Skip to main content
Log in

Genetic programming in the steelmaking industry

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Genetic programming is a powerful, robust and versatile tool that is suitable for predicting and forecasting, especially in the steelmaking industry, where the diversity of serial production processes and equipment strongly influence final product properties, quality and price. The article reviews a wide spectrum of implementation attempts of genetic programing in the steelmaking industry, including real practical applications where direct economic effects can be easily established. The article also presents remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.K. Mahanta, N. Chakraborti, Evolutionary data driven modeling and multi objective optimization of noisy data set in blast furnace iron making process. Steel Res. Int. 89(9), 1800121 (2018)

    Google Scholar 

  2. C. Halder, L. Madej, M. Pietrzyk, N. Chakraborti, Optimization of cellular automata model for the heating of dual-phase steel by genetic algorithm and genetic programming. Mater. Manuf. Process. 30(4), 552–562 (2015)

    Google Scholar 

  3. M. Kovačič, B. Jurjovec, L. Krajnc, Ladle-nozzle opening and genetic programming. Mater. Tehnol. 48(1), 23–26 (2014)

    Google Scholar 

  4. M. Kovačič, R. Jager, Modeling of occurrence of surface defects of C45 steel with genetic programming. Mater. Tehnol. 49(6), 857–863 (2015)

    Google Scholar 

  5. M. Kovacic, J. Balic, M. Brezocnik, Evolutionary approach for cutting forces prediction in milling. J. Mater. Process. Technol. 155, 1647–1652 (2004)

    Google Scholar 

  6. M. Kovačič, M. Pšeničnik, Extra machinability modeling. RMZ - Mater. Geoenviron. (Materiali geookolje) 56(3), 338–345 (2009)

    Google Scholar 

  7. A. Garg, J.S.L. Lam, Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach. J. Clean. Prod. 102, 246–263 (2015)

    Google Scholar 

  8. M. Kovačič, S. Senčič, Modeling of PM10 emission with genetic programming. Mater. Tehnol. 46(5), 453–457 (2012)

    Google Scholar 

  9. M. Kovacic, M. Brezocnik, R. Turk, Modeling of hot yield stress curves for carbon silicon steel by genetic programming. Mater. Manuf. Process. 20(3), 543–551 (2005)

    Google Scholar 

  10. M. Kovačič, A. Turnšek, D. Ocvirk, G. Gantar, Increasing the tensile strength and elongation of 16MnCrS5 steel using genetic programming. Mater. Tehnol. 51(6), 883–888 (2017)

    Google Scholar 

  11. A. Al-Mosawe, R. Kalfat, R. Al-Mahaidi, Strength of Cfrp-steel double strap joints under impact loads using genetic programming. Compos. Struct. 160, 1205–1211 (2017)

    Google Scholar 

  12. A.F. Ashour, L.F. Alvarez, V.V. Toropov, Empirical modelling of shear strength of RC deep beams by genetic programming. Comput. Struct. 81(5), 331–338 (2003)

    Google Scholar 

  13. V. Vijayaraghavan, A. Garg, K. Tai, L. Gao, Thermo-mechanical modeling of metallic alloys for nuclear engineering applications. Measurement 97, 242–250 (2017)

    Google Scholar 

  14. M. Moradi, A.R. Bagherieh, M.R. Esfahani, Relationship of tensile strength of steel fiber reinforced concrete based on genetic programming. Int. J. Optim. Civ. Eng. 6(3), 349–363 (2016)

    Google Scholar 

  15. E. Kanca, F. Çavdar, M.M. Erşen, Prediction of mechanical properties of cold rolled steel using genetic expression programming. Acta Phys. Pol., A 130(1), 365–369 (2016)

    Google Scholar 

  16. R.C. Dimitriu, Complex Mechanical Properties of Steel (University of Cambridge Press, Cambridge, 2009)

    Google Scholar 

  17. R.C. Dimitriu, H.K.D.H. Bhadeshia, C. Fillon, C. Poloni, Strength of ferritic steels: neural networks and genetic programming. Mater. Manuf. Process. 24(1), 10–15 (2008)

    Google Scholar 

  18. P. Papliński, W. Sitek, J. Trzaska, Modelling the structural steel hardness using genetic programming method. Adv. Mater. Res. 1036, 580–585 (2014)

