

Submitted September 10, 1991 to 1992 American
Control Conference (ACC) to be held in Chicago on

June 24-26, 1992

A Genetic Approach to Finding
a Controller to Back Up a

Tractor-Trailer Truck

John R. Koza (Member IEEE, AIAA)

Computer Science Department
Stanford University

Stanford, CA 94305 USA
PHONE: 415-941-0336

FAX: 415-941-9430
Koza@Sunburn.Stanford.Edu

ABSTRACT

Problems of control can be viewed as
requiring the discovery of a computer
program (i.e. control strategy) that takes the
state variables of a problem as its inputs and
produces the values of the control variables
as its output. This paper describes the
recently developed genetic programming
paradigm which genetically breeds a
population of computer programs to solve
problems. Genetic programming begins
with a population of hundreds or thousands
of random computer programs and improves
them from generation to generation using
the Darwinian operation of fitness
proportionate reproduction and the genetic
operation of sexual recombination. The
sexual recombination operation combines
parts of two computer programs, each
selected proportional to their fitness, to
produce new offspring programs. The paper
shows, step by step, how to apply genetic
programming to the four dimensional
control problem of backing up a tractor-
trailer truck to a loading dock. The genetic
programming paradigm breeds an
approximately correct computer program
(i.e. control strategy) that successfully
performs the required task.

1. INTRODUCTION AND OVERVIEW
Anyone who has tried to back up a tractor-trailer truck
to a loading dock knows that it presents a difficult
problem of control. Nguyen and Widrow (1990)
successfully illustrated the capabilities of neural
networks by finding a controller for this four
dimensional control problem. In this paper, we use the
recently developed genetic programming paradigm to
genetically breed a controller for this problem.

Problems of control can be viewed as requiring the
discovery of a computer program (i.e. controller,
control strategy) that takes the state variables of a
problem as its inputs and produces the values of the
control variable(s) as its outputs.

The recently developed genetic programming paradigm
is well suited to difficult control problems where no
exact solution is known and where an exact solution is
not required. When genetic programming solves a
problem, it produces a computer program that takes the
state variables of the system as input and produces the
actions required to solve the problem as output. The
solution to a problem produced by the genetic
programming paradigm is not just a numerical solution
applicable to a single specific numerical combination of
states, but, instead, comes in the form of a general
function (computer program) that maps the state
variables of the system into values of the control
variable(s). There is no need to specify the exact size
and shape of the computer program in advance. The
needed structure is evolved in response to the selective
pressures of Darwinian natural selection and genetic
sexual recombination.

2. BACKGROUND ON GENETIC
ALGORITHMS

John Holland's pioneering 1975 Adaptation in Natural
and Artificial Systems described how the evolutionary
process in nature can be applied to artificial systems
using the genetic algorithm operating on fixed length
character strings (Holland 1975). Holland
demonstrated that a population of fixed length character
strings (each representing a proposed solution to a
problem) can be genetically bred using the Darwinian
operation of fitness proportionate reproduction and the
genetic operation of recombination. The recombination
operation combines parts of two chromosome-like fixed
length character strings, each selected on the basis of
their fitness, to produce new offspring strings. Holland
established, among other things, that the genetic
algorithm is a mathematically near optimal approach to
adaptation in that it maximizes expected overall av-
erage payoff when the adaptive process is viewed as a

multi-armed slot machine problem requiring an optimal
allocation of future trials given currently available
information.

Genetic algorithms are an efficient way to search a
highly non-linear multi-dimensional space. A good
overview of the many practical applications of the
genetic algorithms operating on fixed length character
strings (and other variants of the genetic algorithm) can
be found in Goldberg (1989), Davis (1987, 1990),
Belew and Booker (1991), and Rawlins (1991)

3. BACKGROUND ON GENETIC
PROGRAMMING

For many problems, the most natural representation for
solutions to problems are computer programs. The
size, shape, and contents of the computer program to
solve the problem is generally not known in advance.
The computer program that solves a given problem is
typically a hierarchical composition of various
functions and typically takes the state variables of the
system as inputs.

