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ABSTRACT 

An important problem in economics is finding the mathematical relationship between the 
empirically observed variables measuring a system.  In many conventional modeling techniques, one 
necessarily begins by selecting the size and shape of the model.  After making this choice, one 
usually then tries to find the values of certain coefficients required by the particular model so as to 
achieve the best fit between the observed data and the model.  But, in many cases, the most 
important issue is the size and shape of the model itself.  

Finding the functional form of the model can be viewed as searching a space of possible computer 
programs for the particular computer program which produces the desired output for given inputs.  
This most fit computer program can be found via a recently developed genetic programming 
paradigm originally developed for solving artificial intelligence problems.  This new genetic 
programming paradigm genetically breeds populations of computer programs in a Darwinian 
competition using genetic operations, such as crossover (sexual recombination). 

In this paper, we illustrate the process of discovering a model by rediscovering the well-known 

multiplicative (non-linear) “exchange equation” P=
MV
Q   relating the money supply, price level, gross 

national product, and velocity of money in an economy. 

KEYWORDS 

Modeling; Non-linear models; Empirical discovery; Regression; Genetic algorithms; Genetic 
programming paradigm;  Darwinian natural selection; Sexual recombination 

INTRODUCTION AND OVERVIEW 

An important problem in economics and other areas of science is finding the mathematical 
relationship between the empirically observed variables measuring a system.  In many conventional 
modeling techniques, one necessarily begins by selecting the size and shape of the mathematical 
model.  Because the vast majority of available mathematical tools only handle linear models, this 



 
choice is often simply a linear model.  After making this choice, one usually then tries to find the 
values of certain coefficients and constants required by the particular model so as to achieve the best 
fit between the observed data and the model.  

But, in many cases, the most important issue is the size and shape of the mathematical model itself.  
That is, one really wants first to find the functional form of the model that best fits observed 
empirical data, and, only then, go on to find any constants and coefficients that happen to be needed.  

We suggest that finding the functional form of the model can be viewed as being equivalent to 
searching a space of possible computer programs for the particular individual computer program 
which produces the desired output for given inputs.  That is, one is searching for the computer 
program whose behavior best fits the observed data.  Computer programs offer great flexibility in 
the ways that they compute their output from the given inputs.  

The most fit individual computer program can be found via a recently developed genetic 
programming paradigm originally developed for solving artificial intelligence problems. This new 
genetic programming paradigm genetically breeds populations of computer programs in a Darwinian 
competition using genetic operations.  The Darwinian competition is based on the principle of 
survival and reproduction of the fittest. The genetic crossover (sexual recombination) operator is 
designed for genetically mating computer programs so as to create potentially more fit new offspring 
programs. The best single individual computer program produced by this process after many 
generations can be viewed as the solution to the problem. 

In this paper, we illustrate the process of formulating and solving problems of modeling (which may 
also be called empirical discovery, symbolic regression, or symbolic function identification) with 
this new genetic programming paradigm. In particular, the problem of modeling requires finding a 
function, in symbolic form, that fits given numeric data points representing some observed system. 
Finding such an empirical model for a system can also be used in forecasting future values of the 
state variables of the system.  

In this paper, we focus on the simple non-linear econometric “exchange equation” P=
MV
Q   relating 

the price level, gross national product, money supply, and velocity of money in an economy. 

We claim that the process of solving the problems of the type described above can be reformulated 
as a search for a most fit individual computer program in the space of possible computer programs. 
In our research we use the LISP programming language so in particular, the search space is the 
hyperspace of LISP “symbolic expressions” (called S-expressions) composed of various terms 
(called atoms in LISP) along with standard arithmetic operations, standard programming operations, 
standard mathematical functions, and various functions peculiar to the given problem domain.  

For example, the standard arithmetic function of multiplication is relevant when we are attempting 

to discover the econometric “exchange equation” P=
MV
Q  . In general, the objects that are 

manipulated in our attempts to build computer programs are of four types. These objects include 
functions of various number of arguments, such as multiplication mentioned above; variable atoms; 
constant atoms, such as 0, 1, etc.; and control structures such as If-Then-Else, Do-Until, etc.   