    Google Scholar 

  19. M. Pala, Genetic programming-based formulation for distortional buckling stress of cold-formed steel members. J. Constr. Steel Res. 64(12), 1495–1504 (2008)

    Google Scholar 

  20. M. Brezocnik, B. Buchmeister, L. Gusel, Evolutionary algorithm approaches to modeling of flow stress. Mater. Manuf. Process. 26(3), 501–507 (2011)

    Google Scholar 

  21. M. Kovačič, Modeling of total decarburization of spring steel with genetic programming. Mater. Manuf. Process. 30(4), 434–443 (2015)

    Google Scholar 

  22. A. Marref, S. Basalamah, R. Al-Ghamdi, Evolutionary computation techniques for predicting atmospheric corrosion. Int. J. Corros. 2013, 1–12 (2013)

    Google Scholar 

  23. M. BabičM, P. Kokol, I. Belič, P. Panjan, M. Kovačič, J. Balič, T. Verbovšek, Prediction of the hardness of hardened specimens with a neural network. Mater. Tehnol. 48(3), 409–414 (2014)

    Google Scholar 

  24. M. Kovačič, B. Šarler, Genetic programming and soft-annealing productivity. Mater. Tehnol. 45(5), 369–374 (2011)

    Google Scholar 

  25. M. Kovačič, Genetic programming and Jominy test modeling. Mater. Manuf. Process. 24(7–8), 806–808 (2009)

    Google Scholar 

  26. A. Garg, K. Tai, Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process. Adv. Eng. Softw. 78, 16–27 (2014)

    Google Scholar 

  27. X. Cao, Y. Fan, R. Ma, A. Du, Predicting temper embrittlement of 30Cr2MoV rotor steel with genetic programming. J. Comput. Theor. Nanosci. 5(8), 1713–1716 (2008)

    Google Scholar 

  28. B. Jurjovec, Steelmaking Processes Impact on 30MnVS6 and Occurrence of Surface Defects with the Use of Genetic Programming, University of Maribor, Faculty of Mechanical Engineering (2016)

  29. A. Garg, K. Tai, A.K. Gupta, A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica 49(5), 1193–1209 (2014)

    MATH  Google Scholar 

  30. A. Garg, B.N. Panda, K. Tai, True stress measurement of nuclear fuel rod cladding material subjected to DSA regime. Neural Comput. Appl. 28(S1), 119–126 (2017)

    Google Scholar 

  31. A. Garg, K. Tai, V. Vijayaraghavan, P.M. Singru, Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach. Int. J. Adv. Manuf. Technol. 73(1–4), 113–126 (2014)

    Google Scholar 

  32. M. Brezocnik, M. Kovacic, L. Gusel, Comparison between genetic algorithm and genetic programming approach for modeling the stress distribution. Mater. Manuf. Process. 20(3), 497–508 (2005)

    Google Scholar 

  33. M. Kovačič, D. Novak, Prediction of the chemical non-homogeneity of 30MnVS6 billets with genetic programming. Mater. Tehnol. 50(1), 69–74 (2016)

    Google Scholar 

  34. M. Brezocnik, M. Kovacic, M. Ficko, Prediction of surface roughness with genetic programming. J. Mater. Process. Technol. 157–158, 28–36 (2004)

    Google Scholar 

  35. J.L. Pérez, I. Vieito, J. Rabuñal, F. Martínez-Abella, Genetic Programming to Improvement FIB Model, in Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol. 7902, ed. by I. Rojas , G. Joya , J. Gabestany (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-38679-4_46

    Chapter  Google Scholar 

  36. İ.H. Karahan, R. Ozdemir, B. Erkayman, A comparison of genetic programming and neural networks; new formulations for electrical resistivity of Zn–Fe alloys. Appl. Phys. A 113(2), 459–476 (2013)

    Google Scholar 

  37. M. Kovačič, Modeling of total decarburization of spring steel with genetic programming. Mater. Manuf. Process. 30(4), 434–443 (2014)

    Google Scholar 

  38. M. Kovačič, B. Šarler, Application of the genetic programming for increasing the soft annealing productivity in steel industry. Mater. Manuf. Process. 24(3), 369–374 (2009)

