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Abstract In tree-based genetic programming, there is a tendency for the size of the pro-
grams to increase from generation to generation, a phenomenon known as bloat. It is stan-
dard practice to place some form of control on program size either by limiting the number of
nodes or the depth of the program trees, or by adding a component to the fitness function that
rewards smaller programs (parsimony pressure). Others have proposed directly simplifying
individual programs using algebraic methods. In this paper, we add node-based numerical
simplification as a tree pruning criterion to control program size. We investigate the effect of
online program simplification, both algebraic and numerical, on program size and resource
usage. We also investigate the distribution of building blocks within a genetic programming
population and how this is changed by using simplification. We show that simplification
results in reductions in expected program size, memory use and computation time. We also
show that numerical simplification performs at least as well as algebraic simplification, and
in some cases will outperform algebraic simplification. We further show that although the
two online simplification methods destroy some existing building blocks, they effectively
generate additional new and more diverse building blocks during evolution, which compen-
sates for the negative effect of disruption of building blocks.

Keywords Genetic Programming, Program Simplification, Code Bloat, Building Blocks

David Kinzett
School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington, New Zealand
E-mail: kinzetalan@ecs.vuw.ac.nz

Mark Johnston
School of Mathematics, Statistics and Operations Research
Victoria University of Wellington, PO Box 600, Wellington, New Zealand
E-mail: mark.johnston@mso.vuw.ac.nz

Mengjie Zhang
School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington, New Zealand
E-mail: mengjie.zhang@ecs.vuw.ac.nz



2

1 Introduction

In tree based Genetic Programming (GP) there is a tendency for the size of programs to
increase, a process known as bloat [6,1–3]. This has a number of undesirable effects includ-
ing increased memory usage and increased computation time. One of the main causes is the
recombination via crossover. Standard practice is to give all nodes some chance of being
the crossover point. Hence, as the programs become deeper (in levels), the average depth
of the crossover point also becomes deeper, crossover is less likely to breed a child with a
significantly different fitness, and the overall efficiency of the GP search is reduced.

A number of strategies have been proposed to combat bloat. Firstly, a limit can be placed
on program size, limiting either the number of nodes or the depth of the tree [6,4,5]. This
approach prevents bloat to some extent, but has some limitations as it is very difficult to
set a good limit without prior knowledge. If the problem is not already well understood,
then a series of trials will be required to establish what a good limit would be. This can
be a significant extra computational cost in finding a solution. Also, when performing a
crossover, trimming the subtrees being exchanged to fit the limit discards genetic material
that may be important [4,20].

Secondly, a component can be added to the fitness function, or the selection process, that
rewards smaller programs, a practice known as parsimony pressure [6–11]. This approach
can be very successful in many problems, as it goes some way to avoiding the loss of good
programs that can occur with hard limits in that, if a program is good enough, then it will
survive regardless of size. There are, however, situations when it can fail badly with all
programs reducing to trivial sizes [13]. In fact, there are a number of reports on this approach
that the effectiveness performance deteriorates [6,7].

Thirdly, a program can be simplified algebraically during the run [20]. However evalu-
ating whether two sub-trees are equivalent becomes computationally expensive as the size
of the sub-trees increases. The algorithms necessary to address this are complex, and [20]
uses efficient hashing techniques. This approach is however not easy to implement, and the
hash algorithms are not infallible as like all hash techniques collisions are possible.

Our approach extends the program simplification approach by considering numerical
simplification. In addition we examine what effect these two methods have on the distribu-
tion of building blocks within a population1.

1.1 Research Goals

The goal of this research is to investigate a new program simplification approach to bloat
control in tree based GP. We will consider two methods, one using simple algebraic sim-
plification and the other with numerical simplification. We will compare the behaviour and
performance of GP systems with both simplification methods and with no simplification.
The specific questions we examine are:

1. Will the two simplification methods produce smaller programs than the canonical GP
system with no simplification thereby reducing memory usage and shortening computa-
tion run times?

2. Will the simplification process affect the system effectiveness?

1 When we use the term building block we mean a sub tree of the specified depth. It may occur at any point
in the program of which it is a part.
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3. How are the building blocks distributed, both within the search space, and as the evolu-
tion proceeds through the generations?

4. Do the two simplification methods change this distribution, and if so, do any changes
depend on which of the two simplification methods is used?

5. Does the simplification process affect the overall diversity of building blocks within the
population?

2 Simplification Methods

2.1 Algebraic Simplification

The aim of simplification is to remove “redundant” content from programs. The algebraic
simplification approach [20] removes the redundancy by structurally changing the programs
in such a way as to leave the programs functionally the same as before simplification. In
other words, the new programs produced by the simplification process will produce exactly
the same result as the original programs.

This method is motivated by the algebraic nature of programs using the canonical GP
functions (+,−,×,÷) and uses a set of algebraic simplification rules to remove redun-
dancies. These rules consist of two parts, a precondition which represents the state of the
surrounding nodes that must be present for the rule to be applied, and a postcondition which
represents the state that the surrounding nodes are in after additions and deletions are made.
These rules make up the rule-set for the simplification method. Table 1 shows the particular
rule-set used in this paper.