In this recently developed new genetic algorithm paradigm, the individuals in the genetic population 
are compositions of functions (i.e. LISP S-expressions). In particular, the individuals in the 
population are LISP S-expressions created from compositions of functions and atoms appropriate to 
the particular problem domain. The set of functions used typically includes arithmetic operations, 



 
mathematical functions, conditional logical operations, and functions appropriate to the problem 
domain at hand. The set of atoms used typically includes various constants and particular inputs 
appropriate to the problem domain. The search space is the hyperspace of all possible LISP S-
expressions that can be recursively composed of the available functions and atoms. The crossover 
operation appropriate for mating two parents from this hyperspace of LISP S-expressions creates 
new offspring S-expressions by exchanging sub-trees (i.e. sub-lists) between the two parents.  The 
results of this process are inherently hierarchical. 



 

As will be seen, the LISP S-expression required to solve the problem described above will emerge 
from a simulated evolutionary process using a new genetic programming paradigm.  

In each case, this simulated evolutionary process will start with an initial population of randomly 
generated LISP S-expressions composed of functions and atoms appropriate to the problem domain.  

The fitness of each individual LISP S-expression in a population at any stage of the process will be 
measured in a simple, natural, and consistent way. Simply stated, fitness will measure how well the 
individual performs in the particular problem environment. In particular, fitness will be measured by 
the sum of the squares of the distances (taken for all the environmental cases) between the point in 
the solution space created by the S-expression for a given set of arguments and the correct point in 
the solution space. The closer this sum is to zero, the better the S-expression.  

Predictably, the initial random individual S-expressions will have exceedingly poor fitness. 
Nonetheless, some individuals in the population will be somewhat more fit than others. And, in the 
valley of the blind, the one-eyed man is king.  

Then, a process based on the Darwinian model of reproduction and survival of the fittest and genetic 
recombination will be used to create a new population of individuals. In particular, a genetic process 
of sexual reproduction among two parental S-expressions will be used to create offspring S-
expressions. At least one of two participating parental S-expressions will be selected in proportion to 
fitness. The resulting offspring S-expressions will be composed of sub-expressions (“building 
blocks”) from their parents. Finally, the new population of offspring (i.e. the new generation) will 
replace the old population of parents and the process will continue.  

At each stage of this highly parallel, locally controlled, and decentralized process, the state of the 
process will consist only of the current population of individuals. Moreover, the only input to the 
algorithmic process will be the observed fitness of the individuals in the current population in 
grappling with the problem environment.  

As will be seen, this process will produce populations which, over a period of generations, tend to 
exhibit increasing average fitness in dealing with their environment, and which, in addition, can 
robustly (i.e. rapidly and effectively) adapt to changes in their environment.  

The solution produced by this process at any given time can be viewed as the entire population of 
disjunctive alternatives (typically with improved overall average fitness), or, more commonly, as the 
single  best individual in the population at that time (“winner take all”). 

The inherently hierarchical character of the computer programs is an essential aspect of the genetic 
programming paradigm.  The dynamic variability of the computer programs that are developed 
along the way to a solution is also an essential aspect of the genetic programming paradigm. In each 
case, it would be difficult and unnatural to try to specify or restrict the size and shape of the eventual 
solution in advance. Moreover, the advance specification or restriction of the size and shape of the 
solution to a problem narrows the window by which the system views the world and might well 
preclude finding the solution to the problem. 

BACKGROUND ON GENETIC ALGORITHMS 

Genetic algorithms are highly parallel mathematical algorithms that transform populations of 
individual mathematical objects (typically fixed-length binary character strings) into new 
populations using operations patterned after  



 
• natural genetic operations such as sexual recombination (crossover) and  

• fitness proportionate reproduction (Darwinian survival of the fittest).  

Genetic algorithms begin with an initial population of individuals (typically randomly generated) 
and then iteratively (1) evaluate the individuals in the population for fitness with respect to the 
problem environment and (2) perform genetic operations on various individuals in the population to 
produce a new population.  

John Holland of the University of Michigan presented the pioneering formulation of genetic algo-
rithms for fixed-length character strings in Adaptation in Natural and Artificial Systems (Holland 
1975). Holland established, among other things, that the genetic algorithm is a mathematically near 
optimal approach to adaptation in that it maximizes expected overall average payoff when the 
adaptive process is viewed as a multi-armed slot machine problem requiring an optimal allocation of 
future trials given currently available information. 

In this work, Holland demonstrated that a wide variety of different problems in adaptive systems 
(including problems from economics, game theory, pattern recognition, optimization, and artificial 
intelligence) are susceptible to reformulation in genetic terms so that they can potentially be solved 
by the highly parallel mathematical genetic algorithm that simulates Darwinian evolutionary 
processes and naturally occurring genetic operations on chromosomes.  

