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ABSTRACT 
This paper describes the application of the recently developed "genetic 

programming" paradigm to the problem of concept formation and decision tree 
induction.  

1. INTRODUCTION AND OVERVIEW 

This paper describes the recently developed "genetic programming" paradigm 
which genetically breeds populations of computer programs to solve problems. 
In genetic programming, the individuals in the population are hierarchical 
compositions of functions and arguments of various sizes and shapes.  

2.BACKGROUND ON GENETIC ALGORITHMS 

Genetic algorithms are highly parallel mathematical algorithms that transform 
populations of individual mathematical objects (typically fixed-length binary 
character strings) into new populations using operations patterned after (1) 
natural genetic operations such as sexual recombination (crossover) and (2) 
fitness proportionate reproduction (Darwinian survival of the fittest). Genetic 
algorithms begin with an initial population of individuals (typically randomly 
generated) and then iteratively (1) evaluate the individuals in the population for 
fitness with respect to the problem environment and (2) perform genetic 
operations on various individuals in the population to produce a new 
population. John Holland of the University of Michigan presented the pioneer-
ing formulation of genetic algorithms for fixed-length character strings in 
Adaptation in Natural and Artificial Systems (Holland 1975). 
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3. BACKGROUND ON GENETIC PROGRAMMING PARADIGM 

Entire computer programs can be genetically bred to solve problems in a 
variety of different areas of artificial intelligence, machine learning, and sym-
bolic processing (Koza 1989, 1990a, 1990b). This new genetic algorithm 
paradigm has been successfully applied to example problems in several 
different areas, including (1) machine learning of functions, (2) planning, (3) 
automatic programming, (4) sequence induction, (5) pattern recognition, (6) 
symbolic "data to function" regression, symbolic "data to function" integration, 
and symbolic "data to function" differentiation, (7) symbolic solution to 
functional equations (including differential equations with initial conditions, 
integral equations, and general functional equations), (8) empirical discovery, 
(9) simultaneous architectural design and training of neural networks, and (10) 
game-playing (e.g. finding a minimax strategy for a differential pursuer-evader 
game and finding a minimax strategy for a discrete game represented by a 
game tree in extensive form).  

In this recently developed "genetic programming" paradigm, the individuals 
in the population are compositions of functions and terminals appropriate to the 
particular problem domain. The set of functions used typically includes 
arithmetic operations, mathematical functions, conditional logical operations, 
and domain-specific functions. Each function in the function set must be well 
defined for any element in the range of every other function in the set. The set 
of terminals used typically includes inputs (sensors) appropriate to the problem 
domain and various constants. The search space is the hyperspace of all 
possible compositions of functions that can be recursively composed of the 
available functions and terminals. The symbolic expressions (S-expressions) of 
the LISP programming language are an especially convenient way to create and 
manipulate the compositions of functions and terminals described above. 

The basic genetic operations for the genetic programming paradigm are 
fitness proportionate reproduction and crossover (recombination). Fitness 
proportionate reproduction is the basic engine of Darwinian reproduction and 
survival of the fittest and operates for genetic programming paradigms in the 
same way as it does for conventional genetic algorithms. The crossover 
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operation for genetic programming paradigms is a sexual operation that 
operates on two parental LISP S-expressions and produces two offspring S-
expressions using parts of each parent. In particular, the crossover operation 
creates new offspring S-expressions by exchanging sub-lists (sub-trees) 
between the two parents. Because entire sub-lists are swapped, this genetic 
crossover (recombination) operation produces syntactically and semantically 
valid LISP S-expressions as offspring regardless of which point is selected in 
either parent.   

For example, consider the following two parental LISP S-expressions:  
(OR (NOT D1) (AND D0 D1)) 
(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1)) 

Suppose that the second point of the first parent (i.e. the NOT function) is 
randomly selected as the crossover point of the first parent and that the sixth 
point  of the second parent (i.e. the AND function) is randomly selected as the 
crossover point of the second parent. The two offspring resulting from 
crossover are shown below: 
(OR (OR D1 (NOT D0)) (NOT D1)) 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

4. CONCEPT FORMATION 

Quinlan (1986) initiated development of a particularly effective family of 
hierarchical classification systems for inducing a decision tree from a limited 
number of training case examples. In ID3 (and various other systems of the ID3 
family), the goal is to partition a universe of objects into classes. Each object in 
the universe is described in terms of various attributes. The system is first 
presented with a set of training case examples which consist of the attributes of 
a particular object and the class to which it belongs. The system then generates 
a decision tree which hopefully can then be used to classify a new object 
correctly into a class using the attributes of the new object. The external points 
(leaves) of the decision tree are the eventual class names. The internal points of 
the decision tree are attribute-based tests which have one branch emanating 
from the decision point for each possible outcome of the test.  

The induction of such decision trees for classifying objects can be 
approached by genetically breeding LISP S-expressions for performing this 
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task. In particular, the set of terminals is the set of class names. The set of 
functions is the set of attribute-based tests. Note that this set of attribute-based 
tests are always assumed to be given and available for solving induction 
problems via decision trees of the ID3 family. Notice that ID3 is similar to the 
genetic programming paradigm in that the set of functions is given. Each 
function has as many arguments as there are possible outcomes of that 
particular test. When a particular object is presented to the LISP S-expression 
(i.e. the decision tree), each function in the S-expression tests one attribute of 
the object and returns the particular one of its arguments designated by the 
outcome of the test. If the designated argument is an terminal, the function 
returns the class name. When the S-expression is fully evaluated in LISP’s 
usual left-oriented depth-first way, the S-expression as a whole thus returns a 
class name. That is, the S-expression is a decision tree that classifies the new 
object into one of the classes. 

To demonstrate the technique of genetically inducing a decision tree, we 
apply this approach to the small training set of 14 objects presented in Quinlan 
(1986). In Quinlan’s problem, each object has four attributes and belongs to 
one of two classes (“positive” or “negative”). The attribute of “temperature”, 
for example, can assume the possible values hot, mild, or cool. Humidity can 
assume the values of high or normal. Outlook can assume values of sunny, 
overcast, or rain. Windy can assume values of true or false. The decision tree 
presented by Quinlan as the solution for this problem is shown below: 

OUTLOOK

SUNNY OVERCAST RAIN

HUMIDITY WINDY

HIGH NORMAL TRUE FALSE

0 1 0 1

1

 
If, for example, the OUTLOOK of a particular object is sunny and the 
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HUMIDITY is high, then that object is classified into class 0 (negative). 
In order to genetically induce the decision tree, each of the four attributes in 

this problem is converted into a function. For example, the function 
“temperature” operates in such a way that, if the current object has a 
temperature of “mild,” the function returns its second argument as its return 
value. The other attributes in this problem, namely “humidity”, “outlook”, and 
“windy”, are similarly converted to functions. The function set for this problem 
is therefore F = {TEMP, HUM, OUT, WIND} with 3, 2, 3, and 2 arguments, 
respectively. The set of terminals for this problem is T = {0, 1} since there are 
two classes. A population size of 300 was used. 

In one run, the LISP S-expression  
(OUT (WIND 1 0) (WIND 1 1) (HUM 0 1) 

emerged on the 8th generation with a maximal fitness value of 14 (i.e. it 
correctly classified all 14 training cases). Since (WIND 1 1) is equivalent to 
just the constant atom 1, this S-expression is equivalent to the decision tree 
presented in Quinlan (1986) using ID3. 
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