Skip to main content

Feature Discovery with Deep Learning Algebra Networks

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XVIII

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 438 Accesses

Abstract

Deep learning neural networks have produced some notable well publicized successes in several fields. Genetic Programming has also produced well publicized notable successes. Inspired by the deep learning successes with neural nets, we experiment with deep learning algebra networks where the network remains unchanged but where the neurons are replaced with general algebraic expressions. The training algorithms replace back propagation, counter propagation, etc. with a combination of genetic programming to  generate the algebraic expressions and multiple regression, logit regression, and discriminant analysis to train the deep learning algebra network. These enhanced algebra networks are trained on ten theoretical classification problems with good performance advances which show a clear statistical performance improvement as network architecture is expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augasta, M., Kathirvalavakumar, T.: Pruning algorithms of neural networks - a comparative study. Open Computer Sci. 3(3), 105–115 (2013)

    Google Scholar 

  2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., Wiswedel, B.: KNIME-the Konstanz Information Miner: Version 2.0 and beyond. ACM SIGKDD Explorations Newsletter 11(1), 26–31 (2009)

    Google Scholar 

  3. Friedman, J.H.: Regularized discriminant analysis. J. Amer. Stat. Assoc. 84(405), 165–175 (1989)

    MathSciNet  Google Scholar 

  4. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31(1–4), 61 (2009)

    Google Scholar 

  5. Korns, M.F.: A baseline symbolic regression algorithm. In: Genetic Programming Theory and Practice X. Springer, Berlin (2012)

    Google Scholar 

  6. Korns, M.F.: Predicting corporate forward 12 month earnings. In: Parpinelli, R., Lopes, H.S. (eds.) Theory and New Applications of Swarm Intelligence. Tech Academic Publishers, Cambridge (2012)

    Google Scholar 

  7. Korns, M.F.: Extreme accuracy in symbolic regression. In: Genetic Programming Theory and Practice XI, pp. 1–30. Springer, Berlin (2014)

    Google Scholar 

  8. Korns, M.F.: Extremely accurate symbolic regression for large feature problems. In: Genetic Programming Theory and Practice XII, pp. 109–131. Springer, Berlin (2015)

    Google Scholar 

  9. Korns, M.F.: Trading volatility using highly accurate symbolic regression. In: Handbook of Genetic Programming Applications, pp. 531–547. Springer, Berlin (2015)

    Google Scholar 

  10. Korns, M.F.: Highly accurate symbolic regression with noisy training data. In: Genetic Programming Theory and Practice XIII, pp. 91–115. Springer, Berlin (2016)

    Google Scholar 

  11. Korns, M.F.: An evolutionary algorithm for big data multiclass classification problems. In: Genetic Programming Theory and Practice XIV. Springer, Berlin (2017)

    Google Scholar 

  12. Korns, M.F., May, T.: Strong typing, swarm enhancement, and deep learning feature selection in the pursuit of symbolic regression-classification. In: Genetic Programming Theory and Practice XVI, pp. 59–84. Springer, Berlin (2019)

    Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  14. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York (2004)

    Google Scholar 

  15. Nelder, J., Wedderburn, R.W.: Generalized linear models. J. R. Stat. Soc. 135, 370–384 (1972)

    Google Scholar 

  16. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

    Google Scholar 

  17. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research (1998)

    Google Scholar 

  18. Rout, A., Dash, P.K., Dash, R., Bisoi, R.: Forecasting financial time series using a lowcomplexity recurrent neural network and evolutionary learning approach. J. King Saud Univ.-Computer Inf. Sci. 29, 536–552 (2017)

    Google Scholar 

  19. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  20. Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V., Soman, K.P.: Stock price prediction using LSTM, RNN and CNN-sliding window mode. In: International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643–1647 (2017)

    Google Scholar 

  21. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Forecasting stock prices from the limit order book using convolutional neural networks. In: 19th IEEE Conference onBusiness Informatics (CBI) 2017, pp. 7–12. IEEE Press (2017)

    Google Scholar 

  22. Uyanık, G.K., Güler, N.: A study on multiple linear regression analysis. Proc.-Soc. Behav. Sci. 106, 234–240 (2013)

    Google Scholar 

  23. Vijh, M., Chandola, D., Tikkiwal, V., Kumar, A.: Stock closing price prediction using machine learning techniques. In: International Conference on Computational Intelligence and Data Science (ICCIDS 2019) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Korns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korns, M.F. (2022). Feature Discovery with Deep Learning Algebra Networks. In: Banzhaf, W., Trujillo, L., Winkler, S., Worzel, B. (eds) Genetic Programming Theory and Practice XVIII. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-16-8113-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8113-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8112-7

  • Online ISBN: 978-981-16-8113-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics