection rate plot, estimated as

the sum of all the multi-class detection rates, over the course of the stream. This

calculation returns a scalar value to be used as a metric called AvDR.

AvDR =
1

smax

smax−1∑
t=0

DR(t) (4.10)

where smax is the cardinality of the stream.

The combination of Detection rate and False positive rate give a precise evaluation

of the multi-class classifiers. However, another combination is also applicable where

Recall and Precision metrics could be used together. Recall is another name for

Detection rate, whereas Precision is formulated as:

Precc(t) =
tpc(t)

fpc(t) + tpc(t)
(4.11)

which specifies how precisely a class is detected.

The two metric sets, Detection rate, False positive rate and Recall, Precision,

indicate how precisely the classifiers are able to detect each class in the imbalanced

stream of data. In this thesis, the first metric set is used for this purpose.

4.5 Experimental Design and Parameterization

Sections 3.3 and 3.4 introduced biased approaches for sampling and archiving policies,

respectively. Five combinations of these policies are proposed that are addressed in

56

Table 4.9. All these algorithms are benchmarked in this thesis to check the relative

effectiveness of sampling and archiving policies in the field of streaming multi-class

classification. Also, the parametrization of the Stream-GP is indicated in Table 4.10.

Table 4.9: Stream-GP algorithms with their corresponding configurations. Uniform
implies the identification of either sampling or archiving data using uniform sampling
(Sections 3.3 and 3.4, respectively). Biased refers to either sampling or archiving
data that happens under the corresponding biased algorithms (Algorithms 1 and 2
respectively).

Model Sampling Policy Archiving Policy
Random Uniform Uniform
Sample Biased Uniform
Archive Uniform Biased

Both Biased Biased
Hybrid (Biased, Uniform)* Biased

* In the Hybrid algorithm, the Sampling is Biased at first, and whenever the minor classes

reach a pre-determined Detection rate, it changes to the Uniform configuration.

Table 4.10: Stream-GP Parameters. Mutation specifies the rate of adding/deleting
programs from a learner or changing the action. Gap(Tgap) denotes the number of
records in the Data subset (teams) to be deleted at each non-overlapping window
location. For each Data subset update, τ generations are performed.

Parameter Value
Data Subset size (DS) 120
DS gap size (Gap) 20
GP gap size (Tgap) 20
Team pop. size (Psize) 120
Max. programs per team (ω) 20
Prob. Program deletion (pd) 0.3
Prob. Program addition (pa) 0.3
Prob. Action mutation (µ) 0.1
Generations per DS update (τ) 5

The Data Subset size (DS) specifies the size of the archive from the stream content. At

each generation of GP the following takes place:

• Gap size (Gap) from data subset is replaced by new exemplars.

• Team population size (Psize) is replaced by new teams.

57

• Programs are deleted by pd probability.

• Programs are added by pa probability.

• Actions are mutated by µ probability.

The maximum number of programs in a team is identified by ω and τ is the number

of generations per data subset update. The value of each parameter is set to its best

performing value given in the previous work [108].

The label budget, β, specifies the portion of data in each window location that are

asked for true labels. The higher the parameter value, the more ‘costly’ the learning process

would be, as a user/expert is required to provide the labels for each query. The lower the

parameter value, the higher the risk of losing minor classes at all or missing the change that

is happening through the stream.

For instance, if the label budget is 5%, and a minor class is appearing at a 1% frequency

rate throughout the stream, the chance of a uniform sampling policy catching an exemplar

of this class is 0.05%. On the other hand, if a sampling or archiving algorithm is more

‘intelligent’, then the performance of the classifier would less be affected by the dominant

classes. In this thesis, different sampling and archiving policy combinations are bench-

marked to investigate how decreasing the label budget would affect the performance of each

classifier and at what rate. Thus, three different label budgets, β = {0.005, 0.01, 0.05} are

considered to be examined in different sections. Due to the low distribution of the minor

class, e.g. Table 4.3, it provides a challenging streaming classification task.

Table 4.11 refers to the label budgets and their impact on the size of the non-overlapping

window, W (i). Keep in mind that the content of window W (i) is predicted by the cham-

pion team from the previous window W (i − 1) before any updates to the champion (i.e.,

incremental operation). Also, lower label budgets are required to delay to get the true label

information.

Table 4.11: Stream Dataset Parameters. Label Budget (β) is defined as a function
of the window size W (i) where for each non-overlapping window location there can
only be Gap size (20) samples.

Label Budget (β) W (i) cardinality
0.5% 4,000
1.0% 2,000
5.0% 400

58

4.6 Statistical Significance Testing

The statistical significance tests are utilized to quantify the performance of the algorithms

in the results section. They are used to measure if the differences in the algorithms’ perfor-

mances are significant. In this thesis, the tests are done on two domains: 1) the comparison

of the algorithms on a single dataset, and 2) the comparison of the algorithms on multi-

ple datasets. In this section, the statistical tests that have been used for this purpose are

explained in both domains. Section 4.6.1 explains the Mann-Whitney pair-wise test for

multiple algorithms on a single dataset (domain 1) with Section 4.6.3 defining the post-hoc

test for it. Section 4.6.2 describes the Friedman test for the ranking of multiple algorithms

on multiple datasets (domain 2) where Section 4.6.4 is a post-hoc algorithm for this test to

group similar algorithms based on their performances.

4.6.1 Wilcoxon-Mann-Whitney Test

A nonparametric Mann-Whitney U test is performed to show the statistical significance of

the results obtained. This test is used for comparison of the algorithms’ performance on a

single dataset in a pair-wise manner. The preliminary step to use in this statistical test is

to determine if the data is not uniformly distributed; one way to identify is through violin

plots. The shape of the violin plot demonstrates if the data distribution belongs to a normal

distribution or not. The following assumptions are considered:

• The null hypothesis (H0) is that the distribution of classifiers’ results are equal.

• The alternative hypothesis (H1) is that the distributions are not equal.

If the p-value between two algorithms is less than the critical difference (CD) then the

null hypothesis is rejected and they are considered significantly different.

4.6.2 Friedman Test

The Friedman test is a non-parametric repeated measures statistic that is equivalent to

the parametric ANOVA test [33] but more robust. The test is used to compare different

algorithms over various datasets. The analysis is done based on the ranking of algorithms

over datasets, not the performance measures. In doing so, the following steps are taken:

First, each classifier is ranked over each single dataset in an ascending order, i.e.

the best performing algorithm gets the lowest rank. For dataset Di, the classifier Ci is

ranked first if its performance is greater than every one else’s, pmij > pmij′, ∀j′, j, j′ ∈

59

{1, 2, ..., k}, j 6= j′. If there is a d-way tie between algorithms, the rank is computed as,

[(r + 1) + (r + 2) + ...+ (r + d)] /d for each tied algorithm.

Let Rij be the rank of classifier Cj on dataset Di, quantities are computed as:

• The mean rank of the classifier Cj on all datasets:

Rj =
1

n

n∑
i=1

Rij (4.12)

• The Friedman statistic is calculated based on Eq. 4.12 as:

χ2
F =

12n

k(k + 1)

 n∑
j=1

Rj
2 − k(k + 1)2

4

 (4.13)

where n is the number of datasets and k is the number of algorithms.

The null hypothesis assumes that all classifiers are equivalent in their performances and also

in their average ranks, Rj . A comparison of the χ2
F with the F distribution with k−1 degree

of freedom determines if the null hypothesis is rejected. The null hypothesis is rejected if

the p value of the corresponding χF and FF (n, k−1) in the table is smaller than the critical

difference (CD).

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(4.14)

4.6.3 Bonfferoni-Dunn Post-hoc Test

In the case of the comparison of mean values to a control classifier, the Bonfferoni-Dunn

test could be applied. For this purpose, the significance level α is divided by the number of

comparisons made. Then, the new significance level is used for comparison of the designated

control algorithm with others. This test is used to compare the proposed algorithm against

the comparator algorithms on a single domain scenario after the Mann-Whitney U test.

4.6.4 Nemenyi Post-hoc Test

A post-hoc test is used after the rejection of null hypothesis to demonstrate which algorithms

are performing equally or similarly. Through this test, the significance of the algorithms can

be distinguished more specifically. The Nemenyi post-hoc test computes a q statistic over

the difference in the average mean ranks of the classifiers. It is calculated after the Friedman

60

test rejects the null hypothesis. So, considering the prerequisite steps of the Friedman test,

for any two classifiers, Cj1 and Cj2, the q statistic is calculated as:

q =
Rj1 −Rj2√

k(k+1)
6n

(4.15)

The null hypothesis is rejected if the q value exceeds the critical value with the desired

significance level, hence qα where α is the significance level. Therefore, if the q value of two

classifiers is more than or equal to the critical difference, CD, with the appropriate amount

of uncertainty, the two algorithms are considered significantly different.

4.7 Summary

In this chapter, all the requirements for evaluating Stream-GP are described. These re-

quirements include the network datasets used, the evaluation metrics and the statistical

tests. Moreover, the definitions of the comparator algorithms were explained in detail, and

the parameter settings for the Stream-GP and comparator algorithms were explained.

All the above are then used in various scenarios in the results section (Section 5) to

evaluate the Stream-GP algorithms and compare them to the available state-of-the-art

frameworks.

Chapter 5

Results

The benchmarking of the proposed GP streaming system, Stream-GP, with various sam-

pling and archiving policies is presented for real-world network security problems, specifi-

cally botnet detection. Moreover, the system’s utilization in a network analytic application

is demonstrated to showcase the generality of the solution for other network streaming prob-

lems. The overall structure of the evaluations in this section is illustrated in Figure 5.1.

Section 5.1 evaluates the performance of the system in network streaming traffic with Botnet

malicious activities. The evaluations are done on a CTU-13 dataset collection, where each

dataset is representative of a single bot behaviour. Section 5.2 investigates the system’s

performance, where several botnet tracks exist in the stream of network traffic. This chal-

lenging scenario investigates how the system reacts to previous learned botnet behaviours.

Section 5.3 explores the best algorithms’ performances on more network security scenar-

ios. In previous sections, Stream-GP variants are compared with the best MOA toolkit

algorithms, which are explicitly designed to perform under a streaming mode. To address

the necessity of comparing the system with current real-world network solutions, Apache

Spark (Streaming) is chosen. It is widely employed by IT / Network Management teams in

commercial, government and academic environments. The discussion on the comparison of

Stream-GP and Apache Spark (Streaming) is addressed in Section 5.4. Furthermore, Sec-

tion 5.5 introduces the Stream-GP application in network analytic tasks such as unknown

network traffic exploitation. Finally, Section 5.6 summarizes this chapter.

5.1 Botnet Detection in Real-world Network Traffic

The utilization of Stream-GP and its comparator algorithms from the MOA toolkit is ana-

lyzed under various botnet scenarios. In Section 5.1.1, the overall performance for different

Stream-GP algorithms (configurations) and their comparator MOA algorithms is evaluated

for the thirteen Botnet datasets (Table 4.2). Thereafter, some of the datasets are selected

based on the primary results for a broader investigation to provide more insight into the

algorithm’s operation and its distinguishing factors. Specifically, Section 5.1.2 demonstrates

the advantage of detection rate visualization through the course of the stream to provide

61

62

insight into the dynamic behaviour of the algorithms. Section 5.1.3 examines the various

archive / sampling policies of Stream-GP and how they affect the distribution of the records

in the Data subset. Section 5.1.4 specifically determines the capabilities of the algorithms in

the detection of botnet behaviour. This class is of interest from a network security perspec-

tive, as it determines how well the algorithm can identify malicious behaviour in streaming

network traffic. Section 5.1.5 focuses solely on the detection of the least frequent class,

which are the command and control signals. Success in this task amounts to providing an

early warning of botnet activity. Section 5.1.6 specifies the distribution of each class record

in the data subset throughout the course of the stream. Section 5.1.7 quantifies the com-

putation time for fitness evaluation and champion individual execution to label the data.

Finally, Section 5.1.8 summarizes the findings on botnet detection.

Figure 5.1: Overall structure of GP-Stream evaluations and comparisons

63

Table 5.1: Algorithm ranks w.r.t. streaming AvDR metric under a 5% label budget.
Bracketed entries represent median AvDR values to 1 decimal place. Naive Bayes
(NB) and Hoeffding tree classifiers (from MOA) appear with either ‘split’ or ‘variable’
sampling policies. Table 4.9 declares the 4 sampling/replacement policies for stream-
GP. Rj denotes the average rank across all datasets.

Dataset
Stream-GP Hoeffding NB

Random Sample Archive Both split variable split variable
Capture 1 5 (32.4) 4 (36.3) 1 (56.8) 2 (51.5) 7.5 (25.0) 6 (26.7) 7.5 (25.0) 3 (43.7)
Capture 2 5 (36.8) 4 (41.5) 1 (68.1) 2 (67.7) 7.5 (25.0) 6 (36.5) 7.5 (25.0) 3 (54.8)
Capture 3 4 (65.9) 3 (76.0) 2 (81.5) 1 (83.5) 7.5 (33.3) 6 (55.3) 7.5 (33.3) 5 (59.5)
Capture 4 5 (45.5) 4 (51.4) 1 (62.7) 2 (60.8) 7.5 (33.3) 6 (42.2) 7.5 (33.3) 3 (55.2)
Capture 5 4 (29.3) 5 (28.8) 1 (36.1) 2 (34.5) 7.5 (25.0) 6 (26.3) 7.5 (25.0) 3 (30.7)
Capture 6 5 (35.5) 4 (42.5) 1 (65.8) 2 (64.6) 7.5 (25.0) 6 (25.5) 7.5 (25.0) 3 (48.6)
Capture 7 4 (29.8) 5 (28.4) 2 (29.8) 3 (29.8) 7.5 (25.0) 6 (25.9) 7.5 (25.0) 1 (32.5)
Capture 8 5 (39.9) 4 (46.2) 1 (78.0) 2 (76.2) 7.5 (25.0) 6 (28.2) 7.5 (25.0) 3 (57.9)
Capture 9 5 (34.8) 4 (35.8) 1 (54.1) 2 (48.5) 7.5 (25.0) 6 (26.5) 7.5 (25.0) 3 (45.4)
Capture 10 5 (57.6) 3 (61.6) 1 (70.3) 2 (68.7) 7.5 (33.3) 6 (54.6) 7.5 (33.3) 4 (58.7)
Capture 11 3 (48.7) 4 (47.9) 1 (54.8) 2 (52.4) 7.5 (33.3) 6 (42.2) 7.5 (33.3) 5 (47.6)
Capture 12 4 (41.6) 5 (40.2) 1 (52.5) 3 (47.2) 7.5 (33.3) 6 (36.0) 7.5 (33.3) 2 (48.3)
Capture 13 5 (41.8) 3 (53.9) 1 (70.2) 2 (67.4) 7.5 (25.0) 6 (27.3) 7.5 (25.0) 4 (42.9)

Rj 4.54 4.00 1.15 2.08 7.50 6.00 7.50 3.23

5.1.1 Overall Performance Evaluation

The (first) four Stream-GP algorithms (configurations) (Table 4.9) and four MOA com-

parator algorithms (Section 4.3.1) are evaluated. The MOA algorithms are selected as

the strongest algorithms/sampling strategies by Z̆liobaitė et al. for operation under label

budgets [106]. All eight algorithms are run 20 times per dataset. The evaluation of their

performance is based on the multi-class streaming AvDR metric (Eq. 4.10 of Section 4.4)

on the mean value of the runs. Thereafter, ranking is performed on the overall performances

using the Friedman test. Together with a Nemenyi post-hoc test, the general trend of the

best algorithms/most challenging datasets are identified. This evaluation is considered a ro-

bust solution in comparison with the ANOVA equivalent for the comparison of algorithms’

performance on several datasets [33, 64]. The evaluation is conducted separately for the

three label budgets, Table 4.11.

Tables 5.1, 5.2 and 5.3 demonstrate the results of the ranking of eight algorithms under

the multi-class AvDR metric for different label budgets. The Friedman non-parametric

repeated measures statistic (and Nemenyi post-hoc test) are then used to identify the general

trends of the best algorithms and the most challenging datasets. Such an approach does

not make assumptions regarding the underlying distributions of the performance data, and

represents the preferred approach for conducting comparisons between multiple algorithms

64

Table 5.2: Algorithm ranks w.r.t. streaming AvDR metric under a 1% label budget.
Bracketed entries represent median AvDR values to 1 decimal place. Naive Bayes
(NB) and Hoeffding tree classifiers (from MOA) appear with either ‘split’ or ‘variable’
sampling protocols. Table 4.9 declares the 4 sampling/replacement policies for stream
SBB. Rj denotes the average rank across all datasets.

Dataset
Stream-GP Hoeffding NB

Random Sample Archive Both split variable split variable
Capture 1 5 (32.9) 4 (33.3) 1 (48.3) 2 (45.3) 7.5 (25.0) 6 (25.3) 7.5 (25.0) 3 (37.5)
Capture 2 5 (37.2) 4 (39.2) 1 (56.6) 2 (54.6) 7.5 (25.0) 6 (35.3) 7.5 (25.0) 3 (48.0)
Capture 3 4 (64.2) 3 (70.8) 1 (78.4) 2 (75.8) 7.5 (33.3) 6 (47.4) 7.5 (33.3) 5 (61.8)
Capture 4 5 (43.5) 4 (44.3) 1 (55.8) 2 (52.4) 7.5 (33.3) 6 (33.4) 7.5 (33.3) 3 (51.0)
Capture 5 4 (27.1) 5 (26.7) 1 (29.2) 3 (27.5) 6.5 (25.0) 8 (24.9) 6.5 (25.0) 2 (29.1)
Capture 6 5 (33.3) 3 (37.9) 1 (50.4) 2 (43.8) 7.5 (25.0) 6 (25.0) 7.5 (25.0) 4 (36.5)
Capture 7 3 (25.5) 8 (24.7) 4 (25.4) 5 (25.3) 6.5 (25.0) 1 (25.9) 6.5 (25.0) 2 (25.6)
Capture 8 4 (34.4) 5 (33.1) 2 (60.9) 1 (64.3) 7.5 (25.0) 6 (26.0) 7.5 (25.0) 3 (52.3)
Capture 9 4 (33.9) 5 (32.9) 1 (46.0) 2 (42.9) 7.5 (25.0) 6 (25.1) 7.5 (25.0) 3 (42.7)
Capture 10 4 (57.1) 3 (57.9) 1 (64.6) 2 (63.2) 7.5 (33.3) 6 (54.0) 7.5 (33.3) 5 (56.3)
Capture 11 2 (45.7) 5 (41.9) 1 (46.6) 4 (43.1) 7.5 (33.3) 6 (41.3) 7.5 (33.3) 3 (43.8)
Capture 12 4 (39.6) 5 (36.4) 1 (43.6) 3 (40.4) 7.5 (33.3) 6 (34.1) 7.5 (33.3) 2 (43.1)
Capture 13 4 (39.5) 3 (43.8) 1 (57.1) 2 (55.1) 7.5 (25.0) 6 (25.1) 7.5 (25.0) 5 (33.2)

Rj 4.08 4.38 1.31 2.42 7.35 5.77 7.35 3.31

Table 5.3: Algorithm ranks w.r.t. streaming AvDR metric under a 0.5% label budget.
Naive Bayes (NB) and Hoeffding tree classifiers (from MOA) appear with either ‘split’
or ‘variable’ sampling policies. Table 4.9 declares the 4 sampling/replacement policies
for stream SBB. Rj denotes the average rank across all datasets.