We have shown that computer programs can be
genetically bred to solve problems in a surprising
variety of different areas. Specifically, the recently
developed genetic programming paradigm has been
successfully applied to problems in a wide variety of
different areas (Koza 1989, 1990, 1991, 1992),
including

• discovering inverse kinematic equations (e.g. to
move a robot arm to designated target points),

• optimal control (e.g. centering a cart and balancing a
broom on a moving cart in minimal time by applying
a "bang bang" force to the cart) (Koza and Keane
1990),

• symbolic "data to function" regression, integration,
differentiation, and symbolic solution to general
functional equations (including differential equations
with initial conditions, and integral equations),

• empirical discovery (e.g. rediscovering Kepler's
Third Law, rediscovering the well-known non-linear
econometric "exchange equation" MV = PQ from
actual, noisy time series data for the money supply,
the velocity of money, the price level, and the gross
national product of an economy),

• planning (e.g. navigating an artificial ant along a trail
and developing a robotic plan for stacking blocks in
to a desired order),

• emergent behavior (e.g. discovering a computer
program which, when executed by all the ants in an
ant colony, enables the ants to locate food, pick it up,
carry it to the nest, and drop pheromones along the

way so as to produce cooperative emergent
behavior),

• machine learning of functions (e.g. learning the
Boolean 11-multiplexer function),

• automatic programming (e.g. solving pairs of linear
equations, solving quadratic equations for complex
roots, and discovering trigonometric identities),

• generation of maximal entropy sequences of random
numbers,

• pattern recognition (e.g. translation-invariant one-
dimensional shape in a linear retina),

• sequence induction (e.g. inducing a recursive
procedure for generating sequences such as the
Fibonacci and the Hofstadter sequences),

• concept formation and decision tree induction,

• finding minimax strategies for games (e.g.
differential pursuer-evader games, discrete games in
extensive form) by both evolution and co-evolution,
and

• simultaneous architectural design and training of
neural networks.

A videotape visualization of the application of the
genetic programming paradigm to planning, emergent
behavior, empirical discovery, inverse kinematics, and
game playing can be found in the Artificial Life II
Video Proceedings (Koza and Rice 1991).

3.1. OBJECTS USED IN GENETIC
PROGRAMMING

In the genetic programming paradigm, the individuals
in the population are compositions of functions and
terminals appropriate to the particular problem domain.
The set of functions used typically includes arithmetic
operations, mathematical functions, conditional logical
operations, and domain-specific functions. The set of
terminals used typically includes inputs appropriate to
the problem domain and various constants. Each
function in the function set should be well defined for
any combination of elements from the range of every
function that it may encounter and every terminal that it
may encounter.

The compositions of functions and terminals described
above correspond directly to the parse tree that is
internally created by most compilers and to the
programs found in functional programming languages
such as LISP (where they are called S-expressions).

One can now view the search for a solution to the
problem as a search in the hyperspace of all possible
compositions of functions that can be recursively com-
posed of the available functions and terminals.

3.2. OPERATIONS USED IN GENETIC
PROGRAMMING

The basic genetic operations for the genetic program-
ming paradigm are fitness proportionate reproduction
and crossover (recombination). The crossover
(recombination) operation is a sexual operation that
operates on two parental computer programs and
produces two offspring programs using parts of each
parent. The crossover operation creates new offspring
by exchanging sub-trees (i.e. sub-lists) between the two
parents. Because entire sub-trees are swapped, this
crossover operation always produces syntactically and
semantically valid programs as offspring regardless of
the crossover points.

For example, consider the two parental computer
programs:
(OR (NOT D1) (AND D0 D1))

(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two programs are depicted as rooted, point-
labeled trees with ordered branches in Figure. 1. The
numbers appear for reference only.

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 1: Two Parental computer programs shown
as trees with ordered branches. Internal points of

the tree correspond to functions (i.e. operations) and
external points correspond to terminals (i.e. input

data).

