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Abstract

Background: Effective cancer clinical outcome prediction for understanding of the
mechanism of various types of cancer has been pursued using molecular-based data
such as gene expression profiles, an approach that has promise for providing better
diagnostics and supporting further therapies. However, clinical outcome prediction
based on gene expression profiles varies between independent data sets. Further,
single-gene expression outcome prediction is limited for cancer evaluation since genes
do not act in isolation, but rather interact with other genes in complex signaling or
regulatory networks. In addition, since pathways are more likely to co-operate together,
it would be desirable to incorporate expert knowledge to combine pathways in a useful
and informative manner.

Methods: Thus, we propose a novel approach for identifying knowledge-driven
genomic interactions and applying it to discover models associated with cancer clinical
phenotypes using grammatical evolution neural networks (GENN). In order to
demonstrate the utility of the proposed approach, an ovarian cancer data from the
Cancer Genome Atlas (TCGA) was used for predicting clinical stage as a pilot project.

Results: We identified knowledge-driven genomic interactions associated with cancer
stage from single knowledge bases such as sources of pathway-pathway interaction, but
also knowledge-driven genomic interactions across different sets of knowledge bases
such as pathway-protein family interactions by integrating different types of information.
Notably, an integration model from different sources of biological knowledge achieved
78.82% balanced accuracy and outperformed the top models with gene expression or
single knowledge-based data types alone. Furthermore, the results from the models are
more interpretable because they are framed in the context of specific biological
pathways or other expert knowledge.

Conclusions: The success of the pilot study we have presented herein will allow us to
pursue further identification of models predictive of clinical cancer survival and
recurrence. Understanding the underlying tumorigenesis and progression in ovarian
cancer through the global view of interactions within/between different biological
knowledge sources has the potential for providing more effective screening strategies
and therapeutic targets for many types of cancer.
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Background
Cancer clinical outcome prediction using gene expression profiles has been proposed by

the field of translational bioinformatics for better diagnostics, prognostics, and further

therapeutics [1]. Somatic mutations and regulation abnormalities in a tumor cell cause

substantial gene expression changes [2]. Expression of oncogenes or tumor suppressor

genes promotes the malignant phenotype of cancer cells or inhibits cell division, develop-

ment, or survival of cancer cell [2]. Thus, DNA microarray technologies have been widely

used to predict clinical phenotypes such as stage, grade, metastatic status, recurrence, and

patient survival in several cancers [3-5]. In terms of translational bioinformatics, accurate

phenotype prediction based on the molecular signature can be used clinically to choose

the best of several available therapies for a cancer patient.

However, clinical phenotype prediction based on gene expression profiles can vary

between independent data sets [6,7]. One possible explanation is that previous studies

were focused on identifying single genes with large main effects associated with clinical

phenotypes. Thus, non-linear interactions without large main effects would be missed,

i.e. complex signaling regulatory networks [8]. Another reason is that the single-gene

approach is limited to elucidate the clinical phenotype since genes do not act in isola-

tion, but rather interact with other genes in complex signaling or regulatory networks.

Several studies incorporating genomic knowledge such as pathways or protein-protein

interaction networks based on gene expression data have been developed to increase

the predictive power of gene expression data for clinical phenotype prediction [9-12].

These studies have suggested that integrating gene expression profiles with biological

knowledge to construct pre-defined features results in higher performance in clinical

phenotype prediction and higher stability between different studies.

In general, most pathway analysis approaches assume that each pathway is independent

of other pathways [13]. However, pathways are more likely to interact together rather than

acting in isolation [14,15]. For instance, the P53 pathway can control the cell cycle path-

way by regulating the expression of P21 and can be activated by several pathways such as

MAPK pathway. In addition, protein family interactions are essential to the functioning of

individual cells in several ways through either domain-domain interactions or inter-chain

protein interactions [16,17]. Thus, it would be valuable to get insight about possible inter-

actions using biological knowledge such as pathways or protein families and identify how

these relate to cancer clinical outcomes and cancer stage.