The method uses a hashing algorithm to simplify the check on sub-tree equality. Each
operator has a hash value, and each feature has a hash value based on the feature number.
Ephemeral constants have a hash value based on the value of the constant. These are com-
bined in a “shift and xor” manner to generate the hash for their parent node. If two subtrees
have the same hash value, they are considered equivalent. In our implimentation the hash
calculations and rule evaluations are performed by the the operator objects. This means that
the hash calculation can be aware of whether the operands need to be ordered or not, and
that only those simplification rules that apply to that operator need to be checked.

To simplify a program, the rule-set is applied using a “greedy” engine. It recursively
traverses the program tree in a postfix bottom-up fashion. For each node it processes in

Precondition Result
a+b → c,c = a+b
a−b → c,c = a−b
a×b → c,c = a×b
a÷b → c,c = a÷b
A÷1 → A
A÷A → 1
0÷A → 0
0×A = A×0 → 0
A×1 = 1×A → A
A+0 = 0+A → A
A−0 → A
A−A → 0
IfPos(a, B, C) and a > 0 → B
IfPos(a, B, C) and a ≤ 0 → C

Table 1 Simplification rules. Lower case letters represent numerical constants, while the upper case letters
represent variable/feature terminal nodes or sub-trees.
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this way, it checks the precondition of each rule in the rule-set. If any rule matches, then it
is applied to that portion of the tree. The algorithm continues to check preconditions until
none of the rules in the rule-set can be applied, in which case it moves on to the next node.

An example of the method is given in Figure 1. In this example, F1 has been randomly
assigned the hash value 6, while F2 has been assigned the hash value 7. For the ‘+’ nodes,
the operator is aware that order is not important therefore the hash values calculated on the
two ‘+’ nodes will be the same. For the root node ÷, the rule A÷A → 1 is found to apply,
since both left and right child nodes have the same hash value. The rule is applied and the
result is a single numerical-node, with a value of 1.

+

F2 F1F2

+

/

F1

Fig. 1 An example of the algebraic simplification using the rule: A÷A→ 1.

2.2 Numeric Simplification

The idea of numerical simplification is to consider the numerical contribution that a node or
subtree makes to the output of its parent node, removing those nodes and subtrees whose im-
pact on the result is too small to make much difference to the program result. For efficiency
reasons, this implementation addresses only the local effect of simplification at each node
in the program tree. There will be cases where it does affect the system performance of the
whole program, but the aim is to keep this to a minimum. It may be easiest to think of nu-
merical simplification as a kind of lossy compression, where we aim to get useful reductions
in program size without obvious loss in quality.

Max Val = 0.027 Max Val = −7.33

Min Val = −10.02Min Val = 0.020

Addition

Node B Node C

Node A

Min Val = −10.0
Max Val = −7.3

Max Val = 4.031

Node E

Node D

Min Val = 2.0000
Max Val = 2.0015

Division

Node F

Max Val = 2.015

Min Val = 2.014Min Val = 4.030

(a) (b)

Fig. 2 Examples of numerical simplification.

As the fitness is evaluated across the training set, each node keeps track of minimum and
maximum values. The simplification process is performed from the bottom up, so each oper-



5

ator is responsible for making those simplifications that are meaningful for it. A significance
tolerance (threshold) is chosen (set at 0.001 in most of our experiments). For addition and
subtraction operators, a child node or subtree whose range of values is less than the thresh-
old times the parent’s minimum absolute value is discarded. Figure 2(a) gives an example
of such a kind. The range for Node B is 0.027− 0.020 = 0.007. The minimum absolute
value for its parent Node A is 7.3. Since 0.007 < 0.001× 7.3, the subtree headed by Node
B will be discarded, and Node A will be replaced by Node C. Also, if the range of values
a node takes is less than the threshold times its own minimum absolute value, the node is
replaced by a constant terminal taking its average value. Figure 2(b) gives an example of
this kind. The range for Node D is 2.0015−2.0000 = 0.0015. The minimum absolute value
for Node D is 2.0000. Since 0.0015 < 0.001× 2.0000, the subtree headed by Node D will
be discarded, and Node D will be replaced by a constant terminal with the value 2.00075.
Note that the second type of simplification takes precedence over the first.

The numerical simplification method described here has the advantage that it is very
simple, both in implimentation and execution, and the process is embedded into the evalua-
tion process. The necessary information is gathered as part of the fitness evaluation and the
computational cost is very small. The simplification process then requires one further scan
of each program tree, though if simplifications are made then this scan may only be a partial
one.

3 Experimental Design

3.1 Experimental Datasets: Three Classification Problems

Fig. 3 Example images from the coin dataset (head and tail).