Assume that the points of both trees are numbered in a
depth-first way starting at the left. Suppose that the
point no. 2 (out of 6 points of the first parent) is ran-
domly selected as the crossover point for the first parent
and that the point no. 6 (out of 10 points of the second
parent) is randomly selected as the crossover point of
the second parent. The crossover points in the trees
above are therefore the NOT in the first parent and the
AND in the second parent. The two crossover
fragments are two sub-trees shown in Figure 2.

NOT

D1

AND

NOT NOT

D0 D1

Figure 2: The Two Crossover Fragments

These two crossover fragments correspond to the bold,
underlined sub-programs (sub-lists) in the two parental
computer programs shown above. The two offspring
resulting from crossover are shown in Figure 3.

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 3: The Two Offspring Resulting from

Crossover

Note that the first offspring in figure 3 is a computer
program for the even-parity (i.e. equal) Boolean
function of two arguments (i.e. D0 and D1), namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

3.3. STEPS REQUIRED TO EXECUTE THE
GENETIC PROGRAMMING PARADIGM

The genetic programming paradigm, like the
conventional genetic algorithm, is a domain
independent method. It proceeds by genetically
breeding populations of computer programs to solve
problems by executing the following three steps:

(1) Generate an initial population of random
compositions of the functions and terminals
of the problem (computer programs).

(2) Iteratively perform the following sub-steps
until the termination criterion has been
satisfied:
(a) Execute each program in the population

and assign it a fitness value according to
how well it solves the problem.

(b) Create a new population of computer
programs by applying the following two
primary operations. The operations are

applied to computer program(s) in the
population chosen with a probability
based on fitness.
(i) Reproduction: Copy existing

computer programs to the new
population.

(ii) Crossover: Create new computer
programs by genetically
recombining randomly chosen
parts of two existing programs.

(3) The single best computer program in the
population at the time of termination is
designated as the result of the genetic
programming paradigm. This result may be a
solution (or approximate solution) to the
problem.

4. THE TRUCK BACKER-UPPER
PROBLEM

The truck backer-upper problem is a four dimensional
control problem.

Figure 4 shows a loading dock and tractor-trailer. The
loading dock is the Y-axis. The trailer and tractor are
connected at a pivot point.

(0,0)

Lo
ad

in
g

D
oc

k

θ = DIFF

Co
nt

ro
l

u(
t)

θ = TANGt

θ c

x

y
Trailer

d

Pivot

Midpoint

Ca
b

Figure 4: In the truck backer-upper problem, the

goal is to bring the midpoint of the rear of the
trailer to the target point (0,0) on the loading dock.

The control variable is the steering angle u(t) for the
tires of the tractor (cab). The cab is connected to

the trailer via the pivot.

The state space of the system is four dimensional. X is
the horizontal position of the midpoint of the rear of the
trailer and Y is the vertical position of the midpoint.
The target point for the midpoint of the rear of the
trailer is (0,0). The angle θt (also called TANG) is the
angle of the trailer with respect to the loading dock
(measured, in radians, from the positive X-axis with
counterclockwise being positive). The difference angle
θd (also called DIFF) is the angle of the tractor relative
to the longitudinal axis of the trailer (measured, in
radians, from the longitudinal axis of the trailer with
counterclockwise being positive).

The truck backs up at a constant speed so that the front
wheels of the tractor (cab) move a fixed distance
backwards with each time step. Steering is
accomplished by changing the angle u (i.e. the control
variable) of the front tires of the tractor (cab) with

respect to the current orientation of the tractor.

The goal is to guide the midpoint of the rear of the
trailer so that it ends up at (or very close to) the target
point (0,0) on the loading dock while never allowing
the midpoint of the rear of the truck to touch the
loading dock. We want to find a control strategy which
specifies the change in angle u of the front tires of the
tractor (cab) in terms of the four state variables of the
system (namely, X, Y, TANG, and DIFF)

The equations of motion that govern the tractor-trailer
system are

 A = r cos u[t]
 B = A cos(θc[t] –θt[t])
 C = A sin(θc[t] – θt[t])
 x[t + 1} = x[t] – B cosθt
 y[t + 1] = y[t] – B sinθt
 θc[t + 1] = tan-1 Error!)
 θt[t + 1] = tan-1 Error!)
 θd[t] = θt[t] – θc[t]

In these equations, tan-1 



x

y is the two argument

arctangent function (also called ATG here) delivering
an angle in the range -π to π. The length of the tractor
(i.e. cab) dc is 6 meters and the length of the trailer ds is
14 meters. As in Nguyen and Widrow (1990), the truck
only moves backwards. The distance moved in one
time step is r. The angle θt is TANG. The angle of the
tractor relative to the X axis is θc.