    Google Scholar 

  39. A. Cevik, Genetic programming based formulation of rotation capacity of wide flange beams. J. Constr. Steel Res. 63(7), 884–893 (2007)

    Google Scholar 

  40. A.H. Gandomi, S.M. Tabatabaei, M.H. Moradian, A. Radfar, A.H. Alavi, A new prediction model for the load capacity of castellated steel beams. J. Constr. Steel Res. 67(7), 1096–1105 (2011)

    Google Scholar 

  41. P.D. Deshpande, B.P. Gautham, U. Gupta, D. Khan, Modeling the steel case carburizing quenching process using statistical and machine learning techniques, in 2014 9th International Conference on Industrial and Information Systems (ICIIS), (2014), pp. 1–6

  42. M. Kommenda, G. Kronberger, C. Feilmayr, L. Schickmair, M. Affenzeller, S.M. Winkler, S. Wagner, Application of symbolic regression on blast furnace and temper mill datasets, in Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol. 6927, ed. by R. Moreno-Díaz, F. Pichler, A. Quesada-Arencibia (Springer, Berlin, Heidelberg, 2012)

    Google Scholar 

  43. M. Kommenda, G. Kronberger, S. Winkler, M. Affenzeller, S. Wagner, L. Schickmair, B. Lindner, Application of genetic programming on temper mill datasets, in Proceedings of the IEEE 2nd International Symposium on Logistics and Industrial Informatics, Linz, Austria, 2009, pp. 58–62

  44. M. Lotz, S. Silva, Application of Genetic Programming Classification in an Industrial Process Resulting in Greenhouse Gas Emission Reductions, in Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol. 6025, ed. by C. Di Chio et al. (Springer, Berlin, Heidelberg, 2010)

  45. M. Kovačič, B. Šarler, Genetic programming prediction of the natural gas consumption in a steel plant. Energy 66, 273–284 (2014)

    Google Scholar 

  46. A.F. Sheta, H. Faris, E. Öznergiz, Improving production quality of a hot-rolling industrial process via genetic programming model. Int. J. Comput. Appl. Technol. 49(3/4), 239 (2014)

    Google Scholar 

  47. A.H. Gandomi, D.A. Roke, Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw. 88, 63–72 (2015)

    Google Scholar 

  48. R. Jha, P.K. Sen, N. Chakraborti, Multi-objective genetic algorithms and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel Res. Int. 85(2), 219–232 (2014)

    Google Scholar 

  49. A. Cevik, A new formulation for web crippling strength of cold-formed steel sheeting using genetic programming. J. Constr. Steel Res. 63(7), 867–883 (2007)

    Google Scholar 

  50. H. Firpi, G. Vachtsevanos, Genetically programmed-based artificial features extraction applied to fault detection. Eng. Appl. Artif. Intell. 21(4), 558–568 (2008)

    Google Scholar 

  51. H. Faris, A. Sheta, E. Öznergiz, Modelling hot rolling manufacturing process using soft computing techniques. Int. J. Comput. Integr. Manuf. 26(8), 762–771 (2013)

    Google Scholar 

  52. A.H. Gandomi, A.H. Alavi, S. Kazemi, M.M. Alinia, Behavior appraisal of steel semi-rigid joints using Linear Genetic Programming. J. Constr. Steel Res. 65(8–9), 1738–1750 (2009)

    Google Scholar 

  53. M. Brezocnik, M. Kovacic, Integrated genetic programming and genetic algorithm approach to predict surface roughness. Mater. Manuf. Process. 18(3), 475–491 (2003)

    Google Scholar 

  54. J. Duda, A. Stawowy, Genetic programming for the prediction of tensile strength of cast iron. Arch. Foundry Eng. 11(4), 31–34 (2011)

    Google Scholar 

  55. B. Podgornik, V. Leskovšek, M. Kovačič, J. Vižintin, Analysis and Prediction of Residual Stresses in Nitrided Tool Steel, in Materials Science Forum, vol. 681, ed. by P. Scardi, C.L. Azanza Ricardo, pp. 352–357 (2011)

