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ABSTRACT 
The problem of discovering a strategy for 

playing a game can be viewed as requiring 
discovery of a computer program.  This paper 
describes the recently developed "genetic 
programming" paradigm which genetically 
breeds populations of hierarchical computer 
programs to solve problems.  The computer 
programs are evolved using the Darwinian 
principle of survival of the fittest and the 
genetic operation of sexual recombination.  

1 INTRODUCTION AND OVERVIEW 

The problem of discovering a strategy for playing 
a game is an important problem in game theory. 
This problem can be viewed as requiring 
discovery of a computer program.  The desired 
computer program takes either the entire history 
of past moves in the game or the current state of 
the game as its input and produces the next move 
as its output.  

This paper describes the recently developed 
"genetic programming" paradigm which 
genetically breeds populations of computer 
programs to solve problems.  In genetic pro-
gramming, the individuals in the population are 
independently acting hierarchical compositions of 
functions and arguments of various sizes and 
shapes.  Each of these individual computer 
programs is evaluated for its fitness in handling 
the problem environment.  A simulated 
evolutionary process driven by this measure of 
fitness then uses the Darwinian principle of 
reproduction and survival of the fittest and the 
genetic operation of crossover (sexual 
recombination) to solve the problem.    

The genetic programming paradigm can also 
operate simultaneously on two (or more) popu-

lations of programs.  In such "co-evolution," each 
population acts as the environment for the other 
population.  In particular, each individual of the 
first population is evaluated for “relative fitness” 
by testing it against each individual in the second 
population, and, simultaneously, each individual 
in the second population is evaluated for “relative 
fitness” by testing it against each individual in the 
first population.  Over a period of many 
generations, individuals with high "absolute 
fitness" may evolve as the two populations 
mutually bootstrap each other to increasingly high 
levels of fitness.  

In this paper, the genetic programming 
paradigm is illustrated with three different 
problems from game theory.  

• The first problem involves genetically 
breeding a population of computer programs to 
find an optimal strategy for a player of a discrete 
two-person 32-outcome game represented by a 
game tree in extensive form.  In this problem, the 
entire history of past moves of both players is 
used as input to the computer program.  

• The second problem involves genetically 
breeding a minimax control strategy in a 
differential game with an independently-acting 
pursuer and evader.  In this problem, the state of 
the game is used as input to the computer 
program.  

• The third problem illustrates the "co-
evolution" and involves genetically breeding an 
optimal strategy for a player of a discrete two-
person 32-outcome game represented by a game 
tree in extensive form.  

2 BACKGROUND ON GENETIC 
ALGORITHMS 

Genetic algorithms are highly parallel 
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mathematical algorithms that transform 
populations of individual mathematical objects 
(typically fixed-length binary character strings) 
into new populations using operations patterned 
after natural genetic operations such as sexual 
recombination (crossover) and fitness pro-
portionate reproduction (Darwinian survival of 
the fittest).   

Genetic algorithms begin with an initial 
population of individuals (typically randomly 
generated) and then iteratively (1) evaluate the 
individuals in the population for fitness with 
respect to the problem environment and (2) per-
form genetic operations on various individuals in 
the population to produce a new population.  

John Holland's pioneering 1975 Adaptation in 
Natural and Artificial Systems described how the 
evolutionary process in nature can be applied to 
artificial systems using the genetic algorithm 
operating on fixed length character strings 
(Holland 1975).  Holland demonstrated that a 
population of fixed length character strings (each 
representing a proposed solution to a problem) 
can be genetically bred using the Darwinian 
operation of fitness proportionate reproduction 
and the genetic operation of recombination.  The 
recombination operation combines parts of two 
chromosome-like fixed length character strings, 
each selected on the basis of their fitness, to 
produce new offspring strings.  Holland 
established, among other things, that the genetic 
algorithm is a mathematically near optimal 
approach to adaptation in that it maximizes 
expected overall average payoff when the 
adaptive process is viewed as a multi-armed slot 
machine problem requiring an optimal allocation 
of future trials given currently available informa-
tion. 

Recent work in genetic algorithms and genetic 
classifier systems can be surveyed in Goldberg 
(1989), Davis (1987), and Schaffer (1989). 

3 BACKGROUND ON GENETIC 
PROGRAMMING 
Representation is a key issue in genetic 

algorithm work because genetic algorithms 
directly manipulate the coded representation of 
the problem and because the representation 
scheme can severely limit the window by which 

the system observes its world. Fixed length 
character strings present difficulties for some 
problems — particularly problems where the 
desired solution is hierarchical and where the size 
and shape of the solution is unknown in advance. 
The need for more powerful representations has 
been recognized for some time (De Jong 1985, 
1988). 

