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A B S T R A C T A R T I C L E   I N F O 
Štore Steel Ltd. produces more than 200 different types of steel with a contin-
uous caster installed in 2016. Several defects, mostly related to thermome-
chanical behaviour in the mould, originate from the continuous casting pro-
cess. The same casting speed of 1.6 m/min was used for all steel grades. In 
May 2023, a project was launched to adjust the casting speed according to the 
casting temperature. This adjustment included the steel grades with the high-
est number of surface defects and different carbon content: 16MnCrS5, C22, 
30MnVS5, and 46MnVS5. For every 10 °C deviation from the prescribed cast-
ing temperature, the speed was changed by 0.02 m/min. During the 2-month 
period, the ratio of rolled bars with detected surface defects (inspected by an 
automatic control line) decreased for the mentioned steel grades. The de-
creases were from 11.27 % to 7.93 %, from 12.73 % to 4.11 %, from 16.28 % 
to 13.40 %, and from 25.52 % to 16.99 % for 16MnCrS5, C22, 30MnVS5, and 
46MnVS5, respectively. Based on the collected chemical composition and 
casting parameters from these two months, models were obtained using 
linear regression and genetic programming. These models predict the ratio of 
rolled bars with detected surface defects and the length of detected surface 
defects. According to the modelling results, the ratio of rolled bars with de-
tected surface defects and the length of detected surface defects could be 
minimally reduced by 14 % and 189 %, respectively, using casting speed 
adjustments. A similar result was achieved from July to November 2023 by 
adjusting the casting speed for the other 27 types of steel. The same was pre-
dicted with the already obtained models. Genetic programming outperformed 
linear regression. 
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1. Introduction
Modern steel production is hard to imagine without continuous casting. However, due to the 
thermomechanical behaviour during continuous casting, especially in the mould, several types of 
defects can occur on the cast material. These defects can also manifest on the rolled material. 
They can be reduced or eliminated with several approaches: 

• Optimization of casting equipment (e.g., tundish, submerged entry nozzles, mould or water
sprays geometry, casting powder, tundish powder),

• Optimization of secondary metallurgy (e.g., deoxidation, refinement, homogenization, stir-
ring), and
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• Optimization of casting parameters (e.g., casting temperature, speed, cooling water flow 
and pressure). 

In the literature, adjustments to the casting speed have been discussed in relation to casting 
defects (e.g., surface defects [1-13], breakouts [9, 14, 15]) and productivity [1, 3, 14-16]. These 
discussions have involved individual steel grades [1, 9] or have been more general [3-5, 10-12, 
15-17]. Additional factors such as the melt level in the mould [17, 18], melt level fluctuations 
[12, 17, 18], and melt flow [3] have also been examined. Artificial intelligence approaches have 
been utilized as well [4, 7, 10, 16, 17]. Unfortunately, these attempts have only been practically 
implemented in an industrial environment a few times [11, 15, 17]. 

This article investigates the reduction of surface defects, detected during the examination 
(via an automatic control line) of the rolled material, using casting speed adjustments based on 
the casting temperature. The average casting speed adjustments were calculated for several dif-
ferent grades using an in-house developed solidification model [19, 20]. The primary objective 
during simulations was to maintain the same metallurgical length (i.e., the distance from the 
mould to the location where the entire melt solidifies) by adjusting the casting speed when the 
casting temperature changed. Based on several simulations, for every 10 °C deviation from the 
prescribed casting temperature, the speed was adjusted by 0.02 m/min. The casting tempera-
ture was determined based on the content of carbon, sulphur, and aluminium, the liquidus tem-
perature (calculated using the Wensel equation [21]), and the number of cast sequences (several 
batches – individual melts are continuously cast without interruption). 

The materials and methods section discusses the significance of data collection. Subsequent-
ly, this data is utilized to predict the ratio of rolled bars with detected surface defects and their 
lengths using linear regression and genetic programming methods. The results are then ana-
lysed and implemented in practice. Finally, the general results are analysed and conclusions are 
drawn. 