  56. A. Cevik, I.H. Guzelbey, A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng. Struct. 29(3), 383–394 (2007). https://doi.org/10.1016/j.engstruct.2006.05.005

    Article  Google Scholar 

  57. S. Wang, B.X. Liu, C.X. Chen, J.H. Feng, F.X. Yin, Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios. J. Alloys Compd. 766, 517–526 (2018)

    Google Scholar 

  58. J. Balic, M. Nastran, An on-line predictive system for steel wire straightening using genetic programming. Eng. Appl. Artif. Intell. 15(6), 559–565 (2002)

    Google Scholar 

  59. M. Kovačič, K. Mačkošek, A. Mihevc, T. Marolt, Crack presence modeling after rolling by genetic programming. RMZ - Mater. Geoenviron. (Materiali geookolje) 56(1), 24–29 (2009)

    Google Scholar 

  60. M. Babič, P. Kokol, I. Belič, P. Panjan, M. Kovačič, J. Balič, Using of genetic programming in engineering. Elektrotehniški vestnik 81(3), 143–147 (2014)

    Google Scholar 

  61. M. Brezočnik, M. Kovačič, M. Pšeničnik, Prediction of steel machinability by genetic programming. J. Achiev. Mater. Manuf. Eng. 16(1–2), 107–113 (2006)

    Google Scholar 

  62. M. Kovačič, S. Senčič, Genetic programming and artificial neural network modeling of PM10 emission close to a steel plant. Mater. Tehnol. 46(5), 453–457 (2012)

    Google Scholar 

  63. ASM, ASM Handbook, Volume 12: Fractography (ASM International, 1987)

  64. M. Kovačič, S. Senčič, Critical inclusion size in spring steel and genetic programming. RMZ-Mater. Geoenviron. 57(1), 17–23 (2010)

    Google Scholar 

  65. N. Gubeljak, M.D. Chapetti, J. Predan, B. Senčič, Variation of fatigue threshold of spring steel with pre-stressing. Procedia Eng. 10, 3339–3344 (2011)

    Google Scholar 

  66. M. Kovačič, B. Šarler, Genetic programming prediction of the natural gas consumption in a steel plant. Energy, 66(1), 273–284 (2014)

    Google Scholar 

  67. A. Vaz-Romero, J.A. Rodríguez-Martínez, A. Arias, The deterministic nature of the fracture location in the dynamic tensile testing of steel sheets. Int. J. Impact Eng 86, 318–335 (2015)

    Google Scholar 

  68. R. Cao, X. Yu, Z. Feng, W. Liu, R. Xu, M. Ojima, T. Koseki, Strain partition and rupture analysis of notched tensile multilayered steel specimens. Mater. Charact. 145, 634–643 (2018)

    Google Scholar 

  69. S. Jie, L. Junchen, L. Peiqing, W. Fuan, S. Yi, W. Keliang, Investigation of tensile properties of 316L stainless steel with micro-nano-structure in SEM by in situ tension. Integr. Ferroelectr. 181(1), 33–41 (2017)

    Google Scholar 

  70. K.P. Balan, Casting defects in iron and steel, in Metallurgical Failure Analysis, (Elsevier, Amsterdam, 2018), pp. 93–110

    Google Scholar 

  71. M.O. El-Bealy, New macrosegregation criteria for quality problems in continuous casting of steel. Ironmak. Steelmak. 40(8), 559–570 (2013)

    Google Scholar 

  72. S. Tamimi, J.J. Gracio, A.B. Lopes, S. Ahzi, F. Barlat, Asymmetric rolling of interstitial free steel sheets: microstructural evolution and mechanical properties. J. Manuf. Process. 31, 583–592 (2018)

    Google Scholar 

  73. N.D. Beynon, T.B. Jones, G. Fourlaris, Effect of high strain rate deformation on microstructure of strip steels tested under dynamic tensile conditions. Mater. Sci. Technol. 21(1), 103–112 (2005)

    Google Scholar 

  74. H. Zhao, E.J. Palmiere, Effect of austenite grain size on acicular ferrite transformation in a HSLA steel. Mater. Charact. 145, 479–489 (2018)

    Google Scholar 

  75. I. Schemmel, C. Martinschitz, H. Leitner, G. Kellezi, Abnormal grain growth in high speed steels. Int. Heat Treat. Surf. Eng. 7(3), 106–109 (2013)