Dataset
Stream-GP Hoeffding NB

Random Sample Archive Both split variable split variable
Capture 1 5 (32.4) 4 (33.0) 1 (45.2) 2 (41.0) 7.5 (25.0) 6 (25.5) 7.5 (25.0) 3 (36.9)
Capture 2 4 (38.0) 5 (37.4) 1 (48.8) 2 (46.0) 7.5 (25.0) 6 (34.5) 7.5 (25.0) 3 (40.5)
Capture 3 4 (62.3) 3 (67.9) 1 (76.2) 2 (73.3) 7.5 (33.3) 6 (48.1) 7.5 (33.3) 5 (59.2)
Capture 4 5 (45.9) 4 (46.7) 1 (59.6) 2 (58.7) 7.5 (33.3) 6 (33.5) 7.5 (33.3) 3 (49.5)
Capture 5 2 (27.2) 8 (25.0) 3 (27.1) 4 (26.2) 6.5 (25.0) 5 (25.3) 6.5 (25.0) 1 (28.4)
Capture 6 5 (33.4) 4 (34.7) 1 (44.5) 2 (41.6) 7.5 (25.0) 6 (26.0) 7.5 (25.0) 3 (34.7)
Capture 7 3 (26.0) 8 (24.8) 4 (25.2) 7 (25.2) 5.5 (25.0) 2 (26.5) 5.5 (25.0) 1 (27.0)
Capture 8 4 (32.4) 5 (30.3) 1 (55.7) 2 (54.1) 7.5 (25.0) 6 (26.0) 7.5 (25.0) 3 (43.9)
Capture 9 4 (33.4) 5 (32.2) 1 (42.5) 2 (40.6) 7.5 (25.0) 6 (25.0) 7.5 (25.0) 3 (39.6)
Capture 10 3 (56.0) 4 (56.0) 1 (61.8) 2 (59.7) 7.5 (33.3) 6 (53.7) 7.5 (33.3) 5 (55.9)
Capture 11 4 (42.7) 6 (37.7) 3 (44.9) 5 (37.9) 7.5 (33.3) 2 (45.4) 7.5 (33.3) 1 (45.5)
Capture 12 3 (37.2) 5 (36.9) 2 (38.5) 4 (37.1) 7.5 (33.3) 6 (34.2) 7.5 (33.3) 1 (40.2)
Capture 13 4 (38.3) 3 (41.5) 1 (52.7) 2 (49.5) 7.5 (25.0) 6 (25.0) 7.5 (25.0) 5 (34.8)

Rj 3.85 4.92 1.62 2.92 7.27 5.31 7.27 2.85

65

Table 5.4: Result of Friedman test χ2
F and corresponding value for F-distribution FF .

The critical value of F (7, 84) for α = 0.01 is 2.86, so the null-hypothesis is rejected
in each case.

Label budget 5% 1% 0.5%
χ2
F 84.9 73.2 65.3
FF 166.7 49.2 30.49

and datasets [33, 64]. The last row reports the average rank (Rj) calculated based on Eq.

4.12, where it forms the basis for the Friedman test (Eq. 4.13). The Friedman’s parameters

in the current test case are as follows: n = 13 is the number of datasets, and k = 8 is the

number of algorithms. Thereafter, the null hypothesis is tested by mapping χ2
F into the

F-distribution with k − 1 and (k − 1)(N − 1) degrees of freedom using Eq. 4.14.

The null hypothesis (i.e. that the ranks are random) is strongly rejected in each case

(Table 5.4). To get a deeper sense of the differences between algorithms, a Nemenyi post-

hoc test may be applied to identify which groups of algorithms are performing equivalently.

Specifically, if the average algorithm ranks are within the critical difference of CD = qα ×√
k(k+1)
6N , then they are deemed equivalent. For qα = 0.1, the critical difference is 2.671.

Based on that, the top performing algorithms in all three label budgets are: GP–Archive,

GP–Both and NB–variable. More specifically, GP–Archive is by far the most consistently

performing model irrespective of dataset or label budget with GP–Both always appearing

as the runner up.

A general analysis of the overall performance with the Botnet detection perspective is

now considered. Captures 1, 2, 8, and 9 are dominated by port-scanning activities, for

which access to the IP addresses and port numbers are assumed typically (limiting the

generality of the classifier). Conversely, the proposed Stream-GP classifier is able to detect

these activities without the IP address and port number information in an overall streaming

AvDR between 54% and 78% (dropping to no less than 42% under the 0.5% label budget).

Captures 3, 10 and 11 represent protocol-based attacks so it is assumed that the attack could

be identified more easily with flow features. Captures 3 and 10 validate this assumption

(high overall streaming AvDR disregards the label budget), whereas Capture 11 returns

the overall AvDR in the range of 54% to 44%. Last, Captures 5, 6 and 7 relate to payload

attacks (such as operating system vulnerabilities), where the detection mostly relies on the

content of the payload, and the flow features alone are not much help in this case. Captures

5 and 7 show a performance level that is slightly better than that of a degenerate classifier1.

1Equivalent to labelling all the data as a single class or AvDR = DR(t)
C∗ = 0.25 where DRc(t) = 1

66

Conversely, the best detector could identify Capture 6 data with an overall streaming AvDR

between 65.5% and 44.5% depending on the label budget.

5.1.2 Detection Rate Dynamics: Comparing the Best Streaming Classifiers

At the next level of performance evaluation, the dynamic properties of the classifiers are

reviewed by tracing the detection rate of classes through the course of the stream. This

valuable evaluation provides more insight into the classifiers’ ability to interact with the

stream and the learning process. As the stream of data is in an ever-changing status, unlike

off-line formulation of learning, the models should be able to adapt to the changes in the

stream content over the course of the stream. The results provide some insight into whether

results with similar overall AvDR also exhibit similar preferences in class detection.

The concentration of this section is on: (i) Captures 5 and 6 (payload attacks) and (ii)

Captures 8 and 9 (port scanning) with the two top-performing configurations of Stream-

GP and Naive Bayes (Section 5.1.1): GP–Archive and NB–Variable. Captures 5 and 6

contain payload attacks, in which attack-related information is embedded in the payload of

the packet and is not available in the flow features used in this research. In the network

security field, payload information is usually omitted due to privacy issues. Therefore,

these two datasets are good examples of ‘hard-to-detect’ attacks. Captures 8 and 9 are

also related to port-scanning attacks, where in this research the information of IP addresses

and Port numbers are omitted from the flow features to provide a more reliable set. It is

possibly more convenient to detect these kinds of attacks using the mentioned information,

but this also reduces the generality of the classifier. So, these two datasets also raise the

question of how well algorithms would perform on them without direct attack information.

Figure 5.2 summarizes the results of the class-wise detection rate, averaged over 20 runs

per algorithm, over the course of the stream (Eq. (4.7)) in the specific case of the Capture

5 dataset. Subplots 5.2(a) and 5.2(b) demonstrate the detection rate under a 5% label

budget. The NB–Variable model could not detect the minor Botnet C&C class (class 4)

at all. Moreover, the detection of important minor classes results in the reduction of the

major class.2 On the other hand, the GP–Archive could detect Botnet C&C after half of

the stream has passed with no loss in detection of the major class.

Subplots 5.2(c) and 5.2(d) illustrate the performance of the algorithms for the same

dataset but under a 0.5% label budget. NB–Variable continues to detect the major class at

occurs for one class alone and DRi6=c(t) = 0.
2Given the degree of class imbalance in evidence (Table 4.2), the major class is always class 1.

The minor classes are always the remaining classes.

67

(a) SBB–Archive (5%) (b) NB–Variable (5%)

(c) SBB–Archive (0.5%) (d) NB–Variable (0.5%)

Figure 5.2: Capture 5 class-wise Detection rate through the stream. 5% versus 0.5%
label budget.

68

(a) GP–Archive (5%) (b) NB–Variable (5%)

(c) GP–Archive (0.5%) (d) NB–Variable (0.5%)

Figure 5.3: Capture 6 class-wise Detection rate through the stream. 5% versus 0.5%
label budget.

69

(a) GP–Archive (5%) (b) NB–Variable (5%)

(c) GP–Archive (0.5%) (d) NB–Variable (0.5%)

Figure 5.4: Capture 8 class-wise Detection rate through the stream. 5% versus 0.5%
label budget.

70

(a) GP–Archive (5%) (b) NB–Variable (5%)

(c) GP–Archive (0.5%) (d) NB–Variable (0.5%)

Figure 5.5: Capture 9 class-wise Detection rate through the stream. 5% versus 0.5%
label budget.

71

the expense of losing the detection rate of the important minor classes. Conversely, GP–

Archive could detect the minor classes as they appear in the stream, and it was able to detect

Botnet C&C but at a lower rate than the 5% label budget. Thus, although NB–Variable

is shown to have the higher overall AvDR for a 0.5% label budget under Capture 5 (Table

5.3), it happens through a higher detection rate on the major class. Similar observations

hold for the Capture 7 and 11 datasets.

Figure 5.3 demonstrates the per class detection rate for the specific Capture 6 dataset.

Like Capture 5, the GP–Archive could detect all classes throughout the course of the stream

at varying degrees irrespective of the label budget; NB–Variable was able to do so only under

a 5% label budget. In addition, it seems that NB–variable first detects every class as the

major class, and improvement in the detection of minor classes results in the reduction of

major class detection. This pattern is consistent in the NB–Variable framework regardless

of the dataset.

This general property of the NB-Variable is not evident in the GP–Archive framework.

Each class in the GP–Archive once detected would not directly affect the detection rate of

other classes. The independence of classes in detection is a result of the following:

• Population-based solution: Each solution consists of several learners, each of which is

responsible for the detection of a single class. Therefore, they are trying to maximize

their performance based only on their own class regardless of what is going on with

the other learners. This decentralized structure makes the classes’ detection rates

independent of each other, and an increase/reduction in one class detection rate

would not affect the others.

• Robust measurement metric: A proper metric is needed to evaluate the performances

of the nominees for the champion position. This metric should be able to consider

the challenging properties of the streaming data and evaluate solutions based on how

well they perform under these challenges (Section 3.5).

• Ability to balance the DS: The streaming data are highly imbalanced. If the same

distribution is applied to the training data, the learning leads to better detection of

the major classes and, in contrast, discards the detection of minor classes. The policies

designed and applied in Section 5.1.3 help to force the DS to be more balanced.

Similar observations carry over to the case of Capture 8 (Figure 5.4) and Capture 9

(Figure 5.5). Comparison of the detection rate plots to the distribution of the classes

72

throughout the course of the stream, (Figure 5.9, Section 5.1.6), demonstrates that Stream-

GP is capable of detecting minor classes as soon as they appear in the stream. As for

Capture 8, Botnet C&C starts with a burst at the beginning of the stream and then changes

to an intermittent basis later. Figure 5.4 illustrates that Stream-GP was successful to

detect it from the first occurrence, even in the case of the 0.5% label budget. Another

interesting behaviour evident in AvDR and the distribution plots for Capture 8 is related

to the Botnet class. As is seen in Figure 5.9, the Botnet traffic is happening at an interval

mode, which begins in a burst but changes to a lower frequency in a longer duration. This

botnet appearance in the stream results in a step-wise detection rate (shown in Figure

5.4) that improves over time as both algorithms, Stream-GP and NB, become better at

sampling/detection.

From a network security perspective, although the AvDR metric shows the order of 54%

to 78% in the case of Capture 6, 8 and 9 (Section 5.1.1), the Botnet C&C (master-to-slave)

communication ended up with a Detection rate of 70 to 95% by the ‘end’ of the stream

in the GP–Archive case. The malicious behaviours are definitely scarce (Table 4.2) and

transitory (5.1.6), but they are also more likely related to the operating system and/or

application vulnerabilities attacks, which are reliant on payload data. In this research, the

only available information is reliant on the flow features, and the payload is completely

unavailable. Therefore, the detection is done solely based on the ‘fingerprints’ left on the

flow features to trace the botnet behaviour.

5.1.3 Detection Rate Dynamics: Stream-GP Sampling and Archiving Policies

The four variations of sampling/archiving policies (Table 4.9) in Stream-GP and their con-

tributions to the algorithms’ performance is the subject of this section. In Section 5.1.1,

the overall ranking for the four variants were identified as: Archive > Both > Random >

Sample where ‘Random’ represents the control/baseline parameterization. The interest is

how each of the sampling and archiving policies contributes to this result. For this purpose,

the Capture 1 dataset is selected to be investigated more in depth. Capture 1 introduces

classes at different phases of the stream (Figure 5.9), thus there is a need for an ‘Archiving’

policy to create ‘new’ categories in the data subset (Figure 3.1), whereas the sampling policy

needs to detect the changes at first. Capture 1 consists of several port-scanning activities

that are not straightforward to detect without the port number information (the current

case).

Figure 5.6 summarizes the per-class detection rate for Capture 1 under a 5% label

73

(a) Random (b) Sample

(c) Archive (d) Both

Figure 5.6: Class-wise Detection rate for Stream-GP sampling and archiving policies
on the Capture 1 dataset at a 5.0% label budget.

budget. The control parameterization of ‘Random’ samples from the stream window, W (i),

with uniform probability and the archiving also replaces the records in the Data Subset

(DS) uniformly (Table 4.9). Comparing Subplot 5.6(a) to the distribution of minor classes

(Figure 5.9) results in the following observations:

1. The underlying details of each class: Background class (class 1) – the major class – is

detected strongly, and Botnet C&C class (class 4) – the least frequent – very rarely.

2. When classes appear for the first time in the stream: Botnet class (class 3) appears

later in the stream than Normal class (class 2).

74

(a) Random (b) Sample

(c) Archive (d) Both

Figure 5.7: Class-wise False positive rate for Stream-GP sampling and archiving
policies on the Capture 1 dataset at a 5.0% label budget.

75

(a) Random (b) Sample

(c) Archive (d) Both

Figure 5.8: Typical Distribution of classes present in the Data Subset for Stream-GP
sampling and archiving policies on the Capture 1 dataset at a 5.0% label budget.

76

The impact of introducing the biased sampling while the archiving policy remained

random, is reported in subplot 5.6(b). The observation shows that the Background class

is detected more strongly, and the Botnet class is now detected more effectively despite its

late appearance in the stream. The Botnet class has seen a small reduction in the detection

rate compared to the ‘Random’ policy.

Examining the biased archiving policy, with a random sampling policy (Table 4.9),

illustrates its effectiveness in improving the minor classes’ detection rates, as demonstrated

in subplot 5.6(c). This indicates that the Archive policy is effectively working in the network

security area, as it could detect minor classes at an acceptable detection rate. Some decay in

Background detection is apparent, which may be due to sharing the space in the data subset

with minor classes as they appear later in the stream. By the ‘end’ of the stream, the Botnet

and Botnet C&C are identified with detection rates of ≈70% and ≈55%, respectively.

Ultimately, the conjugated biased sampling and archiving policy is demonstrated in

subplot 5.6(d). In comparison to the best policy combination, the ‘Archive’, Normal and

Botnet classes declined. The reason for this behaviour could be investigated by checking

the status of the classes distribution retained in the data subset throughout the stream.

Figure 5.8 refers to the distribution of classes in the data subset during the stream.

The content of the data subset is a key point in the learning infrastructure in the active

learning scheme, here Stream-GP, where the fitness evaluation and champion selection is

happening relative to it. Therefore, the distribution of classes in the data subset plays an

important role in defining the overall Stream-GP performance. All policies start with a

dominant Background class (major class); however, GP–Rnd and the GP–Sample policies

fail to guarantee the presence of minor classes in sufficient quantity (subplots 5.8(a) and

5.8(b)); whereas, both the GP–Archive and GP–Both policies achieve this (subplots 5.8(c)

and 5.8(d)).

Figure 5.7 demonstrates the False positive rate for each sampling / archiving policy

set. The high detection rate in GP–Random and GP–Sample algorithms is gained with

a corresponding high false positive rate as well. This leads to the conclusion that these

two policies intend to label flows to the major class, Background, based on their lack of

information on minor classes based on the data subset content (subplots 5.8(a) and 5.8(b)).

GP–Archive and GP–Both algorithms have low false positive rates in the Botnet and Botnet

C&C classes, where GP–Archive has a relatively low false positive rate for the Background

class as well. However, discussion on the Background False Positive rate is not completely

reliable, as it may actually represent Normal or Botnet behaviours due to its unknown

77

Table 5.5: Ranks for the Botnet class streaming AvDR alone.

Label Budget
Stream-GP Hoeffding NB

Random Sample Archive Both split variable split variable
5% 3.62 4.38 1.08 2.69 7.23 6.15 7.23 3.62
1% 3.77 4.38 1.00 2.62 7.31 6.27 7.31 3.35
0.5% 3.62 4.38 1.08 2.69 7.23 6.15 7.23 3.62

Table 5.6: χ2
F and FF values for different label budgets. Assuming α = 0.01 returns a

critical value of F (7, 84) < 2.86, the null-hypothesis (of random ranking) is rejected.

Label Budget
Statistic
χ2
F FF

5% 79.60 83.86
1% 79.25 80.93
0.5% 74.12 52.72

identity.

It is notable that the GP–Both parameterization is by far the most consistent. However,

GP–Archive gradually introduces a change to the distribution of class representation. As

the GP–Archive policy is ranked as the best classifier in the test cases, it seems that gradual

updating of the records in the data subset is the key to the performance differences.

5.1.4 Capacity for Detecting Botnet Signals

The performance of the Stream-GP and MOA comparator algorithms in Botnet detection

under different label budgets is analyzed in this section. The Botnet class is an important

class, and it is costly to miss-classify from a network security perspective. Miss-classification

of this class leads to probable destructive consequences that are hard to recover from. To

identify the performance of the algorithms on this specific class, a similar significance test

(Section 5.1.1) is applied only to the Botnet class, and a ranking table is prepared.

The final ranking of the algorithms on the specific Botnet class based on streaming

AvDR for all class labels is summed up in Table 5.5. Remember that Botnet and Botnet

C&C classes are aggregated in to one class in Captures 3, 4, 10, 11 and 12. GP–Archive

and GP–Both are once again the two top algorithms in the list and could detect the Botnet

class better than all the other algorithms.

Table 5.6 summarizes the Friedman’s Test statistics indicated as (χ2
F) and the corre-

sponding F-distribution (FF) value, which demonstrates that the null hypothesis is com-

fortably rejected. The degree of freedom is still unchanged (from the earlier analysis), so

78

Table 5.7: Ranks for Botnet C&C class streaming AvDR alone.

Label Budget
Stream-GP Hoeffding NB

Random Sample Archive Both split variable split variable
5% 4.81 4.27 1.46 2.15 6.92 6.35 6.92 3.12
1% 4.00 4.38 2.00 2.38 6.69 6.23 6.69 3.62
0.5% 3.62 3.73 1.38 2.27 6.96 6.54 6.96 4.54

Table 5.8: χ2
F and FF values for different label budgets. Assuming an α = 0.01

returns a critical value of F (7, 84) < 2.86, the null-hypothesis (of random ranking) is
rejected.

Label Budget
Statistic
χ2
F FF

5% 69.23 38.16
1% 52.82 16.60
0.5% 70.05 40.13

the critical difference is also unchanged (2.671). The Nemenyi post-hoc test applied on the

highest ranked model implies that GP–Archive, GP–Both and NB–Variable are statistically

independent (of the remaining six models) at a confidence of q = 0.1 for a 1% label budget.

The results on other label budgets are still consistent for these three algorithms. Moreover,

the low ranking of Hoeffding and NB–Split is a general reflection of their inability to detect

the minor class in a significant number of Capture datasets.

5.1.5 Capacity for Detecting Botnet C&C Signals

The analysis of the Stream-GP and MOA comparator algorithms on the least frequently

occurring class, Botnet C&C, under different label budgets is given in this section. The

Botnet C&C class, i.e. Botnet Command and Control, refers to the indication of the start

of a malicious botnet behaviour where commands are transferred from Bot master(s) to

slave(s). The ability to perform well in detection of the Botnet C&C class leads to the early

prevention of such attacks. An investigation of similar to that in Section 5.1.1 is taking

place here with specific focus on the botnet C&C class to check if the same ranking applies.

The final ranking of all algorithms based on the minor class’s streaming AvDR for each

label budget is summarized in Table 5.7. Both GP–Archive and GP–Both formulations had

the highest ranks as well. This success is reliant on the fact that these two algorithms are

able to effectively balance the content of the data subset, i.e. the observation in Section

5.1.3.

Table 5.8 indicates the Friedman test statistic (χ2
F) and the corresponding F-distribution

79

(FF) value which demonstrates that null hypothesis is comfortably rejected. The degree

of freedom is still unchanged (from the earlier analysis), so the critical difference is also

unchanged (2.671). The Nemenyi post-hoc test applied to the highest-ranked model implies

that GP–Archive, GP–Both and NB–Variable are statistically independent (of the remaining

six models) at a confidence of q = 0.1 for a label budget of 5%. As the label budget decreases

to 1% and 0.5%, these three models continue to be consistently identified. the low ranking

of Hoeffding and NB–Split is still evident in the detection of the minor class. This continues

to emphasize the incapability of these algorithms to detect the minor classes.

5.1.6 Distribution of Minor Classes

The distribution of minor classes (all classes except the Background class) that illustrates

the behavioural properties of the streaming botnet detection task for the CTU-13 datasets,

e.g. Captures 1, 5, 6, 8 and 9, is summarized in Figure 5.9. At any point, the value of each

class represents the sum of that class presentation in the unique non-overlapping window

location for a 1% label budget.

The figure explicitly demonstrates that there is no common ‘behavioural’ property for the

Botnet C&C class with the lowest frequency overall, and it mostly has a very burst mode

nature.

Normal Class (representing data corresponding to the CTU ‘normal filters’) appears in

all datasets throughout, but in most cases, and Capture 5 and Capture 6 specifically, it

disappears and appears at particular points. The Botnet class is interesting in Capture 8 as

it goes on and off throughout the stream in non-periodic intervals. Although each class rep-

resents a definitive class (Background/Normal/Botnet/C&C), but they actually represent

multiple different behaviours. For instance, Capture 1, 2 and 9 represent Neris Botnet, thus

the Botnet class may contain any combination of Spam, Click Fraud or Scanning activities.

See Section 4.1.1 for a summary of the types of malicious behaviours present in each stream.

80

(a) Capture 1 (b) Capture 5

(c) Capture 6 (d) Capture 8

(e) Capture 9

Figure 5.9: Distribution of minor classes over the course of the stream for the five
capture datasets appearing in Sections 5.1.2 and 5.1.3. Note the use of a log scale
and the colour coding, which corresponds to that adopted for the original Stream DR
figures. Background class is omitted for clarity (always 90 to 99%). Normal class
represents ‘normal’ traffic corresponding to the CTU filters, represents Botnet and
represents Botnet C&C. The log scale also implies that 10−2 is synonymous with zero
content (e.g. the earliest that Botnet C&C appears at the 40% point in Captures 5
and 9).

81

5.1.7 Real-time Operation

The common perception of GP is that it is not good to be used in real-time operations due

to its computational overhead. In this application domain, the network traffic packets are

first pre-processed into traffic flows using network flow exporters such as Argus [49]. Each

flow is aggregated information of a couple of network packets that are common in the 5-tuple

information: source/destination IP, protocol, and source/destination port. The number of

packets in each flow depends on the functionality of the service/application (10’s to 100’s

packets per flow). CISCO3 defines an upper bound of 600ms as the time interval for the

completion of any flow; however, this represents a worst-case figure, and the inter-arrival

time of packets is a function of network topology and load.

The capacity of Stream-GP in a real-time operation will be investigated from the fol-

lowing two perspectives:

• The time a Stream-GP champion takes to suggest its predicted class label for each

flow record (anytime operation).

• The time that fitness evaluation takes to be completed after each data subset update.

In the latter case, based on the parameterization assumed in this research (Table 4.10),

the fitness evaluation would evaluate Psize = 120 teams on DS = 120 flow records for τ = 5

generations and identify the champion individual. However, only twenty training records

are added to the data subset in each individual window location, and just twenty teams

are replaced at each generation (Gap = Tgap = 20); therefore, the computational cost per

window location is in the order of 20× 20× 5 evaluations.

Figure 5.10 summarizes the execution time under each of these conditions for a common

Intel i5 CPU (2.67GHz, 48GB RAM). The plot demonstrates the mean and variance of 20

runs over Capture 3, which is the dataset with the largest cardinality, i.e. it should be clear

whether the computational costs stabilize or not. In all cases, this reflects a code base that

executes as a single thread.

3https://www.cisco.com/c/en_ca/index.html

https://www.cisco.com/c/en_ca/index.html

82

(a) Champion

(b) Fitness evaluation

Figure 5.10: Wall clock time for (a) champion individual to make predictions and (b)
fitness evaluation to update the content of the population on a new non-overlapping
window location for the Capture 3 dataset on a 2.67 GHz CPU.

The average execution time for the champion is ≈10 ns (Figure 5.10(a)), implying an

average (single threaded) throughput of 6 × 107 flows per second. On the other hand, the

time taken to update the champion predictor is between 2.7 to 3.8 seconds.4 Furthermore,

4Adopting a multi-threaded operation, say, eight threads, could potentially reduce this to between

83

the biggest impact on the time to identify a champion is the time it takes the human ex-

pert to provide labels for the Gap records associated with each (non-overlapping) window

location W (i). However, this does not have any effect on the ability of the current cham-

pion classifier to provide labels, and it would be synonymous with the current practice for

deploying updates to ‘signature-based’ detectors.

5.1.8 Summary

Active learning under the streaming data context decouples the ML learning process from

the raw throughput of the stream and provides the opportunity to handle the distribution

of classes for model building. This property of active learning alongside GP would provide a

great combination to be applied on a stream of data, especially when low label budgets are

available. The key point of this thesis is to introduce the appropriate interaction between

sampling and archiving policies.

• GP–Random: represents the control base for the policy combinations. The distribu-

tion of the data subset is indicative of the actual distribution of the stream, which

specifically impacts the anytime classifier’s accuracy.

• GP–Sample: is unable to retain ‘useful’ queries from the minor classes in the data

subset. This could happen because the selected champion (anytime) classifier always

performs based on the two or three most frequently occurring classes in the data

subset. Therefore, it loses its sensibility to the smallest class(es) where the penalty

of miss-classifying the class(es) becomes typically low.

• GP–Archive: emphasizes balancing the data subset based on biased record replace-

ment from the data subset. This appears to provide the best balance of keeping the

major class exemplars up to date while identifying instances of the minor class(es).

• GP–Both: combines the targeted queries on the stream for labelling with biased

record replacement in the data subset. This introduces an aggressive algorithm in

promoting the minor class(es) in the data subset at the expense of a reduction in the

major class(es) performance.

The comparison of four alternative formulations explicitly designed to operate under label

budgets, the Stream-GP policies of GP–Archive and GP–Both are generally ranked 1st and

0.34 to 0.5 seconds.

84

2nd, respectively. Previous results on the entirely artificial stream data resulted in the same

ranking [69].

In pursuing a Botnet detection task, the potential for addressing a network analysis is

illustrated under particularly challenging conditions, e.g. class imbalance, the high cost of

labelling, anytime operation. Classifying the minor class in Botnet detection, Botnet C&C,

is costly and results in constructing a streaming classifier under a low label budget and

class imbalance becomes significantly challenging. For the first time, this thesis addresses

the mentioned two limiting constraints at the same time under the streaming classification.

The GP–Archive policy is shown to be an effective algorithm for working in GP streaming

with regard to the mentioned challenges. In addition, the detection of Botnet behaviours

improves over the course of the stream, resulting in the better detection of Botnet and

Botnet C&C classes, even though they might appear at a rate of less than 1% of the

total stream. To minimize the effect of adversarial attacks against learning algorithms, a

human expert is in the loop to suggest the true labels. However, the streaming algorithm

itself identifies which exemplars are to be labelled. Also, the anytime classifier can make

predictions regarding the class labels, which prioritizes the records for the expert to label

first.

GP–Archive and GP–Both algorithms from Stream-GP are selected as the best per-

forming algorithms to be evaluated on other applications later in this thesis. Similarly, the

Naive Bayes and Hoeffding Tree algorithms with Variable Uncertainty sampling policy from

MOA comaparator tool are employed for further evaluations.

5.2 Botnet Detection in Multi-bot Network Traffic

In this section, the Stream-GP and the MOA comparator algorithms are evaluated in a

more realistic network traffic scenario, multi-bot traffic. In the multi-bot scenario, different

bots that are distinct in operational modes appear throughout the stream. Several varieties

arise when various bots appear in the stream, such as: 1) The structure of the botnets,

centralized vs. peer-to-peer. 2) The command and control (C&C) protocol between the bot

and the botmaster, HTTP, DNS, etc. 3) The type of attacks, DoS, Click-Fraud, Spam, etc.

4) The procedure used to perform the attack.

Sometimes a single bot switches between the different attack types it could provide. Al-

together, this scenario provides a great opportunity to benchmark the system under a more

challenging network traffic stream and determine if the system can remember the seen bot

85

behaviour when it appears later in the stream. In Section 5.2.1, the overall performance of

the highest ranked Stream-GP and MOA comparator algorithms is quantified over the huge

mixed Botnet dataset, CTU13-mixed, which created based on mixing the thirteen Botnet

datasets (Table 4.3), in regard to 5.0% and 0.5% label budgets. Section 5.2.2 overviews the

underlying behaviour of algorithms by tracking their detection rates throughout the course

of the stream. Section 5.2.3 and Section 5.2.4 identify the performance of the algorithms

on the specific Botnet and Botnet C&C classes respectively. In Section 5.2.5, the overview

of the flow features selected by the Stream-GP champion throughout the stream is investi-

gated. Section 5.2.6 demonstrates the average time taken to evaluate the fitness function

and predict the label for an exemplar from the stream by the Stream-GP champion. Ulti-

mately, Section 5.2.7 concludes the investigations on algorithms’ behaviours and reactions

on the multi-bot scenario.

5.2.1 Overall Performance Evaluation

The four top-ranked Stream-GP and MOA comparator algorithms are selected for evalua-

tion purposes based on the observations in Section 5.1.1. A novel Stream-GP configuration,

GP–Hybrid, is also introduced and added to the list for evaluation. All algorithms are

deployed for 20 independent runs with two label budgets, 5% and 0.5% (β = {0.05, 0.005}).
The streaming AvDR (Section 4.4) is used as the metric for evaluation of the algorithms.

Table 5.9 details the median of the AvDR results for each algorithm’s runs under both label

budgets, 0.5% and 5%. Then, a nonparametric Mann-Whitney U test is performed on the

mean values to verify the statistical significance between each pair of algorithms. Violin

plots (Figure 5.11) for the 5% label budget confirmed that the distribution of AvDR does not

conform to a normal distribution. The same observation is valid for the 0.5% label budget

as well. The violin plot also visually demonstrates the distinctive differences on algorithms’

performances. To provide numerical values to reflect the visual performance distinction,

p-values for each pair of algorithms are computed in Tables 5.10 and 5.11 separately for the

5% and 0.5% label budgets.

The overall performance (Table 5.9) explicitly shows that the Stream-GP algorithms

perform better in comparison to the MOA comparator algorithms under both label budgets.

The observation also demonstrates that there is a ≈15% increase in the performance of the

Stream-GP algorithms when the label budget increases. On the other hand, the same

conclusion could be made on the MOA algorithm, but this time with a ≈10% increase.

86

Table 5.9: Median values w.r.t. streaming AvDR metric, under 0.5% and 5% label
budgets. Three Stream-GP configurations are declared in Table 4.9. Hoeffding Tree
and Naive Bayes (from MOA) appear with the ‘variable’ sampling policy, the CTU13-
mixed dataset

Algorithms AvDR Median (0.5%) AvDR Median (5%)
S
tr
ea

m
-G

P Archive 62.3% 78.1%
Hybrid 63.4% 78.4%
Both 62% 76.4%

M
O
A

Hoeffding 33% 40.4%
NB 47.2% 56.9%

Figure 5.11: Violin plots for a 5% label budget based on streaming AvDR metric
(Average of 20 runs)

The null hypothesis (i.e. that the distribution of results is equal) is strongly rejected

between the Stream-GP and MOA comparator algorithms (Tables 5.10 and 5.11). This im-

plies that the Stream-GP algorithms perform significantly better than the MOA algorithms.

This result illustrates the effectiveness of Stream-GP variants in detecting multiple botnets

throughout the course of the stream using the knowledge of previously seen behaviour

repeated in the stream. GP–Archive versus GP–Hybrid could not be rejected under both

label budgets and versus GP–Both could not be rejected under the 0.5% label budget (Table

87

Table 5.10: p-value from Mann-Whitney U test for Stream-GP and MOA algorithms,
for the 5.0% label budget

Alogrithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 0.37 Hybrid
Both 3.4× 10−6 8.3× 10−8 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 0.0 0.0 0.0 1.8× 10−5

Table 5.11: p-value from the Mann-Whitney U test for the Stream-GP and MOA
algorithms for the 0.5% label budget

Algorithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 0.68 Hybrid
Both 0.11 0.04 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 0.0 0.0 0.0 0.0

5.11), although the p-value is clearly decreasing. There is at least a 20% difference between

the performance of the Stream-GP and MOA algorithms under the 5% label budget and

15% under the 0.5% label budget (Table 5.9).

The comparison of overall performances, in the case of the multi-bot dataset (Tables

5.10 and 5.11) with that of separate botnet datasets (Tables 5.1 and 5.3) indicates that

Stream-GP algorithms could keep up the streaming AvDR to the highest detection rates in

the case of single-bot datasets. This observation suggests that the complexity of the dataset

does not affect the Stream-GP algorithm to change, which implicitly relies on the ability of

the algorithms to remember the learned behaviours.

5.2.2 Detection Rate Dynamics: Comparing the Best Streaming Classifiers

The behaviour of the classifiers throughout the course of the stream in the presence of

multi-bot activities, is of interest in this section. For this purpose, the algorithms from

Stream-GP and Naive Bayes from MOA are chosen for the comparison of behaviours. Thus,

the streaming class-wise detection rate, streaming AvDR (Eq. 4.7), is plotted as a function

of time (Figure 5.12). The plots are superimposed over segments of coloured backgrounds.

Each segment is representative of one CTU-13 Capture, i.e. one single bot behaviour.

Moreover, the transition from one type of botnet to another is identified by a colour change.

88

(a) GP–Archive (b) NB–Variable

(c) GP–Both (d) GP–Hybrid

Figure 5.12: Class-wise Detection rate through the stream at a 5% label budget based
on streaming AvDR metric (Average of 20 runs)

89

(a) GP–Archive (b) NB–Variable

(c) GP–Both (d) GP–Hybrid

Figure 5.13: False positive rate through the stream at a 5% label budget (Average of
20 runs)

All classifiers have a cold start during the initial Capture datasets (Captures 5 and 6).

The three Stream-GP algorithms are closely related in terms of reaction to the changes

throughout the stream (Figure 5.12). The least detected class is always the Botnet C&C

class, which is also the least frequent class, and its general shape of profile is similar under

all algorithms. Likewise, The Normal and Botnet classes have the common trend in all

cases, whereas the Background class performs poorly in the specific case of Naive Bayes

with the ‘variable’ sampling policy. Firstly, NB–Variable starts with a 100% Background

90

detection rate, which immediately reduces to almost 30% when the model becomes able

to identify the minor classes. This observation matches the Naive Bayes properties under

several single-bot scenarios previously identified in Section 5.1.2. Moreover, the Naive Bayes

algorithm appears to be slower at building classifiers / reacting to change over the course

of the stream. All classes are detected above the ≈ 60% AvDR through the course of the

stream for Stream-GP algorithms, whilst this only applies to the Botnet class in the case of

Naive Bayes with the Background detection rate that is even lower than the Botnet C&C

DR.

Figure 5.13 summarizes the False Positive rate over the course of the stream for each

algorithm. GP–Archive and GP–Hybrid perform similarly in false detection, where both

algorithms tend to stay at ≈ 10% for Background and Normal traffic and lower than 5% for

Botnet and Botnet C&C classes. GP–Both is different from the previous two algorithms in

that it has a higher false detection rate of the Background and a little lower rate for the

Botnet and Botnet C&C classes. This indicates the insistence of GP–Both to strictly keep

the data subset balanced, which leads to the lower number of Background (major class)

in this case, while it detects Botnet and Botnet C&C more precisely. On the other hand,

NB–Variable detects Normal traffic 60% on average but at the expense of getting a ≈ 50%

false positive rate. The trend in the false positive plot for the Background class in the

Naive Bayes algorithm confirms the hypothesis that it starts with labelling all classes as

Background class (100% false positive), then goes to a lower false positive rate by starting

to detect other classes.