Genetic algorithms differ from most iterative algorithms in that they simultaneously manipulate a 
population of individual points in the search space rather than a single point in a search space.  The 
current increasing interest in genetic algorithms stems from their intrinsic parallelism, their 
mathematical near optimality in solving problems, and the availability of increasing powerful 
computers.  An overview of genetic algorithms can be found in Goldberg’s Genetic Algorithms in 
Search, Optimization, and Machine Learning (1989). Recent work in genetic algorithms and genetic 
classifier systems can be surveyed in Davis (1987), Davis (1991), Schaffer (1989), and Belew and 
Booker (1991). 

Representation is a key issue in genetic algorithm work because genetic algorithms directly 
manipulate the coded representation of the problem and because the representation scheme can 
severely limit the window by which the system observes its world. Fixed length character strings 
present difficulties for some problems — particularly problems in artificial intelligence where the 
desired solution is hierarchical and where the size and shape of the solution is unknown in advance. 
The structure of the individual mathematical objects that are manipulated by the genetic algorithm 
can be more complex than the fixed length character strings.  For example, Holland's classifier 
system (Holland 1986) is a cognitive architecture into which the genetic algorithm is embedded so 
as to allow adaptive modification of a population of string-based if-then rules (whose condition and 
action parts are fixed length binary strings). 

Marimon, McGrattan, and Sargent (1990) have applied genetic classifier systems to describe the 
emergence of a commodity in a simulated trading environment as a medium of exchange among 
artificially intelligent agents . Holland (1990) discusses the global economy as an adaptive system. 

BACKGROUND ON THE GENETIC PROGRAMMING PARADIGM 

The recently developed genetic programming paradigm described in this paper continues the above 
trend in the field of genetic algorithms towards increasing the complexity of the structures 
undergoing adaptation. In the new genetic programming paradigm, populations of entire computer 



 
programs are genetically bred to solve problems. 

We have recently shown that entire computer programs can be genetically bred to solve problems in 
a variety of different areas of artificial intelligence, machine learning, and symbolic processing 
(Koza 1989, 1990a, 1991d). In this recently developed “genetic programming” paradigm, the 
individuals in the population are compositions of functions and terminals appropriate to the 
particular problem domain. The set of functions used typically includes arithmetic operations, 
mathematical functions, conditional logical operations, and domain-specific functions. Each function 
in the function set must be well defined for every element in the range of any other function in the 
set. The set of terminals used typically includes inputs appropriate to the problem domain and 
various constants. The search space is the hyperspace of all possible compositions of functions that 
can be recursively composed of the available functions and terminals. The symbolic expressions (S-
expressions) of the LISP programming language are an especially convenient way to create and 
manipulate the compositions of functions and terminals described above. These S-expressions in 
LISP correspond directly to the “parse tree” that is internally created by most compilers. 

We have recently shown that entire computer programs can be genetically bred to solve problems in 
a variety of different areas of artificial intelligence, machine learning, and symbolic processing.  
Specifically, this recently developed genetic programming paradigm has been successfully applied  
to example problems in several different areas, including  

• machine learning of functions (e.g. learning the Boolean 11-multiplexer function),  

• planning (e.g. navigating an artificial ant along an irregular trail, developing a robotic action 
sequence that can stack blocks in a specified order) (Koza 1990c),  

• automatic programming (e.g. solving pairs of linear equations, solving quadratic equations for 
complex roots, and discovering trigonometric identities), 

• optimal control (e.g. centering a cart and balancing a broom on a moving cart in minimal time by 
applying a “bang bang” force to the cart) (Koza and Keane 1990a, Koza and Keane 1990b), 

• pattern recognition (e.g. translation-invariant recognition of a simple one-dimensional shape in a 
linear retina),  

• sequence induction (e.g. inducing a recursive procedure for generating sequences such as the 
Fibonacci and Hofstadter sequences and simple chaotic sequences),  

• symbolic “data to function” regression, integration, differentiation, and symbolic solution to 
general functional equations (including differential equations with initial conditions, and integral 
equations),  

• empirical discovery (e.g. rediscovering Kepler's Third Law), and 

• emergent behavior (e.g. discovering a computer program which, when executed by all the ants in 
an ant colony, produces interesting overall “emergent” behavior) (Koza 1991a). 

• concept formation and decision tree induction (Koza 1991c), 

• finding minimax strategies for games (e.g. differential pursuer-evader games, discrete games in 
extensive form) by both evolution and co-evolution (Koza 1990b), 

• simultaneous architectural design and training of neural networks. 