    Google Scholar 

  76. W.E. Bryson, Heat Treatment (Carl Hanser Verlag GmbH & Co. KG, München, 2015)

    Google Scholar 

  77. A. Bhaduri, Mechanical Properties and Working of Metals and Alloys, vol. 264 (Springer, Singapore, 2018)

    Google Scholar 

  78. H.K.D.H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties (Elsevier, Amsterdam, 2006)

    Google Scholar 

  79. J.M. Steer, R. Marsh, D. Sexton, M. Greenslade, A comparison of partially burnt coal chars and the implications of their properties on the blast furnace process. Fuel Process. Technol. 176, 230–239 (2018)

    Google Scholar 

  80. H. Wang, M. Chu, W. Zhao, R. Wang, Z. Liu, J. Tang, Fundamental research on iron coke hot briquette: a new type burden used in blast furnace. Ironmak. Steelmak. 43(8), 571–580 (2016)

    Google Scholar 

  81. L. Liu, Z. Jiang, X. Zhang, Y. Lu, J. He, J. Wang, X. Zhang, Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace. Energy 163, 144–150 (2018)

    Google Scholar 

  82. F.T.P. de Medeiros, S.J.X. Noblat, A.M.F. Fileti, Reviving traditional blast furnace models with new mathematical approach. Ironmak. Steelmak. 34(5), 410–414 (2007)

    Google Scholar 

  83. Committee on Reaction within Blast FurnaceJoint Society on Iron and Steel Basic Research, The Iron and Steel Institute of Japan, Blast Furnace Phenomena and Modelling (Springer, Dordrecht, 1987)

    Google Scholar 

  84. D. Fu, G. Tang, Y. Zhao, J. D’Alessio, C.Q. Zhou, Modeling of iron ore reactions in blast furnace. Int. J. Heat Mass Transf. 103, 77–86 (2016)

    Google Scholar 

  85. Y.B. Zhang, M.H. Du, Z.J. Su, G.H. Li, T. Jiang, Preparation of blast furnace burdens with middle-low basicity from high-SiO2 -content iron concentrates by composite agglomeration process (CAP). Ironmak. Steelmak. 45(6), 566–575 (2018)

    Google Scholar 

  86. R. Lan, J. Wang, Y. Han, X. She, L. Wang, Q. Xue, Reduction behavior of sinter based on top gas recycling-oxygen blast furnace. J. Iron. Steel Res. Int. 19(9), 13–19 (2012)

    Google Scholar 

  87. E.A. Mousa, Effect of basicity on wüstite sinter reducibility under simulated blast furnace conditions. Ironmak. Steelmak. 41(6), 418–429 (2014)

    Google Scholar 

  88. Y. Yu, G. Feng, D. Su, Measures of decreasing blast furnace fuel consumption and improving sinter performance in Guofeng. J. Iron. Steel Res. Int. 15(5), 9–28 (2008)

    Google Scholar 

  89. T. van den Berg, J.P.R. de Villiers, An assessment of the production of fine material in iron ore sinter. Miner. Process. Extr. Metall. 118(4), 214–221 (2009)

    Google Scholar 

  90. E.A. Mousa, D. Senk, A. Babich, H.W. Gudenau, Influence of nut coke on iron ore sinter reducibility under simulated blast furnace conditions. Ironmak. Steelmak. 37(3), 219–228 (2010)

    Google Scholar 

  91. S. Jursova, P. Pustejovska, S. Brozova, Study on reducibility and porosity of metallurgical sinter. Alexandria Eng. J. 57(3), 1657–1664(2017)

    Google Scholar 

  92. T. Umadevi, D.K. Naik, R. Sah, A. Brahmacharyulu, K. Marutiram, P.C. Mahapatra, Studies on parameters affecting sinter strength and prediction through artificial neural network model. Miner. Process. Extr. Metall. 125(1), 32–38 (2016)

    Google Scholar 

  93. M. Wu, K. Zhang, J. An, J. She, K.-Z. Liu, An energy efficient decision-making strategy of burden distribution for blast furnace. Control Eng. Pract. 78, 186–195 (2018)