The structure of the individual mathematical 
objects that are manipulated by the genetic 
algorithm can be more complex than the fixed 
length character strings first described by Holland 
(1975) in 1975. Steven Smith (1980) departed 
from the early fixed-length character strings by 
introducing variable length strings, specifically, 
strings whose elements were if-then rules, rather 
than single characters. Holland's introduction of 
the genetic classifier system (1986) continued the 
trend towards increasing the complexity of the 
structures undergoing adaptation. The classifier 
system is a cognitive architecture  containing a 
population of string-based if-then rules (whose 
condition and action parts are fixed length binary 
strings) which can be modified by the genetic 
algorithm. 

The recently developed genetic programming 
paradigm further continues the above trend 
towards increasing the complexity of the 
structures undergoing adaptation. In the genetic 
programming paradigm, the individuals in the 
population are hierarchical compositions of 
functions and terminals appropriate to the 
particular problem domain. The hierarchies are of 
various sizes and shapes. The set of functions 
typically includes arithmetic operations, 
mathematical functions, conditional logical opera-
tions, and domain-specific functions. Each 
function in the function set should be well defined 
for any element in the range of every other 
function in the set. The set of terminals used 
typically includes inputs (sensors) appropriate to 
the problem domain and various constants. The 
search space is the hyperspace of all possible 
compositions of functions and terminals that can 
be recursively composed of the available func-
tions and terminals. The symbolic expressions (S-
expressions) of the LISP programming language 
are an especially convenient way to create and 
manipulate the compositions of functions and 
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terminals described above. These S-expressions in 
LISP correspond directly to the "parse tree" that is 
internally created by most compilers. 

The basic genetic operations for the genetic 
programming paradigm are fitness based 
reproduction and crossover (recombination).  

Fitness proportionate reproduction is the basic 
engine of Darwinian reproduction and survival of 
the fittest. It copies individuals with probability 
proportionate to fitness from one generation of the 
population into the next generation. In this 
respect, it operates for the genetic programming 
paradigm in the same way as it does for 
conventional genetic algorithms. The crossover 
operation for the genetic programming paradigm 
is a sexual operation that operates on two parental 
LISP S-expressions and produces two offspring S-
expressions using parts of each parent. Typically 
the two parents are hierarchical compositions of 
functions of different size and shape. In particular, 
the crossover operation starts by selecting a 
random crossover point in each parent and then 
creates two new offspring S-expressions by 
exchanging the sub-trees (i.e. sub-lists) between 
the two parents.  Because entire sub-trees are 
swapped, this genetic crossover (recombination) 
operation produces syntactically and semantically 
valid LISP S-expressions as offspring regardless 
of which point is selected in either parent.   

For example, consider the parental LISP S-
expression:  
(OR (NOT D1) (AND D0 D1)) 

And, consider the second parental S-
expression below:  
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

These two LISP S-expressions can be depicted 
graphically as rooted, point-labeled trees with 
ordered branches. Assume that the points of both 
trees are numbered in a depth-first way starting at 
the left. Suppose that the second point (out of 6 
points of the first parent) is randomly selected as 
the crossover point for the first parent and that the 
sixth point (out of 10 points of the second parent) 
is randomly selected as the crossover point of the 
second parent. The crossover points are therefore 
the NOT in the first parent and the AND in the 
second parent. 

The two parental LISP S-expressions are 

shown below: 

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1
   

 The two crossover fragments are two sub-
trees shown below: 

NOT

D1

AND

NOT NOT

D0 D1
  

These two crossover fragments correspond to 
the bold, underlined sub-expressions (sub-lists) in 
the two parental LISP S-expressions shown 
above. The two offspring resulting from crossover 
are shown below. 

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Note that the first offspring above is a perfect 
solution for the exclusive-or function, namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

Details can be found in Koza (1990a, 1992a, 
1992b). 