 
DESCRIPTION OF THE GENETIC PROGRAMMING PARADIGM   

In this section we describe this new genetic programming paradigm in greater detail. 

The Structures Undergoing Adaptation 

The structures that undergo adaptation in the genetic programming paradigm are hierarchically 
structured computer programs. This is in contrast to the one-dimensional linear strings (whether of 
fixed or variable length) of characters (or other objects) used in the conventional genetic algorithm.   

In order to be able to successfully manipulate and modify entire computer programs using operations 
patterned after genetic operations appearing in nature, we must work in a computer programming 
language that is unusually flexible.  The LISP programming language (frequently used in artificial 
intelligence and symbolic processing applications) is especially well-suited to our needs here. LISP 
is especially suitable for complex compositions of functions of various types, handling hierarchies, 
recursion, logical functions, self-modifying computer programs, self-executing computer programs, 
iterations, and structures whose size and shape is dynamically determined (rather than predetermined 
in advance). The LISP  programming language is especially appropriate when the structures to be 
manipulated are hierarchical structures. Moreover, both programs and data have the same form in 
LISP.  

Thus, the structures that undergo adaptation in the genetic programming paradigm are Common 
LISP computer programs.  LISP computer programs are called “symbolic expressions” (that is, S-
expressions). Since both programs and data have the same form in LISP, it is easy to modify a 
computer program and then execute it. 

In the LISP programming language, everything is expressed in terms of “functions” operating on 
some arguments. In LISP S-expressions, the function appears just inside an opening (left) 
parenthesis and is then followed by its arguments and a closing (right) parenthesis. Thus, for 
example, (+ 1 2) calls for the function of addition (+) to be applied to the arguments 1 and 2. In other 
words, the LISP S-expression (+ 1 2) is equivalent to “1+2” in ordinary mathematics and evaluates 
to 3. In LISP, any argument can itself be an S-expression. For example, (+ 1 (* 2 3)) calls for the 
addition function to be applied to the argument 1 and the argument (* 2 3). That is, the addition 
function is to be applied to 1 and the result of applying the multiplication function (*) to the 
arguments 2 and 3. The result is 7.  The LISP programming language has “functions” which perform 
all of the operations found in other programming languages. 

As a specific example, consider the well-known econometric “exchange equation” P=
MV
Q  , which 

relates the money supply M, price level P, gross national product Q, and the velocity of money V of 
an economy.  In particular, suppose we are given the 120 quarterly values (from 1959:1 to 1988:4) 
of four econometric time series.  

• GNP82 is annual rate for the United States Gross National Product in billions of 1982 dollars.  

• GD is the Gross National Product Deflator (normalized to 1.0 for 1982).   

• FYGM3 is the monthly interest rate yields of 3-month Treasury bills, averaged for each quarter. 

• M2 is the monthly value of the seasonally adjusted money stock M2 in billions of dollars, averaged 
for each quarter.  



 
In attempting to rediscover the “exchange equation” using genetic programming paradigm, we might 
use the function set F = {+, -, *, %, RLOG, EXP, GNP82, GD, FM2, FYGM3}.  The first four 
functions in this function set are arithmetic operations.  RLOG and EXP are mathematical functions. 
GNP82, GD, FM2, and FYGM3 are functions of time.  

Note that the protected division operation % produces a result of one if division by zero is attempted. 
Note that the protected logarithm function RLOG is the logarithm of the absolute value and is equal 
to zero for an argument of zero. These definitions allow arbitrary compositions of the functions in 
the function set.  

The actual long-term historic postwar value of the M2 velocity of money in the United States is 
relatively constant and is approximately 1.6527 (Hallman et. al. 1989, Humphrey 1989). Thus, a 
“correct” solution for the price level P is terms of M, V, and Q is the multiplicative (non-linear) 
relationship (1), 

 P  =  
MV
Q   (1) 



 

or, alternately (2). 

 GD(T) = 
(M2(T) * 1.6527)

GNP82(T)   (2) 

Thus, in LISP, one correct LISP S-expression for prices in terms of the “exchange equation” would 
be  

(% (* FM2 1.6527) GNP82). 

Any LISP S-expression  can be depicted graphically as a rooted point-labeled tree in a plane whose 
internal points are labeled with functions, whose external points (leaves) are labeled with atoms, and 
whose root is labeled with the function appearing just inside the outermost left parenthesis. The tree 
corresponding to the LISP S-expression above for the “exchange equation” is shown in Fig. 1. 