Coins This dataset consists of a series of 64× 64 pixel images of New Zealand five cent
pieces against a random noisy background [20]. See Figure 3 for example head and tail
images. There are 200 images of each of heads, tails and background only. In this paper,
14 frequency features are extracted based on a discrete cosine transform of the image, as
described in [14]. A discrete cosine transform is calculated over the whole image, using
an algorithm based on a Fast Fourier Transform for square images where the width is a
power of 2. The resulting 64×64 matrix of spectral coefficients contains both frequency and
directional information. The directional information is then removed by reducing the matrix
to a one dimensional array by averageing each diagonal to give a one dimensional array
of 127 non-directional frequency coefficients which are in order from the lowest frequency
to the highest. These are then combined into bands to form the features. If Ci is the ith
coefficient and Ci: j is the average of coefficients i through j, then the features are C0, C1, C2,
C3, C4, C5:6, C7:8, C9:10, C11:18, C19:26, C27:34, C35:42, C43:50, C51:126.
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Wine This dataset [15] gives the result of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined the quantic
ties of thirteen constituents found in each of the three types of wines. These thirteen con-
stituents are the features and the three classes are the cultivar from which the wine comes.
This dataset was sourced from the Weka project described in [16].

Face Recognition Figure 4 shows three sample images from this dataset. They are from the
ORL face data set [12], from which we used the first four individuals thus the set was four
classes with ten examples of each. This is rather small and makes evolving a good classifier
difficult. As with the coin dataset, the features were based on frequency spectra calculated
using a discrete cosine transform.

Fig. 4 Example images from the ORL face dataset.

Eight transforms were used each 16 pixels square. These were placed in various posi-
tions within the image. The images are 92 pixels wide and 112 pixels high. The top left
corners of the transforms were at pixels [38, 1], [9, 9], [9, 29], [38, 62], [38, 78], [9, 78],
[38, 37] and [26, 89]. Six features were created from each transform using the same method
as for the coin dataset. The bands were C0, C1:2, C3:4, C5:6, C7:8, C9:30. There were therefore
48 features in total. This is a large number given the size of the training set and many of
the features are probably redundant. However as the goal of this paper is not to get the best
absolute performance but to compare the relative performance between different methods,
no effort was made to determine a good subset of features for this problem.

3.2 GP System Configuration

We considered three levels of simplification: no simplification, algebraic simplification, and
numerical simplification. The terminal set for each dataset consisted of the features used
in that dataset and random “constant” numbers from the range [0,1]. All features are nor-
malised over the range [−1,+1]. The function set for both datasets consisted of the standard
four arithmetic functions and the IfPos operator. The IfPos operator takes the value of
the second child if the first child is greater than zero, and the third child otherwise. The
fitness function used the error rate on the training set. The experiments are all conducted
with the same set of population parameters. Some preliminary experiments established a set
of parameters that gave reasonable classification performance without making too great a
demand on memory resources for the no simplification case. The population size was 1000.
Initial programs were five levels deep using the full method. Tournament selection was used
with a tournament size of four. For the coin dataset we used 40 generations, for the wine
dataset we used 200 generations and for the faces dataset 100 generations. Our initial exper-
iments indicated that code growth was influenced by the crossover rate. To find out if this
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affected, or was affected by, simplification we applied two sets of parameters for the genetic
operators: one 5% reproduction, 85% crossover, 10% mutation; and one 5% reproduction,
15% crossover, 80% mutation. We used ten-fold cross validation, and each combination of
dataset, genetic operators and simplification method was run 200 times. On the numerical
simplification method the numerical significance threshold was set at 0.001 for the coin and
wine datasets and 0.0005 for the faces dataset. For the various figures that follow, the runs
were grouped in to sets of 20, with the results averaged over each of these 20 runs. The
graphs intend to show both average behaviour and also compare the variability in those av-
erages. Where simplification was used, it was performed after the first generation, and every
fourth generation thereafter. This results in a periodic behaviour in program sizes as will be
seen on the graphs that follow. Note that we intend not to set any maximum program size as
the goal is to investigate whether simplification is sufficient to manage program bloat.
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Fig. 5 Program size (number of nodes) for the coin dataset. In each graph, the maximum, mean and minimum
program size is shown for 10 replications, each of which is the average of 20 runs.
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4 Experimental Results

4.1 Program Size: Number of Nodes
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Fig. 6 Mean program size (number of nodes) for the coin dataset (top row), wine dataset (middle row) and
the faces dataset (bottom row). For each level of simplification, the mean program size is shown for 10
replications, each of which is the average of 20 runs. In all graphs, the top collection of lines are all no
simplification, and the bottom collection of lines are a mixture of algebraic simplification and numerical
simplification.

Figure 5 shows the number of nodes per program at each generation for the coin dataset.
These graphs show the minimum, mean and maximum program sizes in nodes for each gen-
eration in the run. Each curve shows the mean value for that metric across one set of twenty
runs. Note that the minimum is small and with little variation. The maximum program size
however varies wildly. The lines on these graphs are the mean from 20 runs, individual runs
produced numbers from not much larger than the mean up to 3,500 in a single run with 85%
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crossover. Larger program sizes are much more common, which pushes up the mean values
as well. Program sizes are larger with 85% crossover, and continue to grow even with sim-
plification albeit more slowly than without simplification. Program sizes are smaller with
the lower 15% crossover rate, and level off to a steady state with simplification, allowing
the possibility of longer runs without the program sizes getting out of control. This differ-
ence in performance is likely to be because the replacement sub-trees used by the mutation
operator are limited to a maximum depth of five levels and most are three or four levels. In
contrast, the replacement sub-tree used by the crossover operator gets larger, on average, as
the program becomes deeper. Therefore as the program depth increases a mutation is likely
to produce smaller offspring than the crossover operator. In both cases, the program sizes
are significantly smaller with simplification than without. The results for the wine and faces
datasets show a very similar pattern, so are not shown in detail here.