We have shown that entire computer programs 
can be genetically bred to solve problems in a 
variety of different areas of artificial intelligence, 
machine learning, and symbolic processing (1989, 
1990a, 1992a, 1992b). In particular, this new 
paradigm has been successfully applied to 
example problems in several different areas, 
including  
• automatic programming (e.g. discovering a 
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computational procedure for solving pairs of 
linear equations, solving quadratic equations 
for complex roots, and discovering 
trigonometric identities), 

• empirical discovery (e.g. rediscovering 
Kepler's Third Law, rediscovering the well-
known econometric "exchange equation" MV 
= PQ from actual noisy time series data for the 
money supply, the velocity of money, the 
price level, and the gross national product of 
an economy), (Koza 1990b),  

• planning (e.g. navigating an artificial ant 
along an irregular trail,  developing a robotic 
action sequence that can stack an arbitrary 
initial configuration of blocks into a specified 
order),  

• machine learning of functions (e.g. learning 
the Boolean 11-multiplexer function),  

• sequence induction (e.g. inducing a recursive 
computational procedure for generating 
sequences such as the Fibonacci and the 
Hofstadter sequences),  

• symbolic "data to function" regression, sym-
bolic "data to function" integration, and 
symbolic "data to function" differentiation, 
and 

• symbolic solution to functional equations 
(including differential equations with initial 
conditions, integral equations, and general 
functional equations). 
The genetic programming paradigm permits 

the evolution of computer programs which can 

perform alternative computations conditioned on 
the outcome of intermediate calculations, which 
can perform computations on variables of many 
different types, which can perform iterations and 
recursions to achieve the desired result, which can 
define and subsequently use computed values and 
sub-programs, and whose size, shape, and 
complexity is not specified in advance.  

4 MINIMAX STRATEGY FOR A SIMPLE 
DISCRETE GAME  
As a first illustration of the genetic 

programming paradigm, consider the discrete 
game whose game tree is presented in extensive 
form in Figure 1.  

This game is a two-person, competitive, zero-
sum game in which the players make alternating 
moves.  On each move, a player can choose to go 
L (left) or R (right). Each internal point of this 
tree is labeled with the player who must move. 
Each line is labeled with the choice (either L or R) 
made by the moving player.  Each endpoint of the 
tree is labeled with the payoff (to player X). After 
player X has made three moves and player O has 
made two moves, player X receives (and player O 
pays out) the particular payoff shown at the 
particular endpoint of the game tree. 

 
 
Since this 32-outcome discrete game is a 

game of complete information, each player has 
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Figure 1 Game Tree with Payoffs 
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opponent's previous moves and his own previous 
moves.  This information is contained in four 
variables XM1 (X's move 1), OM1 (O's move 1), 
XM2 (X's move 2), and OM2 (O's move 2).  These 
variables each assume one of three possible 
values: L (left), R (right), or U (undefined).  A 
variable is undefined (U) prior to the time when 
the move to which it refers has been made.  Thus, 
at the beginning of the game, all four variables are 
undefined. The particular variables that are 
defined and undefined at a particular time can be 
used to indicate the point to which play has 
progressed in the game.  For example, if both 
players have moved once, XM1 and OM1 are 
both defined (each being either L or R) but the 
other two variables (XM2, and OM2) are still 
undefined (i.e., have the value U).   

A strategy for a particular player in a game 
specifies which choice that player is to make for 
every possible situation that may arise for that 
player.  For this particular game, a strategy for 
player X must specify his first move if the game is 
just beginning.  Second, a strategy for player X 
must specify his second move if player O has 
already made exactly one move.  Third, a strategy 
for player X must specify his third move if player 
O has already made exactly two moves.  

Since player X moves first, his first move is 
not conditioned on any previous move.  But 
player X's second move will depend on player O's 
first move (i.e., OM1), and in general it will also 
depend on his own first move (XM1).  Similarly, 
player X's third move will depend on player O's 
first two moves and, in general, his own first two 
moves.  

Similarly, a strategy for player O must specify 
what choice player O is to make for every 
possible situation that may arise for player O.  

A strategy is a computer program whose 
inputs are the relevant historical variables (XM1, 
OM1, XM2, and OM2) and whose output is a 
move (L or R) for the player involved.   

The testing functions CXM1, COM1, CXM2, 
and COM2 provide the ability to test each 
historical variable (XM1, OM1, XM2, and OM2)  
that is relevant to deciding a player's move.  Each 
of these functions is a specialized form of the 
CASE function in LISP.  In particular, for 

example, the function CXM1 has three arguments.  
It evaluates its first argument if XM1 (X's move 
1) is undefined; it evaluates its second argument if 
XM1 is L (Left); and it evaluates its third ar-
gument if XM1 is R (Right).  The functions 
CXM2, COM1, and COM2 are similarly defined.   

The terminal set for this problem is  

T = {L, R}.  