%

GNP82

FM2

*

1.65
 

Fig. 1 The exchange equation represented parsimoniously as a tree. 

In this graphical depiction, the 2 internal points of the tree are labeled with functions (% and *). The 
3 external points (leaves) of the tree are labeled with atoms. The root of the tree is labeled with the 
function appearing just inside the outermost left parenthesis of the LISP S-expression (i.e.division 
%). Note that  two lines emanate from the multiplication function * and the division function %. 
because they each take two arguments. Note also that no lines emanate from the atoms at the 
external points (leaves) of the tree. 

The Environment 

The environment is a set of cases which provides a basis for evaluating particular S-expressions. For 
example, for the “exchange equation”, the environment is set of 120 cases listing, for each quarter 
between 1959:1 and 1988:4, the values of GNP82, FM2, and FYGM3 along with the associated 
value of GD. 

The Fitness Function 

Each individual in a population is assigned a fitness value as a result of its interaction with the 
environment. Fitness is the driving force of Darwinian natural selection and genetic algorithms. 

The “raw fitness” of any LISP S-expression is the sum of the squares of the distances (taken over all 
the environmental cases) between the point in the solution space (which is real-valued here) returned 
by the individual S-expression for a given set of arguments and the correct point in the solution 
space. In particular, the raw fitness r(h,t) of an individual LISP S-expression h in the population of 



 
size M at any generational time step t is (3), 

 r(i,t) = ∑
j=1

Ne
 S(i,j) - C(j) 2  (3) 

where V(h,j) is the value returned by S-expression h for environmental case j (of Ne environmental 
cases) and where S(j) is the correct value for environmental case j.   

The closer this sum of distances is to zero, the better the  S-expression. 

Thus, the raw fitness of an individual LISP S-expression for the “exchange equation” problem is 
computed by accumulating, over each of the 120 values of time T from 1959:1 to 1988:4, the sum of 
the squares of the differences between the actual value of GD and whatever value the individual 
LISP S-expression produces for that time. 

Each raw fitness value is then adjusted (scaled) to produce an adjusted fitness measure a(h,t). The 
“adjusted fitness” value is (4), 

 a(i,t) = 
1

(1+r(i,t))  (4) 

where r(h,t) is the raw fitness for individual h at time t. Unlike raw fitness, the adjusted fitness is 
larger for better individuals in the population. Moreover, the adjusted fitness lies between 0 and 1.   

Each such adjusted fitness value a(h,t) is then normalized. The “normalized fitness” value n(h,t) is 
(5). 

 n(i,t) = 
a(i,t)

∑
k=1

M
  a(k,t)

  (5) 

The normalized fitness not only ranges between 0 and 1 and is larger for better individuals in the 
population, but the sum of the normalized fitness values is 1. Thus, normalized fitness is a 
probability value. 

The Genetic Operations 

The two primary genetic operations for modifying the structures undergoing adaptation are 
Darwinian fitness proportionate reproduction and crossover (recombination). They are described 
below.  

The Fitness Proportionate Reproduction Operation.  The operation of fitness proportionate 
reproduction for the genetic programming paradigm is the basic engine of Darwinian reproduction 
and survival of the fittest. It is an asexual operation in that it operates on only one parental S-
expression. The result of this operation is  one offspring S-expression. In this operation, if si(t) is an 
individual in the population at generation t with fitness value f(si(t)), it will be copied into the next 
generation with probability (6). 



 

 
f(si(t))

∑
j=1

M
f(sj(t))

  (6) 

Note that the operation of fitness proportionate reproduction does not create anything new in the 
population. It increases or decreases the number of occurrences of individuals already in the 
population. To the extent that it increases the number of occurrences of more fit individuals and 
decreases the number of occurrences of less fit individuals, it improves the average fitness of the 
population (at the expense of the genetic diversity of the population). 

The Crossover (Recombination) Operation.  The crossover (recombination) operation for the genetic 
programming paradigm is a sexual operation that starts with two parental S-expressions. Typically 
the first parent is chosen from the population with a probability equal to its normalized fitness and 
the second parent is chosen from the population using a random probability distribution. The result 
of the crossover operation is two offspring S-expressions. Unlike fitness proportionate reproduction, 
the crossover operation creates new individuals in the populations.   