Figure 6 shows the mean program sizes for all three methods and for all three datasets.
With the coin dataset we can clearly see the reduction in program sizes as a result of sim-
plification. While both simplification methods show about a 40% reduction over no simpli-
fication, there is no noticeable differences between algebraic and numerical simplification.
Finally, we observe the evident periodic nature of the curves, as a result of applying sim-
plification every fourth generation, as described earlier. The results for the wine dataset are
very similar to those for the coin dataset. With this dataset there is a small but noticeable
advantage to numerical simplification over algebraic for at least the 85% run. The faces
dataset shows a lot more variation than the other two datasets but still shows a considerable
reduction in program sizes with simplification. There is no clear difference between the two
simplification methods in the 85% crossover case but like with the wine dataset the program
sizes are noticeably smaller on average with numerical simplification than they are with
algebraic simplification when the crossover rate is 15%.

4.2 Program Size: Depth

Figure 7 shows the mean tree depth by generation for the three datasets. It appears that
simplification produces slightly shallower trees, but the effect is very small. With the coin
dataset, it appears that there is no clear difference between the methods. The wine dataset
shows a clearer difference between no simplification and simplification, but no clear dif-
ference between the two simplification methods. The results for the faces dataset are very
confused. The depth appears to be less in general with simplification than without but it is
not possible to draw any more detailed conclusions from this data.

Figures 5 and 7 show a much larger reduction in the number of nodes than in the depth
of the trees. This suggests that the reduction in the number of nodes in the tree was primarily
due to thinning of the tree (reducing the number of nodes at each level) rather than reducing
the depth of the tree. An additional series of experiments was performed with extra data
collection to verify this. There were 50 runs for each method and only the coin dataset
was examined. Figure 8 shows the resulting average number of nodes at each level(depth).
The four graphs show the data at four different generations: 5, 15, 25 and 35. The total
number of nodes in the population is proportional to the area under the curves so we are
interested in how the shape of the curves change when we use simplification. We can see
the curves broaden as the run proceeds through the generations because of the increase in
the average program depth; this is also true for the runs with simplification. We can also see
that the effect of simplification at all generations is to reduce the height of the curve, rather
than to narrow it or to move the peak towards a lower level. This shows that simplification
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Fig. 7 Mean tree depth for the coin dataset (top row), wine dataset (middle row) and the faces dataset (bottom
row). Again these are 10 replications (curves), each of which is the average of 20 runs.

is reducing the average number of nodes at the middle levels of the tree, rather than by
reducing the depth of the tree.

4.3 Analysis of Resource Usage

Figure 9 shows boxplots for memory use and CPU time. There is a pattern here, with sim-
plification giving a noticeable reduction in CPU usage. Algebraic simplification shows a re-
duction in run times of 19–40% compared to no simplification and numerical simplification
25–54%. Overall, numerical simplification run times averaged 6% shorter than algebraic
simplification. There is also a reduction in memory usage, with simplification showing a
reduction in memory usage of 30–40% in most cases, and a small advantage of numerical
simplification over algebraic simplification.
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Fig. 8 The average number of nodes at each level at four different generations.

4.3.1 Significance of differences in CPU resource usage

The work described above shows the basic behaviour of the two simplification methods on
three datasets. It indicates that there are differences between them in program sizes and
resource usage but does not give any indication of significance. To investigate this aspect,
we look at the differences between no simplification, algebraic simplification, and numer-
ical simplification. We maximise the corelation between the starting points for the differ-
ent simplification approaches. Therefore each set of three experiments (one for each of no
simplification, algebraic simplification and numerical simplification), used the same initial
population, and the same split of the training set into folds. Each set of three experiments
had a different initial population but retained the same training set split. For the coin and
wine datasets there were 200 such runs, each one a ten-fold cross validation, for the faces
dataset there were 50 runs.

Figure 10 shows box plots for the differences in CPU time for the different datasets and
simplification methods. There is a clear advantage to the two simplification methods with
all three datasets. The advantage is both greater, and with better significance on the wine
and faces datasets, particularly the latter. On the coins and wine datasets there is no sig-
nificant difference between algebraic and numerical simplification, but on the faces dataset
numerical simplification shows a significant reduction in CPU time compared to algebraic
simplification.

4.3.2 Statistical Significance Scores

The distribution of differences in Figure 10 is not a normal distribution as there are long
tails, and in many cases the distribution is badly skewed. This rules out the use of the stan-
dard student T –test. Instead we use a non-parametric test called the Wilcoxon Signed-Rank



12

Coin Dataset Wine Dataset

 0

 100

 200

 300

 400

 500

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

M
em

or
y 

(M
B

)

85% Crossover  |  15% Crossover

 0

 100

 200

 300

 400

 500

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

M
em

or
y 

(M
B

)

85% Crossover  |  15% Crossover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

C
P

U
 s

ec
s

85% Crossover | 15% Crossover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

no
ne

al
ge

br
ai

c

nu
m

er
ic

al

C
P

U
 s

ec
s

85% Crossover  |  15% Crossover

Fig. 9 CPU and memory usage for the coin dataset (left) and wine dataset (right) for all 200 runs. The
boxplots on each graph are (left to right) 85% crossover with no simplification, algebraic simplification, and
numerical simplification, then 15% crossover with no simplification, algebraic simplification and numerical
simplification.

test [17,18]. This does not require that the distributions are normal and it uses only the or-
der of the results, not the magnitude. It does require the distributions to be symmetrical,
this requirement can be met by testing the median rather than the mean of the differences
distributions.

Table 2 shows the median values for the CPU time used by the various experiments.
For the difference lines, the third column gives the Z score calculated using the Wilcoxon
Signed-Rank test. Table 3 shows the critical Z values. Note that these are for a directional
test. That is the displayed Z values give the confidence that the simplification method uses
less CPU than no simplification or that numerical simplification uses less CPU than alge-
braic simplification. Where the Z score warrents it, the fourth and fifth columns show the
95% confidence interval expressed as the percentage reduction in CPU time used.

Each set of four lines gives the following:

1. CPU time used by the no simplification runs.
2. The reduction in CPU used by the algebraic simplification runs compared to the no

simplification runs.
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Fig. 10 Differences in CPU resource used for the three datasets. The top row is for 15% crossover and the
bottom row is for 85% crossover. In all graphs the first box is the difference between no simplification and
algebraic simplification, the second is the difference between no simplification and numerical simplification
and the third is the difference between algebraic and numerical simplification.

3. The reduction in CPU used by the numerical simplification runs compared to the no
simplification runs.

4. The reduction in CPU used by the numerical simplification runs compared to the alge-
braic simplification runs.

We can see that for numerical simplification and 15% crossover on the coin data set
the Z score is just under the 95% confidence level but the confidence interval still looks
good. All the other differences between simplification and no simplification are significant
to at least 99% confidence. The differences between the two simplification methods show
no meaningful significance for the coin dataset, and for 85% crossover on the wine dataset.
The differences between them is however highly significant for 15% crossover on the wine
dataset and for both cases on the faces dataset. When we introduced the faces dataset we
noted the fairly large number of features, and one reason for such a large reduction in pro-
gram sizes and CPU time with numerical simplification with this dataset might be that some
implicit feature selection is occurring. Features that have little effect on fitness may be being
discarded during simplification.
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Median Z Min % Max %
Coins 15% Crossover with no simplification 1622
Reduction with Algebraic simplification 518 2.58 28 40
Reduction with Numeric simplification 444 1.59 17 30
Difference between Algebraic and Numeric
Simplifications

34 0.15

Coins 85% Crossover with no simplification 2420
Reduction with Algebraic simplification 468 2.49 24 34
Reduction with Numeric simplification 798 2.64 26 37
Difference between Algebraic and Numeric
Simplifications

11 0.03

Wine 15% Crossover with no simplification 2390
Reduction with Algebraic simplification 1009 4.75 35 40
Reduction with Numeric simplification 976 5.51 43 46
Difference between Algebraic and Numeric
Simplifications

90 2.15 4 6

Wine 85% Crossover with no simplification 2116
Reduction with Algebraic simplification 1254 5.07 63 75
Reduction with Numeric simplification 1207 4.25 55 66
Difference between Algebraic and Numeric
Simplifications

−1 0.82

Faces 15% Crossover with no simplification 2374
Reduction with Algebraic simplification 782 4.03 40 51
Reduction with Numeric simplification 1160 5.93 57 67
Difference between Algebraic and Numeric
Simplifications

315 4.51 17 21

Faces 85% Crossover with no simplification 2808
Reduction with Algebraic simplification 1104 3.01 40 51
Reduction with Numeric simplification 1495 4.84 61 71
Difference between Algebraic and Numeric
Simplifications

390 3.69 13 16

Table 2 CPU time used in seconds for the coins, wine and faces datasets.

4.4 Analysis of Classification Performance

Reducing the program size and computational effort is of little benefit if the classification
performance suffers badly. Figure 11 gives the mean classification error rate on the test
set for the program with the best fitness at each generation for the coin, wine and faces
datasets, again showing 10 replications, each of which is the average of 20 runs. There is
little noticeable difference in performance between the three levels of simplification on the
coin dataset. The wine dataset shows similar results but with more variation in classification
performance. The average performance for the wine dataset is a classification error rate of
between 15% and 20%, but some individual runs produced classifiers with zero error rate.
The classification performance also appears to be sensitive to which examples are included
the test set. The results for the faces dataset show a much wider variation in classification
performance, but there is no apparent overall difference between the three methods.

Significance Level 0.20 0.10 0.05 0.025 0.01 0.005 0.0005
Z value 0.842 1.282 1.645 1.960 2.326 2.576 3.291

Table 3 Critical Z values
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Fig. 11 Classification performance for the coin dataset (top row), the wine dataset (middle row) and the faces
dataset (bottom row).