2. Materials and methods 
Production at the Štore Steel plant begins with scrap melting in an electric arc furnace, followed 
by tapping, ladle treatment (i.e., secondary metallurgy), and continuous casting of billets meas-
uring 180 mm × 180 mm. The billets can undergo additional heat treatment or be cooled under 
hoods. Before rolling, they are reheated. The rolled bars can then be straightened, examined for 
inner soundness and surface quality, cut, sawn, chamfered, drilled, and peeled. 
 Since March 2016, a new two-strand continuous casting machine with a radius of 9 m has 
been in operation. The solidification process involves a water-cooled copper mould for primary 
cooling, water sprays for secondary cooling, and air cooling for tertiary cooling. 

During primary cooling, the solidified shell is subjected to thermomechanical stresses, which 
can lead to numerous casting defects. In the case of square billets, non-uniform shell solidifica-
tion (i.e., non-uniform heat removal in the mould) can result in rhombic distortion (i.e., rhom-
boidity). This distortion can cause off-corner cracks, which manifest as longitudinally opened 
surface defects on the rolled material. These defects are typically detected during an automatic 
control line examination. 

The origin of open surface defects on rolled material can be confirmed based on metallurgical 
reports, which include analyses of billets and both flat and round bars, dating back to the initia-
tion of the continuous caster in 2016. Fig. 1 displays a macro-etched sample of the billet’s cross-
section. A typical bright macrostructure is observable due to the operation of the mould’s elec-
tromagnetic stirrers (indicated by arrows). Subsurface cracks outside the corner are also visible 
in the upper left and lower right corners. The same billet macrostructure and open cracks out-
side the corners can be seen in the cross-section of the macro-etched round rolled bar, as shown 
in Fig. 2. 
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Fig. 1 A macro-etched sample of the billet’s cross-section reveals a typical bright macrostructure, which can be ob-
served due to the operation of the mould’s electromagnetic stirrers (indicated by arrows). Subsurface cracks outside 
the corner are also visible in the upper left and lower right corners. 
 

 
Fig. 2 The black square signifies the orientation of the billet. Both defects (on the left and right) are located at the 
corner of the billet, indicating the presence of off-corner cracks in the billet, which is a cast semi-product. The opera-
tion of the mould’s electromagnetic stirrers results in a typically bright macro-structure, as indicated by the arrows. 

 
 In May 2023, a project was started where the casting speed was adjusted according to the 
casting temperature. This adjustment involved steel grades with the highest number of surface 
defect occurrences (i.e., the average ratio of rolled bars with detected surface defects and their 
lengths) and varying carbon contents: 16MnCrS5, C22, 30MnVS5, and 46MnVS5. For every 10 °C 
deviation from the prescribed casting temperature, the speed was altered by 0.02 m/min. The 
number of cast batches, the average ratio of rolled bars with detected surface defects, and their 
lengths for the one-year period from May 2022 to May 2023 are presented in Table 1. 

In an effort to reduce casting defects on the rolled material, the following parameters were 
collected for the batches cast from May 2023 to June 2023. This two-month period involved ad-
justments to the casting speed based on the casting temperature. The adjustments were specifi-
cally applied to steel grades with the highest occurrences of surface defects, namely 16MnCrS5, 
C22, 30MnVS5, and 46MnVS5: 

• Chemical composition: Content of carbon, silicon, manganese, sulphur, chromium, nickel, 
aluminium and vanadium. Chemical composition influence on material properties also 
during solidification (e.g., shrinkage, ductility, mechanical properties). 

• Casting parameters: 
− Average casting temperature (in °C). Casting temperature influences the thermal field 

in the mould, which influences the heat removal and solidification. 
− Changes of the casting speed based on deviation from the prescribed casting tempera-

ture (m/min). For every 10 °C deviation from the prescribed casting temperature, the 
speed was changed by 0.02 m/min. Casting speed influences the heat removal and so-
lidification. 
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− The average mould water flow (in l/min). The highest heat removal occurs in the 
mould, where thermomechanical behaviour influences on shell solidification. 

