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ABSTRACT 

Problems of control can be viewed as 
requiring the discovery of a computer 
program (i.e. control strategy) that takes the 
state variables of a problem as its inputs and 
produces the values of the control variables 
as its output. This paper describes the  
recently developed genetic programming 
paradigm which genetically breeds a 
population of computer programs to solve 
problems.  Genetic programming begins 
with a population of hundreds or thousands 
of random computer programs and improves 
them from generation to generation using 
the Darwinian operation of fitness 
proportionate reproduction and the genetic 
operation of sexual recombination.  The 
sexual recombination operation combines 
parts of two computer programs, each 
selected proportional to their fitness, to 
produce new offspring programs.  The paper 
shows, step by step, how to apply genetic 
programming to the four dimensional 
control problem of backing up a tractor-
trailer truck to a loading dock.  The genetic 
programming paradigm breeds an 
approximately correct computer program 
(i.e. control strategy) that successfully 
performs the required task.   

1. INTRODUCTION AND OVERVIEW 
Anyone who has tried to back up a tractor-trailer truck 
to a loading dock knows that it presents a difficult 
problem of control.  Nguyen and Widrow (1990) 
successfully illustrated the capabilities of neural 
networks by finding a controller for this four 
dimensional control problem.  In this paper, we use the 
recently developed genetic programming paradigm to 
genetically breed a controller for this problem.    

Problems of control can be viewed as requiring the 
discovery of a computer program (i.e. controller, 
control strategy) that takes the state variables of a 
problem as its inputs and produces the values of the 
control variable(s) as its outputs.    

The recently developed genetic programming paradigm 
is well suited to difficult control problems where no 
exact solution is known and where an exact solution is 
not required.  When genetic programming solves a 
problem, it produces a computer program that takes the 
state variables of the system as input and produces the 
actions required to solve the problem as output.  The 
solution to a problem produced by the genetic 
programming paradigm is not just a numerical solution 
applicable to a single specific numerical combination of 
states, but, instead, comes in the form of a general 
function (computer program) that maps the state 
variables of the system into values of the control 
variable(s).  There is no need to specify the exact size 
and shape of the computer program in advance.  The 
needed structure is evolved in response to the selective 
pressures of Darwinian natural selection and genetic 
sexual recombination.   

2. BACKGROUND ON GENETIC 
ALGORITHMS 

John Holland's pioneering 1975 Adaptation in Natural 
and Artificial Systems described how the evolutionary 
process in nature can be applied to artificial systems 
using the genetic algorithm operating on fixed length 
character strings (Holland 1975).  Holland 
demonstrated that a population of fixed length character 
strings (each representing a proposed solution to a 
problem) can be genetically bred using the Darwinian 
operation of fitness proportionate reproduction and the 
genetic operation of recombination.  The recombination 
operation combines parts of two chromosome-like fixed 
length character strings, each selected on the basis of 
their fitness, to produce new offspring strings.  Holland 
established, among other things, that the genetic 
algorithm is a mathematically near optimal approach to 
adaptation in that it maximizes expected overall av-
erage payoff when the adaptive process is viewed as a 



 

multi-armed slot machine problem requiring an optimal 
allocation of future trials given currently available 
information.  

Genetic algorithms are an efficient way to search a 
highly non-linear multi-dimensional space.  A good 
overview of the many practical applications of the 
genetic algorithms operating on fixed length character 
strings (and other variants of the genetic algorithm) can 
be found in Goldberg (1989), Davis (1987, 1990), 
Belew and Booker (1991), and Rawlins (1991) 

3. BACKGROUND ON GENETIC 
PROGRAMMING 

For many problems, the most natural representation for 
solutions to problems are computer programs.  The 
size, shape, and contents of the computer program to 
solve the problem is generally not known in advance.  
The computer program that solves a given problem is 
typically a hierarchical composition of various 
functions and typically takes the state variables of the 
system as inputs.   

We have shown that computer programs can be 
genetically bred to solve problems in a surprising 
variety of different areas.  Specifically, the recently 
developed genetic programming paradigm has been 
successfully applied to problems in a wide variety of 
different areas (Koza 1989, 1990, 1991, 1992), 
including 

• discovering inverse kinematic equations (e.g. to 
move  a robot arm to designated target points), 

• optimal control (e.g. centering a cart and balancing a 
broom on a moving cart in minimal time by applying 
a "bang bang" force to the cart) (Koza and Keane 
1990), 

• symbolic "data to function" regression, integration, 
differentiation, and symbolic solution to general 
functional equations (including differential equations 
with initial conditions, and integral equations),  

• empirical discovery (e.g. rediscovering Kepler's 
Third Law, rediscovering the well-known non-linear 
econometric "exchange equation" MV = PQ from 
actual, noisy time series data for the money supply, 
the velocity of money, the price level, and the gross 
national product of an economy), 

• planning (e.g. navigating an artificial ant along a trail 
and developing a robotic plan for stacking blocks in 
to a desired order),  

• emergent behavior (e.g. discovering a computer 
program which, when executed by all the ants in an 
ant colony, enables the ants to locate food, pick it up, 
carry it to the nest, and drop pheromones along the 

way so as to produce cooperative emergent 
behavior), 

• machine learning of functions (e.g. learning the 
Boolean 11-multiplexer function), 

• automatic programming (e.g. solving pairs of linear 
equations, solving quadratic equations for complex 
roots, and discovering trigonometric identities), 

• generation of maximal entropy sequences of random 
numbers, 

• pattern recognition (e.g. translation-invariant one-
dimensional shape in a linear retina),  

• sequence induction (e.g. inducing a recursive 
procedure for generating sequences such as the 
Fibonacci and the Hofstadter sequences),  

• concept formation and decision tree induction, 

• finding minimax strategies for games (e.g. 
differential pursuer-evader games, discrete games in 
extensive form) by both evolution and co-evolution, 
and 

• simultaneous architectural design and training of 
neural networks.  

A videotape visualization of the application of the 
genetic programming paradigm to planning, emergent 
behavior, empirical discovery, inverse kinematics, and 
game playing can be found in the Artificial Life II 
Video Proceedings  (Koza and Rice 1991). 

3.1. OBJECTS USED IN GENETIC 
PROGRAMMING 

In the genetic programming paradigm, the individuals 
in the population are compositions of functions and 
terminals appropriate to the particular problem domain.  
The set of functions used typically includes arithmetic 
operations, mathematical functions, conditional logical 
operations, and domain-specific functions.  The set of 
terminals used typically includes inputs appropriate to 
the problem domain and various constants.  Each 
function in the function set should be well defined for 
any combination of elements from the range of every 
function that it may encounter and every terminal that it 
may encounter. 

The compositions of functions and terminals described 
above correspond directly to the parse tree that is 
internally created by most compilers and to the 
programs found in functional programming languages 
such as LISP (where they are called S-expressions). 

One can now view the search for a solution to the 
problem as a search in the hyperspace of all possible 
compositions of functions that can be recursively com-
posed of the available functions and terminals.  



 

3.2. OPERATIONS USED IN GENETIC 
PROGRAMMING 

The basic genetic operations for the genetic program-
ming paradigm are fitness proportionate reproduction 
and crossover (recombination).  The crossover 
(recombination) operation is a sexual operation that 
operates on two parental computer programs and 
produces two offspring programs using parts of each 
parent.  The crossover operation creates new offspring 
by exchanging sub-trees (i.e. sub-lists) between the two 
parents.  Because entire sub-trees are swapped, this 
crossover operation always produces syntactically and 
semantically valid programs as offspring regardless of 
the crossover points.  

For example, consider the two parental computer 
programs:  
(OR (NOT D1) (AND D0 D1)) 
 
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

These two programs are depicted as rooted, point-
labeled trees with ordered branches in Figure. 1.  The 
numbers appear for reference only. 
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Figure 1: Two Parental computer programs shown 
as trees with ordered branches.  Internal points of 

the tree correspond to functions (i.e. operations) and 
external points correspond to terminals (i.e. input 

data). 

Assume that the points of both trees are numbered in a 
depth-first way starting at the left.  Suppose that the 
point no. 2 (out of 6 points of the first parent) is ran-
domly selected as the crossover point for the first parent 
and that the point no. 6 (out of 10 points of the second 
parent) is randomly selected as the crossover point of 
the second parent. The crossover points in the trees 
above are therefore the NOT in the first parent and the 
AND in the second parent.  The two crossover 
fragments are two sub-trees shown in Figure 2. 
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Figure 2: The Two Crossover Fragments 

These two crossover fragments correspond to the bold, 
underlined sub-programs (sub-lists) in the two parental 
computer programs shown above.  The two offspring 
resulting from crossover are shown in Figure 3.   
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Figure 3:  The Two Offspring Resulting from 

Crossover 

Note that the first offspring in figure 3 is a computer 
program for the even-parity (i.e. equal) Boolean 
function of two arguments (i.e. D0 and D1), namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

3.3. STEPS REQUIRED TO EXECUTE THE 
GENETIC PROGRAMMING PARADIGM 

The genetic programming paradigm, like the 
conventional genetic algorithm, is a domain 
independent method.  It proceeds by genetically 
breeding populations of computer programs to solve 
problems by executing the following three steps: 

(1) Generate an initial population of random 
compositions of the functions and terminals 
of the problem (computer programs). 

(2) Iteratively perform the following sub-steps 
until the termination criterion has been 
satisfied: 
(a) Execute each program in the population 

and assign it a fitness value according to 
how well it solves the problem. 

(b) Create a new population of computer 
programs by applying the following two 
primary operations.  The operations are 



 

applied to computer program(s) in the 
population chosen with a probability 
based on fitness. 
(i) Reproduction: Copy existing 

computer programs to the new 
population. 

(ii) Crossover: Create new computer 
programs by genetically 
recombining randomly chosen 
parts of two existing programs. 

(3) The single best computer program in the 
population at the time of termination is 
designated as the result of the genetic 
programming paradigm.  This result may be a 
solution (or approximate solution) to the 
problem. 

4. THE TRUCK BACKER-UPPER 
PROBLEM 

The truck backer-upper problem is a four dimensional 
control problem. 

Figure 4 shows a loading dock and tractor-trailer.  The 
loading dock is the Y-axis.  The trailer and tractor are 
connected at a pivot point.   
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Figure 4: In the truck backer-upper problem, the 

goal is to bring the midpoint of the rear of the 
trailer to the target point (0,0) on the loading dock.  

The control variable is the steering angle u(t) for the 
tires of the tractor (cab).  The cab is connected to 

the trailer via the pivot.   

The state space of the system is four dimensional.  X is 
the horizontal position of the midpoint of the rear of the 
trailer and Y is the vertical position of the midpoint.  
The target point for the midpoint of the rear of the 
trailer is (0,0).  The angle θt  (also called TANG) is the 
angle of the trailer with respect to the loading dock 
(measured, in radians, from the positive X-axis with 
counterclockwise being positive).  The difference angle 
θd (also called DIFF) is the angle of the tractor relative 
to the longitudinal axis of the trailer (measured, in 
radians, from the longitudinal axis of the trailer with 
counterclockwise being positive).    

The truck backs up at a constant speed so that the front 
wheels of the tractor (cab) move a fixed distance 
backwards with each time step.  Steering is 
accomplished by changing the angle u (i.e. the control 
variable) of the front tires of the tractor (cab) with 

respect to the current orientation of the tractor.   

The goal is to guide the midpoint of the rear of the 
trailer so that it ends up at (or very close to) the target 
point (0,0) on the loading dock while never allowing 
the midpoint of the rear of the truck to touch the 
loading dock.  We want to find a control strategy which 
specifies the change in angle u of the front tires of the 
tractor (cab) in terms of the four state variables of the 
system (namely, X, Y, TANG, and DIFF) 

The equations of motion that govern the tractor-trailer 
system are 

 A = r cos u[t] 
 B = A cos(θc[t] –θt[t]) 
 C = A sin(θc[t] – θt[t]) 
 x[t + 1} = x[t] – B cosθt 
 y[t + 1] = y[t] – B sinθt 
 θc[t + 1] = tan-1   Error!) 
 θt[t + 1] = tan-1  Error!) 
 θd[t] = θt[t] – θc[t] 

In these equations, tan-1 



x

y   is the two argument 

arctangent function (also called ATG here) delivering 
an angle in the range -π to π.  The length of the tractor 
(i.e. cab) dc is 6 meters and the length of the trailer ds is 
14 meters.  As in Nguyen and Widrow (1990), the truck 
only moves backwards.  The distance moved in one 
time step is r. The angle θt is TANG. The angle of the 
tractor relative to the X axis is θc.  

5. PREPARATORY STEPS FOR USING 
GENETIC PROGRAMMING 

There are five major steps in preparing to use the 
genetic programming paradigm, namely, determining: 

(1) the set of terminals, 

(2) the set of functions,  

(3) the fitness function, 

(4) the parameters and variables for controlling 
the run, and 

(5) the criterion for designating a result and 
terminating a run. 

We will illustrate these five major steps using the truck 
backer-upper problem. 

The computer programs (i.e. control strategies) in the 
genetic population are compositions of functions and 
terminals. 

The first major step in preparing to use the genetic 
programming paradigm is to identify the set of 



 

terminals.  The four state variables of the system (i.e. X, 
Y, TANG, DIFF) can be viewed as inputs to the 
unknown computer program which we want to find for 
controlling the system.  Thus, the terminal set T for this 
problem is 

T = {X, Y, TANG, DIFF, ← }, 

The ephemeral random floating point constant  ← takes 
on different random floating point values between -1.0 
and +1.0 whenever it appears in a computer program in 
the initial random population (i.e. generation 0). 

The second major step in preparing to use the genetic 
programming paradigm is to identify a sufficient set of 
functions to solve for the problem.  We do not know the 
solution to this problem.  We have no assurance that a 
chosen function set will be sufficient for the problem.  
However, the function set F consisting of four 
arithmetic operations, the two argument Arctangent 
function ATG, and the decision function IFLTZ ("If 
Less than Zero") seems reasonable.  Thus, the function 
set for this problem is  

F = {+, -, *, %, ATG, IFLTZ}, 

taking 2, 2, 2, 2, 2, and 3 arguments, respectively.  The 
protected division function % returns one when 
division by zero is attempted, and, otherwise, returns 
the normal quotient.  The conditional branching 
function IFLTZ ("If Less than Zero") evaluates its third 
argument is its first argument is less than zero and 
otherwise evaluates its second argument.  Since IFLTZ 
returns a floating point value and % protects against 
division by zero, there is closure among the functions 
of the function set. 

In selecting this function set, we included the 
Arctangent function ATG because we thought it might 
be useful in computing angles from the various 
distances involved in this problem and we included the 
decision function IFLTZ so that actions could be made 
conditional on certain conditions being satisfied.  As it 
developed, the Arctangent function did not appear in 
the best solution we found. 

The third major step in preparing to use the genetic 
programming paradigm is the identification of the 
fitness measure for evaluating how good a given 
computer program is at solving the problem at hand.  
For this problem, fitness is an error measure. 

Each program is tested against a simulated environment 
consisting of eight fitness cases, each consisting of a set 
of initial conditions for X, Y, and TANG.  X is either 
20 or 40 meters.  Y is either -50 or 50 meters.  TANG is 
either - π/2 or + π/2.  As in Nguyen and Widrow 

(1990), the difference angle DIFF is initially always 
zero (i.e. the tractor and trailer are initially coaxial).   

Time is measured in time steps of 0.02 seconds.  A total 
of 3000 time steps (i.e. 60 seconds) are allowed for 
each fitness case  The speed of the tractor-trailer is 0.2 
meters per time step.  

Termination of a fitness case occurs when 

(1) time runs out,  

(2) the trailer crashes into the loading dock (i.e. X 
becomes zero), or  

(3) the midpoint of the rear of the trailer comes close to 
the target (0,0) point (i.e. X, Y, and TANG attain 
values which we define as a hit).  A hit for this 
problem occurs when the value of X is less than 0.1 
meters, the absolute value of Y is less than 0.42 
meters, and the absolute value of TANG is less than 
0.12 radians (i.e. about 14 degrees).   

Fitness is the sum, over the fitness cases, of the sum of 
the squares of the differences, at the time of termination 
of the fitness case, between the value of X and the 
target value of X (i.e. 0), the difference between the 
value of Y and the target value of Y (i.e. 0), and 
difference between the value of TANG and the target 
value of TANG (i.e. 0).   

A wrapper (output interface) is used to convert the 
value returned by a given individual computer program 
to a value appropriate to the problem domain.  In 
particular, if the program evaluates to a number 
between -1.0 and +1.0, the tractor turns its wheels to 
that particular angle (in radians) relative to the 
longitudinal axis of the tractor and backs up for one 
time step at a constant speed.  Outside that range the 
control variable saturates. 

As in Nguyen and Widrow (1990), if a choice of the 
control variable u would cause the absolute value of 
difference DIFF to exceed 90 degrees, DIFF is 
constrained to 90 degrees to prevent jack-knifing. 

The fourth major step in preparing to use the genetic 
programming paradigm is selecting the values of 
certain parameters.   The population size is 1000 here.  
Each new generation is created from the preceding 
generation by applying the fitness proportionate 
reproduction operation to 10% of the population and by 
applying the crossover operation to 90% of the popu-
lation (with both parents selected with a probability 
proportionate to fitness).  In selecting crossover points, 
90% were internal (function) points of the tree and 10% 
were external (terminal) points of the tree.  For the 
practical reason of conserving computer time, the depth 
of initial random programs was limited to 4 and the 
depth of programs created by crossover was limited to 



 

15.  Our choice of population size reflected an estimate 
on our part as to likely complexity of the solution to 
this problem.  The values of the other parameters are 
the same as we used on all the other problems cited in 
section 3 to which we have applied the genetic 
programming paradigm. 

Finally, the fifth major step in preparing to use the 
genetic programming paradigm is the selection of the 
criterion for terminating a run and accepting a result.  
We will terminate a given run when either (i) the 
genetic programming paradigm produces a computer 
program for which all eight fitness cases terminate 
according to condition (3) above, or (ii) 51 generations 
have been run.   

6. RESULTS  
In one run, the best single individual computer program 
in the initial population of 1000 randomly created 
individual programs was, as one would expect, 
incapable of backing the tractor-trailer to the loading 
dock for any of the eight initial conditions (fitness 
cases) of the tractor-trailer truck.  This best-of-
generation individual program had an enormous value 
of fitness, namely 26956.  This S-expression has 19 
points and is shown below: 
(- (ATG (+ X Y) (ATG X Y)) (IFLTZ (- TANG 
X) (IFLTZ Y TANG TANG) (* 0.3905 DIFF))) 

In just the next few generations, fitness began to 
improve (i.e. drop) substantially.  It dropped to 4790 for 
generations 1 and 2, 3131 in generation 3, and 228 for 
generations 4 and 5.  Moreover, in addition to coming 
closer to the loading dock, for generations 4 and 5, the 
best-of-generation individual was successful in backing 
up the truck for one of the eight fitness cases. 

Fitness improved to 202 for generation 6.  By 
generation 11, fitness had improved to 38.9 and the 
best-of-generation individual was successful for three 
of the eight fitness cases.  Between generations 14 and 
21, fitness for the best-of-generation individual ranged 
between 9.99 and 9.08 and the best-of-generation 
individual was successful for five fitness cases.   
Between generation 22 and 25, fitness for the best-of-
generation individual ranged between 8.52 and 8.47 
and the best-of-generation individual was successful for 
seven fitness cases.  Of course, the vast majority of 
individual computer programs in the population of 
1000 are still ineffective in solving the problem 
(although their average performance is also improving). 

In generation 26, the  fitness of the best-of-generation 
individual had improved to 7.41.  This best-of-
generation control strategy was capable of backing up 
the tractor-trailer to the loading dock for all eight 
fitness cases.  This computer program has 108 points 

(i.e. functions and terminals) and is shown below. 
(% (+ (+ (IFLTZ Y Y (+ (% (+ (+ (+ (+ (+ 
(IFLTZ DIFF Y (% Y TANG)) (- DIFF X)) (+ 
(- -0.0728 Y) (% Y TANG))) (- DIFF X)) (+ 
(- -0.0728 Y) (IFLTZ DIFF Y (% Y TANG)))) 
(% Y TANG)) TANG) (- (% (% (+ (+ (IFLTZ Y 
Y (% Y TANG)) (- TANG X)) (+ (- -0.0728 
Y) (% Y TANG))) TANG) TANG) X))) (- DIFF 
X)) (+ (+ (+ (+ (+ (IFLTZ DIFF Y (% Y 
TANG)) (- DIFF X)) (+ (- -0.0728 Y) (% Y 
TANG))) (- DIFF X)) (+ (- -0.0728 Y) (% Y 
TANG))) (% Y TANG))) TANG) 

No mathematically exact solution to this problem is 
known.  The above control strategy is almost certainly 
not the exact solution.  However, this genetically 
created control strategy works.  It is an approximately 
correct computer program that emerged from a 
competitive genetic process that searches the space of 
possible programs for a satisficing result.   

Interestingly, on 89.6% of the time steps involved in 
evaluating the above best-of-generation individual from 
generation 26, the absolute value of the control variable 
returned by this indidivudal exceeded one.  That is, a 
bang bang change in angle was applied. 

Note also that we did not pre-specify the size and shape 
of the solution.  We did not specify that the solution 
would have 108 points.  As we proceeded from 
generation to generation, the size and shape of the best-
of-generation individuals changed as a result of the 
selective pressure exerted by the fitness measure and 
the genetic operations.  For example, there were only 
19 points for the best-of-generation individual for 
generation 0 (i.e. the initial random generation). 

Note that the 108 point computer program from 
generation 26 could easily be encoded into a controller 
using ones preferred programming language. 

On this particular run, we obtained an control strategy 
satisfying the termination criterion of the problem after 
processing 27,000 individuals (i.e. 1000 individuals for 
an initial random generation and 26 additional 
generations).  We have achieved similar results in other 
runs of this problem. 

7. CONCLUSIONS 
We demonstrated use of the recently developed genetic 
programming paradigm to genetically breed a control 
strategy (i.e. computer program) to solve the four 
dimensional control problem of backing up a tractor-
trailer truck to a loading dock. 
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