In this study, we demonstrate a novel approach for identifying knowledge-driven gen-

omic interactions associated with cancer stage using grammatical evolution neural net-

works as part of the Analysis Tool for Heritable and Environmental Network Associations

(ATHENA) software [18]. A knowledge-driven genomic interaction is defined as one that

uses information from biological knowledge databases coupled with patient genomic pro-

files for model development. Thus, rather than working with gene expression data alone,

we build a knowledge-based matrix prior to model generation. This is a new matrix where

genes from a gene expression matrix are binned first into gene sets based on known bio-

logical knowledge, such as binned by specific biological pathways. Then we used

ATHENA to classify clinical phenotype by combining the expression of genes binned by

biological knowledge to form predictive models.

In order to test the utility of the proposed approach, we used ovarian cancer data

from the Cancer Genome Atlas (TCGA). Ovarian cancer has the highest mortality
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among gynecological malignancies, and is the 5th leading cause of cancer mortality in

women in the United States [19]. Patients with ovarian cancer are likely to be diag-

nosed at a late stage due to its asymptomatic nature of this form of cancer, resulting in

poor survival statistics [20]. Thus, improving our understanding of the pathogenesis of

early-stage ovarian cancer is crucial for clinical studies to identify and evaluate bio-

markers associated with early-stage ovarian cancer. Through the proposed approach,

we found we could identify knowledge-driven genomic interactions using the same

knowledge source, such as pathway-pathway interactions, that were predictive of cancer

stage. We also investigated knowledge-driven genomic interactions across different sets

of knowledge sources such as pathway-protein family interactions, by integrating differ-

ent types of knowledge, and found we could also identify effective predictive models.

Incorporating existing biological knowledge to identify knowledge-driven genomic in-

teractions offers models interpretable from a biological stand point, further allowing for

the possibility of governing alternative therapies that may improve outcomes.
Methods
Data

Normalized gene expression data from Affymetrix HT Human Genome U133 Array

Plate Set in ovarian cancer was retrieved from the TCGA data portal (http://tcga-data.

nci.nih.gov/). All samples in ovarian cancer from TCGA met broadly accepted quality

control standards, including NUSE IQR, percentage present, and GAPDH 3’/5’ ratio

[21]. RMA method was used for normalizing gene expression profiles [22]. In order to

directly map gene identifiers to genomic knowledge such as pathways or Gene Ontol-

ogy (GO) information, gene centric expression data was downloaded from TCGA por-

tal. To generate gene centric expression values, remapping of probes to the human

genome 36.1 was performed using affymetrix.aroma and an Affymetrix CDF file, which

resulted in expression values for 12,042 genes and no missing values. TCGA is a highly

biased sample of patients. Thus, we used the binary classification of early stage and late

stage in ovarian cancer as the phenotype or outcome (dependent variable) since stage

phenotype was available for the largest number of patients in ovarian cancer from

TCGA. In the classification of early stage or late stage, ‘early stage’ represents the sam-

ples from patients diagnosed either stage I or stage II, whereas ‘late stage’ indicates pa-

tients diagnosed either stage III or stage IV. A total of 39 patients were classified as

early stage and 454 patients were classified as late stage.
Biofilter

Biofilter is a software tool that provides a convenient single interface for accessing mul-

tiple publicly available human genetic data sources [23,24]. These sources include infor-

mation about the genomic locations of SNPs and genes, as well as relationships among

genes and proteins such as interaction pairs, pathways and ontological categories. Bio-

filter uses a built-in database called the Library of Knowledge Integration (LOKI),

which contains multiple public data resources.

Via Biofilter, we could use relevant biological knowledge for identifying knowledge-

driven genomic interaction models. We used Kyoto Encyclopedia of Genes and

Genomes (KEGG) [25], Gene Ontology (GO) [26], and Protein families database (Pfam)

http://tcga-data.nci.nih.gov/
http://tcga-data.nci.nih.gov/
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[27] from Biofilter as biological knowledge to identify knowledge-driven interactions as-

sociated with clinical phenotype. Results using biological knowledge can be biased

when using gene sets consisting of extremely small genes [28], therefore gene sets from

KEGG pathway, GO, and Pfam with more than 10 genes that had measured gene ex-

pression levels were selected for the further study. The total number of selected KEGG

pathways, GO terms, and Pfam protein families were 249, 1514, and 356, respectively.