− The average cooling water pressure (in bar) and flow (in l/min) are observed in the 
first zone of secondary cooling, which is directly below the mould. The melt primarily 
solidifies in the mould. After exiting the mould, the strand is cooled by water sprays. 
The water flux can be automatically adjusted, varying the water pressure and flow. 
Secondary cooling also influences the thermomechanical behaviour during solidifica-
tion. 

• Average ratio of rolled bars with detected surface defects (in %). 
• Average length of detected surface defects (in mm/mm). 

 Rolled bars are examined using an automatic control line equipped with a flux leakage in-
spection system, which has a surface defect depth detection limit of 0.15 mm. Data on defect 
depths and lengths for each examined bar are available. It’s important to note that scrap is con-
sidered when the maximum permissible depth of surface defects is exceeded. The maximum 
permissible depth is defined by the customer or international standards (e.g., ISO 9443, EN 
10221, EN 10277-1) and can be significantly (i.e., several times) larger than the detection limit. 
Accordingly, this study uses data on detectable defects that are deeper than the detection limit of 
0.15 mm. 
 

  Table 1 The number of cast batches, average ratio of rolled bars with detected surface defects and their lengths for 
  individual steel grade for the one-year period from May 2022 and May 2023 

Steel grade Number of 
cast batches 

Average ratio of 
rolled bars 
with the detected 
surface defects, % 

The length of 
the detected 
surface defects, mm/m 

C45S 255 12.92 10.57 
46MNVS5 67 25.52 18.08 
16MNCRS5 70 11.27 1.41 
30MNVS6 29 16.28 12.29 
42CRMOS4 26 13.90 3.73 
28MNCRNIB 43 6.97 4.88 
20MNCRS5 43 5.65 0.30 
C45 36 6.36 3.07 
20MNV6 83 2.62 0.57 
C22 17 12.73 1.425 
S355J2 28 7.59 1.46 
42CRMO4 23 8.79 1.55 
51CRV4 22 8.52 3.48 
20NICRMOS2-2 16 8.26 0.63 
16MNCR5 28 3.81 0.47 
23MNNICRMO5-2 15 7.04 8.80 
18CRNIMO7-6 18 5.84 0.07 
C35S 7 11.38 32.62 
25CRMOS4 6 10.91 9.88 
28MNCRB7 6 9.15 1.80 
25CRMO4 8 6.30 0.06 
100CR6 9 5.02 2.13 
C60 19 2.25 0.26 
20MNCR5 6 6.04 0.27 
31CRMOV9 4 6.67 2.71 
38MNVS6 7 3.34 0.50 
16NICRS4 7 3.06 6.62 
17NICRMOS6-4 4 2.09 0.08 
30CRNIMO8 3 2.11 2.67 
15CRNI6 3 2.06 0.40 
P460NH 3 1.38 0.09 
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 Before implementing changes to the casting speed based on deviations from the prescribed 
casting temperature into the continuous casting process, models were developed using linear 
regression and genetic programming. These models predict the ratio of rolled bars with detected 
surface defects and the length of these defects. By comparing the calculated ratios of rolled bars 
with detected surface defects and their lengths, with or without changes in casting speed, further 
measures were taken. 