The function set  for this problem is  

F = {CXM1, COM1, CXM2, COM2}, 

each taking three arguments. 
A typical S-expression for this problem 

therefore consists of a composition of the four 
testing functions just described and the two 
terminals L or R.  The value returned by such an 
S-expression at a given time during the play of the 
game is the terminal (L or R) found at the 
endpoint of the tree that is reached by virtue of the 
actual moves that have been made in the game at 
that time. 

The raw fitness of a particular strategy for a 
particular player is the sum of the payoffs 
received when that strategy is played against all 
possible sequences of combinations of moves by 
the opposing player.  Note that the two players of 
this particular game make different numbers of 
moves. 

Thus, when we compute the fitness of an X 
strategy, we must test the X strategy against all 
four possible combinations of O moves, namely O 
choosing L or R for moves 1 and 2.  Similarly, 
when we compute the fitness of an O strategy, we 
must test it against all eight possible combinations 
of X moves, namely X choosing L or R for moves 
1, 2, and 3.  

When two minimax strategies are played 
against each other, the payoff is the value of this 
game (i.e., 12 for this particular game).  A 
minimax strategy takes advantage of non-
minimax play by the other player.   

A hit for this problem is the number of fitness 
cases (out of four for player X or eight for player 
O) where the strategy being tested achieves a 
payoff at least as good as that achieved by the 
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minimax strategy.   
We now proceed to evolve a game playing 

strategy for player X for this game.   
In one run, the best-of-generation individual 

game playing strategy for player X in generation 6 
had a raw fitness of 88 and scored four hits:  
(COM2 (COM1 (COM1 L (CXM2 R (COM2 L L L) 
                            (CXM1 L R L)) 
                    (CXM1 L L R)) L R) 
      L (COM1 L R R)). 

This strategy for player X simplifies to 
(COM2 (COM1 L L R) L R).  

Note that this strategy for player X is a 
composition of the four functions (CXM1, COM1, 
CXM2, COM2) and two terminals (L and R) and 
that it returns a value of either L or R. 

The interpretation of this best-of-run strategy 
for player X is as follows.  If both OM2 (O's move 
2) and OM1 (O's move 1) are undefined (U), it 
must be player X's first move.  That is, we are at 
the beginning of the game (i.e., the root of the 
game tree).  In this situation, the first argument of 
the COM1 function embedded inside the COM2 
function of this strategy specifies that player X is 
to move L.  The left move by player X at the 
beginning of the game is player X's minimax 
move because it takes the game to a point with a 
minimax value of 12 (to player X) rather than to a 
point with a minimax value of only 10.  

If OM2 (O's move 2) is undefined but OM1 is 
defined, it must be player X's second move.  In 
this situation, this best-of-run strategy specifies 
that player X moves L if OM1 (O's move 1) was L 
and player X moves R if OM1 was R. If OM1 (O's 
move 1) was L, player O has moved to a point 
with a minimax value of 16.  Player X should then 
move L (rather than R) because that move will 
take the game to a point with a minimax value of 
16 (rather than 8).  If OM1 was R, player O has 
moved to a point with minimax value 12.  This 
move is better for O than moving L.  Player X 
should then move R (rather than L) because that 
move will take the game to a point with a 
minimax value of 12 (rather than 4).  

If both OM1 and OM2 are defined, it must be 
player X's third move.  If OM2 was L, player X 
can either choose between a payoff of 32 or 31 or 
between a payoff of 28 or 27.  In either case, 
player X moves L.  If OM2 was R, player X can 

choose between a payoff of 15 or 16 or between a 
payoff of 11 or 12.  In either case, player X moves 
R.  In this situation, this best-of-run S-expression 
specifies that player X moves L if OM2 (O's move 
2) was L and player X moves R if OM2 was R.   

If player O has been playing his minimax 
strategy, this best-of-run S-expression for player 
X will cause the game to finish at the endpoint 
with the payoff of 12 to player X.  However, if 
player O was not playing his minimax strategy, 
this strategy will cause the game to finish with a 
payoff of 32, 16, or 28 for player X. The total of 
12, 32, 16, and 28 is 88.  The attainment of these 
four values for player X (each at least as good as 
the minimax value of 12) constitutes four hits for 
player X. 

We used a similar method to evolve a game 
playing strategy for player O for this game.  

In one run, the best-of-generation individual 
strategy for player O in generation 9 had a raw 
fitness of 52 and scored eight hits and was, in fact, 
the minimax strategy for player O:  
(CXM2 (CXM1 L (COM1 R L L) L) (COM1 R L (CXM2 
L L R)) 
      (COM1 L R (CXM2 R (COM1 L L R) (COM1 R 
L R)))). 