Every LISP S-expression can be depicted graphically as a rooted point-labeled tree in a plane whose 
internal points are labeled with functions, whose external points (leaves) are labeled with atoms, and 
whose root is labeled with the function  appearing just inside the outermost left parenthesis. The 
operation begins by randomly and independently selecting one point in each parent using a specified 
probability distribution (discussed below). Note that the number of points in the two parents 
typically are not equal. As will be seen, the crossover operation is well-defined for any two S-
expressions. That is, for any two S-expressions and any two crossover points, the resulting offspring 
are always valid LISP S-expressions. Offspring  contain some traits from each  parent. 

The “crossover fragment” for a particular parent is the rooted sub-tree whose root is the crossover 
point for that parent and where the sub-tree consists of the entire sub-tree lying below the crossover 
point (i.e. more distant from the root of the original tree). Viewed in terms of lists in LISP, the 
crossover fragment is the sub-list starting at the crossover point. 

The first offspring is produced by deleting the crossover fragment of the first parent from the first 
parent  and then impregnating the crossover fragment of the second parent at the crossover point of 
the first parent.  In producing this first offspring the first parent acts as the base parent (the female 
parent) and the second parent acts as the impregnating parent (the male parent). The second 
offspring is produced  in a symmetric manner. 

Because entire sub-trees are swapped, this genetic crossover (recombination) operation produces 
syntactically and semantically valid LISP S-expressions as offspring regardless of which point is 
selected in either parent.   

For example, consider the parental LISP S-expression:  

(% (+ 0.85 GNP82) GNP82) 

The “%” function above is the division function defined so that division by zero delivers zero as its 
result.  Now, consider the second parental S-expression below:  

(- FM2 (* FM2 1.65)) 

These two LISP S-expressions can be depicted graphically as rooted, point-labeled trees with 
ordered branches.  



 
The two parental LISP S-expressions are shown in Fig. 2. 

Assume that the points of both trees are numbered in a depth-first way starting at the left. Suppose 
that the second point (out of 6 points of the first parent) is randomly selected as the crossover point 
for the first parent and that the third point (out of 6 points of the second parent) is randomly selected 
as the crossover point of the second parent. The crossover points are therefore the “+” in the first 
parent and the “*” in the second parent. 

%

0.85 GNP82

+ GNP82

Parent 1

 
FM2

*

1.65

FM2

-

Parent 2

 

Fig. 2. Two parental LISP S-expressions for the crossover operation. 

The two crossover fragments are two sub-trees shown in Fig. 3. 

0.85 GNP82

+
Crossover Fragment 1

 
FM2

*

1.65

Crossover Fragment 2

 

Fig. 3. The two crossover fragments. 

The remainders are shown in Fig. 4. 

%

GNP82#

Remainder 1

  
FM2 #

-
Remainder 2

 

Fig. 4. The remaining LISP S-expressions.  Each of the places from 
which the crossover fragments shown in Fig. 3 were removed 
are identified with a “#”. 

These two crossover fragments correspond to the bold, underlined sub-expressions (sub-lists) in the 
two parental LISP S-expressions shown above. The two offspring resulting from crossover are 
shown in Fig. 5. 



 
Note that the first offspring above is a perfect solution for the exchange equation, namely 

(% (* FM2 1.65) GNP82). 

%

GNP82

FM2

*

1.65

Offspring 1

  

FM2

0.85 GNP82

+

-
Offspring 2

 

Fig. 5. The two offspring from the crossover operation. 

The Method for Selecting Operations 

In this paper, the population size was 500.  Crossover was performed on 90% of the population. That 
is, if the population size is 500, then 175 pairs of individuals from each generation were selected 
(with reselection allowed) from the population with a probability equal to their normalized adjusted 
fitness. In addition, fitness proportionate reproduction was performed on 10% of the population on 
each generation.  That is, 50 individuals from each generation were selected (with reselection 
allowed) from the population with a probability equal to their normalized adjusted fitness. Note that 
the parents remain in the population and can often repeatedly participate in other operations during 
the current generation.  Several minor parameters are used to control the computer implementation 
of the algorithm. In this paper, a maximum depth of 15 was established for S-expressions. This limit 
prevented large amounts of computer time being expended on a few extremely large (and usually 
highly unfit) individual S-expressions. Of course, if we could execute all the individual LISP S-
expressions in parallel (as nature does) in a manner such that the infeasibility of one individual in the 
population does not disproportionately jeopardize the resources needed by the population as a 
whole, we would not need this kind of limit.  

REDISCOVERING THE “EXCHANGE EQUATION” FROM EMPIRICAL TIME 
SERIES DATA 

An important problem area in virtually every area of science is finding the empirical relationship 
underlying observed values of the variables measuring a system (Langley et. al. 1987). In practice, 
the observed data may be noisy and there may be no known way to express the relationships 
involved in a precise way. The problem of discovering such empirical relationships from actual 

observed data is illustrated by the well-known econometric “exchange equation” P=
MV
Q  , which 

relates the price level P, money supply M,  the velocity of money V, and the gross national product 
Q of an economy. Suppose that our goal is to find the relationship between quarterly values of the 
price level P and the three other elements of the equation. That is, our goal is to rediscover the 
multiplicative (non-linear) relationship (7),  

 GD = 
(M2 * 1.6527)

GNP82   (7) 



 
from the actual observed time series data given the 120 quarterly values (from 1959:1 to 1988:4) of 
the four econometric time series GNP82, GD, FYGM3, and M2.  

The four time series were obtained from the CITIBASE data base of machine-readable econometric 
time series (Citibank 1989). The CITIBASE™ data was accessed by an Apple Macintosh II™ 
computer using software provided by VAR Econometrics Inc. (Doan 1989). 

The sum of the squared errors over the entire 30-year period involving 120 quarters (1959:1 to 
1988:4) between the actual gross national product deflator GD from 1959:1 to 1988:4 and the fitted 
GD series calculated from the above model for 1959:1 to 1988:4 was 0.077193. The R2 value was 
0.993320.  A plot of the corresponding residuals from the fitted GD series calculated from the above 
model for 1959:1 to 1988:4  is shown in Fig. 6. 
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Fig. 6. The corresponding residuals from the fitted GD series 
calculated from the above model for 1959:1 to 1988:4. 

Model Derived from First Two-Thirds of Data 

We first divide the 30-year, 120-quarter period into a 20-year, 80-quarter “in-sample” period 
running from 1959:1 to 1978:4 and a 10-year, 40-quarter “out-of-sample” period running from  
1979:1 to 1988:4. 

The set of functions available for this problem is F = {+, -, *, %, EXP, RLOG}.  The set of terminals 
available for this problem is T = {GNP82, FM2, FYGM3, R},  where “R” is the ephemeral random 
constant atom allowing various random floating point constants to be inserted at random as constant 
atoms amongst the initial random LISP S-expressions (See Koza 1990a for details). The terminals 
GNP82, FM2, and FYGM3 provide access to the values of the time series. In effect, these 
“terminals” are functions of the unstated, implicit time variable. A population size of 500 individuals 
was used. 

Notice that we are not told a priori whether the functional relationship between the given observed 
data (the three independent variables) and the target function (the dependent variable GD) is linear, 



 
multiplicative, polynomial, exponential, logarithmic, or otherwise. Notice also that we are not told 
that the addition, subtraction, exponential, and logarithmic functions as well as the time series for the 
3-month Treasury bill rates (FYGM3) are irrelevant to the problem.  

The initial random population (generation 0) was, predictably, highly unfit.  Examples of randomly 
generated individuals that appeared in the initial generation (generation 0) for the “exchange 
equation” problem are (RLOG GNP82), (+ FYGM3 (EXP -0.92)), (RLOG (+ 0.27 (EXP 0.65))), etc.  
In one run of the genetic programming paradigm, the sum of squared errors between the single best 
S-expression in the population and the actual GD time series was 1.55.  The value of R2 was 0.49. 

After the initial random population is created, each successive new generation in the population is 
created by applying the operations of fitness proportionate reproduction and genetic recombination 
(crossover).  

In generation 1, the sum of the squared errors for the new best single individual in the population 
improved to 0.50.  

In generation 3, the sum of the squared errors for the new best single individual in the population 
improved to 0.05. This is approximately a 31-to-1 improvement over the initial random generation. 
R2 improved to 0.98. In addition, by generation 3, the best single individual in the population came 
within 1% of the actual GD time series for 44 of the 80 in-sample points.   

In generation 6, the sum of the squared errors for the new best single individual in the population 
improved to 0.027. This is approximately a 2-to-1 improvement over generation 3.  R2 improved to 
0.99. 

In generation 7, the sum of the squared errors for the new best single individual in the population 
improved to 0.013. This is approximately 2-to-1 improvement over generation 6.  

In generation 15, the sum of the squared errors for the new best single individual in the population 
improved to 0.011. This is an additional improvement over generation 7 and represents 
approximately a 141-to-1 improvement over generation 0.  R2 was 0.99. 