    Google Scholar 

  94. H. Saxén, J. Hinnelä, Model for burden distribution tracking in the blast furnace. Miner. Process. Extr. Metall. Rev. 25(1), 1–27 (2004)

    Google Scholar 

  95. X. Su, S. Zhang, Y. Yin, W. Xiao, Prediction model of permeability index for blast furnace based on the improved multi-layer extreme learning machine and wavelet transform. J. Frankl. Inst. 355(4), 1663–1691 (2018)

    MathSciNet  MATH  Google Scholar 

  96. B. Desai, R.V. Ramna, A. Dey, Effect of casting parameters on permeability in lower part of blast furnace. Ironmak. Steelmak. 34(3), 248–252 (2007)

    Google Scholar 

  97. L.J. Wu, W.G. Zhou, Y.L. Su, X.J. Li, Experimental and operational thermal studies on blast furnace cast steel staves. Ironmak. Steelmak. 35(3), 179–182 (2008)

    Google Scholar 

  98. M. Omran, T. Fabritius, Improved removal of zinc from blast furnace sludge by particle size separation and microwave heating. Miner. Eng. 127, 265–276 (2018)

    Google Scholar 

  99. W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace. Fuel Process. Technol. 159, 118–127 (2017)

    Google Scholar 

  100. D.E. Esezobor, S.A. Balogun, Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak. Steelmak. 33(5), 419–425 (2006)

    Google Scholar 

  101. W. Chen, B.-X. Wang, H.-L. Han, Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm. Ironmak. Steelmak. 37(6), 458–463 (2010)

    Google Scholar 

  102. M. Meraikib, Silicon distribution between blast furnace slag and hot metal. Ironmak. Steelmak. 27(4), 280–285 (2000)

    Google Scholar 

  103. D.C. Sexton, J.M. Steer, R. Marsh, M. Greenslade, Investigating char agglomeration in blast furnace coal injection. Fuel Process. Technol. 178, 24–34 (2018)

    Google Scholar 

  104. V.I. Shatokha, I.V. Sokolovskaya, Effect of coal treatment with molten blast furnace slag on char properties. Ironmak. Steelmak. 40(8), 635–637 (2013)

    Google Scholar 

  105. A. Shankar, Sulphur partition between hot metal and high alumina blast furnace slag. Ironmak. Steelmak. 33(5), 413–418 (2006)

    Google Scholar 

  106. A.J. Andersson, A.M.T. Andersson, P.G. Jönsson, Variation in hot metal and slag composition during tapping of blast furnace. Ironmak. Steelmak. 31(3), 216–226 (2004)

    Google Scholar 

  107. W.T. Cheng, E.N. Huang, S.W. Du, Numerical analysis on transient thermal flow of the blast furnace hearth in tapping process through CFD. Int. Commun. Heat Mass Transf. 57, 13–21 (2014)

    Google Scholar 

  108. F. Bambauer, S. Wirtz, V. Scherer, H. Bartusch, Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model. Powder Technol. 334, 53–64 (2018)

    Google Scholar 

  109. R.D. Martín, F. Obeso, J. Mochón, R. Barea, J. Jiménez, Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmak. Steelmak. 34(3), 241–247 (2007)

    Google Scholar 

  110. A. Agrawal, S.C. Kor, U. Nandy, A.R. Choudhary, V.R. Tripathi, Real-time blast furnace hearth liquid level monitoring system. Ironmak. Steelmak. 43(7), 550–558 (2016)

    Google Scholar 

  111. A. Agrawal, M.K. Agarwal, A.K. Kothari, S. Mallick, A mathematical model to control thermal stability of blast furnace using proactive thermal indicator. Ironmak. Steelmak. 46(2), 133–140 (2017)

    Google Scholar 

  112. M. Smith, Blast furnace ironmaking: view on future developments. Ironmak. Steelmak. 42(10), 734–742 (2015)

    Google Scholar 

  113. I. Crudu, M.-P. Ionescu, V. Munteanu, I.-F. Sandu, P. Nedelcu, A tribosystemic approach to refractory lining destruction in blast furnaces. Wear 216(2), 251–261 (1998)