 
   Table 2 Data from May 2023 to June 2023 where the casting temperature has been adjusted, including steel grades 
   with the highest number of surface defect occurrences – 16MnCrS5, C22, 30MnVS5 and 46MnVS5 
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1 16MNCR5 0.16 0.24 1.11 0.009 1.00 0.19 0.021 0.01 0.00 1780.03 35.21 2.42 1553.0 0.58 0.12 
2 16MNCR5 0.16 0.24 1.12 0.008 1.02 0.17 0.022 0.01 0.00 1780.01 35.19 2.42 1552.0 1.80 0.11 
3 16MNCR5 0.16 0.25 1.12 0.008 1.00 0.13 0.022 0.01 0.02 1780.04 34.99 2.55 1564.0 0.59 0.12 
4 16MNCR5 0.17 0.25 1.12 0.007 0.99 0.16 0.022 0.01 0.00 1780.05 34.84 2.43 1551.0 2.27 0.17 
5 30MNVS6 0.29 0.58 1.43 0.027 0.12 0.09 0.013 0.09 0.02 1780.01 35.09 2.41 1542.0 2.91 0.67 
6 30MNVS6 0.30 0.60 1.40 0.033 0.12 0.07 0.016 0.08 0.00 1780.03 35.01 2.44 1539.0 2.44 1.03 
7 30MNVS6 0.29 0.56 1.41 0.033 0.20 0.12 0.013 0.09 0.02 1779.99 35.14 2.49 1542.0 5.56 0.21 
8 30MNVS6 0.30 0.60 1.37 0.026 0.19 0.10 0.013 0.10 0.00 1780.03 34.97 2.47 1538.0 0.97 0.09 
9 46MNVS5 0.47 0.65 1.15 0.062 0.26 0.15 0.006 0.11 0.00 1780.03 32.26 2.30 1517.0 3.45 1.22 
10 46MNVS5 0.47 0.63 1.17 0.063 0.26 0.16 0.006 0.11 0.02 1780.02 32.11 2.28 1524.0 3.52 1.32 
11 46MNVS5 0.47 0.64 1.15 0.068 0.24 0.16 0.005 0.11 0.02 1779.97 31.94 2.00 1513.0 2.45 0.31 
12 46MNVS5 0.47 0.65 1.15 0.063 0.24 0.16 0.005 0.11 0.02 1780.03 32.53 2.08 1525.0 11.16 1.41 
13 46MNVS5 0.47 0.64 1.15 0.063 0.24 0.16 0.005 0.11 0.00 1780.01 32.10 2.03 1514.0 21.10 2.16 
14 46MNVS5 0.47 0.66 1.15 0.066 0.25 0.16 0.005 0.11 0.02 1780.01 31.81 1.99 1516.0 18.07 2.36 
15 46MNVS5 0.47 0.66 1.15 0.060 0.25 0.17 0.005 0.11 0.02 1780.02 32.25 2.04 1534.0 12.48 4.85 
16 46MNVS5 0.47 0.64 1.15 0.067 0.24 0.17 0.005 0.11 0.00 1780.00 31.72 1.98 1526.0 17.58 9.21 
17 46MNVS5 0.47 0.64 1.15 0.064 0.24 0.16 0.005 0.11 0.00 1780.00 31.96 2.01 1513.0 16.28 19.68 
18 46MNVS5 0.47 0.66 1.14 0.063 0.24 0.16 0.005 0.11 0.00 1780.00 31.90 2.11 1516.0 2.22 2.07 
19 C22 0.22 0.21 0.43 0.006 0.20 0.11 0.020 0.00 0.00 1780.03 42.22 3.50 1554.0 2.43 0.14 
20 C22 0.22 0.24 0.41 0.007 0.14 0.10 0.019 0.00 0.02 1779.98 42.16 3.49 1558.0 1.45 0.04 
21 C22 0.22 0.23 0.44 0.006 0.10 0.07 0.018 0.00 0.02 1779.95 42.15 3.48 1555.0 1.39 0.12 
22 C22 0.22 0.25 0.43 0.003 0.08 0.08 0.024 0.00 0.02 1779.99 42.20 3.49 1552.0 1.82 0.64 
23 C22 0.23 0.24 0.43 0.004 0.11 0.08 0.020 0.00 0.02 1780.02 42.18 3.48 1553.0 1.55 0.18 
24 C22 0.22 0.25 0.46 0.008 0.14 0.09 0.020 0.00 0.00 1780.00 42.17 3.48 1555.0 2.18 0.12 

 

3. Results and discussion 
Based on the collected data (Table 2), the prediction of the average ratio of rolled bars with de-
tected surface defects, as well as the average length of detected surface defects, was conducted 
using linear regression and genetic programming. The fitness function was defined as the aver-
age deviation between the predicted and experimental data. It is defined as follows: 
 

∆=
∑ |𝑋𝑋𝑖𝑖 − 𝑋𝑋′𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1) 

 

where n is the size of the monitored data and X’i and Xi are the actual and the predicted (i.e. cal-
culated) values, respectively. 