Note that with all three datasets, and both simplification methods, that the 15% crossover
case produces both smaller programs and lower classification error rates on the test set than
the 85% case. This may be because of the smaller program size, or some other effect of the
difference in genetic operators. More targeted experiments will be needed to establish this.

Overall the two simplification methods always resulted in much smaller programs and
used much shorter evolutionary training times to produce similar classification performance.
numerical simplification performs at least as well as algebraic simplification and in some
cases performs better than algebraic simplification.
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5 The Effect of Simplification on Building Blocks

5.1 Encoding the Building Blocks

Wong and Zhang [19] examined the effect of algebraic simplification on building blocks
by tracking the ephemeral constants in the population. In standard GP these are constant
for the duration of the run, but both simplification approaches can change the value of such
constants and also create new ones. They showed that while algebraic simplification does
disrupt building blocks by destroying or changing constants, it is also capable of creating
values that were not originally present and that some of these new values became established
in the population thus contributing to the final solution.

What we wish to examine is the behaviour for larger building blocks, in particular two
and three level deep sub-trees. Like [19] we will present this behaviour as images. In any
practical problem, the number of possible building blocks is huge, far larger than we can
attempt to enumerate let alone display. We need a way of showing at least the nature of the
building blocks present in the population, and an indication of relative frequency. This is a
very difficult problem, particularly as the size of the building blocks increase. Our approach
is to encode each building block into a bit string in such a way that similar building blocks
result in similar encodings. The encoding process simplifies the description of the nodes to
keep the size of the bit string manageable. In each case the nodes are encoded one level at a
time, starting from the root, and from left to right within the level. Figure 12 shows a three
level deep subtree. In this example the order the nodes would be encoded is × − + −
F2 0.3 F3.

−

0.3 F3F2

+

x

−

Fig. 12 An example tree to illustrate the encoding order.

We wish to show building blocks as part of the whole search space. This is so we can see
what coverage we are getting and how this might change with simplification. The challenge
is in displaying this information. The chosen format is an image, with building blocks on
the vertical axis and generations on the horizontal. Even at 1200dpi there is a very limited
number of pixels and therefore bits available for encoding the building blocks if the resulting
image is to be less than a page in size. The goal is to handle trees up to a depth of three levels.

A building block three levels deep, with all operators having two arguments, has either
five or seven nodes. An image 6.83 inches high at 1200dpi gives us 13 bits, or 14 bits at
2400dpi. That would allow only two bits per node. The encoding scheme can therefore give
only the most general indication of the structure of the building block. If the building block
is only two levels deep, then we could use two bits for the operator at the root, and five bits
for each of the two child nodes. The two encoding schemes we chose are described in the
rest of this section.
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5.1.1 Three Level Deep Building Blocks.

With two bits per node there are four available encodings for each node. The ones we have
used are:

1. 00 - addition or subtraction operator.
2. 01 - multiplication or division operator.
3. 10 - input feature.
4. 11 - ephemeral constant.

Because the root node of a building block at least two levels deep must be an operator,
the first bit will always be zero leaving us with 13 bits describing a three deep building
block. 213 = 8192 which at 1200dpi gives a graphic 6.83 inches high which is feasible for
printing.

As described above, the encoding order for Figure 12 is [×] [−] [+] [−] [F2] [0.3]
[F3], which is encoded as [1] [00] [00] [00] [10] [11] [10], the resulting encoding is then
1000000101110.

At each generation we traverse all programs in the population, encoding all building
blocks that are three levels deep. A hash table is used to record all of the encodings found
and to accumulate the number of times they occur.

At the end of the run a graphic is created with a height of 8192 pixels, one for each
possible encoding and the width being the number of generations. All non-zero counts are
normalised on to a range 64–255 to make a clear visual greyscale distinction between a low
count and zero. The final image is then produced from the negative, so the highest count is
black with zero being white.

5.1.2 Two Level Deep Building Blocks.

This time we have more bits available to describe each node. The root node is always an
operator and uses two bits with the values:

1. 00 - addition operator.
2. 01 - subtraction operator.
3. 10 - multiplication operator.
4. 11 - division operator.

The two child nodes each have five bits, used as follows:

1. 1 followed by four bits is a feature, with the four bits being the feature number.
2. 01 followed by three bits is an ephemeral constant with the absolute value used to map

[0.0,1.0] on to the [0,7] range allowed by the three available bits.
3. 000 followed by two bits is an operator, enumerated as for the root node.

This scheme allows more information about the building block to be included in the
encoding than was the case for the three level deep building blocks and uses a total of
twelve bits to describe each building block. 212 = 4096 which at 1200dpi makes our graphic
3.42 inches high.

In the example of Figure 13, the order of encoding is [/] [0.3] [F3] where F3 is input
feature number three. This then encoded as [11] [01 010] [1 0011] giving an encoding of
110101010011. The rest of the processing is as for the three level case except the graphic is
now only 4096 pixels in height.
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0.3 F3

/

Fig. 13 An example tree to illustrate the encoding scheme for two deep building blocks.