    Google Scholar 

  114. X. Bi, J. Qiu, W. Wang, Y. Bi, S. Lu, J. Cheng, Y. Xia, X. Gu, Influences of scaffold and coal injection on gas and liquid flow distributions in blast furnace: mathematical model. Ironmak. Steelmak. 28(1), 27–32 (2001)

    Google Scholar 

  115. S. Prakash, K. Mukherjee, S. Singh, S.P. Mehrotra, Simulation of energy dynamics of electric furnace steelmaking using DRI. Ironmak. Steelmak. 34(1), 61–70 (2007)

    Google Scholar 

  116. T. Jiemin, M.B. Ferri, P. Argenta, EAF technology evolution by continuous charging. Ironmak. Steelmak. 32(3), 191–194 (2005)

    Google Scholar 

  117. P.C. Morgan, The continued development of the electric arc furnace. Ironmak. Steelmak. 32(3), 185–186 (2005)

    Google Scholar 

  118. Ü. Çamdali, Y. Yetişken, İ. Ekmekçi, Determination of the optimum cost function for an electric arc furnace and ladle furnace system by using energy balance. Energy Sources Part B Econ. Plan. Policy 7(2), 200–212 (2012)

    Google Scholar 

  119. M. Tunc, U. Camdali, G. Arasil, Energy analysis of the operation of an electric-arc furnace at a steel company in Turkey. Metallurgist 59(5–6), 489–497 (2015)

    Google Scholar 

  120. K. Beskow, D. Sichen, Ladle glaze: major source of oxide inclusions during ladle treatment of steel. Ironmak. Steelmak. 31(5), 393–400 (2004)

    Google Scholar 

  121. G. Straffelini, A. Gabos, L. Labiscsak, D. Bodino, S. Adinolfi, F. Venturi, Coupled modelling of electric arc furnace and ladle furnace processes. Ironmak. Steelmak. 37(3), 181–186 (2010)

    Google Scholar 

  122. T.S. Kho, D.R. Swinbourne, B. Blanpain, S. Arnout, D. Langberg, Understanding stainless steelmaking through computational thermodynamics Part 1: electric arc furnace melting. Miner. Process. Extr. Metall. 119(1), 1–8 (2010)

    Google Scholar 

  123. Ī. Ekmekçi, Y. Yetisken, Ü. Çamdali, Mass balance modeling for electric arc furnace and ladle furnace system in steelmaking facility in Turkey. J. Iron. Steel Res. Int. 14(5), 1–55 (2007)

    Google Scholar 

  124. A.N. Conejo, D.E. Hernández, Optimization of aluminum deoxidation practice in the ladle furnace. Mater. Manuf. Process. 21(8), 796–803 (2006)

    Google Scholar 

  125. A.K. Kothari, R. Ranjan, R.S. Singh, G. Kumar, A. Kumar, A. Agrawal, A real-time ferroalloy model for the optimum ladle furnace treatment during the secondary steelmaking. Ironmak. Steelmak. 46(3), 211–220 (2017)

    Google Scholar 

  126. M.F. Santos, M.H. Moreira, M.G.G. Campos, P.I.B.G.B. Pelissari, R.A. Angélico, E.Y. Sako, S. Sinnema, V.C. Pandolfelli, Enhanced numerical tool to evaluate steel ladle thermal losses. Ceram. Int. 44(11), 12831–12840 (2018)

    Google Scholar 

  127. A. Zimmer, Á.N.C. Lima, R.M. Trommer, S.R. Bragança, C.P. Bergmann, Heat transfer in steelmaking ladle. J. Iron. Steel Res. Int. 15(3), 11–60 (2008)

    Google Scholar 

  128. R.I.L. Guthrie, L. Gourtsoyannis, Melting rates of furnace or ladle additions in steelmaking. Can. Metall. Q. 10(1), 37–46 (1971)

    Google Scholar 

  129. N.N. Tripathi, M. Nzotta, A. Sandberg, D. Sichen, Effect of ladle age on formation of non-metallic inclusions in ladle treatment. Ironmak. Steelmak. 31(3), 235–240 (2004)

    Google Scholar 

  130. X. Deng, C. Ji, Y. Cui, Z. Tian, X. Yin, X. Shao, Y. Yang, A. McLean, Formation and evolution of macro inclusions in IF steels during continuous casting. Ironmak. Steelmak. 44(10), 739–749 (2017)