5. PREPARATORY STEPS FOR USING
GENETIC PROGRAMMING

There are five major steps in preparing to use the
genetic programming paradigm, namely, determining:

(1) the set of terminals,

(2) the set of functions,

(3) the fitness function,

(4) the parameters and variables for controlling
the run, and

(5) the criterion for designating a result and
terminating a run.

We will illustrate these five major steps using the truck
backer-upper problem.

The computer programs (i.e. control strategies) in the
genetic population are compositions of functions and
terminals.

The first major step in preparing to use the genetic
programming paradigm is to identify the set of

terminals. The four state variables of the system (i.e. X,
Y, TANG, DIFF) can be viewed as inputs to the
unknown computer program which we want to find for
controlling the system. Thus, the terminal set T for this
problem is

T = {X, Y, TANG, DIFF, ← },

The ephemeral random floating point constant ← takes
on different random floating point values between -1.0
and +1.0 whenever it appears in a computer program in
the initial random population (i.e. generation 0).

The second major step in preparing to use the genetic
programming paradigm is to identify a sufficient set of
functions to solve for the problem. We do not know the
solution to this problem. We have no assurance that a
chosen function set will be sufficient for the problem.
However, the function set F consisting of four
arithmetic operations, the two argument Arctangent
function ATG, and the decision function IFLTZ ("If
Less than Zero") seems reasonable. Thus, the function
set for this problem is

F = {+, -, *, %, ATG, IFLTZ},

taking 2, 2, 2, 2, 2, and 3 arguments, respectively. The
protected division function % returns one when
division by zero is attempted, and, otherwise, returns
the normal quotient. The conditional branching
function IFLTZ ("If Less than Zero") evaluates its third
argument is its first argument is less than zero and
otherwise evaluates its second argument. Since IFLTZ
returns a floating point value and % protects against
division by zero, there is closure among the functions
of the function set.

In selecting this function set, we included the
Arctangent function ATG because we thought it might
be useful in computing angles from the various
distances involved in this problem and we included the
decision function IFLTZ so that actions could be made
conditional on certain conditions being satisfied. As it
developed, the Arctangent function did not appear in
the best solution we found.

The third major step in preparing to use the genetic
programming paradigm is the identification of the
fitness measure for evaluating how good a given
computer program is at solving the problem at hand.
For this problem, fitness is an error measure.

Each program is tested against a simulated environment
consisting of eight fitness cases, each consisting of a set
of initial conditions for X, Y, and TANG. X is either
20 or 40 meters. Y is either -50 or 50 meters. TANG is
either - π/2 or + π/2. As in Nguyen and Widrow

(1990), the difference angle DIFF is initially always
zero (i.e. the tractor and trailer are initially coaxial).

Time is measured in time steps of 0.02 seconds. A total
of 3000 time steps (i.e. 60 seconds) are allowed for
each fitness case The speed of the tractor-trailer is 0.2
meters per time step.

Termination of a fitness case occurs when

(1) time runs out,

(2) the trailer crashes into the loading dock (i.e. X
becomes zero), or

(3) the midpoint of the rear of the trailer comes close to
the target (0,0) point (i.e. X, Y, and TANG attain
values which we define as a hit). A hit for this
problem occurs when the value of X is less than 0.1
meters, the absolute value of Y is less than 0.42
meters, and the absolute value of TANG is less than
0.12 radians (i.e. about 14 degrees).

Fitness is the sum, over the fitness cases, of the sum of
the squares of the differences, at the time of termination
of the fitness case, between the value of X and the
target value of X (i.e. 0), the difference between the
value of Y and the target value of Y (i.e. 0), and
difference between the value of TANG and the target
value of TANG (i.e. 0).