3.1 Modelling of the ratio of rolled bars with detected surface defects and their lengths using linear 
regression 

Linear regression is a statistical method used to model the relationship between a dependent 
variable and one or more independent variables. It provides a way to predict the dependent var-
iable’s value based on the values of the independent variables, making it a valuable tool in fields 
such as machine learning, economics, engineering, and biology.  

Based on the linear regression results, it can be concluded that the model significantly pre-
dicts the average ratio of rolled bars with detected surface defects (p < 0.05, ANOVA). It is found 
that 72.78 % of total variances can be explained by the variances of independent variables (R-
square). The only significantly influential parameter is the average cooling water pressure in the 
first zone of secondary cooling (PRESS) (p < 0.05). 
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The linear regression model for predicting the average ratio of rolled bars with detected sur-
face defects is as follows: 
 
−0.789 ∙ 𝐶𝐶 − 0.450 ∙ 𝑆𝑆𝑆𝑆 − 1.357 ∙ 𝑀𝑀𝑀𝑀 + −0.235 ∙ 𝑆𝑆 + 3.577 ∙ 𝐶𝐶𝐶𝐶 − 0.302 ∙ 𝑁𝑁𝑁𝑁 − 0.576 ∙ 𝐴𝐴𝐴𝐴 + 2.822

∙ V + 3.772 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 0.711 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 0.015 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 − 0.455 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ 0.002 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1268.557. 

(2) 

The average deviation from experimental data is 2.32 %. 
 Similarly, the second model significantly predicts the average length of detected surface de-
fects (p < 0.05, ANOVA). However, in this case, only 50.17 % of total variances can be explained 
by the variances of independent variables (R-square). Interestingly, in this context, there are no 
significantly influential parameters (p < 0.05). 

The linear regression model for predicting the average length of detected surface defects is as 
follows: 
−179.589 ∙ 𝐶𝐶 + 44.737 ∙ 𝑆𝑆𝑆𝑆 − 116.991 ∙ 𝑀𝑀𝑀𝑀 − 7.780 ∙ 𝑆𝑆 − 99.020 ∙ 𝐶𝐶𝐶𝐶 − 32.913 ∙ 𝑁𝑁𝑁𝑁 − 39.153 ∙ 𝐴𝐴𝐴𝐴 +
409.933 ∙ 𝑉𝑉 + 188.939 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 22.826 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 2.781 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 − 17.145 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 0.228 ∙

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 40476.188. 
(3) 

 

The average deviation from the experimental data is 5.44 mm/m.  
Based on the data gathered in Table 2 and the developed linear regression models, the aver-

age ratio of rolled bars with detected surface defects and the average length of detected surface 
defects were also calculated in the scenario where changes to the casting speed were not made. 

According to calculations from both linear regression models, changes in casting speed con-
tributed to a decrease in the average ratio of rolled bars with detected surface defects and the 
average length of detected surface defects, from 6.47 % to 5.68 % and from 3.81 mm/m to 2.01 
mm/m, respectively. 

3.2 Modelling of the ratio of rolled bars with detected surface defects and their lengths using 
        genetic programming 

Genetic programming is an evolutionary algorithm, similar to genetic algorithms, used for auto-
matic generation of computer programs to solve problems. It involves evolving a population of 
computer programs over several generations, using genetic operators like crossover and muta-
tion to produce new candidate solutions. The programs are represented as tree structures, al-
lowing for the evolution of complex solutions. In genetic programming, the representation of 
solutions as tree structures enables the evolution of diverse and complex programs, allowing for 
the exploration of a broad solution space. Unlike genetic algorithms which typically evolve fixed-
length strings, which are intended to solve a very broad spectrum of problems [22-28], genetic 
programming evolves variable-sized structures, allowing for more flexibility in representing 
solutions of varying complexity [29-31]. Genetic programming can automatically discover both 
the structure and parameters of a solution, making it suitable for problems where the optimal 
solution's form is not known a priori. The genetic programming operates on variable-length 
structures, making it more suitable for evolving complex solutions, especially in symbolic re-
gression and automatic code generation. 

