Skip to main content

Advertisement

Log in

Addressing the envelope reduction of sparse matrices using a genetic programming system

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Large sparse symmetric matrix problems arise in a number of scientific and engineering fields such as fluid mechanics, structural engineering, finite element analysis and network analysis. In all such problems, the performance of solvers depends critically on the sum of the row bandwidths of the matrix, a quantity known as envelope size. This can be reduced by appropriately reordering the rows and columns of the matrix, but for an \(N\times N\) matrix, there are \(N!\) such permutations, and it is difficult to predict how each permutation affects the envelope size without actually performing the reordering of rows and columns. These two facts compounded with the large values of \(N\) used in practical applications, make the problem of minimising the envelope size of a matrix an exceptionally hard one. Several methods have been developed to reduce the envelope size. These methods are mainly heuristic in nature and based on graph-theoretic concepts. While metaheuristic approaches are popular alternatives to classical optimisation techniques in a variety of domains, in the case of the envelope reduction problem, there has been a very limited exploration of such methods. In this paper, a Genetic Programming system capable of reducing the envelope size of sparse matrices is presented and evaluated against four of the best-known and broadly used envelope reduction algorithms. The results obtained on a wide-ranging set of standard benchmarks from the Harwell–Boeing sparse matrix collection show that the proposed method compares very favourably with these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This, in fact, means that their corresponding graphs have more than one component and in such a scenario, studying each component of the system separately is more likely to result in an efficient analysis. It is probable that in the original process of generating these 6 matrices from their actual numerical values, a rounding error occurred leading to some entries being ignored.

References

  1. Pissanetskey, S.: Sparse Matrix Technology. Academic Press, London (1984)

    Google Scholar 

  2. Irons, B.M.: A frontal solution program for finite element analysis. Int. J. Numer. Methods. Eng. 2, 5–32 (1970)

    Article  MATH  Google Scholar 

  3. Jennings, A.: Matrix Computation for Engineers and Scientists. John Wiley, Hoboken (1977)

    MATH  Google Scholar 

  4. Barnard, S.T., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse matrices. Numer. Lin. Algebra. Appl. 2(4), 317–334 (1995)

    Article  MATH  Google Scholar 

  5. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  6. George, A., Pothen, A.: An analysis of spectral envelope reduction via quadratic assignment problems. SIAM J. Matrix Anal. Appl. 18(3), 706–732 (1997)

    Article  MATH  Google Scholar 

  7. Lin, Y., Yuan, J.: Profile minimization problem for matrices and graphs. Acta Math. Appl. Sin. 10, 107–112 (1994)

    Article  MATH  Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  9. Poli, R., Langdon, W., McPhee, N.: A field guide to genetic programming. Lulu Enterprises, Raleigh (2008).

  10. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: ACM National Conference, pp. 157–172. Association for Computing Machinery, New York (1969).

  11. Liu, W.H., Sherman, A.H.: Comparative analysis of the cuthill-mckee and the reverse Cuthill–Mckee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13(2), 198–213 (1976)

    Article  MATH  Google Scholar 

  12. George, J.A.: Computer implementation of the finite element method. Ph.D. thesis, Stanford, CA (1971).

  13. Cuthill, E.: Several strategies for reducing the bandwidth of matrices. In: Rose, D., Willoughby, R. (eds.) Sparse Matrices and their Applications. The IBM Research Symposia Series, pp. 157–166. Springer, US (1972)

    Chapter  Google Scholar 

  14. Gibbs, N.E., Poole, W.G., Stockmeyer, P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 236–250 (1976)

    Article  MATH  Google Scholar 

  15. Everstine, G.C.: A comparison of three resequencing algorithms for the reduction of matrix profile and wavefront. Int. J. Numer. Methods. Eng. 14, 837–853 (1979)

    Article  MATH  Google Scholar 

  16. Gibbs, N.E.: A hybrid profile reduction algorithm. ACM Trans. Math. Softw. 2(4), 378–387 (1976)

    Article  Google Scholar 

  17. Lewis, J.G.: Implementation of the gibbs-poole-stockmeyer and gibbs-king algorithms. ACM. Trans. Math. Softw. 8(2), 180–189 (1982)