A wrapper (output interface) is used to convert the
value returned by a given individual computer program
to a value appropriate to the problem domain. In
particular, if the program evaluates to a number
between -1.0 and +1.0, the tractor turns its wheels to
that particular angle (in radians) relative to the
longitudinal axis of the tractor and backs up for one
time step at a constant speed. Outside that range the
control variable saturates.

As in Nguyen and Widrow (1990), if a choice of the
control variable u would cause the absolute value of
difference DIFF to exceed 90 degrees, DIFF is
constrained to 90 degrees to prevent jack-knifing.

The fourth major step in preparing to use the genetic
programming paradigm is selecting the values of
certain parameters. The population size is 1000 here.
Each new generation is created from the preceding
generation by applying the fitness proportionate
reproduction operation to 10% of the population and by
applying the crossover operation to 90% of the popu-
lation (with both parents selected with a probability
proportionate to fitness). In selecting crossover points,
90% were internal (function) points of the tree and 10%
were external (terminal) points of the tree. For the
practical reason of conserving computer time, the depth
of initial random programs was limited to 4 and the
depth of programs created by crossover was limited to

15. Our choice of population size reflected an estimate
on our part as to likely complexity of the solution to
this problem. The values of the other parameters are
the same as we used on all the other problems cited in
section 3 to which we have applied the genetic
programming paradigm.

Finally, the fifth major step in preparing to use the
genetic programming paradigm is the selection of the
criterion for terminating a run and accepting a result.
We will terminate a given run when either (i) the
genetic programming paradigm produces a computer
program for which all eight fitness cases terminate
according to condition (3) above, or (ii) 51 generations
have been run.

6. RESULTS
In one run, the best single individual computer program
in the initial population of 1000 randomly created
individual programs was, as one would expect,
incapable of backing the tractor-trailer to the loading
dock for any of the eight initial conditions (fitness
cases) of the tractor-trailer truck. This best-of-
generation individual program had an enormous value
of fitness, namely 26956. This S-expression has 19
points and is shown below:
(- (ATG (+ X Y) (ATG X Y)) (IFLTZ (- TANG
X) (IFLTZ Y TANG TANG) (* 0.3905 DIFF)))

In just the next few generations, fitness began to
improve (i.e. drop) substantially. It dropped to 4790 for
generations 1 and 2, 3131 in generation 3, and 228 for
generations 4 and 5. Moreover, in addition to coming
closer to the loading dock, for generations 4 and 5, the
best-of-generation individual was successful in backing
up the truck for one of the eight fitness cases.

Fitness improved to 202 for generation 6. By
generation 11, fitness had improved to 38.9 and the
best-of-generation individual was successful for three
of the eight fitness cases. Between generations 14 and
21, fitness for the best-of-generation individual ranged
between 9.99 and 9.08 and the best-of-generation
individual was successful for five fitness cases.
Between generation 22 and 25, fitness for the best-of-
generation individual ranged between 8.52 and 8.47
and the best-of-generation individual was successful for
seven fitness cases. Of course, the vast majority of
individual computer programs in the population of
1000 are still ineffective in solving the problem
(although their average performance is also improving).

In generation 26, the fitness of the best-of-generation
individual had improved to 7.41. This best-of-
generation control strategy was capable of backing up
the tractor-trailer to the loading dock for all eight
fitness cases. This computer program has 108 points

(i.e. functions and terminals) and is shown below.
(% (+ (+ (IFLTZ Y Y (+ (% (+ (+ (+ (+ (+
(IFLTZ DIFF Y (% Y TANG)) (- DIFF X)) (+
(- -0.0728 Y) (% Y TANG))) (- DIFF X)) (+
(- -0.0728 Y) (IFLTZ DIFF Y (% Y TANG))))
(% Y TANG)) TANG) (- (% (% (+ (+ (IFLTZ Y
Y (% Y TANG)) (- TANG X)) (+ (- -0.0728
Y) (% Y TANG))) TANG) TANG) X))) (- DIFF
X)) (+ (+ (+ (+ (+ (IFLTZ DIFF Y (% Y
TANG)) (- DIFF X)) (+ (- -0.0728 Y) (% Y
TANG))) (- DIFF X)) (+ (- -0.0728 Y) (% Y
TANG))) (% Y TANG))) TANG)

No mathematically exact solution to this problem is
known. The above control strategy is almost certainly
not the exact solution. However, this genetically
created control strategy works. It is an approximately
correct computer program that emerged from a
competitive genetic process that searches the space of
possible programs for a satisficing result.