This strategy for player O simplifies to 
(CXM2 (CXM1 $ R L) L R), 

where the $ denotes a portion of an S-expression 
that is inaccessible by virtue of unsatisfiable 
conditions.   

5 DIFFERENTIAL PURSUIT GAME  

As a second illustration of genetic programming 
involving games, consider a differential pursuer-
evader game.  In particular, consider the "game of 
simple pursuit" described in Isaacs' Differential 
Games (1965) in which the goal is to find a 
minimax strategy for one player when playing 
against a minimax opponent.  

This differential pursuer-evader game is a 
two-person, competitive, zero-sum, simultaneous-
move, complete-information game in which a fast 
pursuing player P is trying to capture a slower 
evading player E.  The choice available to a 
player at a given moment consists of choosing a 
direction (angle) in which to travel. In this game, 
the players may travel anywhere in a plane and 
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both players may instantaneously change direc-
tion without restriction.  Each player travels at a 
constant speed, and the pursuing player’s speed 
wp (1.0) is greater than the evading player’s speed 
we (0.67). 

The state variables of the game are xp, yp, xe, 
and ye representing the coordinate positions (xp, 
yp) and (xe, ye) of the pursuer P and evader E in 
the plane. 

Figure 2 shows the pursuer and the evader.  At 
each time step, both players know the positions 
(state variables) of both players.  The choice for 
each player is to select a value of his control 
variable (i.e., the angular direction in which to 
travel).  The pursuer’s control variable is the 
angle φ (from 0 to 2π radians), and the evader’s 
control variable is the angle ψ.  The players 
choose their respective control variables 
simultaneously.  In the figure, the evader's 
angle ψ is shown equal to the pursuer's angle φ . 

 

(0, 0)

P Φ
X

Y

(X, Y)
E Ψ

 
Figure 2  Pursuer P and Evader E. 

 
The analysis of this game can be simplified by 

reducing the number of state variables from four 
to two (Isaacs 1965).  This state reduction is 
accomplished by simply viewing the pursuer P as 
being at the origin point (0,0) of a new coordinate 
system at all times and then viewing the evader E 
as being at position (x, y) in this new coordinate 
system.  The two numbers x and y representing 

the position (x, y) of the evader E thus become the 
two reduced state variables of the game.  
Whenever the pursuer P travels in a particular di-
rection, the coordinate system is immediately 
adjusted so that the pursuer is repositioned to the 
origin (0, 0).  The position (x, y) of the evader is 
then adjusted to reflect the travel of the pursuer.  

The state-transition equations for the evader E 
are 

x(t + 1) = x(t) + weCos ψ – wpCos φ  
y(t + 1) = y(t) + weSin ψ – wpSin φ. 

We use a set of 20 fitness cases consisting of 
random initial condition positions (xi, yi) for the 
evader.  Each initial condition value of xi and yi 
lies between –5.0 and +5.0.  We regard the 
pursuer as having captured the evader when the 
pursuer gets to within a small capture radius ε = 
0.5 of the evader.   

The payoff for a given player is measured by 
time. The payoff for the pursuer P is the total time 
it takes to capture the evader E over all the initial 
condition cases (i.e., fitness cases). The pursuer 
tries to minimize the time to capture. The payoff 
for the evader is the total time of survival for E.  
The evader tries to maximize this time of survival.  

A maximum allowed time of 100 time steps is 
established so that if a particular pursuer strategy 
has not made the capture within that amount of 
time, that maximum time becomes the payoff for 
that particular fitness case and that particular 
strategy. 

The problem is to find the strategy for 
choosing the control variable of the pursuer so as 
to minimize the total time to capture for any set of 
fitness cases when playing against an optimal 
evader.  

For this game, the best strategy for the pursuer 
P at any given time step is to chase the evader E 
in the direction of the straight line currently 
connecting the pursuer to the evader. And, for this 
game, the best strategy for the evader E is to race 
away from the pursuer in the direction of the 
straight line connecting the pursuer to the evader. 

In comparison, the worst strategy for the 
pursuer P is to avoid the evader E by racing away 
from the evader in the direction precisely opposite 
to the straight line currently connecting the 
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pursuer to the evader. The worst strategy for the 
evader E is to race toward the pursuer P along this 
same straight line. 