A typical best single individual from a late generation of this process had a sum of squared errors of 
0.009272 over the in-sample period and is shown below: 

(% (+ (* (+ (* -0.402 -0.583) 
      (% FM2(- GNP82 (- 0.126 
      (+ (+ -0.83 0.832) 
      (% (% GNP82 (* (- 0.005 GNP82) 
      (% GNP82 GNP82))) 
      0.47)))))) FM2) FM2) GNP82). 

This individual is equivalent to (8). 

 GD = 
(M2 * 1.634)

GNP82   (8) 

This individual can be graphically depicted as a rooted, point-labeled tree with ordered branches as 
shown in Fig. 7. 
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Fig. 7. A typical best individual depicted as a tree. 

Table 1 shows the sum of the squared errors and R2 for the entire 120-quarter period, the 80-quarter 
in-sample period, and the 40-quarter out-of-sample period. 

Table 1. The sum of the squared errors and R2 for the 120-quarter 
period, the 80-quarter in-sample period, and the 40-quarter out-
of-sample period. 

Data Range 1- 120 1 - 80 81 - 120 

R2 0.993480 0.997949 0.990614 

Sum of Squared Error 0.075388 0.009272 0.066116 

Figure 8 shows both the gross national product deflator GD from 1959:1 to 1988:4  and the fitted 



 
GD series calculated from the above genetically produced model for 1959:1 to 1988:4. The actual 
GD series is shown as line with dotted points. The fitted GD series calculated from the above model 
is simple line. 
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Fig. 8. The gross national product deflator GD from 1959:1 to 1988:4  
and the fitted GD series calculated from the above genetically 
produced model for 1959:1 to 1988:4. The actual GD series is 
shown as line with dotted points. The fitted GD series 
calculated from the above model is simple line. 
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Fig. 9. A plot of the residuals from the fitted GD series calculated 
from the above model for 1959:1 to 1988:4 



 
A plot of the residuals from the fitted GD series calculated from the above model for 1959:1 to 
1988:4 is shown in Fig. 9. 

Model Derived from Last Two-Thirds of Data 

We now divide the 30-year, 120-quarter period into a 10-year, 40-quarter “out-of-sample” period 
running from  1959:1 to 1958:4 and a 20-year, 80-quarter “in-sample” period running from 1969:1 
to 1988:4. 

A typical best single individual from a late generation of this process had a sum of squared errors of 
0.076247 over the in-sample period and is shown below: 

(* 0.885 (* 0.885 (% (- FM2 
         (- (- (* 0.885 FM2) FM2) 
            FM2)) GNP82))) 

This individual can be graphically depicted as a rooted, point-labeled tree with ordered branches as 
is shown in Fig. 10 
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Fig. 10. The individual graphically depicted as a rooted, point-labeled 
tree with ordered branches 

This individual is equivalent to (9). 

 GD = 
(M2 * 1.6565)

GNP82   (9) 

Table 2 shows the sum of the squared errors and R2 for the entire 120-quarter period, the 40-quarter 
out-of-sample period, and the 80-quarter in-sample period. 



 
Table 2. The sum of the squared errors and R2 for the 120-quarter 

period, the 40-quarter out-of-sample period, and the 80-quarter 
in-sample period. 

Data Range 1- 120 1 - 40 41 - 120 

R2 0.993130 0.999136 0.990262 

Sum of Squared Error 0.079473 0.003225 0.076247 

Figure 11 shows both the actual gross national product deflator GD from 1959:1 to 1988:4  and the 
fitted GD series calculated from the above genetically produced model for 1959:1 to 1988:4.  The 
actual GD series is shown as a line with dotted points.  The fitted GD series calculated from the 
above model is simple line. 
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Fig. 11. Both the gross national product deflator GD from 1959:1 to 
1988:4  and the fitted GD series calculated from the above 
model for 1959:1 to 1988:4.  The actual GD series is shown as 
a line with dotted points.  The fitted GD series calculated from 
the above model is simple line. 

A plot of the residuals from the fitted GD series calculated from the above model for 1959:1 to 
1988:4  is shown in Fig. 12. 

CONCLUSION 

We have shown how the newly developed genetic programming paradigm can be used to create an 
econometric model by rediscovering the well-known non-linear econometric “exchange equation” 
relating the price level, gross national product, money supply, and velocity of money in an economy. 
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Fig. 12. The residuals from the fitted GD series calculated from the 
above model for 1959:1 to 1988:4. 
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