Figure 5.15 visualizes the botnet existence throughout the stream in chunks of 10% of

the stream. The appearance of different Botnet behaviours throughout the course of the

stream and the Stream-GP algorithms’ reactions to it leads to the following observations:

• RBot activities (red colour in Figure 5.15) first appear in Capture3 (3rd segment)

and the classifier incrementally improves its detection rate. The next occurrences

of this attack happen in Capture 4, Capture 10 and Capture 11 (5th, 8th and 11th

segments respectively) where the Botnet detection remains the same or increases.

• Neris (blue colour in Figure 5.15) begins its malicious activities in Capture 1 (4th

segment), which causes a ≈ 10% reduction in the Botnet detection rate. In the

next appearance of this Botnet in Capture 2 (7th segments), the detection rate stays

stable; whereas a ≈ 10% reduction in Botnet detection again occurs in Capture 9

(10th segment) due to the change in the Bot behaviour.

91

• Virut bot (purple colour in Figure 5.15) experiences the longest absence in the

stream, where it starts at the very first and the last segments of the stream. The

observation does not show any decrease in the detection of the Botnet class when it

again appears lastly.

(a) GP–Archive

(b) GP–Both

Figure 5.14: Typical Distribution of classes present in the Data Subset for the GP–
Archive and GP–Both algorithms on the CTU13-mixed dataset at a 5.0% label bud-
get.

92

Figure 5.15: Botnet distributions at each 10% of the CTU13-mixed dataset

The summary of observations indicates that a reduction in Botnet class only happened

in two cases: 1) the introduction of the Neris Botnet for the first time in Capture 1 and 2)

when the same Neris Botnet changes its behaviour in Capture 9. In other cases, either the

Botnet detection improves or stays stable.

5.2.3 Capacity for Detecting Botnet Signals

The performance of the algorithms in detecting different botnet behaviours available in the

CTU13-mixed dataset is investigated in this section. Table 5.12 indicates the median AvDR

Table 5.12: median values w.r.t. streaming Botnet AvDR metric under 0.5% and 5%
label budgets. Three Stream-GP configurations are given in Table 4.9. Hoeffding Tree
and Naive Bayes (from MOA) appear with the ‘variable’ sampling policy, CTU13-
mixed dataset

Algorithms AvDR Median (0.5%) AvDR Median (5%)

S
tr
ea

m
-G

P Archive 79.7% 88.0%
Hybrid 76.2% 87.4%
Both 70.8% 83.1%

M
O
A

Hoeffding 31.6% 33.5%
NB 75.8% 83.8%

93

of the runs for each algorithm. The values implies that GP–Archive is the best algorithm

at detecting the botnet signals (79.7% and 88.0% for 0.5% and 5% label budgets). All other

algorithms, except MOA–Hoeffding with variable uncertainty sampling method, perform

well in Botnet detection. In addition, almost 10% growth in the AvDR median is observed

by label budget increment.

(a) 5% label budget

(b) 0.5% label budget

Figure 5.16: Violin plots for comparison of algorithms in Botnet detection, 0.5% and
5% label budgets.

94

The overall performance of the algorithms on the Botnet class, the least frequent class,

is illustrated via violin plots in Figure 5.16 for 0.5% and 5% label budgets. The pair-

wise comparison of the algorithms based on the Mann-Whitney U test on the Botnet class

detection is performed for 5% and 0.5% label budgets (Tables 5.13 and 5.14, respectively).

Based on the results, GP–Archive and GP–Hybrid are the top-ranked algorithms in Botnet

detection, and the null-hypothesis could not be rejected for them under the 5% label budget.

Consequently, the null hypothesis is comfortably rejected for the top-ranked Stream-GP

algorithms, GP–Archive and GP–Hybrid, versus MOA comparator algorithms. However,

under the 0.5% label budget, only GP–Archive maintains the significant difference against

the MOA comparator algorithm.

Further, a Bonferroni-Dunn post-hoc test is applied to showcase the significance of GP–

Archive over the rest of the algorithms. The newly computed critical value based on the

post-hoc test is computed as α = 0.05
4 = 0.0125, in which 0.05% is the Mann-Whitney U test

critical value, and 4 is the number of comparisons made. Based on the computed critical

value, GP–Archive performs significantly better than other algorithms in Botnet detection

under both 0.5% and 5% label budgets, except in the specific case of GP–Hybrid, in which

the null hypothesis could not be rejected for the 5% label budget. In general, GP–Archive

and GP–Hybrid are the best Stream-GP variants for detecting the botnet class, and they

significantly outperform the MOA comparator algorithms.

Table 5.13: p-value from the the Mann-Whitney U test for the Stream-GP and MOA
algorithms based on Botnet median AvDR for the 5.0% label budget

Algorithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 0.05 Hybrid
Both 0.0 0.0 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 3.9× 10−5 6.9× 10−5 0.56 0.0

Table 5.14: p-value from the Mann-Whitney U test for the Stream-GP and MOA
algorithms based on Botnet median AvDR, for the 0.5% label budget

Algorithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 1.0× 10−4 Hybrid
Both 0.0 1.0× 10−3 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 1.0× 10−3 0.82 9.4× 10−3 0.0

95

5.2.4 Capacity for Detecting Botnet C&C Signals

The performance of algorithms in detecting the minor class, Botnet C&C, the distribution

of which is distinctively lower than the rest of the classes, is investigated in this section.

Table 5.15 demonstrates the median values for the AvDR of the runs for each algorithm. It

shows that the Stream-GP algorithms are performing distinguishably better than the MOA

comparator algorithms. Hoeffding with variable uncertainty is shown to be completely

incapable of detecting the Botnet C&C. There is a huge difference between the median

values in 0.5% and 5% label budgets (≈ 40% for all algorithms). This increase in median

values determines the power of the label budget when a minor class with a huge gap in its

distribution with other classes exists.

Table 5.15: median values w.r.t. streaming Botnet C&C AvDR metric under 0.5%
and 5% label budgets. Three Stream-GP configurations are declared in Table 4.9.
Hoeffding Tree and Naive Bayes (from MOA) appear with the ‘variable’ sampling
policy, CTU13-mixed dataset

Algorithms AvDR Median (0.5%) AvDR Median (5%)

S
tr
ea

m
-G

P Archive 20.7% 69.2%
Hybrid 29.6% 71.2%
Both 29.7% 67.3%

M
O
A

Hoeffding 0.0% 0.0%
NB 16.2% 55.7%

The overall performance of the algorithms on the Botnet C&C class, the least frequent

class, is illustrated via violin plots in Figure 5.17 for 0.5% and 5% label budgets. A more

detailed Mann-Whitney U test is applied pair-wise on every two algorithms of the set

to investigate if the null hypothesis, is rejected or not (Figures 5.16 and ?? for 5% and

0.5% label budgets, respectively). The null hypothesis is rejected for Stream-GP variants

versus MOA comparator algorithms under a 5% label budget, which shows that Stream-GP

variants are performing significantly better than the comparator MOA algorithms. However,

GP–Archive versus the other Stream-GP variants test did not reject the null hypothesis.

GP–Hybrid and GP–Both are the best algorithms for Botnet C&C detection. The leading

Stream-GP algorithms, GP–Hybrid and GP–Both, still perform significantly better than the

MOA comparator algorithms in Botnet C& C detection. The comparison of GP–Hybrid

and GP–Both demonstrates that GP–Hybrid is successful in increasing the Botnet C&C

detection rate when the label budget is low, which illustrates that it could successfully play

its role as it was designed. Therefore, GP–Hybrid and GP–Both perform best on Botnet

C&C detection, whereas GP–Archive performs better on Botnet Detection.

96

(a) 5% label budget

(b) 0.5% label budget

Figure 5.17: Violin plots for the comparison of algorithms in Botnet C&C detection,
0.5% and 5% label budgets.

97

Table 5.16: p-value from the Mann-Whitney U test for the Stream-GP and MOA
algorithms based on Botnet C&C median AvDR for the 5.0% label budget

Algorithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 0.06 Hybrid
Both 0.20 5.9× 10−4 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 2.9× 10−3 1.5× 10−4 0.01 0.0

Table 5.17: p-value from Mann-Whitney U test for Stream-GP and MOA algorithms
based on Botnet C&C median AvDR, for the 0.5% label budget

Alogrithms

S
tr
ea

m
-G

P Archive Archive
Hybrid 0.03 Hybrid
Both 0.04 0.94 Both

M
O
A Hoeffding 0.0 0.0 0.0 Hoeffding

NB 0.05 2.9× 10−5 6.9× 10−5 0.0

5.2.5 Feature Selection by Stream-GP Champion

The features used to detect the classes throughout the stream may vary based on the content

of the stream. In this section, the frequency of the flow features which used by the stream-

GP champion is reviewed. For this purpose, GP–Archive is considered as the representative

of Stream-GP algorithms.

Figure 5.18 illustrates an overall view of the flow features used in the GP–Archive

champion team to label the stream. This stacked column chart is plotted based on the

average number of flow features utilized by the learners of the champion team. In other

words, the number of features in each learner is computed, and then the average of these

numbers between the learners of a team is calculated. The number is conjugated in several

numbers of consecutive generations on average to produce a readable and clear image of the

feature usage throughout the course of the stream. This represents the active behaviour

of the Stream-GP classifier throughout the course of the stream where the frequency of

features used in the champion team differs from time to time throughout the course of the

stream. Direction, protocol and source bytes features are the three most frequently used

features in general.

98

Figure 5.18: Overview of the features used by the GP–Archive champion throughout
the stream, 5% label budget

Figure 5.19 demonstrates the average feature usage in a champion team based on the

action (class label). This specifically shows which features are most important in the de-

tection of each class. Protocol is important in the detection of all classes. Duration plays

an important role in Botnet detection, as attack behaviour is different from the Normal

behaviour in terms of time. It may be affected by the burst of the Botnet attack in a

short period of time as is illustrated in Figure 5.9. Again, Source Bytes are important in

distinguishing between different classes and also between Botnet and Botnet C&C.

Figure 5.19: Overview of the features used by the GP–Archive champion throughout
the stream based on action, 5% label budget

Figure 5.20 illustrates the distribution of the average effective (non-introns) code lines

99

based on class labels. It implies that there is a balanced distribution in the overall distribu-

tion of the effective executable code lines throughout the stream, which indicates that the

attempt to balance the learning data subset was successful.

Figure 5.20: The average number of execution code lines based on action (class label),
5% label budget

5.2.6 Real-time Operation

The computational cost of the streaming classifiers on the challenging CTU13-mixed dataset

is reviewed in this section. The preprocessing of the network traffic and the general idea to

evaluate the computational time is similar to Section 5.1.7. Therefore, the time is computed

in two modes:

• Champion prediction, which is the amount of time the Stream-GP champion at

the time, anytime operation, takes to suggest a label for each flow record.

• Training time refers to the cost of performing τ = 5 training epochs for every data

subset change, i.e. each window location.

These two time calculations are independent as the corresponding processes can happen in

parallel.

100

(a) Stream-GP Champion

(b) Fitness evaluation

Figure 5.21: Wall clock time for (a) the champion individual to make predictions
and (b) the fitness evaluation to update the content of the population on a new
non-overlapping window location for the CTU13-mixed dataset on a 2.67GHz CPU.

Figure 5.21 summarizes the average and mean time taken for the 20 runs of the Stream-

GP algorithm, which is deployed single-threaded on an Intel i5 CPU 16@2.67GHz and

48GB memory. It takes ≈ 30ns (Figure 5.21(a)) for the Stream-GP champion to predict an

exemplar under a 5% label budget. This time could be reduced further if multiple threads

are utilized by the champion.

101

The training time is computed based on the fitness evaluations on a per window location.

This time is a function of the data subset size (DS(i) = 120 flows), the number of teams

(Psize = 120) and the number of Stream-GP generations on each data subset, DS(i), update

(τ = 5 generations) plus any overhead in champion selection (the parameters can be seen

in Table 4.10). However, just a part is changing at each window location; for example, only

20 new flow records (Gap = 20) are introduced and replaced at each DS update, and for the

team updates, only 20 teams are replaced by new instances (Tgap = 20). Thus, the overall

computational cost for training on a single window takes 20×20×5 number of evaluations.

In the case of training on CTU13-mixed, the average time for training on a window is 1.1s

(Figure 5.21(b)).

Still, the bottleneck for the training time is the time the human expert takes to suggest

true labels for the classifier, where it is common to stream learning algorithms and also

the best practice for developing updates for signature detection models. Whilst the expert

takes their time to suggest labels, there is always a champion classifier to label the stream

of network flows based on the anytime operation. In addition, the framework applied on

the CTU13-mixed works on the network flows, so it is considered to have a ‘near’ real-time

performance.

5.2.7 Summary

The best Stream-GP algorithms and their best MOA comparator (based on the performance

ranking in Section 5.1.1) is selected to benchmark their performance on a multi-bot dataset,

CTU13-mixed. This dataset includes thirteen different Botnet scenarios (re)occurring at

different points in the stream. The evaluations are done on 0.5% and 5% label budgets.

The GP–Hybrid algorithm is introduced, which initially starts with a greedy selection of

flows predicted to be under-represented in the data subset to develop classifiers. As the per-

formance of the initially under-represented classes improves, uniform sampling is assumed.

This switch impacts the sampling of traffic to be more of the typical behaviours after a cold

start, in which the samples reflect the underlying distribution of the traffic. The positive

point is that the infrequent classes, which are representative of the Botnet behaviour, are

available in the data subset and are not lost.

The evaluations demonstrate that GP–Hybrid and GP–Archive are the two best algo-

rithms in multi-botnet detection. There might be a slight difference between these two

algorithms; but in the case that the minor class(es) is tremendously infrequent with a poor

/ slow introduction, GP–Hybrid would suggest better samples than GP–Archive for rapid

102

minor class(es) identification. GP–Hybrid has been shown to perform better than GP–

Archive in Botnet C&C detection. This implies that the start of the Botnet activities could

be identified more rapidly by the GP–Hybrid algorithm. On the other hand, GP–Archive

performs slightly better than GP–Hybrid in Botnet detection. In addition, the analysis il-

lustrates that Stream-GP is able to retain Botnet signatures learned and re-use them when

they occur again in the stream. Last, the ability of Stream-GP to perform in ‘near’ real-time

is also demonstrated.

The Hoeffding Tree algorithm with Variable Uncertainty from MOA comparator tool

was incapable of performing under the stream of data with multiple botnet behaviours.

Therefore, this algorithm is removed from the list of algorithms for further evaluations. On

the other hand, GP–Hybrid as the best performing algorithm under this complex stream is

added to the list of best performing algorithms.

5.3 Network Security in Real-world Network Traffic

The Stream-GP and MOA comparator algorithms are examined under malicious network

traffic content, e.g. Network Bots and Intrusions, for more evaluations of network secu-

rity topics. In Section 5.1, the performances of Stream-GP variants and MOA algorithms

were identified under various botnet datasets, and the relative ranking of the algorithms

were concluded in general. In this section, a detailed analysis of the top-ranked algorithms

under the 5% label budget are exposed over two more network security scenarios. Section

5.3.1 quantifies the overall performance of the best-ranked algorithms identified in Section

5.1 over two network security datasets (Table 5.18) for the 5.0% label budget. Section

5.3.2 demonstrates the dynamics of algorithms throughout the course of the stream. Fi-

nally, Section 5.3.3 concludes the results for analysis of the aforementioned network security

datasets.

5.3.1 Overall Performance Evaluation

The overall performance of the Stream-GP algorithm with the best sampling-archiving

policy combination (GP–Archive) and the MOA comparator algorithms with the best sam-

pling policy (Variable Uncertainty) on two network security datasets, namely ISOT and

NSL-KDD, are explored. The streaming AvDR (Section 4.4) is considered the metric for

the evaluations of algorithms. All results are the average of 20 independent runs under the

5.0% label budget (β = {0.05}). In Table 5.18, the ranking of all network datasets are

given, where the CTU-13 datasets’ results are taken from Table 5.1. The Friedman test is

103

Table 5.18: Algorithm ranks w.r.t. the streaming AvDR metric under a 5.0% label
budget. Bracketed entries represent median AvDR values to 1 decimal place.

Dataset GP–Archive Hoeffding NB
NSL-KDD 1 (65.5) 2.5 (20.0) 2.5 (20.0)
ISOT 2.5 (85.6) 2.5 (85.6) 1 (88.4)

CTU-13

Capture 1 1 (56.8) 3 (26.7) 2 (43.5)
Capture 2 1 (68.1) 3 (36.5) 2 (54.8)
Capture 3 1 (81.5) 3 (55.5) 2 (59.5)
Capture 4 1 (62.7) 3 (42.2) 2 (55.2)
Capture 5 1 (36.1) 3 (26.3) 2 (30.7)
Capture 6 1 (65.8) 3 (25.5) 2 (48.6)
Capture 7 2 (29.8) 3 (25.9) 1 (32.5)
Capture 8 1 (78.0) 3 (28.1) 2 (57.9)
Capture 9 1 (54.1) 3 (26.5) 2 (45.4)
Capture 10 1 (70.3) 3 (54.6) 2 (58.7)
Capture 11 1 (54.8) 3 (42.2) 2 (47.6)
Capture 12 1 (52.5) 3 (36.0) 2 (48.3)
Capture 13 1 (70.2) 3 (27.3) 2 (42.9)

Rj 1 (1.16) 3 (2.93) 2 (1.9)

done on the median AvDR for the 20 runs of each algorithm to specify if a pattern in the

algorithms’ ranking exists. Thereafter, a Nemenyi post-hoc test determines the significance

of the algorithms based on the critical difference, Eq. 4.15.

The last row of Table 5.18 represents the average ranking of algorithms over all the network

datasets. This ranking is then used by the Friedman test to check the null hypothesis, i.e.

the ranks are random.

The null hypothesis is tested by comparing χ2
F to FF , F-distribution with k − 1 and (k −

1)(n − 1) degrees of freedom [33]. Where n = 15 is the number of datasets, and k = 3 is

the number of algorithms in this case. Table 5.19 demonstrates that the null-hypothesis is

rejected as the critical value of F (2, 28) for α = 0.01 is less than 2.503.

Thereafter, a Nemenyi post-hoc test is done to specify the significance level of algorithms

and group them into similarly performing algorithms. By setting qα = 0.1, the critical

difference becomes 0.036. This value shows that each algorithm is significantly different

from their comparator algorithms where the ‘stream-GP’ is ranked first.

5.3.2 Detection Rate Dynamics: Comparing the Best Streaming Classifiers

The underlying dynamics of the specific two new datasets, NSL-KDD and ISOT, are in-

vestigated to gain more insights in to the behaviour of algorithms over the course of the

104

Table 5.19: Result of Friedman test χ2
F and corresponding value for F-distribution

FF . The critical value of F (2, 28 for α = 0.01 is 2.503, so the null-hypothesis is
rejected in each case.