If the evader chooses some action other than 
the strategy of racing away from the pursuer in 
the direction of the straight line connecting the 
pursuer to the evader (as shown in figure 3), the 
evader will survive for less time than if he follows 
his best strategy. If the evader initially chooses a 
suboptimal direction and then belatedly chooses 
the optimal direction, his time of survival is still 
less than if he had chosen the optimal direction 
from the beginning. 

P Φ

(0, 0) X

Y

E
(X, Y)

Ψ

 
Figure 3  Evader E choosing a suboptimal evasion 
strategy. 

 
The situation is symmetric in that if the 

pursuer does not chase after the evader E along 
the straight line, he fails to minimize the time to 
capture. 

The value of the game is the payoff (time) 
such that, no matter what the evader does, the 
evader cannot hold out for longer than this 
amount of time.  If the evader does anything other 
than direct fleeing, his survival time is a shorter. 
Conversely, no matter what the pursuer does, the 
pursuer P cannot capture an optimal evader E in 
less than that amount of time. And, if the pursuer 
does anything other than direct pursuit, the evader 
can remain at large for a longer amount of time. 

We start by evolving a minimax pursuer.  In 
doing this, each individual in the population of 

pursuing individuals is tested against one 
minimax evader. The optimal evader travels with 
the established constant evader speed we in the 
angular direction specified by the two argument 
Arctangent function (which is able to return an 
angle in the correct quadrant since it can examine 
the signs of the two arguments). 

We later, separately, evolve a minimax 
evader. Each individual in the population of 
evading individuals is tested against the minimax 
pursuer. 

The terminal set for this problem consists of 
the two state variables X and Y representing the 
position of the evader E in the plane in a reduced 
coordinate system where the pursuer is always 
positioned (or repositioned) at the origin and the 
ephemeral random floating-point constant ← 
ranging between –1.000 and +1.000 as shown 
below:  

T = {X, Y, ←}.  

The function set for this problem is  

F = {+,  -, *, %, EXP, IFLTZ}. 

Note that we did not include any trigonometric or 
inverse trigonometric function in this function set.  
Instead, we included the four arithmetic functions, 
the exponential function, and the three argument 
conditional operation IFLTZ (If Less Than 
Zero) for making decisions.  

For any given S-expression composed of 
functions from this function set and terminals 
from this terminal set and any given current 
position (x,y) of the pursuer, the S-expression will 
evaluate to a number that provides the new 
direction of motion, in radians, for the pursuer.   

The fitness cases for this problem consist of 
20 initial condition points (x,y) in a square whose 
opposite corners are (–5.0, –5.0) and (+5.0, +5.0).  
The raw fitness for this problem is the average 
time to capture for each of the fitness cases.  The 
shorter the time, the better.   

As one progresses from generation to 
generation, the population of pursuing individuals 
typically improves.  In early generations, the best 
pursuing individual in the population can capture 
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the evader in only a fraction of the 20 fitness 
cases within the allotted time.  These individuals 
typically do not move in the 100%-efficient 
straight line called for by the Arctangent strategy, 
but instead follow a leisurely curved nonoptimal 
trajectory.  Then, after additional generations, the 
best pursuing individuals in the population can 
capture the evader in a larger fraction of the 
fitness cases and within a shorter amount of time.  
Typically, these partially effective pursuers are 
effective in some identifiable fraction of the plane 
or at some identifiable range of distances, but 
ineffective in other parts of the plane or at other 
distances.  

In one run, the population improved to the 
point where the best-of-generation individual 
from generation 11 was able to capture the evader 
in 20 of the 20 fitness cases; however, its time 
was 196% of the optimal time.   

Then, after an additional 37 generations, a 
pursuer strategy emerged in generation 48 that 
resulted in the capture of the evader for all 20 of 
the fitness cases in 100.61% of optimal time.  
This best-of-run S-expression is shown below: 
(% (+ (IFLTZ (* X 0.6370001) (+ X X) (IFLTZ -
0.674 Y Y)) (IFLTZ X (+ X Y) (* (IFLTZ (* X 
0.6370001) (IFLTZ (* X X) (- X (EXP (- (% Y 
Y) (IFLTZ (EXP (* Y Y)) (* (- X 0.12900007) -
0.029999971) (+ -0.796 X))))) Y) (IFLTZ (EXP 
(- (% (IFLTZ (* X 0.6370001) (+ X X) (- Y 
0.12900007)) (- -0.992 Y)) (IFLTZ (IFLTZ Y Y 
X) Y X))) (+ (% Y Y) (IFLTZ X (+ X Y) (+ 
(IFLTZ (* X 0.6370001) (* Y Y) 0.018000007) 
(IFLTZ X (+ X Y) (% (IFLTZ Y Y X) (+ -0.617 
X)))))) Y)) -0.029999971))) (- X (* (% (* 
(IFLTZ (* X 0.6370001) (+ X X) (IFLTZ (* X X) 
(- X (EXP (- (% Y Y) (* X X)))) Y)) (- Y (- X 
(% Y 0.8460001)))) X) -0.029999971))). 