Biofilter is open source and available at http://ritchielab.psu.edu.
ATHENA

We used ATHENA, a multi-functional software package, to perform the three tasks: (1)

performing feature/variable selections from categorical or continuous independent vari-

ables; (2) modeling main and interaction effects that explain or predict categorical or

continuous clinical outcomes; (3) interpreting the significant models for use in further

translational bioinformatics [29,30]. The current version of ATHENA has two different

computational evolution modeling methods, Grammatical Evolution Symbolic Regres-

sion (GESR) and Grammatical Evolution Neural Networks (GENN). For this analysis,

we used GENN as the modeling component.

We have extended ATHENA to identify knowledge-driven genomic interactions that

explain the multi-layered architecture of complex traits. Figure 1 shows a schematic of

the ATHENA methodology for the current task. In particular, multi-omics data
Figure 1 Schematic overview of ATHENA. ATHENA contains transformation and modeling components.
The transformation component uses Biofilter, allowing researchers to transform gene-based input data into a
knowledge-based matrix. Multi-omic data can be the input for developing meta-dimensional models associated
with clinical outcomes of interest.

http://ritchielab.psu.edu
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including copy number variation (CNV), methylation, miRNA, and gene expression

data can be inputs for ATHENA in order to determine the meta-dimensional models of

complex disease. We used gene expression data alone for the current task in order to

focus on knowledge integration, instead of multi-omic data integration, for predictive

model development. ATHENA is open source and available at http://ritchielab.psu.edu.
Grammatical evolution neural networks (GENN)

In order to identify non-linear interactions between genomic features, stochastic

methods employing evolutionary computing approaches utilize the full dimensionality

of the data without exhaustively searching all possible combinations of variables that

influence complex traits [29,31,32]. Artificial Neural Network (ANN) is a good candi-

date for identifying interactions that influence variance in an outcome of interest since

it is able to model complex and non-linear relationships between variables. In order to

optimize the input variables, weights, and network structures simultaneously, evolu-

tionary computing approaches have been proposed [29,32]. Grammatical evolution is a

flexible alternative version of genetic programming since the binary string as a heritable

material can be translated into a functional solution, or computer program, via a set of

grammar rules (Figure 1) [32]. The details of the grammar rules were described in a

previous study [32]. The GENN algorithm is briefly described as follows:

1. The original dataset is divided into 5 equal groups for 5-fold cross-validation

(4/5 for training and 1/5 for testing dataset).

2. Training begins by generating a random population of binary strings initialized to

be functional ANNs. The total population is divided into demes as sub-populations

across a user-defined number of CPUs for parallelization.

3. The ANNs in the population are evaluated using the training data and the fitness (balanced

classification accuracy) for each model is recorded. A new population is generated as

the solutions with the highest fitness are selected for crossover and reproduction.

4. Step 3 is repeated for a pre-defined number of generations. Migration of best solu-

tions occurs between demes every n-number of generations, as specified by user.

5. The overall best solution across generations is tested using the remaining 1/5 test

dataset and fitness is recorded.

6. Steps 2–5 are repeated four more times, each time using a different 4/5 of the data

for training and 1/5 for testing. The best model is defined as the model identified

the most over all five cross-validations.
Developing knowledge-based datasets

Figure 2 shows the overview of the analysis pipeline, which consists of a transformation

step and a modeling step. For the transformation step, the gene expression matrix was

transformed into pathway-based, GO-based, and Pfam-based matrices, that we call

knowledge-based datasets. First, genes in gene expression data were mapped to path-

ways. Second, genes found within a concomitant pathway were grouped together and

this process was repeated for all genes/pathways. Third, for each patient, each set of

genes becomes a new matrix feature by summing up gene expression values across

genes belonging to each pathway. Last, for each set of genes, the value of the pathway

http://ritchielab.psu.edu


Figure 2 Schematic overview of the pipeline for the analysis. Light blue vertical bars represent each step in
the pipeline: (1) Transformation of a gene expression matrix to a pathway-based, GO-based, and Pfam-based matrix
(2) GENN modeling (3) GENN modeling of variables from the best models of each knowledge-based data set.

Kim et al. BioData Mining 2014, 7:20 Page 6 of 11
http://www.biodatamining.org/content/7/1/20
feature was divided by the total number of gene members in a pathway because the

values of pathway feature can be biased toward the total number of gene members be-

longing to each pathway. The left side of Figure 2 shows a representation of the devel-

opment of these knowledge-based matrices.