Label budget 5.0%
χ2
F 23.11
FF 46.96

stream. The comparison is done between GP–Archive as the champion over the network

datasets (rank 1st) and the best MOA comparator candidate, NB–Variable (ranked 2nd).

Figures 5.22 and 5.23 are the class-wise AvDR plots throughout the stream for NSL-KDD

and ISOT, respectively.

In the case of NSL-KDD, Figure 5.22, it is obvious that Naive Bayes labels all classes

as Normal traffic which is the major class. The poor performance of Naive Bayes over

NSL-KDD may be relative to the type of this dataset. NSL-KDD is a packet-based dataset,

as each record is a packet. In previous datasets, network flows were utilized that aggregate

relative packets and provide more meaningful content. Naive Bayes seems to not capable

of performing well in this situation. On the other hand, Figure 5.24 demonstrates low false

positive rates of GP–Archive in both datasets.

Both algorithms perform well on the ISOT dataset, Figure 5.23. GP–Archive has with a

cold start but soon gets to the desirable detection rate level. As the figures depict, once the

class is detected, its detection rate stays at a consistent level. This behaviour suggests that

the streaming data are stationary, and do not change throughout the course of the stream,

or on the other hand, that the attack appears at one point, and there is no indication of it

until the end of the stream. In this scenario, the Naive Bayes algorithm labels everything as

Normal class, and then if it applies to the specific thresholds, which are not going to change

throughout the course of the stream, it assigns their class labels. On the other hand, the

GP–Archive recognizes each class separately, which leads to a slightly lower detection of

the Normal and Smtp-Spam classes. The Naive Bayes performs well when there are some

specific ranges with a different behaviour so it is not difficult to track the changes. The

ISOT dataset is a case of a non-complex dataset, as no concurrent track of the boundaries

are required, and boundaries are well separated.

105

(a) GP–Archive

(b) NB–Variable

Figure 5.22: NSL-KDD class-wise Detection rate through the stream at a 5% label
budget based on the streaming AvDR metric (Average of 20 runs)

106

(a) GP–Archive

(b) NB–Variable

Figure 5.23: ISOT class-wise Detection rate through the stream at a 5% label budget
based on the streaming AvDR metric (Average of 20 runs)

107

(a) NSL-KDD dataset

(b) ISOT dataset

Figure 5.24: GP–Archive class-wise false positive rate through the stream at a 5%
label budget based on the streaming AvDR metric (Average of 20 runs)

5.3.3 Summary

Three top-ranked streaming classifiers: GP–Archive, Hoeffding–Variable and NB–Variable,

have been applied on two more public network security datasets, ISOT and NSL-KDD. The

108

overall evaluations on all network datasets were performed, which strongly indicates that

GP–Archive is the best algorithm to be applied on the network stream. The GP–Archive

algorithm, by selectively making the right decisions to remove highly populated exemplars

from the data subset, not only performs well based on the streaming AvDR metric but also

has been shown to do so under a low false positive rate and low label budget (5.0%). This

latter case is an important factor in the network security field, where malicious behaviours

are mostly scarce.

In summary, Stream-GP algorithms (GP–Archive, GP–Hybrid and GP–Both) and MOA

algorithm (NB–Var) are identified as the best performing algorithms on different network

scenarios. These algorithms are kept for further evaluations.

5.4 A Comparison to the Apache Spark Streaming Network Tool

The Stream-GP classifier is shown to effectively work in real-world network scenarios in

Section 5.1 to Section 5.3. The evaluations are performed on real-world network scenarios,

and the comparisons are always done with the MOA algorithms, which MOA is the stream-

ing version of the Weka toolkit5 that provides ML algorithms for streaming data. To get a

sense of how the Stream-GP performance stands in comparison with current network tools,

a comparison to the Apache Spark (Streaming) tool is performed in this section. Apache

Spark is a state-of-the-art network tool that is widely used in network security and opera-

tions. The overall architecture of Apache Spark is illustrated in Figure 4.1. This tool has a

streaming component, which provides the ability to work on streaming data in real-world

scenarios. Section 5.4.1, presents an overall comparison of the best Stream-GP algorithms

with three popular Apache Spark ML classification algorithms. In Section 5.4.2, the vi-

sualization of the algorithms’ underlying behaviour throughout the course of the stream

is prepared. Sections 5.4.3 and 5.4.4 dig into the investigation of Stream-GP behaviour

in comparison to its comparator algorithms in specific cases of Botnet and Botnet C&C

detection. In Section 5.4.6, the computational cost of training the Apache Spark classifier

model and the response time to label the stream exemplars are illustrated. Finally, Section

5.4.8 summarizes the comparative analysis of the Stream-GP and Apache Spark network

tool.

A multi-class streaming AvDR metric (Eq. (4.10) of Section 4.4) is used to calculate the

overall performance. For evaluation of each algorithm’s performance, 10 runs are performed.

5https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

109

5.4.1 Overall Performance Evaluation

The top three Stream-GP algorithms (Table 5.10) and three most commonly used Apache

Spark ML classification algorithms (Decision Tree, Random Forest and Naive Bayes) are

selected for evaluations on the CTU13-mixed dataset. The Stream-GP algorithms are uti-

lized under a 5.0% label budget in a completely streaming mode where both learning and

prediction processes are streaming. In contrast, Apache Spark Streaming does not provide

streaming learning but supports the utilization of an off-line learned ML model on the

stream of data6. For evaluations, two modes of operation are considered: 1) Streaming sim-

ulation, and 2) Classical operation. The overall architecture of the scenarios is illustrated

in Figure 5.25. For both approaches, the 5.0% label budget is considered. A description of

each scenario follows next.

Figure 5.25: Apache Spark Experiments flowchart.

The Streaming simulation is more like the real-world application of off-line models

being applied to the stream of data, as only access to the first portion of the stream is

guaranteed and the future of the stream is not known. Therefore, for a rich comparison,

the CTU13 mixed divided into ten non-overlapping splits in which each split indicates a

6Later, DStream is introduced based on Spark Streaming to provide streaming learning. However,
the ML library provided in this tool is based on MOA which is benchmarked previously

110

separate experiment where the stream starts from there. Dividing up the dataset into 10

splits provides the opportunity to test what happens if the stream starts at each of the

splits and how it affects the performance of an off-line model on predicting the label for

the rest of the stream. The training data are sampled from the first split in each case

based on the label budget. For each split, 10 different runs are performed to evaluate the

algorithms’ performance with the assumption that the stream is started from that specific

split. Overall, it makes 100 runs on the dataset (training set number (10) * number of runs

(10)).

The Classical operation ignores the constraint of access to the streaming data and

works like the usual off-line learning (batch) model but on a huge dataset, which is also

considered a big-data problem. For this case as well, 10 runs are performed with random

sampling from all over the dataset this time.

In both modes of operations, the sampling process happens in a random mode so the

training set classes’ distributions correspond to the original stream distribution, which is

highly imbalanced in the CTU13-mixed dataset. This imbalanced training set would lead

the model to learn the major class the most, and it would be unable to detect minor classes.

To overcome this shortcoming, the number of major class samples is kept the same as the

sum of the remaining minor classes. This may lead to using the training data less than the

5% label budget.

Streaming Simulation Scenario

For the sake of clarity, the results are demonstrated as violin plots in Figure 5.26 for the

Stream-GP and Apache Spark algorithms. The training violin plots are also shown in Figure

5.27.

The Apache Spark violin plots (Figure 5.4.1) indicate that Naive Bayes is not performing

well. The figure shows that it is only capable of detecting the major class. Moreover, the plot

demonstrates that Decision Tree is performing better than Random Forest (>≈ 5%−10%).

Inspecting the training violin plots (Figure 5.27(a)) reveals that the same relationship is

evident between the Decision Tree and Random Forest as well. This evidence diminishes

the possibility of Random Forest’s over-fitting. This also shows that the random forest

parameterization could be changed for better performance. One key point of Stream-GP

is that it does not need to be tuned at the beginning, and it will change throughout the

stream based on the observations and the need. The plots also illustrate that Detection

rates become higher when trained on some specific splits of the dataset, e.g. Splits 5 and

111

10.

(a) Stream-GP (5.0%)

(b) Apache Spark (5.0%)

Figure 5.26: CTU13-mixed class-wise Detection rate through the stream. Stream
simulation scenario. 5.0% label budget. The Y-axis shows the Split where training
data are sampled from.

The comparison of the performance of Stream-GP and Apache Spark algorithms shown

in the violin plots (Figure 5.26) indicates that the Stream-GP algorithms (≈ 75% − 80%)

are performing significantly better than the Apache Spark ML algorithms (< 63%) in terms

of the Average Detection Rate (AvDR). This corresponds to the adaptation of Stream-GP

to the changes throughout the stream and the ability to deal with the imbalanced data in

112

learning. This experiment clearly demonstrates that the off-line models can not effectively

work in a stream with non-stationary data properties.

(a) Apache Spark (5.0%)

Figure 5.27: CTU13-mixed class-wise Detection rate in the training phase. 5.0% label
budget. The Y-axis shows the Split where training data are sampled from.

Classical Scenario

The Random Forest and Decision Tree algorithms from Apache Spark are selected for this

experiment. The results are demonstrated as violin plots in Figure 5.28 for the Stream-GP

and Apache Spark algorithms.

The comparison of violin plots (Figure 5.28) illustrates that the Stream-GP algorithms are

performing significantly better than the classical application of the Apache Spark algo-

rithms (≈ 78% >≈ 55%). This result emphasizes that the dynamic properties of streaming

data require the classifier to be dynamic as well. Therefore, any static classification model

is unable to perform well over all the stream, and the performance will decay due to the

shift/drift changes throughout the stream. Although the limited access to the stream con-

tent is not considered in this scenario, this does not help Decision Tree to have a better

performance in comparison to the Stream simulation scenario. This may represent that

limited sampling of the data from a huge pool of input entries in an imbalanced dataset

can not provide more informative selections compared with choosing from a limited window

113

position to be embedded in a monolithic solution. Similar to the stream-based scenario,

Decision Tree performs better than the Random Forest algorithm (≈ 7%).

Figure 5.28: CTU13-mixed class-wise Detection rate through the stream. Classical
scenario. 5.0% label budget. The Y-axis shows the algorithms.

Comparison of the Top Performing Algorithms:

In this section, the performance of best algorithms in Apache Spark (Decision Tree, both sce-

narios), MOA (Naive Bayes-Variable Uncertainty) and Stream-GP (GP–Hybrid) are com-

pared and statistical analysis is given. For this purpose, all 10 different runs on 10 splits

of the dataset in the case of the Spark stream-like scenario are averaged to form a general

perspective of the algorithm on the overall dataset.

The overall performance (Table 5.20) illustrates the extreme difference of the Stream-GP

algorithm with the Apache Spark algorithm in two modes of operation. The decision tree

in the classical scenario is slightly better than the stream-based scenario. This is due to the

unlimited access of the classical scenario to the content of the stream from the beginning,

which in practice is not possible in stream-processing tasks.

The pair-wise Mann-Whitney U test on the Stream-GP versus comparator algorithms

is applied for a 5% label budget (Table 5.25). Thereafter, a Bonferrori-Dunn post-hoc

test is applied to find out if the Stream-GP algorithm is significantly different than all

the other algorithms overall. For this purpose, the α value (α = 0.05) is divided by the

number of comparisons (k − 1 = 3) in which the new α equals 0.017. With regard to

114

the new alpha, the null hypothesis is comfortably rejected, and the Stream-GP has been

shown to be significantly better than the rest of the comparator algorithms. There is

at least a 15% difference between the performance of the Stream-GP and Apache Spark

and MOA comparator algorithms under a 5% label budget (Table 5.20). Overall, the

necessity of having streaming learning throughout the course of the stream is clear now.

Even the classical scenario of the Apache Spark, which has no limitation to access the data,

is demonstrated to not be applicable, as it is not adaptable to the changes throughout the

course of the stream.

Table 5.20: Median values, under a 5% label budget. The best Stream-GP configu-
ration (GP–Hybrid) and the best Apache Spark Algorithm (Decision Tree), CTU13-
mixed dataset

Algorithms AvDR Median (5%)
GP–Hybrid 78.6%
MOA–NB 57.7%
DT–Stream 56.4%
DT–Classic 62.9%

Table 5.21: p-value from the Mann-Whitney U test for the Stream-GP and Spark
best algorithms for the 5.0% label budget

Alogrithms GP–Hybrid
MOA–NB 0.001
DT–Stream 0.0001
DT–Classic 6.4× 10−5

5.4.2 Dynamic Properties of the Detection Rate

A deeper look in to the behaviour of algorithms throughout the course of the stream reveals

the properties of the Detection rates for each algorithm. For this purpose, the class-wise

tracking of the model’s reaction to the content of the stream at any time is performed in the

mentioned two base Apache Spark applications: 1) Streaming simulation, and 2) Classical

operation.

Streaming Simulation Scenario

In the streaming simulation scenario, each of the three Apache Spark algorithms are run 10

times for each of the training sets. To prepare the training set, the dataset is divided into

10 splits, and to simulate the streaming mode, each time, one split is considered to be the

115

start of the stream. Every time, the training set is prepared from the start of the stream

based on the label budget the model is trained on. Then, the model is applied all over the

stream for the label predictions. For each split, 10 runs of each algorithm are performed,

and the average of the detection rates are computed.

The plots for the average detection rate of each algorithm’s runs throughout the course of

the stream on different splits are then reviewed to check the performance of each algorithm.

In the following, the summary of the observations for each algorithm’s performance on 10

splits is given. Later, certain plots are selected for a visualized comparison of the algorithms

on some of the interesting splits.

Decision Tree detects Background (the major class) > 80% for all the splits, and the

Normal detection rate is in the range ≈ 45% − 85%. Botnet detection is the highest rate,

≈ 85%, when Split 9 is considered as the start of the stream and the lowest, ≈ 40%− 50%,

when Split 7 is the start of the stream. Split 9 contains Neris, Rbot and NSIS botnet traces,

which includes the most frequently occurring botnets in the overall stream. Split 7 only

contains Rbot and Murlo botnet traces. Botnet C&C is not detected in almost all splits,

except for Split 6 and Split 7, which have a low rate.

Random Forest detects Background the best of all other classes. Botnet is best

detected when Split 9 is the start of the stream but on the other hand, the Normal DR is

almost 0% in this case; this implies that gain in the Botnet detection rate results in the

lowest Normal detection rate.

Naive Bayes is completely unable to detect minor classes, i.e. Normal and Attack

classes, and could detect the major class (Background) up to 100%. There is only a slight

detection of the Botnet class at Split 6, which happens at the expense of the lower detection

rate for Background (95%).

Based on the observations, Naive Bayes is shown to be completely incapable of perform-

ing well in this regard. For better comparison of Decision Tree and Random Forest, their

performances are plotted under Split 9 and Split 6 scenarios as the start of the stream for

the AvDR measurement (Figures 5.29 and 5.31, respectively) and for false positive rates

(Figures 5.29 and 5.31 respectively).

Figure 5.29 demonstrates the detection rates throughout the course of the stream for

Decision Tree and Random Forest from Apache Spark ML algorithms for the Split 9 (start

of the stream) scenario. They seem to react the same in all classes except the Normal class,

which Random Forest was not capable of detecting. The Botnet C&C is not detected at

all in two algorithms, which is an indication of the inability of the models to learn this

116

minor class. Comparison to the Stream-GP algorithms in Figure 5.33 for GP–Archive and

GP–Both illustrates that only Background traffic is higher in the detection rate in Apache

Spark. The lower level of the detection rate for Normal (20% less) as well as there being

no detection of C&C in Apache Spark algorithms (70% difference), ensures us that the

inability to handle changes throughout the stream and imbalanced data lead to ignoring

minor classes and strengthening the major class detection rate. Split 9 has the properties

of Rbot, Neris and NSIS botnets (Figure 5.15) and contains almost all the most important

botnets, which is also occurring frequently (70%) in this dataset. So the Botnet detection

is high and is over 80% throughout the stream.

Figure 5.30 provides the false positive rate of the Apache Spark algorithm throughout

when Split 9 is considered as the start of the stream. The Botnet class has a false positive

rate of 10% for both algorithms, and the other major classes are close to 0%. Only the

Background class (major class) has a high false positive rate (30% for Decision Tree and 60%

for Random Forest). Previously, it was shown that Random Forest is incapable of detecting

C&C and has a very poor Normal detection rate in this case (Figure 5.29), so this high

Background false positive rate indicates that Random Forest is incapable of distinguishing

between Normal and Background behaviour and mostly label it as Background.

Now, the performance of the algorithms are compared for the Split 7 (start of the

stream), which demonstrates the best overall AvDR for the Decision Tree as seen in Figure

5.4.1. Figure 5.31 illustrates that the algorithm gets a high overall detection rate by having

the high Background and Normal detection rates. The Botnet detection rate is low. The

Botnet C&C is also detected at a pretty low rate, ≈ 15%−40%, but it is not still comparable

to the streaming solution that Stream-GP provides. Random Forest behaviour is similar to

the Decision Tree’s behaviour, but Normal DR is lower, and Botnet C&C is not detected at

all. Split 7 has the properties of Rbot and Murlo botnets (Figure 5.15), which explains why

Botnet and Botnet C&C are best detected at segments 1-3 of the stream (contains Rbot

activities) and segment 8 (contains Murlo activities).

Figure 5.32 also demonstrates the detection rates throughout the course of the stream

for Decision Tree and Random Forest from Apache Spark ML algorithms for the Split 7

(start of the stream) scenario. In this case, not only is the false positive rate for the Botnet

class low but also the detection rate. The normal class false positive rate (≈ 10%) is the

same for both algorithms, but Decision Tree could detect the Normal class at an 80% rate,

while Random Forest could only detect it at a 50% rate.

117

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.29: CTU13-mixed class-wise Detection rate through the stream. Stream
simulation scenario. Split 9. 5.0% label budget (Average of 10 runs)

118

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.30: CTU13 mixed class-wise False positive rate through the stream. Stream
simulation scenario. Split 9. 5.0% label budget (Average of 10 runs)

119

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.31: CTU13 mixed class-wise Detection rate through the stream. Stream
simulation scenario. Split 7. 5.0% label budget (Average of 10 runs)

120

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.32: CTU13-mixed class-wise False positive rate through the stream. Stream
simulation scenario. Split 7. 5.0% label budget (Average of 10 runs)

121

Classical Scenario

In the classical scenario, access to the content of the stream is assumed to be limitless so the

training data are sampled randomly from all over the dataset based on a 5% label budget.

The number of the Background class (major class) is kept the same as the sum of all minor

classes. Decision Tree and Random Forest models are then trained on the training set in an

off-line mode. Then, 10 runs of each algorithm are performed to label the rest of the data.

Figure 5.34 demonstrates the performance of the Apache Spark algorithms, Decision

Tree and Random Forest, in the classical scenario, where only the label budget from the

streaming scenario is kept. The comparison of this Figure to the performance of the Stream-

GP algorithms (Figure 5.33) illustrates that Normal and Botnet behaviours are similar to

the Stream-GP classifier with a lower Normal detection rate (this difference is higher in

Random Forest, ≈ 20%), whereas Botnet C&C is not detected at all. The Background is

detected about 10% more than in Stream-GP. This indicates that accessing the data from

all over the stream helps to improve the minor class detection rates, except for the very rare

Botnet C&C case, which is mostly missed in sampling universally from all over the stream.

Figure 5.35 summarizes the false positive rate for the Apache Spark algorithms in the

classical mode (Figure 5.34). The figure depicts that the false positive rates are less than

10% for all minor classes in both algorithms, and there is a 20% and 35% false positive rate

for the Background class in the Decision Tree and Random Forest algorithms, respectively.

122

(a) GP–Archive (5.0%)

(b) GP–Both (5.0%)

Figure 5.33: CTU13-mixed Class-wise Detection rate through the stream at a 5%
label budget based on the streaming AvDR metric (Average of 10 runs)

123

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.34: CTU13 mixed class-wise Detection rate through the stream. Classic
Scenario. 5.0% label budget (Average of 10 runs)

124

(a) Decision Tree (5.0%)

(b) Random Forest (5.0%)

Figure 5.35: CTU13 mixed class-wise False positive rate through the stream. Classic
Scenario. 5.0% label budget (Average of 10 runs)

125

5.4.3 Capacity for Detecting Botnet Signals

The performance of the best algorithms for Stream-GP and its comparators, Apache Spark

and MOA, on the specific case of botnet detection is reviewed in this section. Table 5.22

indicates the median AvDR of the runs for each algorithm. The results for the Apache Spark

streaming-like scenario are obtained from the average of all splits. The result indicates that

the Stream-GP and Apache Spark classic scenario is performing similarly on the botnet

detection specifically. Although the classical Apache Spark algorithm is slightly better

than Stream-GP, the fact that Stream-GP could keep up the same level demonstrates its

effectiveness in minor class detection with limited access to the stream content.

Table 5.22: Median values for Botnet AvDR metric, under the 5% label budget. The
best Stream-GP configuration (GP–Hybrid) and the best Apache Spark Algorithm
(Decision Tree), CTU13-mixed dataset

Algorithms AvDR Median (5%)
GP–Hybrid 87.5%
MOA–NB 84.2%
DT–Stream 59.0%
DT–Classic 89.3%

Table 5.23: p-value from the Mann-Whitney U test for the Stream-GP and Spark best
algorithms based on Botnet median AvDR, for the 5.0% label budget, 95% confidence
level

Algorithms GP–Hybrid
MOA–NB 0.02
DT–Stream 1.8× 10−5

DT–Classic 1.8× 10−5

The pair-wise Mann-Whitney U test on the Stream-GP versus comparator algorithms

is applied for a 5% label budget (Table 5.25). Thereafter, a Bonferrori-Dunn ad-hoc test is

applied to find out if the Stream-GP algorithm is significantly different from all of the other

algorithms overall. For this purpose, the α value (α = 0.05) is divided into the number of

comparisons (k − 1 = 3) in which the new α equals 0.017. With regard to the new alpha,

the Stream-GP has been shown to be significantly different than Apache Spark algorithms

in Botnet detection. The null-hypothesis is not rejected for the MOA–NB algorithm, which

means that they are categorized in the same group in terms of botnet detection. This implies

that with DT–Classic, which has an overall knowledge of the stream prior to the start of the

stream, the botnets are better detected, which is not a realistic case in real-world streaming

126

scenario. But even with that knowledge, Stream–GP is performing at a similar detection

rate, and there is almost only a 1.5% difference between their median average detection

rates. Figure 5.36 represents the wide range of the Apache Spark stream-based scenarios

on Botnet detection, which is indication of the importance of the stream start point and

the first exemplars entered.

Figure 5.36: CTU13 mixed class-wise Detection rate through the stream. 5.0% label
budget.

5.4.4 Capacity for Detecting Botnet C&C Signals

The best algorithms’ performances of Stream-GP and its comparators, Apache Spark and

MOA, are evaluated on the 5% label budget (Table 5.24). It is clearly shown that the

Apache Spark algorithms are completely unable to detect the least frequent botnet C&C

class throughout the course of the stream. In contrast, GP–Hybrid is consistently able to

detect this scarce class with an AvDR median of 71.9%, and MOA–NB, with a detection

rate of 57.7%, comes next. This means that Apache Spark is not able to detect the first

indications of botnet attacks, which leads to more damage later in comparison to Stream-

GP and MOA–NB. This demonstrates that classical offline solutions are not capable of

detecting very rare classes in imbalanced data streams.

127

Table 5.24: Median values for the Botnet C&C AvDR metric under the 5% label
budget. The best Stream-GP configuration (GP–Hybrid) and the best Apache Spark
Algorithm (Decision Tree), CTU13-mixed dataset

Algorithms AvDR Median (5%)
GP–Hybrid 71.9%
MOA–NB 57.7%
DT–Stream 0%
DT–Classic 0%

Table 5.25: p-value from the Mann-Whitney U test for the Stream-GP (GP–Hybrid)
algorithm vs. the comparator Apache Spark and MOA algorithms based on Botnet
C&C median AvDR, for the 5.0% label budget, 95% confidence level

Algorithms GP–Hybrid
MOA–NB 0.001
DT–Stream 1.6× 10−4

DT–Classic 6.4× 10−5

The results of the pair-wise Mann-Whitney U test on the Stream-GP versus comparator

algorithms demonstrate that Stream-GP is significantly better compared with the compara-

tor algorithms on Apache Spark and MOA for the 5% label budget (Table 5.25). In other

words, the null hypothesis is rejected for the 95% confidence threshold for each pair of com-

parisons. Afterwards, a Bonferrori-Dunn ad-hoc test is applied to find out if the Stream-GP

algorithm is significantly better than all the other algorithms overall. For this purpose, the

α(0.05) is divided into the number of comparisons (k − 1 = 3), and the new α = 0.017.

With regard to the new alpha, Stream-GP has been shown to be significantly better than

all of the comparator algorithms in Botnet C&C detection.

5.4.5 Feature Selection by Decision Tree

A sample of Decision Tree in the stream simulation scenario on split 7 is illustrated in

Figure 5.37. The graph represents the decision hierarchy based on specific feature values.

128

Figure 5.37: Overview of the Apache Spark Decision Tree in a stream simulation
scenario for a run on split 7, 5% label budget

129

This represents a balanced binary tree illustrating that for any decision on the label

prediction, the depth of the tree should be traversed at maximum. Seven features out

of eight are selected in the tree for decision making (Direction is not used). This tree

relates to the case Botnet C&C is detected unless any other runs could not detect it. One

leaf is responsible for the Botnet C&C in this case. Most of the leaves are designated for

Background (72) and Normal (24) detection, and only four leaves are assigned to the Botnet

class. The lower number of Botnet nodes explains the low detection rate of the Botnet on

split 7.

5.4.6 Computational Cost of Streaming Classifier Operation

The computational cost for Stream-GP is calculated based on Section 5.2.6 and demon-

strated in Figure 5.38, where it is the comparison counterpart in this section. Based on the

illustration, it takes ≈ 30ns (Figure 5.38(a)) for the Stream-GP champion to predict labels

for a window location under a 5% label budget. On the other hand, 4s is the average time

to update the Stream-GP model.

The computation for Spark algorithms is done for the stream simulation scenario, but

it also corresponds to the classical scenario as well, as the only difference between these

two scenarios is that in the latter, the access to the stream is not limited. To this purpose,

two phases are available to be computed: 1) Training and 2) Test. At the training phase,

exemplars are sampled randomly based on the label budget, and then the model is trained

based on that. This process is done completely off-line and the models are kept to be applied

on the streaming data. On the other hand, for the test phase, the data are a stream of

flow-based network traffic, and the model is applied on each exemplar to predict the label.

To keep consistent with the Stream-GP results, the times are reported based on the same

window size as Stream-GP.

Figure 5.39 shows the violin plots for Apache Spark algorithms’ times for 10 runs on each

split of the dataset as deployed on an Intel i5 CPU 16@2.67GHz and 48GB memory. The

average time for the Apache Spark Decision Tree classifier model, the best-performing Spark

algorithm, to label a record is ≈ 3ms (Figure 5.39(a)), whereas the Stream-GP classifier

labels a window in ≈ 30ns. This indicates the notable difference between the execution times

of the two methodologies. One possible explanation could be the programming languages

they use, as Stream-GP is written in C/C++, whereas Apache Spark uses in Python code.

130

(a) Test Time

(b) Training Time

Figure 5.38: Wall clock time, GP–Archive (a) champion individual to make predic-
tions and (b) fitness evaluation to update the content of the population on a new
non-overlapping window location for the CTU13-mixed dataset on a 2.67GHz CPU.

131

(a) Test Time

(b) Training Time

Figure 5.39: Wall clock time (a) model to make predictions for each exemplar and
(b) Off-line model that is trained on the training set for the CTU13-mixed dataset
on a 2.67GHz CPU.

132

Although training is not in a streaming mode for Apache Spark algorithms, the total

training time is divided by the number of windows to give us the opportunity to make

the comparison. Stream-GP takes 4s to develop new models as opposed to the 45ms of

models from Apache-Spark. However, this never has an impact on its ability to provide

labels (as a champion classifier is always available, or a 30ns throughput), but reflects the

cost of maintaining a population of models (which provides the ability to track multiple

phenomena simultaneously).

5.4.7 Complexity of Algorithms

To compute the complexity of the algorithms, the number of executable code lines in Stream-

GP is considered, whereas the number of nodes in the tree is conceived for the Apache Spark

tree based algorithms.

GP—Archive is selected as the representative of the Stream-GP algorithms. Figure

5.40 represents the average number of executable code lines, both effective and introns, in

a program based on the labels in the champion team, which is responsible for labelling the

stream content. The following observations are concluded from this representation:

• The average number of total executable code lines for the GP–Archive champion team

in all classes is around 42 line of codes.

• The average number of non-intron code lines that has an effect on the result of the

program execution is around 12 for all classes.

The above statements mean that only 1/3 of the code lines in the programs of the

champion team are effective and need to be executed to predict the label. So, on average,

12 code lines are executed in a single champion program to suggest a label at the end.

Figure 5.41 represents the average champion team size (number of programs in a champion

team) throughout the stream, which equals 18.8 on average. Therefore, the total number of

code line executions is 4,800 code lines for a single exemplar (12 (champion executable code

lines) * 18.8 (average champion team size throughout the stream for a 5% label budget) =

225.6). This is the complexity of the GP–Archive code for the champion label suggestion

for a single exemplar. In addition, this gives us a clue on how to reduce the computational

time in Figure 5.38(a) to 1/3, as these results are from the code with executing the introns

as well.

133

Figure 5.40: GP–Archive average number of execution codes, whole number and
effective number, for the champion throughout the stream. 5% label budget.

Figure 5.41: GP–Archive average champion team size throughout the stream. 5%
label budget.

In Apache Spark, the decision tree is a balanced binary tree. Therefore, in the worst

case, the maximum depth of the tree is traversed. In the case of Decision Tree, the maximum

depth of the tree is 7, so for each exemplar, seven comparisons are needed to reach the final

decision. So, the overall number of comparisons would be 7 (maximum depth of the tree)

for a single exemplar. In the case of Random Forest, the maximum depth of the tree is 4,

134

and 50 trees are there, so overall for a single exemplar 200, (4 (maximum depth of the tree)

* 50 (number of trees) = 200).

Based on the computations of the complexity of the algorithms, Decision tree is 32 and

Random Forest is 1.2 times less complex than Stream-GP. The complexity of the Decision

Tree is less than Stream-GP, but the computational time shows that it takes more time

than Stream-GP to label a window (Section 5.4.6). Factors contributing to this include:

1) the different languages used to implement each algorithm (Python versus C++) and, 2)

Stream-GP solutions use arithmetic as well as conditional instructions as opposed to just

conditionals (where arithmetic instructions execute faster than conditional instructions on

modern CPUs due to more predicable behaviour under instruction level parallelism).

5.4.8 Summary

Stream-GP algorithms’ performances are compared to the best state-of-the-art Apache

Spark Streaming ML classification algorithms in a 5% label budget. Apache Spark does

not provide a streaming learning process for its ML classification algorithms. Therefore, for

evaluations, the training process happens in an off-line mode with two different scenarios.

Later, the prepared trained model is used on the stream of data to predict labels. The two

modes of training the models are: 1) Streaming simulation and 2) Classical operation. The

observations specified that the Naive Bayes algorithm as an off-line model is completely

incapable of being applied for the classification of the streaming data. In both stream-

ing simulation and classical operation, Decision Tree and Random Forest had acceptable

detection rates but still could not reach the Stream-GP algorithms, especially when non-

stationary data are encountered. In the streaming mode, the point where the stream starts

affects the detection rates because only limited behaviour is seen. Moreover, Decision Tree

is shown to perform better than Random Forest. In all cases, Stream-GP algorithms are

shown to perform significantly better than Apache Spark Streaming ML algorithms, which is

due to their incapability to react to changes. In addition, they can not detect the important

Botnet C&C class so they are not able to detect the botnet attack early in its fetus stages,

while Stream-GP has been shown to be powerful in this. This indicates the weakness of the

Apache Spark algorithms in dealing with the significant class imbalance. Furthermore, the

labelling time is shown to be dramatically less in Stream-GP compared with the Apache

Spark algorithms. However, the complexity of Stream-GP is 32 times more than Decision

Tree and 1.2 times more than Random Forest. The time and complexity evaluations are

done on the multi-bot stream with 5% label budget. The time and complexity to provide

135

labels for the stream data increases gradually as it progresses through the stream due to

the increased complexity of Botnet and Normal behaviours. Also, they would increase as

more complicated behaviours are associated with the network traffic, which could be due

to the difficulty of classes’ detection. However, it should be noted here that the time and

the complexity of the GP-Stream algorithms will decrease as the label budget available

decreases.

5.5 Network Analytic Applications

The application of Stream-GP on network traffic data is quantified and compared to the

available streaming and network tools in Section 5.1 to Section 5.3. In this section, another

aspect of the stream-GP application in the network field is demonstrated. In Section 5.5.1,

the utilization of Stream-GP to uncover the unknown behaviours of network traffic flows is

discussed.

5.5.1 Traffic Analysis

Background traffic of the CTU13-mixed dataset is investigated by two algorithms: Stream-

GP (GP–Archive) and Apache Spark Random Forest. In the case of Stream-GP, the model

is built online through the exposure to the stream content, i.e. network traffic. However,

Random Forest is learned off-line over the ground truth data where the true labels are

known. Then, the built model is applied to the unknown Background traffic for predictions.

In this section, some analysis is represented for both Ground Truth (GT) and Background

Traffic.

Ground truth traffic refers to the portion of the CTU13-mixed dataset in which true

labels are provided by a human expert based on known behaviours [49]. Like real world

online ML scenarios, only a portion of the GT is used for learning purposes based on the

label budget, i.e. 5% in this experiment, whereas for off-line methods, Random Forest uses

all this information for training purposes.

There are some differences evident in Ground Truth and Background traffic. For ex-

ample, some protocols and/or destination port numbers are available in Background traffic

that are not seen in the Ground Truth information. An example is destination port 13363,

which makes up a major part of the Background traffic but has no track in the Ground

Truth traffic. In addition, there is more Botnet traffic than Normal traffic in Ground Truth

traffic, which is unlikely to happen in real life, Figure 5.42.

136

The focus on malicious behaviours in the Ground Truth traffic, Figure 5.43, leads to

the following observations:

• Most of the Internet Control Message Protocol (ICMP), Simple Mail Transfer Proto-

col (SMTP) and Secure Shell (SSH) network flows are labelled as malicious.

• Big portions of the Secure Hyper Text Transfer Protocol (HTTPS) and Domain Name

System (DNS) traffic are also malicious.

• A part of HTTP traffic is also malicious. If the focus is only on Botnet C&C traffic,

it is mostly HTTP rather than HTTPS. Correspondingly, one well-known way of

establishing Botnet C&C connections in literature is using HTTP open port 80 [44].

Figure 5.42: Distribution of Ground Truth traffic, CTU13-mixed dataset, Labels:
Normal (1), Botnet C&C (2) and Botnet (3)

Botnets use omnipresent protocols like HTTP and DNS to hide their malicious activities

within normal transactions [1]. DNS protocol is one indivisible part of Internet transactions

that can not be filtered completely by firewalls, which makes it a safe place for malicious

activities to happen within. The same relationship is also established for HTTP protocol.

Intruders are taking advantage of these well-known, non-removable protocols to pretend

137

their traffic is Normal and bypass firewalls. Another technique is encrypting their content

to hide their identities [110].

Background traffic is investigated after the ground truth traffic is reviewed to find

out how it is composed. This process of detecting the unknown behaviours of Background

traffic is done by applying the algorithms on its content and analyzing their predictions.

Firstly, the Stream-GP outcome is investigated. Most Background traffic is detected as

Normal, but a big part of it is recognized as malicious. The following analysis is done by

focusing on the malicious activity traffic labelled by Stream-GP:

Figure 5.43: Botnet activities in ground truth traffic, CTU13-mixed dataset, Labels:
Normal (1), Botnet C&C (2) and Botnet (3)

• The malicious activities are done mostly on the following protocol/destination port

numbers: DNS (53), HTTP (80), HTTPS (443) and unassigned ports like 6881 (prob-

able bittorrent) and 13363. The first three protocols are on the top list of well-known

botnet communications [1]. Destination port – 6881 is an unknown port number but

is mostly known to be used by bittorent protocol, which can be used to build the

peer-to-peer botnet type [53].

• ICMP network flows are considered malicious by Stream-GP, given that these could

138

be the first step in port scanning [28].

• Some DNS network flows are detected as malicious by Stream-GP, whereas Random

Forest seems to miss them. It is shown that one popular form of botnet attacks is

through the use of DNS protocol [125][35].

• Address Resolution Protocol (ARP) flows are considered normal in Random Forest

but are considered malicious by Stream-GP. This could be happening because the

majority of ARP flows are labelled as malicious, so Stream-GP seems to generalize

this known behaviour.

• Most malicious TCP connections are HTTP and HTTPS. Also, all network flows

destined to port 8088, a HTTP proxy port, are detected as Botnet by Stream-GP

and Random Forest.

5.5.2 Summary

The background traffic in the CTU13-mixed dataset is investigated by 1) Stream-GP (a

streaming ML classifier) and 2) Apache Spark Random Forest (off-line classifier). The

results from these two algorithms are then compared to the known Ground Truth traffic.