This best-of-run S-expression closely matches 
the desired Arctangent behavior.  A near-optimal 
evader has been similarly evolved using an 
optimal pursuer (i.e., the Arctangent strategy). 

We can  measure the performance of a 
probabilistic algorithm by estimating the expected 
number of individuals that need to be processed 
by the algorithm in order to produce a solution to 
the given problem with a certain probability (say 
99%).  Suppose, for example, a particular run of a 
genetic algorithm produces the desired result with 
only a probability of success ps after a specified 
choice (perhaps arbitrary and non-optimal) of 
number of generations Ngen and population of 
size N. Suppose also that we are seeking to 

achieve the desired result with a probability of, 
say,  z = 1 - ε= 99%. Then, the number K of 
independent runs required is  

K = 
log (1-z)
log (1-ps)  = 

log ε
log (1-ps) , where  ε= 1-z.  

For example, we ran 111 runs of the 
differential pursuer-evader game problem with a 
population of 500 pursuers and found that the 
probability of success ps, after 51 generations, 
was 55%  (see graph below). With a probability of 
success ps of 55%,  K = 6 independent runs are 
required to assure a 99% probability of solving 
the problem on at least one of the runs. That is, it 
is sufficient to process 153,000 individuals to 
achieve the desired 99% probability of solving the 
problem.  
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Figure 4  Probability of success ps by generation. 

6 CO-EVOLUTION OF A GAME 
PLAYING STRATEGY 

In the previous section, we genetically bred the 
strategy for one player in a game by testing each 
individual in the evolving population of strategies 
against the minimax strategy for the opposing 
player or against an exhaustive set of 
combinations of choices by the opposing player.  
However, in game theory and in practice, one 
almost never has a priori access to a minimax 
strategy for the opposing player or the ability to 
perform an exhaustive test.  Since exhaustive 
testing is practical only for very small games, one 
faces a situation where genetically breeding a 
minimax strategy for one player requires already 
having the minimax strategy for the other player.  
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Players of checkers or chess know that it is 
difficult for a new player to learn to play well if 
he does not have the advantage of playing against 
a reasonably competent player. 

The evolutionary process in nature is often 
described as if one population of individuals is 
alone in adapting to a fixed environment; 
however, this description is only a first order 
approximation to the actual situation.  The 
environment actually consists of both the physical 
environment (which may be relatively 
unchanging) and other independently acting 
biological populations of individuals which are si-
multaneously actively adapting to their 
environment.  The actions of each of these other 
independently acting biological populations 
(species) usually affect all the other coexisting 
species. In other words, the environment of a 
given species includes all the other species that 
contemporaneously occupy the physical 
environment and which are simultaneously trying 
to survive. In biology, the term “co-evolution” is 
sometimes used to reflect the fact that all species 
are simultaneously co-evolving in a given 
physical environment. 

A biological example presented by Holland 
(1990) illustrates the point.  A given species of 
plant may be faced with an environment 
containing insects that like to eat it. To defend 
against its predators (and increase its probability 
of survival in the environment), the plant may, 
over a period of time, evolve a tough exterior that 
makes it difficult for the insect to eat it.  But, as 
time passes, the insect may retaliate by evolving a 
stronger jaw so that the insect population can 
continue to feed on the plant (and increase its 
probability of survival in the environment). Then, 
over an additional period of time, the plant may 
evolve a poison to help defend itself further 
against the insects.  The insect may subsequently 
evolve a digestive enzyme that negates the effect 
of the poison so that the insect population can 
continue to feed on the plant.  

In effect, both the plant and the insects get 
better and better at their respective defensive and 
offensive roles in this “biological arms race.” 
Each species changes in response to the actions of 
the other (Dawkins 1987). 

In the basic genetic algorithm described by 

Holland (1975), a population of individuals 
attempts to adapt to a fixed environment. The 
individuals in the population are fixed-length 
character strings (typically binary strings) that are 
encoded to represent the problem in some way.  In 
the basic genetic algorithm, the performance of 
the individuals in the population is measured 
using a fitness measure which is, in effect, the 
environment for the population.  Over a period of 
many generations, the genetic algorithm causes 
the individuals in the population to adapt in a 
direction that is dictated by the fitness measure 
(that is, the environment). 