After the transformation step, we analyzed the knowledge-based datasets to generate the

best predictive model using GENN. Finally, we integrated the best model from different

knowledge-based datasets to develop a model associated with ovarian cancer stage to form

knowledge integration knowledge-driven models. The balanced accuracy, which avoids inflated

performance estimates on imbalanced datasets, was used in GENN as a fitness function.
Results and discussion
GENN modeling for identifying knowledge-driven genomic interactions

The gene expression data and knowledge-based data after the transformation step were

analyzed separately by GENN with the following parameters, population sizes of 25,000

per deme, 20 demes (populations), 300 generations, and migration every 15 genera-

tions. To establish a baseline evaluation of the performance of gene expression data

alone using GENN for model development, we found the best balanced accuracy value

from the testing cross-validation set for each of the models with gene expression alone

was 69.57%. However, when we used the knowledge-driven approach, we found an im-

provement in balanced accuracy. For the KEGG pathway-based matrix, GO-based

matrix, and Pfam-based matrix the highest balanced accuracy increased to 74.52%,

69.92%, and 70.45%, respectively (Table 1).

GENN is an evolutionary computing approach to evolve neural networks for predicting

the clinical outcomes of interest by optimizing the input variables, weights, and network

structure simultaneously. Thus, the final solution of GENN is the neural network. Figure 3

shows the resultant best ANN models from each knowledge-based dataset: KEGG pathway-

based matrix, GO-based matrix, and Pfam-based matrix, respectively. The best models from



Table 1 Performance comparison between the model with gene expression data alone
and models identified using knowledge-based matrices

Data type Balanced accuracy AUC

Gene expression 0.6957 0.7103

Pathway 0.7451 0.7457

GO 0.6991 0.7275

Pfam 0.7046 0.7335

Integration 0.7882 0.8108

We compare here our results of evaluating gene-expression data alone, KEGG, GO, Pfam, and integration modeling. The
integration model was developed by combining variables from KEGG pathway-based matrix, GO-based matrix, and
Pfam-based matrix. Performances were measured based on the balanced accuracy and area under the ROC curve (AUC).
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each knowledge-based dataset showed different network structures, indicating complex

interactions between knowledge features within a same biological knowledge sources.

Further, we integrated the KEGG pathway-based matrix, GO-based matrix, and Pfam-

based matrix in order to identify knowledge-driven genomic interactions between different

biological knowledge sources associated with stage in ovarian cancer. The final model was

created using GENN with variables from the best models of each individual knowledge-

based dataset. The predictive power of integration showed the improvement compared to

the models with gene expression data or single knowledge-based dataset alone (Table 1).

The final model of all variables from different biological knowledge was obtained with

78.82% of balanced accuracy (Figure 4). The selected features in the final model are HIF-1
Figure 3 Best GENN models from each knowledge-based dataset. PSUB is a subtraction activation node.
Constants in the white boxes are weights. Knowledge features such as pathway, GO, and Pfam, are shown in
the gray boxes. (a) KEGG pathway-based matrix (b) GO-based matrix (c) Pfam-based matrix.



Figure 4 Best GENN model from integrating knowledge-based datasets. PSUB and PDIV represent a
subtraction and division activation node, respectively. Constants in the white boxes are weights. Knowledge
features such as KEGG pathway, GO, and Pfam, are shown in the gray boxes.
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signaling pathway, cell surface binding GO term, and Pfam Leucine rich repeat N-terminal

domain with variable consistency among 5 cross-validations, 4/5, 4/5, and 4/5, respectively.
Biological interpretation

Two pathways, the “HIF-1 signaling” pathway and the KEGG “focal adhesion” pathway,

were found in the GENN models associated with ovarian cancer stage. Hypoxia-inducible

factor-1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of

cancer biology, and is well known as a cancer drug target for several cancers [33,34]. In

addition, focal adhesion kinase (FAK), a part of the focal adhesion pathway, plays a func-

tionally significant role in ovarian cancer migration and invasion [35]. These two cooper-

ating pathways are thought to be important in the mechanisms of complex tumorigenesis

in ovarian cancer since focal adhesion kinase signaling pathway regulates the proliferation

and migration of choroidal microvascular endothelial cells by acting through HIF-1 ex-

pression [36]. In addition, we found possible interactions between GO gene sets associ-

ated with ovarian cancer stage: “cell surface binding” and “golgi lumen”. Cell surface

binding peptides are useful alternative agents for targeting cancer [37].