It is demonstrated that there are known and unknown behaviours available in the CTU13-

mixed Background traffic, which is not evident in the Ground Truth traffic provided with

the dataset [49]. The known behaviours predicted by Stream-GP algorithms are distributed

in the following categories: Normal (13%), Botnet (5%) and Botnet C&C (4%). The rest

of the Background traffic (78%) is still considered “unknown”. Stream-GP could shed

light on unknown traffic, and, based on observations, it could generalize the learned known

behaviours of Ground Truth traffic. Therefore, Stream-GP could be used by human analysts

in cases of huge volumes of network traffic in real scenarios to analyze upcoming traffic.

139

(a) Class distribution

(b) DST port

Figure 5.44: Stream-GP analytics on malicious botnet activities, CTU13-mixed dataset,
Labels: Normal (1), Botnet C&C (2) and Botnet (3)

140

5.6 Summary

The active learning Stream-GP framework is evaluated under different network scenarios.

Firstly, it was evaluated under the CTU13 dataset, which contains 13 different Botnet

scenarios. Four different combinations of the sampling/archiving policies were examined

under three different label budgets; 0.5%, 1% and 5%. The results demonstrate that the

GP–Archive policy is effectively working in network applications with regard to the network

stream challenges, e.g. class imbalance, label budget, partial observability, label budgets

and anytime operation. GP–Both is the runner up in the results. The ability to detect

Botnet and Botnet C&C is also investigated. It appears that even with the low rate of

Botnet C&C, 1% of the stream, GP–Archive could manage to detect it under low label

budgets as well.

Then, the best performing Stream-GP and MOA comparator algorithms based on the

ranking tables in the CTU13 dataset are selected for benchmarking under a multi-bot

scenario. The CTU13 dataset is concatenated in a way as to make the gap between similar

botnets as wide as possible. A new algorithm, GP–Hybrid, is introduced, the its power of

which relates to its greedy behaviour in picking up the very rare classes at the beginning

of the stream and raising their detection rates, then continuing in a subtler way for the

rest of the stream. Both algorithms, GP–Hybrid and GP–Archive, were ranked first and

second in the multi-bot scenario. Moreover, GP–Hybrid showcased its power in Botnet

C&C detection and got the top rank with a ≈ 15% difference with the comparator MOA

algorithm in both label budgets. The results show that Stream-GP is able to re-use previous

learned behaviours when they occur again in the stream.

Later, a comparison of the top-ranked algorithms from Stream-GP, GP–Archive, and

MOA was done under a 5% label budget on the network datasets while introducing two

more datasets, ISOT and NSL-KDD. The evaluations once more identify the significant

superiority of the GP–Archive over the comparator algorithms. The false positive rate is

studied as one of the main evaluation metrics in the network domain.

Overall, the Stream-GP is compared to Apache Spark Streaming as the state-of-the-art

framework as a network stream processing tool. The three best algorithms from the Apache

Spark ML library are selected for the sake of comparison: Naive Bayes, Decision Tree and

Random Forest. The Apache Spark Streaming ML library does not support streaming learn-

ing algorithms. Therefore, the comparison is done in two modes of operation: Streaming

Simulation and Classical operation. The difference between these two modes are their ac-

cess to training data, as streaming only has access to the beginning of the stream, whereas

141

classical has no limitations. The results demonstrate that the Naive Bayes algorithm in

Apache Spark was completely incapable of performing properly in the mentioned scenarios.

It is interesting that this algorithm in the streaming learning mode in the MOA toolset

was one of the best-performing algorithms when it uses the variable uncertainty policy for

sampling. Among Decision Tree and Random Forest, Decision Tree has been shown to

perform better, but it still cannot reach the Stream-GP algorithms. The significance test

results demonstrate that the Stream-GP algorithm, GP–Hybrid, is significantly better than

the Apache Spark and MOA comparator algorithms with more than a 15% difference on

the AvDR median. This shows, however, that the access to the stream is not limited in one

scenario, but the model still cannot use the knowledge to get a higher detection rate due to

the non-stationary behaviour of the data.

Finally, another sample of the utilization of Stream-GP in the network area is demon-

strated. In this sample, it is used to reveal more information on the Background traffic in

the CTU13-mixed dataset.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Streaming processing is a new trend in today’s computational world. Its necessity is clear

in the network field, where there is a huge volume of data and low storage capacity. There

are only a few streaming algorithms available, but their number is growing. However, in

the network field, the focus is more on the framework to handle the data in a streaming

way rather than learning simultaneously from the stream content. The potential chal-

lenges associated with the network stream are highly imbalanced data, costly labelling,

non-stationary behaviour, etc. Existing streaming algorithms have not addressed the com-

bination of streaming requirements in a holistic way before. This thesis for the first time

provides an integrated solution for addressing all features of streaming data classification

simultaneously. In addition, the proposed framework is based on network traffic flow anal-

ysis so it does not depend on a specific type of botnet architecture. This makes it widely

applicable in real world problems.

The active learning approach in the proposed GP-based framework, Stream-GP, provides

the opportunity to decouple the distribution of training data from that of the streaming

data. The approach relies on keeping a subset of data from the stream. The subset is

filled by a sampling policy that is subject to a label budget. Then, it becomes updated by

the removal of some exemplars using an archiving policy and replacing afterwards. Proper

sampling / archiving policies make the distribution of data subset more balanced.

In this thesis, combinations of sampling / archiving policies are benchmarked under

label budget constraints to determine the best combination policy for network streaming

applications. The benchmarking happened on several network security datasets where the

ML models are mostly applied. The comparison of Stream-GP with the existing streaming

frameworks in general and specifically in the network field demonstrates its effectiveness in

overcoming the challenges associated with streaming classification problems. It is shown

that the provided policies could help in balancing the training data subset. The significance

test illustrates that the Stream-GP framework performs significantly better than comparator

142

143

algorithms where the GP–Archive algorithm is always ranked first in Botnet detection in

thirteen independent datasets.

GP–Archive and GP–Hybrid are the top-ranked Stream-GP algorithms in network se-

curity algorithms, specifically botnet detection. The GP–Archive combination policy is

based on uniform sampling and biased archiving, which gently balances the content of the

data subset and introduces new changes in the stream. To speed up the introduction of

the minor classes, GP–Hybrid could be specifically used. It helps to increase the minor

classes’ detection rates to a predetermined threshold at the beginning of the stream. Based

on the application, any of the Stream-GP combination could be used, but GP–Archive and

GP–Hybrid are recommended due to their effectiveness despite their simplicity.

The Stream-GP evaluations on the multi-bot scenario demonstrates that Stream-GP

variants can detect previously seen malicious botnet behaviours. The significance test

against the best comparator algorithms, MOA and Apache Spark Streaming, demonstrates

that the Stream-GP best algorithm, GP–Hybrid, performs significantly better with at least

a 15% difference of AvDR median values for a 5% label budget. GP–Hybrid has shown to be

significantly better than the comparator algorithms, with more than 14% for the 5% label

budget in the early detection of the botnet indications in the stream. The early detection

of botnet behaviour relies on detecting Botnet C&C signals that have a distribution lower

than 0.05% over the whole stream. Apache Spark algorithms were completely dismissed in

detecting this type of traffic, which is due to the very rare distribution of Botnet C&C and

their inability to interact with the stream and detect changes during the learning phase.

Comparison against the state-of-the-art Apache Spark Streaming algorithms as a widely

used network streaming tool suggests that there is a need for deploying streaming learning

algorithms in network frameworks. The Apache Spark algorithms have been shown to be

inapplicable in cases of non-stationary streaming data, as they cannot react to the stream

changes. There was an overall 15% difference between the best Stream-GP algorithm,

GP–Hybrid, and the best Apache Spark algorithm, DT–Classic. Unlike Apache Spark

algorithms, Stream-GP algorithms do not need tuning, as they can adjust to the stream

content automatically. This capability ensures that the settings are adapted based on the

dynamic environment throughout the stream. Stream-GP has been shown to predict a

record’s label faster than Apache Spark algorithms.

The focus of the Stream-GP application in this thesis is on the network security field,

but, it could be used for other streaming purposes as well. One sample of its utilization is

for network analytic purposes. The results suggest that it could be applied to reveal more

144

insights into the unknown traffic. Another application is for detecting insider threats in

networks where data are gathered based on user behaviours and not network traffic [78].

6.2 Future Works

The following list represents the possible directions for future research:

1. Stream-GP could be extended to work in an exemplar-based mode (online mode).

In this case, the non-overlapping window is omitted, and the decision is made upon

each exemplar in the stream. All other things remain the same, and only the window

limitation goes away.

2. The GP specific algorithm (SBB) used in this case could be replaced by its improved

version, the Tangled Program Graph (TPG) [67]. The TPG approach uses a hier-

archical SBB that has no limitation on the depth of the tree. This algorithm is an

open-ended evolutionary approach.

3. It could be applied on other (network) streaming applications. This framework is

benchmarked on the specific network (security) application, which inherits the most

challenging streaming constraints. It is not limited to this field, however, and either

could be used in other areas of network operation or other streaming applications.

4. More insights could be gained from the Stream-GP’s programs in each generation

to follow the effect of each class on specific pieces of code. This way, the definition

of the class based on arithmetic calculations could be gained. So, the changes to

the properties of the classes throughout the course of the stream in a non-stationary

environment could be tracked in a clear way.

5. It could be implemented as a library on top of the strong existing streaming frame-

works. By providing a library based on the Stream-GP, other people could apply it

to their own area of interest.

Appendix A

Flow Features

A.1 ISOT Flow Features

List of the ISOT flow features extracted by the Tranalyzer flow exporter.

Dir, Duration, ETHVlanID, L4Proto, macPairs, numPktsSnt, numPktsRcvd, num-

BytesSnt, numBytesRcvd, minPktSz, maxPktSz, avePktSize, stdPktSize, pktps, bytps, pk-

tAsm, ipMindIPID, ipMaxdIPID, ipMinTTL, ipMaxTTL, ipOptCnt, tcpPSeqCnt, tcpSeqS-

ntBytes, tcpSeqFaultCnt, tcpPAckCnt, tcpFlwLssAckRcvdBytes, tcpAckFaultCnt, tcpInitWinSz,

tcpAveWinSz, tcpMinWinSz, tcpMaxWinSz, tcpWinSzDwnCnt, tcpWinSzUpCnt, tcpOptP-

ktCnt, tcpOptCnt, tcpMSS, tcpWS, tcpTmS, tcpTmER, tcpEcI, tcpBtm, tcpSSASAA-

Trip, tcpRTTAckTripMin, tcpRTTAckTripMax, tcpRTTAckTripAve, tcpRTTAckTripJi-

tAve, tcpRTTSseqAA, icmpTCcnt, icmpEchoSuccRatio, icmpPFindex, connSip, connDip,

connSipDip, tCnt, MinPl, MaxPl, MeanPl, LowQuartilePl, MedianPl, UppQuartilePl, IqdPl,

ModePl, RangePl, StdPl, RobStdPl, SkewPl, ExcPl, MinIat, MaxIat, MeanIat, LowQuar-

tileIat, MedianIat, UppQuartileIat, IqdIat, ModeIat, RangeIat, StdIat, RobStdIat, SkewIat,

Label

A.2 NSL-KDD Packet Features

A list of NSL-KDD packet features is provided in this section.

duration, protocol type, service, flag, src bytes, dst bytes, land, wrong fragment, ur-

gent, hot, num failed logins, logged in, num compromised, root shell, su attempted, num root,

num file creations, num shells, num access files, num outbound cmds, is host login, is guest login,

count, srv count, serror rate, srv serror rate, rerror rate, srv rerror rate, same srv rate,

diff srv rate, srv diff host rate, dst host count, dst host srv count, dst host same srv rate,

dst host diff srv rate, dst host same src port rate, dst host srv diff host rate, dst host serror rate,

dst host srv serror rate, dst host rerror rate, dst host srv rerror rate, label

145

Bibliography

[1] Http-botnets: the dark side of an standard protocol.
http://securityaffairs.co/wordpress/13747/cyber-crime/

http-botnets-the-dark-side-of-an-standard-protocol.html.

[2] Mohammad Alauthaman, Nauman Aslam, Li Zhang, Rafe Alasem, and M. A.
Hossain. A p2p botnet detection scheme based on decision tree and adaptive
multilayer neural networks. Neural Computing and Applications, 29(11):991–
1004, Jun 2018.

[3] G. Apruzzese and M. Colajanni. Evading botnet detectors based on flows and
random forest with adversarial samples. In 2018 IEEE 17th International Sym-
posium on Network Computing and Applications (NCA), pages 1–8, Nov 2018.

[4] A. Atwater, M. I. Heywood, and A. N. Zincir-Heywood. GP under streaming
data constraints: A case for Pareto archiving? In ACM Genetic and Evolution-
ary Computation Conference, pages 703–710, 2012.

[5] Arian Bär, Pedro Casas, Alessandro D’Alconzo, Pierdomenico Fiadino, Lukasz
Golab, Marco Mellia, and Erich Schikuta. Dbstream: A holistic approach to
large-scale network traffic monitoring and analysis. Computer Networks, 107:5–
19, 2016.

[6] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The
security of machine learning. Machine Learning, 81(2):121–148, Nov 2010.

[7] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Proceedings of the 2006 ACM Sym-
posium on Information, Computer and Communications Security, ASIACCS
’06, pages 16–25, New York, NY, USA, 2006. ACM.

[8] M. Behdad and T. French. Online learning classifiers in dynamic environments
with incomplete feedback. In IEEE Congress on Evolutionary Computation,
pages 1786–1793, 2013.

[9] R. K. Behera, S. Das, M. Jena, S. K. Rath, and B. Sahoo. A comparative
study of distributed tools for analyzing streaming data. In 2017 International
Conference on Information Technology (ICIT), pages 79–84, Dec 2017.

[10] Mustapha Belouch, Salah El Hadaj, and Mohamed Idhammad. Performance
evaluation of intrusion detection based on machine learning using apache spark.
Procedia Computer Science, 127:1 – 6, 2018. PROCEEDINGS OF THE FIRST
INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN
DATA SCIENCES, ICDS2017.

146

http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-of-an-standard-protocol.html
http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-of-an-standard-protocol.html

147

[11] A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan. Streamdm: Advanced
data mining in spark streaming. In 2015 IEEE International Conference on
Data Mining Workshop (ICDMW), pages 1608–1611, Nov 2015.

[12] A. Bifet and G. D. F. Morales. Big data stream learning with samoa. In 2014
IEEE International Conference on Data Mining Workshop, pages 1199–1202,
Dec 2014.

[13] A. Bifet, I. Z̆liobaitė, B. Pfahringer, and G. Holmes. Pitfalls in benchmarking
data stream classification and how to avoid them. In Machine Learning and
Knowledge Discovery in Databases, volume 8188 of LNCS, pages 465–479, 2013.

[14] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. J. Mach. Learn. Res., 11:1601–1604, August 2010.

[15] Mohamed-Rafik Bouguelia, Yolande Beläıd, and Abdel Beläıd. An adaptive
streaming active learning strategy based on instance weighting. Pattern Recog-
nition Letters, 70:38 – 44, 2016.

[16] M. Brameier and W. Banzhof. Linear Genetic Programming. Springer, 2007.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. classification and
regression trees. CRC Press, 1984.

[18] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[19] Dariusz Brzezinski and Jerzy Stefanowski. Prequential auc for classifier eval-
uation and drift detection in evolving data streams. In Annalisa Appice,
Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, and Zbig-
niew W. Ras, editors, New Frontiers in Mining Complex Patterns, pages 87–101.
Springer International Publishing, 2015.

[20] S. Burschka and B. Dupasquier. Tranalyzer: Versatile high performance network
traffic analyser. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–8, Dec 2016.

[21] P. Casas, F. Soro, J. Vanerio, G. Settanni, and A. D’Alconzo. Network security
and anomaly detection with big-dama, a big data analytics framework. In 2017
IEEE 6th International Conference on Cloud Networking (CloudNet), pages
1–7, Sep. 2017.

[22] M. Cermak, M. Laštovička, and T. Jirsik. Real-time pattern detection in ip
flow data using apache spark. In 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 521–526, April 2019.

[23] A. Cervantes, P. Isasi, C. Gagné, and M. Parizeau. Learning from non-
stationary data using a growing network of prototypes. In IEEE Congress
on Evolutionary Computation, pages 2634–2641, 2013.

148

[24] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, 16:321–357, 2002.

[25] Z. Chen, H. Zhang, W. G. Hatcher, J. Nguyen, and W. Yu. A streaming-
based network monitoring and threat detection system. In 2016 IEEE 14th
International Conference on Software Engineering Research, Management and
Applications (SERA), pages 31–37, June 2016.

[26] L. Chi, B. Li, X. Zhu, S. Pan, and L. Chen. Hashing for adaptive real-time graph
stream classification with concept drifts. IEEE Transactions on Cybernetics,
48(5):1591–1604, May 2018.

[27] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc.
VLDB Endow., 8(12):1804–1815, August 2015.

[28] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescapé. Analysis of a
“/0” stealth scan from a botnet. IEEE/ACM Transactions on Networking,
23(2):341–354, April 2015.

[29] H. H. Dam, C. Lokan, and H. A. Abbass. Evolutionary online data mining: An
investigation in a dynamic environment. In Studies in Computational Intelli-
gence, volume 51, chapter 7, pages 153–178. Springer, 2007.

[30] L. De Carli, R. Torres, G. Modelo-Howard, A. Tongaonkar, and S. Jha. Botnet
protocol inference in the presence of encrypted traffic. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, pages 1–9, May 2017.

[31] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique
for tracking concept drift in spam filtering. Know.-Based Syst., 18(4-5):187–195,
August 2005.

[32] Ian Dempsey, Michael O’Neill, and Anthony Brabazon. Foundations in Gram-
matical Evolution for Dynamic Environments. Springer Publishing Company,
Incorporated, 1st edition, 2009.

[33] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7(1):1–30, 2006.

[34] K. S. Desale, C. N. Kumathekar, and A. P. Chavan. Efficient intrusion detection
system using stream data mining classification technique. In 2015 International
Conference on Computing Communication Control and Automation, pages 469–
473, Feb 2015.

[35] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos, M. v. Steen, and N. Pohlmann.
On botnets that use dns for command and control. In 2011 Seventh European
Conference on Computer Network Defense, pages 9–16, Sept 2011.

149

[36] G. Ditzler and R. Polikar. Incremental learning of concept drift from streaming
imbalanced data. IEEE Transactions on Knowledge and Data Engineering,
25(10):2283–2301, Oct 2013.

[37] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in non-stationary
environments: A survey. IEEE Computational Intelligence, 10(4):12–25, 2015.

[38] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’00, pages 71–80. ACM, 2000.

[39] R. Dubin, A. Dvir, O. Pele, and O. Hadar. I know what you saw last
minute—encrypted http adaptive video streaming title classification. IEEE
Transactions on Information Forensics and Security, 12(12):3039–3049, Dec
2017.

[40] R. Dubin, O. Hadar, I. Richman, O. Trabelsi, A. Dvir, and O. Pele. Video
quality representation classification of safari encrypted dash streams. In 2016
Digital Media Industry Academic Forum (DMIAF), pages 213–216, July 2016.

[41] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2Nd Edition). Wiley-Interscience, New York, NY, USA, 2000.

[42] K. B. Dyer, R. Capo, and R. Polikar. Compose: A semisupervised learning
framework for initially labeled nonstationary streaming data. IEEE Transac-
tions on Neural Networks and Learning Systems, 25(1):12–26, Jan 2014.

[43] R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary
environments. IEEE Transactions on Neural Networks, 22(10):1517–1531, 2011.

[44] G. Fedynyshyn, M. C. Chuah, and G. Tan. Detection and classification of
different botnet c&c channels. In Autonomic and Trusted Computing, pages
228–242. Springer Berlin Heidelberg, 2011.

[45] G. Folino and G. Papuzzo. Handling different categories of concept drifts in
data streams using distributed GP. In European Conference on Genetic Pro-
gramming, volume 6021 of LNCS, pages 74–85, 2010.

[46] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. Maw-
ilab: Combining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking. In Proceedings of the 6th International COnference,
Co-NEXT ’10, pages 8:1–8:12, New York, NY, USA, 2010. ACM.

[47] A. Frank and A. Asuncion. UCI machine learning repository [Online]. Available
at http://archive.ics.uci.edu/ml, 2010.

[48] J. Gama. A survey on learning from data streams: current and future trends.
Progress in AI, 1(1):45–55, 2012.

http://archive.ics.uci.edu/ml

150

[49] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empiri-
cal comparison of botnet detection methods. Computers & Security, 45:100–123,
2014.

[50] Shree Garg, Sateesh Kumar Peddoju, and Anil K. Sarje. Scalable P2P bot
detection system based on network data stream. Peer-to-Peer Networking and
Applications, 9(6):1209–1225, 2016.

[51] C. Gautam, A. Tiwari, S. Suresh, and K. Ahuja. Adaptive online learning with
regularized kernel for one-class classification. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, pages 1–16, 2019.

[52] A. Ghazikhani, R. Monsefi, and H. S. Yazdi. Recursive least square perceptron
model for non-stationary and imbalanced data stream classification. Evolving
Systems, 4(2):119–131, 2013.

[53] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang,
and David Dagon. Peer-to-peer botnets: Overview and case study. In Proceed-
ings of the First Conference on First Workshop on Hot Topics in Understanding
Botnets, HotBots’07. USENIX Association, 2007.

[54] G. P. Gupta and M. Kulariya. A framework for fast and efficient cyber security
network intrusion detection using apache spark. Procedia Computer Science,
93:824 – 831, 2016. Proceedings of the 6th International Conference on Advances
in Computing and Communications.

[55] H. L. Hammer, A. Yazidi, and B. J. Oommen. On using novel “anti-bayesian”
techniques for the classification of dynamical data streams. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages 1173–1182, June 2017.

[56] M. B. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine
Learning, 32(2):101–126, 1998.

[57] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc., 2001.

[58] J. L. Hennessy and D. A. Patterson. Computer Architecture a quantitive ap-
proach. Morgan Kaufmann, 2nd edition, 1996.

[59] M. I. Heywood. Evolutionary model building under streaming data for classifi-
cation tasks: opportunities and challenges. Genetic Programming and Evolvable
Machines, 16(3):283–326, 2015.

[60] M. I. Heywood and P. Lichodzijewski. Symbiogensis as a mechanism for build-
ing complex adaptive systems: a review. In European Conference on Genetic
Programming, volume 6024 of LNCS, pages 51–60, 2010.

151

[61] Mohammad Javad Hosseini, Ameneh Gholipour, and Hamid Beigy. An ensem-
ble of cluster-based classifiers for semi-supervised classification of non-stationary
data streams. Knowledge and Information Systems, 46(3):567–597, Mar 2016.

[62] IBM, Paul Zikopoulos, and Chris Eaton. Understanding Big Data: Analytics
for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media,
1st edition, 2011.

[63] E. Ikonomovska, J. Gama, and S. Džeroski. Learning model trees from evolving
data streams. Data Mining and Knowledge Discovery, 23(1):128–168, 2011.

[64] N. Japkowicz and M. Shah. Evaluating Learning Algorithms: A Classification
Perspective. Cambridge University Press, 2011.

[65] Sachini Jayasekara, Shanika Karunasekera, and Aaron Harwood. Enhancing
the scalability and performance of iterative graph algorithms on apache storm.
2018 IEEE International Conference on Big Data (Big Data), pages 3863–3872,
2018.

[66] M. Kampouridis and E. Tsang. EDDIE for investment opportunities forecast-
ing: Extending the search space of the GP. In IEEE Congress on Evolutionary
Computation, pages 2019–2026, 2010.

[67] Stephen Kelly and Malcolm I. Heywood. Emergent solutions to high-
dimensional multitask reinforcement learning. Evolutionary Computation,
26(3), 2018.

[68] S. Khanchi, M.I. Heywood, and N. Zincir-Heywood. On the impact of class
imbalance in GP streaming classification with label budgets. In European Con-
ference on Genetic Programming, volume 9594 of LNCS, pages 35–50, 2016.

[69] S. Khanchi, M.I. Heywood, and N. Zincir-Heywood. Properties of a GP active
learning framework for streaming data with class imbalance. In ACM Genetic
and Evolutionary Computation Conference, pages 945–952, 2017.

[70] Sara Khanchi, Ali Vahdat, Malcolm I. Heywood, and A. Nur Zincir-Heywood.
On botnet detection with genetic programming under streaming data label bud-
gets and class imbalance. Swarm and Evolutionary Computation, 39:123–140,
2018.

[71] Sara Khanchi, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Streaming
botnet traffic analysis using bio-inspired active learning. In 2018 IEEE/IFIP
Network Operations and Management Symposium, NOMS 2018, Taipei, Tai-
wan, April 23-27, 2018, pages 1–6, 2018.

[72] Sara Khanchi, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Network
analytics for streaming traffic analysis. In IFIP/IEEE International Symposium
on Integrated Network Management, IM 2019, Washington, DC, USA, April
09-11, 2019., pages 25–30, 2019.

152

[73] H. Kim, S. Madhvanath, and T. Sun. Hybrid active learning for non-stationary
streaming data with asynchronous labeling. In 2015 IEEE International Con-
ference on Big Data (Big Data), pages 287–292, Oct 2015.

[74] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet. Large-
Scale Learning from Data Streams with Apache SAMOA, pages 177–207.
Springer International Publishing, Cham, 2019.

[75] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[76] Bartosz Krawczyk, Leandro L. Minku, João Gama, Jerzy Stefanowski, and
Micha l Woźniak. Ensemble learning for data stream analysis: A survey. Infor-
mation Fusion, 37:132 – 156, 2017.

[77] Pawe l Ksieniewicz, Micha l Woźniak, Bogus law Cyganek, Andrzej Kasprzak,
and Krzysztof Walkowiak. Data stream classification using active learned neural
networks. Neurocomputing, 353:74 – 82, 2019. Recent Advancements in Hybrid
Artificial Intelligence Systems.

[78] Duc C. Le, Sara Khanchi, A. Nur Zincir-Heywood, and Malcolm I. Heywood.
Benchmarking evolutionary computation approaches to insider threat detec-
tion. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’18, pages 1286–1293, New York, NY, USA, 2018. ACM.

[79] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving
with Symbiotic Bid-based Genetic Programming. In ACM Genetic and Evolu-
tionary Computation Conference, pages 363–370, 2008.

[80] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and sim-
plicity under GP. In ACM Genetic and Evolutionary Computation Conference,
pages 853–860, 2010.

[81] P. Lindstrom, B. MacNamee, and S. J. Delany. Drift detection using uncertainty
distribution divergence. Evolving Systems, 4(1):13–25, 2013.

[82] A. Loginov, M. I. Heywood, and G. Wilson. Benchmarking a coevolutionary
streaming classifier under the individual household electric power consumption
dataset. In IEEE-INNS Joint Conference on Neural Networks, pages 1–8, 2016.

[83] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly detection. In
Recent Advances in Intrusion Detection, pages 220–237, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[84] M. A. Manzoor and Y. Morgan. Real-time support vector machine based net-
work intrusion detection system using apache storm. In 2016 IEEE 7th An-
nual Information Technology, Electronics and Mobile Communication Confer-
ence (IEMCON), pages 1–5, Oct 2016.

153

[85] M.M Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A Multi-partition
Multi-chunk Ensemble Technique to Classify Concept-Drifting Data Streams,
pages 363–375. Springer Berlin Heidelberg, 2009.

[86] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thu-
raisingham. Classification and novel class detection in data streams with active
mining. In Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, and Vikram
Pudi, editors, Advances in Knowledge Discovery and Data Mining, pages 311–
324, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[87] V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive
bayes, which naive bayes? In Third Conference on Email and Anti-Spam
(CEAS), pages 125–134, 2006.

[88] L. L. Minku, A. P. White, and X. Yao. The impact of diversity on online ensem-
ble learning in the presence of concept drift. IEEE Transactions on Knowledge
and Data Engineering, 22(5):730–742, May 2010.

[89] B. Mirza, Z. Lin, and K.-A. Toh. Weighted online sequential extreme learning
machine for class imbalance learning. Neural Process Letters, 38(3):465–486,
2013.

[90] J. Morgan, A. N. Zincir-Heywood, and J. T. Jacobs. A Benchmarking Study
on Stream Network Traffic Analysis Using Active Learning, pages 249–273.
Springer International Publishing, 2016.

[91] G. Mylavarapu, J. Thomas, and A. K. TK. Real-time hybrid intrusion detec-
tion system using apache storm. In 2015 IEEE 17th International Conference
on High Performance Computing and Communications, 2015 IEEE 7th Inter-
national Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems, pages 1436–1441,
Aug 2015.

[92] R. Nossenson and S. Polacheck. On-line flows classification of video streaming
applications. In 2015 IEEE 14th International Symposium on Network Com-
puting and Applications, pages 251–258, Sep. 2015.

[93] R. Polikar, L. Upda, S. S. Upda, and V. Honavar. Learn++: an incremen-
tal learning algorithm for supervised neural networks. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(4):497–
508, Nov 2001.

[94] P. M. Pondkule and B. Padmavathi. Botshark — detection and prevention of
peer-to-peer botnets by tracking conversation using cart. In 2017 International
conference of Electronics, Communication and Aerospace Technology (ICECA),
volume 1, pages 291–295, April 2017.

154

[95] M. A. M. Raja and S. Swamynathan. Ensemble learning for network data
stream classification using similarity and online genetic algorithm classifiers.
In 2016 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pages 1601–1607, Sep. 2016.

[96] S. Ren, Y. Lian, and X. Zou. Incremental näıve bayesian learning algorithm
based on classification contribution degree. Journal of Computers, 9(8):1967–
1974, 2014.

[97] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann,
H. Bos, and M. v. Steen. Prudent practices for designing malware experiments:
Status quo and outlook. In 2012 IEEE Symposium on Security and Privacy,
pages 65–79, May 2012.

[98] J. C. Schlimmer and R. H. Granger. Incremental learning from noisy data.
Machine Learning, 1(3):317–354, 1986.

[99] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security, 31(3):357 – 374, 2012.

[100] W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, pages 377–
382, 2001.

[101] M. Sugiyama and M. Kawanabe. Machine Learning in non-stationary environ-
ments. MIT Press, 2012.

[102] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao. Online ensemble learning of
data streams with gradually evolved classes. IEEE Transactions on Knowledge
and Data Engineering, 28(6):1532–1545, June 2016.

[103] Géza Szabó, Dániel Orincsay, Szabolcs Malomsoky, and István Szabó. On the
validation of traffic classification algorithms. In Mark Claypool and Steve Uhlig,
editors, Passive and Active Network Measurement, pages 72–81. Springer Berlin
Heidelberg, 2008.

[104] H. Tajalizadeh and R. Boostani. A novel stream clustering framework for spam
detection in twitter. IEEE Transactions on Computational Social Systems,
6(3):525–534, June 2019.

[105] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. In 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications, pages 1–6, July 2009.

155

[106] I. Z̆liobaitė, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with
drifting streaming data. IEEE Transactions on Neural Networks and Learning
Systems, 25(1):27–54, 2014.

[107] A. Vahdat, J. Morgan, A. R. McIntyre, M. I. Heywood, and A. N. Zincir-
Heywood. Evolving GP classifiers for streaming data tasks with concept change
and label budgets: A benchmarking study. In Handbook of Genetic Program-
ming Applications, chapter 18, pages 451–480. Springer, 2015.

[108] Ali Vahdat, Aaron Atwater, Andrew R. McIntyre, and Malcolm I. Heywood. On
the application of gp to streaming data classification tasks with label budgets.
In Proceedings of the Companion Publication of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO Comp ’14, pages 1287–1294.
ACM, 2014.

[109] K. Vimalkumar and N. Radhika. A big data framework for intrusion detec-
tion in smart grids using apache spark. In 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages
198–204, Sep. 2017.

[110] G. Vormayr, T. Zseby, and J. Fabini. Botnet communication patterns. IEEE
Communications Surveys Tutorials, 19(4):2768–2796, 2017.

[111] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’03, pages
226–235. ACM, 2003.

[112] S. Wang, L. L. Minku, and X. Yao. Resampling based ensemble methods for
online class imbalance learning. IEEE Transactions on Knowledge and Data
Engineering, 27(5):1356–1368, 2015.

[113] Z. Wang, J. Yang, H. Zhang, C. Li, S. Zhang, and H. Wang. Towards online
anomaly detection by combining multiple detection methods and storm. In
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Sympo-
sium, pages 804–807, April 2016.

[114] M. Wielgosz, M. Pietroń, and K. Wiatr. Using spatial pooler of hierarchical
temporal memory for object classification in noisy video streams. In 2016 Fed-
erated Conference on Computer Science and Information Systems (FedCSIS),
pages 271–274, Sep. 2016.

[115] Wikipedia contributors. Botnet — Wikipedia, the free encyclopedia, 2019.

[116] Micha l Woźniak, Pawe l Ksieniewicz, Bogus law Cyganek, Andrzej Kasprzak, and
Krzysztof Walkowiak. Active learning classification of drifted streaming data.
Procedia Computer Science, 80:1724 – 1733, 2016. International Conference on

156

Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California,
USA.

[117] M. Wozniak. Accuracy based weighted aging ensemble (ab-wae) — algorithm
for data stream classification. In 2017 IEEE 4th International Conference on
Soft Computing Machine Intelligence (ISCMI), pages 21–24, Nov 2017.

[118] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, GRADES
’13, pages 2:1–2:6. ACM, 2013.

[119] W. Yang, X. Yin, and G. Xia. Learning high-level features for satellite image
classification with limited labeled samples. IEEE Transactions on Geoscience
and Remote Sensing, 53(8):4472–4482, Aug 2015.

[120] G. Zhang and S. Li. Research on differentially private bayesian classification
algorithm for data streams. In 2019 IEEE 4th International Conference on Big
Data Analytics (ICBDA), pages 14–20, March 2019.

[121] Harry Zhang. The optimality of naive bayes. In In FLAIRS2004 conference,
2004.

[122] L. Zhang, S. Yu, D. Wu, and P. Watters. A survey on latest botnet attack and
defense. In 2011IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications, pages 53–60, Nov 2011.

[123] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif Saad, Ali Ghorbani,
and Dan Garant. Botnet detection based on traffic behavior analysis and flow
intervals. Computers & Security, 39:2 – 16, 2013. 27th IFIP International
Information Security Conference.

[124] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using
optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 40(6):1607–1621, 2010.

[125] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K. Han. Botnet research
survey. In 2008 32nd Annual IEEE International Computer Software and Ap-
plications Conference, pages 967–972, July 2008.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Genetic Programming
	Botnet
	Objective
	Streaming Classification
	Network Behaviour Detection

	Contributions
	Thesis Outline

	Related Work
	Non-evolutionary Methods
	Evolutionary Methods
	Network Methods
	Summary

	Framework for Streaming GP Teams
	Streaming Data Environment Under a Label Budget
	Overall Framework
	Sampling Policy
	Archiving Policy
	Champion Classifier Identification
	Symbiotic Bid-based GP
	Summary

	Evaluation methodology
	Datasets
	CTU-13
	CTU13-mixed
	ISOT
	NSL-KDD

	Comparator Algorithms
	Naive Bayes
	Decision Trees
	CART
	Hoeffding Tree
	Random Forest

	Comparator Frameworks
	Massive Online Analysis (MOA)
	Apache Spark Streaming

	Performance Metrics
	Experimental Design and Parameterization
	Statistical Significance Testing
	Wilcoxon-Mann-Whitney Test
	Friedman Test
	Bonfferoni-Dunn Post-hoc Test
	Nemenyi Post-hoc Test

	Summary

	Results
	Botnet Detection in Real-world Network Traffic
	Overall Performance Evaluation
	Detection Rate Dynamics: Comparing the Best Streaming Classifiers
	Detection Rate Dynamics: Stream-GP Sampling and Archiving Policies
	Capacity for Detecting Botnet Signals
	Capacity for Detecting Botnet C&C Signals
	Distribution of Minor Classes
	Real-time Operation
	Summary

	Botnet Detection in Multi-bot Network Traffic
	Overall Performance Evaluation
	Detection Rate Dynamics: Comparing the Best Streaming Classifiers
	Capacity for Detecting Botnet Signals
	Capacity for Detecting Botnet C&C Signals
	Feature Selection by Stream-GP Champion
	Real-time Operation
	Summary

	Network Security in Real-world Network Traffic
	Overall Performance Evaluation
	Detection Rate Dynamics: Comparing the Best Streaming Classifiers
	Summary

	A Comparison to the Apache Spark Streaming Network Tool
	Overall Performance Evaluation
	Streaming Simulation Scenario
	Classical Scenario
	Comparison of the Top Performing Algorithms:

	Dynamic Properties of the Detection Rate
	Streaming Simulation Scenario
	Classical Scenario

	Capacity for Detecting Botnet Signals
	Capacity for Detecting Botnet C&C Signals
	Feature Selection by Decision Tree
	Computational Cost of Streaming Classifier Operation
	Complexity of Algorithms
	Summary

	Network Analytic Applications
	Traffic Analysis
	Summary

	Summary

	Conclusion and Future Work
	Conclusion
	Future Works

	Flow Features
	ISOT Flow Features
	NSL-KDD Packet Features

	Bibliography