The genetic programming method was used several times in Štore Steel Ltd. [32-36]. For the 
purposes of this study, organisms that underwent adaptation were indeed represented as math-
ematical expressions, i.e., models for predicting the average ratio of rolled bars with detected 
surface defects, and models for predicting the average length of detected surface defects. These 
models consist of the selected functions, i.e., basic arithmetical functions of addition, subtraction, 
multiplication and division, and terminal genes, i.e., independent input parameters, and random 
floating-point constants. 
 The LISP based in-house genetic programming system was run 200 times to develop inde-
pendent civilizations. In each run we obtain either the model for prediction of the average ratio 
of rolled bars with detected surface defects or the average length of detected surface defects. 
After the modelling phase, we analysed the results and selected the two best prediction models. 
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 The best genetically developed mathematical model for predicting the average ratio of rolled 
bars with detected surface defects obtained from 100 runs of genetic programming system is: 

𝑆𝑆
Si

+ Si 
PRESSZ1

+ 2SPEED + 𝑉𝑉 �𝑆𝑆
Al

+ Si 
PRESSZ1

+ Si 
MnPRESSZ1(−5.45733+Si)(−𝑆𝑆+SPEED+(Si+𝐶𝐶(6.32902+𝐶𝐶)Si )SPEED )

+ (6.32902 + PRESSZ1 +

6.32902Si)𝑉𝑉 �𝑆𝑆  /�𝐶𝐶(−𝑆𝑆 + SPEED + (Si + 𝐶𝐶(6.32902 + 𝐶𝐶)Si )SPEED ) �−5.45733 + 1  / �(−𝑆𝑆 + SPEED + (Si +

𝐶𝐶(6.32902 + Mn)Si )SPEED )�−5.45733 + 1  / �Mn(−𝑆𝑆 + SPEED + (Si + Si2)SPEED )�−5.45733 + (−5.45733 +

Si)Si (−𝑆𝑆 + SPEED + (Si + 𝐶𝐶(6.32902 + 𝐶𝐶)Si )SPEED )������ − �0.1832�Si + 𝐶𝐶(6.32902 + Si)��  /�MnPRESSZ1Si�−𝑆𝑆 +

Si2 + SPEED  + �𝑆𝑆
𝐶𝐶

+ Si /�MnPRESSZ1(−5.45733 + Si)(−𝑆𝑆 + SPEED + (Si + 𝐶𝐶(6.32902 + 𝐶𝐶)Si )SPEED )��𝑉𝑉����. . 

(4) 

The average deviation from experimental data is 1.59 %. The model obtained by genetic pro-
gramming is 1.47-times better than the one obtained using linear regression. 
 The best mathematical model for predicting the average length of detected surface defects 
obtained from 100 runs of genetic programming system is: 

⎝
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⎝
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⎟
⎟
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. (5) 

 The average deviation from experimental data is 0.97 mm/m. The model obtained by genetic 
programming is 5.63-times better than the one obtained using linear regression. 
 Based on calculations using the two obtained genetic programming models, changes in cast-
ing speed contributed to a decrease in the average ratio of rolled bars with detected surface de-
fects and the average length of detected surface defects, from 6.1 % to 6.0 % and 8.87 mm/m to 
1.57 mm/m. 