    Google Scholar 

  131. H. Tang, J. Li, C. Xie, S. Yang, K. Sun, D. Wen, Rational argon stirring for a 150-t ladle furnace. Int. J. Miner. Metall. Mater. 16(4), 383–386 (2009)

    Google Scholar 

  132. V.T. Mantripragada, S. Sarkar, Wall stresses in dual bottom purged steel making ladles. Chem. Eng. Res. Des. 139, 335–345 (2018)

    Google Scholar 

  133. J. Roy, S. Chandra, S. Maitra, Nanotechnology in castable refractory. Ceram. Int. 45(1), 19–29 (2019)

    Google Scholar 

  134. J.K.S. Svensson, A. Memarpour, V. Brabie, P.G. Jönsson, Studies of the decarburisation phenomena during preheating of submerged entry nozzles (SEN) in continuous casting processes. Ironmak. Steelmak. 44(2), 108–116 (2017)

    Google Scholar 

  135. F.R. Camisani-Calzolari, I.K. Craig, P.C. Pistorius, A review on causes of surface defects in continuous casting. IFAC Proc. 36(24), 113–121 (2003)

    Google Scholar 

  136. L. Xu, S. Zhang, C. Qiu, S. Qiu, X. Zhang, Surface microstructure control of microalloyed steel during slab casting. J. Iron. Steel Res. Int. 24(8), 803–810 (2017)

    Google Scholar 

  137. V.K. Barcellos, C.R.F. Ferreira, J.A. Spim, C.A. dos Santos, A. Garcia, The Interrelation between casting size, steel grade, and temperature evolution along the mold length and at the strand surface during continuous casting of steel. Mater. Manuf. Process. 26(1), 113–126 (2011)

    Google Scholar 

  138. H.Q. Yu, M.Y. Zhu, Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak. Steelmak. 39(8), 574–584 (2012)

    Google Scholar 

  139. H. Fredriksson, On the solidification of steel ingots and continuously cast steel billets and slabs. Can. Metall. Q. 30(4), 235–244 (1991)

    Google Scholar 

  140. C. Cui, U. Fritsching, A. Schulz, R. Tinscher, K. Bauckhage, P. Mayr, Spray forming of homogeneous 100Cr6 bearing steel billets. J. Mater. Process. Technol. 168(3), 496–504 (2005)

    Google Scholar 

  141. S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe, V. Rakocevic, Development of intelligent mould for online detection of defects in steel billets. Ironmak. Steelmak. 26(4), 269–284 (1999)

    Google Scholar 

  142. B.W. Rooks, A.K. Singh, S.A. Tobias, Temperature effects in hot forging dies. Met. Technol. 1(1), 449–455 (1974)

    Google Scholar 

  143. S. Serajzadeh, A. Karimi Taheri, Modelling work-roll temperature variations in hot strip rolling. Int. J. Model. Simul. 24(1), 42–50 (2004)

    Google Scholar 

  144. I. Earnshaw, Hot rolling of sheet and strip: steel. Met. Technol. 2(1), 306–312 (1975)

    Google Scholar 

  145. P.U. Nwachukwu, O.O. Oluwole, Effects of rolling process parameters on the mechanical properties of hot-rolled St60Mn steel. Case Stud. Constr. Mater. 6, 134–146 (2017)

    Google Scholar 

  146. S. Yu, L.X. Du, J. Hu, R.D.K. Misra, Effect of hot rolling temperature on the microstructure and mechanical properties of ultra-low carbon medium manganese steel. Mater. Sci. Eng., A 731, 149–155 (2018)

    Google Scholar 

  147. M. Meshkat, S. Serajzadeh, A study on non-isothermal static recrystallization during hot rolling of carbon steels. Mater. Manuf. Process. 28(3), 236–241 (2013)

    Google Scholar 

  148. J. Paulo Davim, Machining (Springer, London, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miha Kovačič.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovačič, M., Župerl, U. Genetic programming in the steelmaking industry. Genet Program Evolvable Mach 21, 99–128 (2020). https://doi.org/10.1007/s10710-020-09382-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-020-09382-5

Keywords

Navigation