5.2 Analysis of Building Blocks

The particular runs and their associated images that we present here are representative of the
behaviour we observed across many other similar runs. In addition, this section only shows
the analysis on the coin and wine datasets as the analysis on the face dataset gave a very
similar pattern. The images have been stretched in width to make them easier to see, so each
generation for the coins dataset is 10 pixels wide, and for the wine dataset 2 pixels wide.
This gives a common size of image. Similarly the images for the two level building blocks
have been scaled vertically to match those for three level building blocks.

A very important property of both the encoding schemes used to create these images is
that pixels in the image that are close together vertically, in general represent closely related
building blocks. For the three deep encoding the differences will generally only be in the
third level. With the two deep level encoding the differences will in most cases be a different
value for an ephemeral constant, or a different feature being used.

5.2.1 Three Level Building Blocks

Figure 14 shows three images/plots for the coin dataset, one example run of each GP sys-
tem (no simplification, algebraic simplification and numerical simplification). Recall that
the vertical axis represents each of the possible 8192 building blocks, the horizontal axis
represents the possible generations during evolution, and that all the three runs start with
the same random seed and the same initial population so that they have the same starting
point. An enlarged view of a densely populated area and a sparsely populated area is shown
in Figure 16. In these figures, continuous solid lines represent good building blocks retained
during evolution, while discontinuous “lines” (or scattered dots/short lines) indicate building
blocks were disrupted. The darkness of the lines/dots represents the occurrence frequency
of the building blocks.

Inspection of Figure 14(a) reveals that in the canonical GP system with no simplification,
many useful building blocks are retained in the entire evolutionary process (some shown
clearly in areas C and D and some others), while many other building blocks were disrupted
(mainly by crossover and some by mutation) during evolution. In addition, many of the 8192
possible three-level subtrees that were present in the initial population died during evolution.

Inspection of Figure 14(b) and (c) reveals that there are still many good building blocks
(dark continuous solid lines) during evolution for two different simplification systems. Al-
though some of the good building blocks originally retained during evolution in the canoni-
cal GP system with no simplification were destroyed (lines were broken), some new building
blocks were produced by the simplification process during evolution.

Figure 15 shows the plots on the wine dataset for the three systems (no simplification,
algebraic simplification and numerical simplification). While the building blocks behave
differently in these images from those in Figure 14, the main pattern remains the same: the
two simplification processes do destroy existing building blocks but they also generate new
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(a) (b) (c)
Fig. 14 A set of runs for the coins dataset with three deep
building blocks. (a) with no simplification. (b) with alge-
braic simplification. (c) with numerical simplification.

(a) (b) (c)
Fig. 15 A set of runs for the wine dataset with
three deep building blocks. (a) with no simpli-
fication. (b) with algebraic simplification. (c)
with numerical simplification.
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(a) (b)
Fig. 16 Enlargements of part of an image for the coins dataset with no simplification. (a) is from a densely
populated area and (b) is from a sparsely populated area.

and more diverse building blocks during evolution. These new building blocks contribute to
problem solving, so the classification performance was retained.

Comparing many runs on the two datasets, we found that fewer existing building blocks
were retained and more new building blocks were generated for both simplification methods
in the wine data set than in the coins dataset. This is due mainly to the degree of difficulty
in the classification problems in the two datasets. The classification problem in the wine
dataset is more difficult than in the coins dataset.

5.2.2 Two Level Building Blocks

The three level deep building blocks do not distinguish between addition and subtraction or
between multiplication and division. To make this distinction, we examine the behaviour of
the two-level deep building blocks to check whether the conclusions still remain valid.

Figure 17 and Figure 18 show the plots for two level building blocks for the coin and
wine datasets respectively using GP with no simplification, algebraic simplification and nu-
merical simplification. These results show a very similar pattern to those on the three-level
building blocks in the previous subsection.

While the building blocks of two and three level subtrees behave differently from the
numerical “constant” terminals only in [19], the main conclusions remain the same: the two
program simplification algorithms destroy existing building blocks, generate new and more
diverse building blocks, and the contributions of the new building blocks compensate the
negative aspects of the existing building block disruption.

One observation from these new results is that many useful existing building blocks
are preserved during evolution. Wong and Zhang’s analysis on the simplest building blocks
(numeric/constant terminals) [19] did not clearly show this. This is perhaps because the
format of the numeric terminals is a single floating point number and is too simple to show
this pattern.
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(a) (b) (c)
Fig. 17 A set of runs for the coins dataset with
two deep building blocks. (a) with no simplifi-
cation. (b) with algebraic simplification. (c) with
numerical simplification.

(a) (b) (c)
Fig. 18 A set of runs for the wine dataset with
two deep building blocks. (a) with no simplifi-
cation. (b) with algebraic simplification. (c) with
numerical simplification.
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6 Conclusions

We have shown that both simplification methods appear to reduce the average number of
nodes per program by about 40%. Some of this is by reducing the depth of the tree, but
most of the reduction is by reducing the average number of nodes per level in the upper and
middle parts of the tree.

We have also shown that simplification reduces CPU usage by between 18% and 74%
on these experiments. The direct measurements of memory usage show a reduction of about
30% but measurements vary widely due to difficulties with measuring memory use within a
Java runtime environment. In practice, most of the memory used is taken up by the program
population.

Numerical simplification is at least as effective as algebraic simplification, while show-
ing some advantage in resource usage in many but not all cases. This depends on the dataset,
with the face and wine datasets showing an advantage to numerical simplification in program
size and resource usage. With the coin dataset there was no significant difference observed.

We have shown that there appears to be no significant loss in classification performance,
provided that the numerical simplification threshold is set appropriately.

We introduced encoding schemes for two and three level deep building blocks that have
shown the distribution of building blocks within a population using images. These revealed
that although the two online simplification methods destroyed some existing building blocks,
they effectively generated additional new and more diverse building blocks during evolution,
which compensated for the negative effect from the disruption of building blocks. These
findings further confirmed the early hypothesis and results made by Wong and Zhang [19],
where the analysis was based only on the simplest form of building blocks, numerical con-
stants, on two simple regression tasks. This in turn concludes that the two online program
simplification methods can produce significantly smaller programs and take significantly
shorter evolutionary training time than the canonical GP system while achieving compara-
ble effectiveness performance.

One interesting observation from this paper is that many existing building blocks were
preserved during evolution, although many building blocks change over time with genera-
tions. In the future, we will make further analysis to determine why so many existing build-
ing blocks were preserved, and which building blocks they actually are. This will help in
understanding the internal behaviour of the two online simplification methods, which in
turn will reveal the differences between them.

The images presented here are based on many individual GP runs. It would be very in-
teresting to further investigate the distribution of the building blocks over multiple combined
runs (i.e. 100 or 200 runs) in the future to reveal whether the findings obtained here will still
remain valid.

Acknowledgement

This work was supported in part by the Marsden Fund council from the government funding
(08-VUW-014), administrated by the Royal Society of New Zealand, and the University
Research Fund (URF09-2399/85608) at Victoria University of Wellington.



23

References

1. Soule, T., Foster, J.A., Dickinson, J.: Code growth in genetic programming. In Koza, J.R., et al. eds.:
Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA,
MIT Press (1996) 215–223

2. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic
Programming and Evolvable Machines 3(3) (2002) 283–309

3. Blickle, T., Thiele, L.: Genetic programming and redundancy. In Hopf, J., ed.: Genetic Algorithms within
the Framework of Evolutionary Computation. (1994) 33–38

4. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction on the
Automatic Evolution of computer programs and its Applications. (1998) Morgan Kaufmann Publishers.

5. Zhang, M., Smart, W.: Using gaussian distribution to construct fitness functions in genetic programming
for multiclass object classification. Pattern Recognition Letters 27(11) (2006) 1266–1274

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA (1992)

7. Nordin, P., Banzhaf, W.: Complexity compression and evolution. In Eshelman, L., ed.: Genetic Algo-
rithms: Proceedings of the Sixth International Conference (ICGA95), Pittsburgh, PA, USA, Morgan Kauf-
mann (15–19 July 1995) 310–317

8. Parrott, D., Li, X., Ciesielski, V.: Multi-objective techniques in genetic programming for evolving classi-
fiers. In Corne, D., Michalewicz, Z. et al., eds.: Proceedings of the 2005 IEEE Congress on Evolutionary
Computation. Volume 2., Edinburgh, UK, IEEE Press (2–5 September 2005) 1141–1148

9. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary
Computation 3(1) (1995) 17–38

10. Zhang, M., Bhowan, U.: Program size and pixel statistics in genetic programming for object detection. In
Raidl, G.R., Cagnoni, S., et al. eds.: Applications of Evolutionary Computing, EvoWorkshops2004. Volume
3005 of LNCS., Coimbra, Portugal, Springer Verlag (5–7 April 2004) 379–388

11. Luke, S., Panait, L.: Lexicographic parsimony pressure. In Langdon, W.B., et al., eds.: GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, New York, Morgan Kaufmann
Publishers (9–13 July 2002) 829–836

12. Samaria, F. and Harter, A. C.: Parameterisation of a stochastic model for human face identification.
Proceedings of the Second IEEE Workshop on Applications of Computer Vision (1994)

13. de Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genetic Programming and
Evolvable Machines 4(3) (2003) 211–233

14. Marshall, D.: The discrete cosine transform. (2001) http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
15. Forina, M., Leardi, R., Armanino, C., Lanteri, S.: Parvus: an Extendable Package of Programs for Data

Exploration, Classification and Correlation. Elsevier, Amsterdam (1988)
16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. Morgan

Kaufmann, San Francisco (2005)
17. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics, 1, 80-83. (1945).
18. LaVange, Lisa M., Koch, Gary G.: Rank Score Tests. In Circulation. Volume 114. Number 23, 2528–

2533 (2006)
19. P. Wong and M. Zhang. Effects of program simplification on simple building blocks in genetic program-

ming. In IEEE Congress on Evolutionary Computation, pages 1570–1577, 2007.
20. P. Wong and M. Zhang. Algebraic simplification of GP programs during evolution. In M. Keijzer, et al.

editors, GECCO 2006: Proceedings of the 8th annual conference on Genetic and Evolutionary Computa-
tion, volume 1, pages 927–934, USA, 2006. ACM Press.