3.3 Discussion and validation of modelling results 

Based on modelling results the average ratio of rolled bars with detected surface defects and the 
average length of detected surface defects could be decreased in the best case scenario from 6.47 % 
to 5.68 % (for 1.14-times) and from 8.87 mm/m to 1.57 mm/m (for 5.65-times), if the casting 
speed would be adjusted based on deviations from the prescribed casting temperature, respec-
tively. 
 Accordingly, the casting speed was adjusted based on the casting temperature for all casting 
batches from July 2023 to November 2023. The data obtained was compared to a one-year peri-
od (May 2022 to May 2023) where no casting speed adjustments were made. These results are 
collected in the Table 3. 
 Based on actual data the average ratio of rolled bars with detected surface defects and the 
average length of detected surface defects decreased statistically significantly (t-test, p < 0.05) 
from 10.63 % to 8.82 % and from 6.20 mm/m to 3.40 mm/m in the period without (from May 
2022 to May 2023) and with casting speed adjustments (from July 2023 to November 2023), 
respectively. 
 Out of 31 different steel grades the average ratio of rolled bars with detected surface defects 
and the average length of detected surface defects statistically significantly decreased in 11 and 
15 steel grades, respectively, while the rest remained statistically significantly the same (t-test,
p < 0.05). 
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   Table 3 Data from May 2023 to June 2023 where the casting temperature has been adjusted, including steel grades 
   with the highest number of surface defect occurrences - 16MnCrS5, C22, 30MnVS5 and 46MnVS5 
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17NICRMOS6-4 4 3 3 2.09 4.62 0.18 0.08 NO NO 
30CRNIMO8 3 2 2 2.11 0.56 2.67 0.02 NO NO 
C60 19 9 6 2.25 3.47 0.26 0.83 NO NO 
20MNV6 83 39 23 2.62 1.29 0.57 0.19 YES YES 
16NICRS4 7 4 3 3.06 2.79 6.62 0.21 NO YES 
38MNVS6 7 6 2 3.34 6.88 0.50 1.03 NO NO 
16MNCR5 28 12 5 3.81 4.01 1.31 0.47 NO YES 
100CR6 9 2 0 5.02 10.43 2.13 1.98 NO NO 
18CRNIMO7-6 18 7 4 5.84 5.89 0.07 0.05 NO NO 
20MNCR5 6 2 1 6.04 3.19 0.27 0.35 NO NO 
25CRMO4 8 8 5 6.30 4.84 0.06 0.09 NO NO 
C45 36 18 16 6.36 1.95 3.07 0.32 YES YES 
31CRMOV9 4 4 3 6.67 7.46 2.71 2.82 NO NO 
28MNCRNIB 43 8 4 6.97 5.40 4.87 1.27 YES YES 
15CRNI6 3 2 1 6.98 2.06 1.48 0.40 YES YES 
23MNNICRMO5-2 15 9 3 7.04 6.50 8.80 0.51 NO YES 
S355J2 28 10 4 7.59 3.78 1.46 0.76 YES NO 
51CRV4 22 4 4 8.52 12.18 3.48 0.62 NO YES 
42CRMO4 23 5 2 8.79 10.54 1.55 0.96 NO NO 
28MNCRB7 6 4 2 9.15 16.04 1.80 1.55 NO NO 
P460NH 3 4 2 9.23 1.38 0.75 0.09 YES YES 
20MNCRS5 43 15 1 10.59 5.65 1.12 0.30 YES NO 
25CRMOS4 6 3 2 10.91 6.00 9.88 0.57 NO YES 
16MNCRS5 70 39 9 11.27 7.93 1.41 1.29 YES NO 
C35S 7 4 2 11.38 5.61 32.62 6.00 YES NO 
C22 17 18 9 12.73 4.11 1.43 0.15 YES YES 
C45S 255 141 65 12.92 13.00 10.57 6.46 NO YES 
20NICRMOS2-2 16 9 3 13.45 8.26 1.83 0.63 NO NO 
42CRMOS4 26 10 5 13.90 9.71 3.73 3.28 NO NO 
30MNVS6 29 12 5 16.28 13.40 12.29 4.57 NO NO 
46MNVS5 67 35 4 25.52 16.99 18.08 9.98 YES YES 

4. Conclusion 
In the article the reduction of surface defects, detected during examination (automatic control 
line) of the rolled material, with casting speed adjustments based on the casting temperature, is 
presented. For all produced steel grades, the same casting speed of 1.6 m/min was used before. 
The average casting speed adjustments were calculated for several different grades based on in-
house developed solidification model. For every 10 °C deviation from the prescribed casting 
temperature, the speed was changed by 0.02 m/min. 
 The reduction of surface defects was designed as follows: 

• Period with casting speed adjustments based on the casting temperature involving steel 
grades with highest occurrences of surface defects and with various carbon content: 
16MnCrS5, C22, 30MnVS5 and 46MnVS5. 