Interestingly, on 89.6% of the time steps involved in
evaluating the above best-of-generation individual from
generation 26, the absolute value of the control variable
returned by this indidivudal exceeded one. That is, a
bang bang change in angle was applied.

Note also that we did not pre-specify the size and shape
of the solution. We did not specify that the solution
would have 108 points. As we proceeded from
generation to generation, the size and shape of the best-
of-generation individuals changed as a result of the
selective pressure exerted by the fitness measure and
the genetic operations. For example, there were only
19 points for the best-of-generation individual for
generation 0 (i.e. the initial random generation).

Note that the 108 point computer program from
generation 26 could easily be encoded into a controller
using ones preferred programming language.

On this particular run, we obtained an control strategy
satisfying the termination criterion of the problem after
processing 27,000 individuals (i.e. 1000 individuals for
an initial random generation and 26 additional
generations). We have achieved similar results in other
runs of this problem.

7. CONCLUSIONS
We demonstrated use of the recently developed genetic
programming paradigm to genetically breed a control
strategy (i.e. computer program) to solve the four
dimensional control problem of backing up a tractor-
trailer truck to a loading dock.

8. ACKNOWLEDGMENTS
James P. Rice of the Knowledge Systems Laboratory at
Stanford University made numerous contributions in
connection with the computer programming of the

above.

9. REFERENCES
Belew, Richard and Booker, Lashon (editors)

Proceedings of the Fourth International
Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann Publishers Inc. 1991.

Davis, Lawrence (editor) Genetic Algorithms and
Simulated Annealing London: Pittman l987.

Davis, Lawrence. Handbook of Genetic Algorithms.
New York: Van Nostrand Reinhold.1991.

Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
MA: Addison-Wesley l989.

Holland, J. H. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan
Press 1975.

Koza, John R. Hierarchical genetic algorithms
operating on populations of computer programs."
In Proceedings of the 11th International Joint
Conference on Artificial Intelligence (IJCAI). San
Mateo, CA: Morgan Kaufman 1989.

Koza, John R. Genetic Programming: A Paradigm for
Genetically Breeding Populations of Computer
Programs to Solve Problems. Stanford University
Computer Science Department Technical Report
STAN-CS-90-1314. June 1990.

Koza, John R. Evolving a computer program to
generate random numbers using the genetic
programming paradigm. In Belew, Rik and
Booker, Lashon (editors) Proceedings of the
Fourth International Conference on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers Inc. 1991.

Koza, John R. Genetic Programming. MIT Press,
Cambridge, MA, 1992 (forthcoming).

Koza, John R. and Keane, Martin A. Genetic breeding
of non-linear optimal control strategies for broom
balancing. In Proceedings of the Ninth
International Conference on Analysis and
Optimization of Systems. Antibes,France, June,
1990. Pages 47-56. Berlin: Springer-Verlag, 1990.

 Koza, John R. and Rice, James P. A genetic approach
to artificial intelligence. In C. G. Langton
Artificial Life II Video Proceedings. Addison-
Wesley 1991.

Nguyen, Derrick and Widrow, Bernard. The truck
backer-upper: An example of self-learning in
neural networks. In Miller, W. Thomas III,
Sutton, Richard S., and Werbos, Paul J. (editors).

Neural Networks for Control. Cambridge, MA:
MIT Press 1990.

Rawlins, Gregory (editor). Proceedings of Workshop on
the Foundations of Genetic Algorithms and
Classifier Systems. Bloomington, Indiana. July
15-18, 1990. San Mateo, CA: Morgan Kaufmann
1991.