    Article  MATH  Google Scholar 

  18. Armstrong, B.A.: Near minimal matrix profiles and wavefronts for testing nodal resequencing algorithms. Int. J. Numer. Methods. Eng. 21, 1785–1790 (1985)

    Article  MATH  Google Scholar 

  19. Sloan, S.W.: A FORTRAN program for profile and wavefront reduction. Int. J. Numer. Methods. Eng. 28(11), 2651–2679 (1989)

    Article  MATH  Google Scholar 

  20. Sloan, S.W., Ng, W.S.: A direct comparison of three algorithms for reducing profile and wavefront. Comput. Struct. 33(2), 411–419 (1989)

    Article  Google Scholar 

  21. Duff, I., Reid, J.K., Scott, J.A.: The use of profile reduction algorithms with a frontal code. Int. J. Numer. Methods. Eng. 28(11), 2555–2568 (1989)

    Article  MATH  Google Scholar 

  22. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT 37, 559–590 (1997)

    Article  MATH  Google Scholar 

  23. Reid, J.K., Scott, J.A.: Ordering symmetric sparse matrices for small profile and wavefront. Int. J. Numer. Methods. Eng. 45, 1737–1755 (1999)

    Article  MATH  Google Scholar 

  24. Barnard, S.T., Pothen, A., Simon, H.D.: A spectral algorithm for envelope reduction of sparse matrices. In: Proceedings of the Supercomputing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pp. 493–502. ACM, New York (1993).

  25. Hu, Y.F., Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM J. Sci. Comput. 23(4), 1352–1375 (2001)

    Article  MATH  Google Scholar 

  26. Hager, W.: Minimizing the profile of a symmetric matrix. SIAM J. Sci. Comput. 23(5), 1799–1816 (2002)

    Article  MATH  Google Scholar 

  27. Reid, J.K., Scott, J.A.: Implementing hager’s exchange methods for matrix profile reduction. ACM Trans. Math. Softw. 28(4), 377–391 (2002)

    Article  MATH  Google Scholar 

  28. Wang, Q., Shi, X.W.: An improved algorithm for matrix bandwidth and profile reduction in finite element analysis. Prog. Electromagn. Res. Lett. 9, 29–38 (2009)

    Article  Google Scholar 

  29. Marti, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)

    Article  MATH  Google Scholar 

  30. Lim, A., Rodrigues, B., Xiao, F.: Integrated genetic algorithm with hill climbing for bandwidth minimization problem. In: Proceedings of the 2003 international conference on Genetic and evolutionary computation: Part II, pp. 1594–1595. Springer-Verlag, Berlin (2003).

  31. Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153(1), 200–210 (2004)

    Article  MATH  Google Scholar 

  32. Lim, A., Lin, J., Rodrigues, B., Xiao, F.: Ant colony optimization with hill climbing for the bandwidth minimization problem. Appl. Soft. Comput. 6(2), 180–188 (2006)

    Article  Google Scholar 

  33. Lim, A., Lin, J., Xiao, F.: Particle swarm optimization and hill climbing for the bandwidth minimization problem. Appl. Intell. 26(3), 175–182 (2007)

    Article  MATH  Google Scholar 

  34. Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J.: An improved simulated annealing algorithm for bandwidth minimization. Eur. J. Oper. Res. 185(3), 1319–1335 (2008)

    Article  MATH  Google Scholar 

  35. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346 (2008)

    Article  MATH  Google Scholar 

  36. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 529–556. Springer, New York (2005)

    Chapter  Google Scholar 

  37. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Lin. Algebra. Appl. 423(1), 53–73 (2007)

    Article  MATH  Google Scholar 

  38. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak. Math. J. 23, 298–305 (1973)

    Google Scholar 

  39. Lim, A., Rodrigues, B., Xiao, F.: Heuristics for matrix bandwidth reduction. Eur. J. Oper. Res. 174(1), 69–91 (2006)

    Article  MATH  Google Scholar 

  40. Mladenovic, N., Urosevic, D., Prez-Brito, D., Garca-Gonzlez, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200(1), 14–27 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Koohestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohestani, B., Poli, R. Addressing the envelope reduction of sparse matrices using a genetic programming system. Comput Optim Appl 60, 789–814 (2015). https://doi.org/10.1007/s10589-014-9688-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9688-2

Keywords

Navigation