• Modelling of the average ratio of rolled bars with detected surface defects and the average 
length of detected surface defects using linear regression and genetic programming. 

• Implementing of modelling results based on four most problematic steel grades 
(16MnCrS5, C22, 30MnVS5 and 46MnVS5) into practice – the casting speed adjustments 
were used for all steel grades from July 2023 to November 2023. 
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• Analysis of the average ratio of rolled bars with detected surface defects and the average 
length of detected surface defects for batches cast from July 2023 to November 2023. 

• Comparison of the batches produced prior (from May 2022 to May 2023) and after (from 
July 2023 to November 2023) the implementation of casting speed adjustments. 

 Chemical composition (content of carbon, silicon, manganese, sulphur, chromium, nickel, 
aluminium and vanadium) and casting parameters (casting speed adjustments, the average 
mould cooling water flow, the average cooling water flow and pressure in the first zone of the 
secondary cooling, casting temperature) were gathered for the batches cast from May 2023 to 
June 2023. 
 Based on gathered data modelling was performed using linear regression and genetic pro-
gramming. For the fitness function, the average deviation between predicted and experimental 
data was selected. 
 The average deviation of the linear regression model for predicting the average ratio of bars 
with detected surface defects from experimental data is 2.32 %. The average deviation of the 
linear regression model for predicting the average length of detected surface defects from exper-
imental data is 5.44 mm/m. Based on calculations from both linear regression models, the 
changes in casting speed contributed to a decrease in the average ratio of rolled bars with de-
tected surface defects and the average length of detected surface defects, from 6.47 % to 5.68 % 
and 3.81 mm/m to 2.01 mm/m, respectively. 
 The average deviation of the genetic programming model for predicting the average ratio of 
bars with detected surface defects from experimental data is 1.59 %. The model obtained by 
genetic programming is 1.47 times better than the one obtained using linear regression. The 
average deviation of the linear regression model for predicting the average length of detected 
surface defects from experimental data is 0.97 mm/m. The model obtained by genetic program-
ming is 5.63 times better than the one obtained using linear regression. Based on calculations 
using both obtained genetic programming models, the changes of casting speed contributed to 
decreasing the average ratio of rolled bars with detected surface defects and the average length 
of detected surface defects, from 6.1 % to 6.0 % and 8.87 mm/m to 1.57 mm/m, respectively. 
 Accordingly, the casting speed has been adjusted based on the casting temperature for all cast 
batches from July 2023 to November 2023. The obtained data were compared with a one-year 
period (from May 2022 to May 2023) where adjustments to the casting speed were not made. 
Based on actual data, the average ratio of rolled bars with detected surface defects and the aver-
age length of detected surface defects decreased statistically significantly (t-test, p < 0.05) from 
10.63 % to 8.82 % and from 6.20 mm/m to 3.40 mm/m in the period without (from May 2022 to 
May 2023) and with casting speed adjustments (from July 2023 to November 2023), respective-
ly. Out of 31 different steel grades, the average ratio of rolled bars with detected surface defects 
and the average length of detected surface defects statistically significantly decreased in 11 and 
15 steel grades, respectively, while the rest remained statistically insignificantly the same (t-test, 
p < 0.05). 

Until June 2024, detailed analyses of the possible casting speed adjustments for individual 
steel grades will be conducted with the in-house developed solidification model. The geometry 
of the mould and the geometry, pumps, and nozzles of the secondary cooling will be changed. 
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