Even though models from KEGG pathway-based datasets and GO-based datasets

showed linear additive effects, the models from Pfam-based dataset showed complex

and non-linear interactions between protein family features associated with stage. The

non-linear interactions of protein families, “annexin”, “leucine rich repeat N-terminal

domain”, “BTB/POZ domain”, and “ephrin receptor ligand biding domain”, might con-

tribute to the stage in ovarian cancer rather than any single protein family. The annexin

protein family has been shown to be associated with cisplatin resistance and related to

tumor recurrence in ovarian cancer [38,39]. As a member of the receptor tyrosine ki-

nases (RTKs), elevated levels of expression and activity have been correlated with the
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growth of solid tumors, with Ephrin receptors of both classes A and B being over expressed

in several cancers [40].

In the final model, where we used multiple knowledge sources, HIF-1 signaling from

KEGG, the GO term “Cell surface binding”, and the Pfam “Leucine rich repeat N-

terminal domain” were selected. Complex interactions of biological knowledge might

reflect the complex molecular pathogenesis and progression of ovarian cancer. Notably,

LRRC3B, encoding a Leucine-rich repeat-containing protein, is known as a putative

tumor suppressor gene in gastric cancer and might be associated with cell surface bind-

ing peptides [41].
Conclusions
In this study, we integrated biological knowledge to overcome the variability of diag-

nostic predictors across gene expression datasets and to increase the predictive power

of gene expression data. Pathways co-operate together, and protein families are likely to

interact with each other rather than acting in isolation, thus it is desirable to incorpor-

ate genomic knowledge for effective modeling and prediction of cancer clinical traits

and outcome. Herein we proposed a novel approach for identifying knowledge-driven

genomic interactions associated with cancer stage using GENN. GENN have been

shown to be powerful in genetic association studies and meta-dimensional analysis of

phenotypes of interest and have been shown to be successful when compared to other

methods in term of prediction accuracy [29,30,32,42].

In order to demonstrate the utility of the proposed approach, ovarian cancer data

from TCGA was used as a pilot project. Through the proposed approach, we identified

not only knowledge interactions in a same knowledge source such as pathway-pathway

interactions but also knowledge interactions among different sets of knowledge such as

pathway-protein family interactions by integrating different types of knowledge. Co-

operation of the “HIF-1 signaling” and “focal adhesion” pathways is thought to be im-

portant in the mechanisms of complex tumorigenesis in ovarian cancer because focal

adhesion kinase signaling pathway regulates the proliferation and migration of chor-

oidal microvascular endothelial cells by acting through HIF-1 expression. In terms of

accuracy, the knowledge-driven genomic interaction model outperformed the model

with gene expression data alone. In addition, the results from the model were more in-

terpretable because of the biological context of pathways. Genomic features in the same

process such as signaling pathway or metabolic pathway are likely to operate together

in cancer, and our modeling approach allows for models that reflect these pathways

and complex interactions.

One of the limitations in this study is that the current implementation of GENN is to

select the best model in the final solution because it has higher accuracy than all of the

other models during the cross validation procedure. However, there might be multiple

different good models and selection based on accuracy alone has its limitations. To

challenge this limitation, incorporation of Pareto optimization can be alternative in the

next iteration of GENN. Pareto optimization is a multi-objective optimization method

that aims to maximize or minimize multiple objectives, allowing us to find multiple in-

teractions in cancer. In addition, assessing accuracy for an independent validation set

using the best model trained from the cross validations should be performed in order
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to estimate a true validation error. Implementing a permutation test for assessing stat-

istical significance could be also one of the future works to overcome the current limi-

tation from the cross validation. Furthermore, multi-omics data including SNP, CNV,

methylation, miRNA, and gene expression data can be inputs for ATHENA in order to

determine the meta-dimensional models of complex disease. Integrating multi-omics

data and biological knowledge will be a future direction. Further, while our current

study was limited to the classification of early stage or late stage in ovarian cancer, our

proposed approach can be applied to other clinical outcomes such as survival, recur-

rence, metastasis, grade, etc. This methodology can be applied to other cancer types in

order to identify the cancer-specific or common interactions among cancer types as

well as other common, complex diseases. Understanding the underlying tumorigenesis

and progression in ovarian cancer through the global view on interactions within/between

different biological knowledge could provide more effective screening strategies and

therapeutic targets.
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