In his ECHO system, Holland (1990, 1992) 
used co-evolution along with a conventional ge-
netic algorithm for exploring the co-evolution of 
artificial organisms in a “miniature world.”  Each 
of the diverse artificial organisms is described by 
a character string (chromosome).  The 
environment of each organism includes all other 
organisms. 

John Miller (1988, 1989) used co-evolution 
along with a genetic algorithm to evolve a finite-
state automaton as the strategy for playing the 
repeated prisoner’s dilemma game.  Miller used a 
fixed-length character string of 148 binary digits 
to represent a finite automaton with 16 states.  
Each automaton, in turn, represented a complete 
strategy by which to play the game.  That is, the 
automaton specified what move the player was to 
make for any sequence of previous moves by both 
players in the game.  Miller then used co-
evolution to evolve strategies.   

Miller’s co-evolutionary approach to the 
repeated prisoner’s dilemma using the 
conventional genetic algorithm contrasts with 
Axelrod’s evolutionary approach (1987) to the 
repeated prisoner’s dilemma using the 
conventional genetic algorithm.  Axelrod 
measured the performance of a particular strategy 
by playing it against a fixed suite of eight superior 
opposing computer programs which he had 
selected from those entered into an international 
programming tournament for the repeated 
prisoner’s dilemma game.  In Axelrod's work, 
fitness was a weighted mix of the results of 
playing the eight selected opposing computer 
programs.  In other words, the eight selected 
computer programs served as the environment for 
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evolving Alexrod's fixed-length character strings. 
John Maynard Smith (1989) discussed co-

evolution in connection with discovering 
strategies for games, but without using genetic 
algorithms.  See also Hillis (1990). 

In co-evolution, there are two (or more) 
populations of individuals.  The environment for 
the first population consists of the second 
population.  And, conversely, the environment for 
the second population consists of the first 
population.  

The co-evolutionary process typically starts 
with both populations being highly unfit (when 
measured by an absolute fitness measure).  Then, 
the first population tries to adapt to the 
environment consisting of the second population.  
Simultaneously, the second population tries to 
adapt to the environment consisting of the first 
population. 

This process is carried out by testing the 
performance of each individual in the first 
population against each individual (or a sampling 
of individuals) from the second population.  The 
average performance observed is called the 
relative fitness of that individual, because it 
represents the performance of that individual 
relative to the environment consisting of the entire 
second population. Then, each individual in the 
second population is tested against each 
individual (or a sampling of individuals) from the 
first population.   Relative fitness comes from the 
actual testing of individuals against some or all of 
the individuals in an opposing population.  

Note that this measurement of relative fitness 
for an individual in co-evolution is not an 
absolute measure of fitness against an optimal 
opponent, but merely a relative measure when the 
individual is tested against the current opposing 
population.  If one population contains boxers 
who throw only left punches, then an individual 
whose defensive repertoire contains only of 
defenses against left punches will have high 
relative fitness.  But this individual would have 
low absolute fitness when tested against any 
opponent who knows how to throw both left 
punches and right punches.  

Even when both initial populations are highly 
unfit (relatively and absolutely), the virtually 

inevitable variation of the initial random popula-
tion will mean that some individuals have slightly 
better relative fitness than others.  That means that 
some individuals in each population have 
somewhat better performance than others in 
dealing with the current opposing population.  

The operations of crossover and reproduction 
(based on the Darwinian principle of survival and 
reproduction of the fittest) can then be separately 
applied to each population using the relative 
fitness of each individual in each separate 
population.   

Over a period of time, both populations of 
individuals will tend to co-evolve and to rise to 
higher levels of performance as measured in terms 
of absolute fitness. Both populations do this 
without the aid of any externally supplied 
measure of absolute fitness serving as the 
environment. In the limiting case, both 
populations of individuals may evolve to a level 
of performance that equals the absolute optimal 
fitness. There is, of course, no guarantee that 
either population will co-evolve to absolute 
optimal fitness.  Co-evolution is a self-organizing, 
mutually bootstrapping process that is driven only 
by relative fitness (and not by absolute fitness).  

We now illustrate co-evolution by means of 
genetic programming to simultaneously discover 
minimax strategies for both players in the same 
discrete two-person 32-outcome game represented 
by the game tree in extensive form shown in 
figure 1.   

In co-evolution, we cannot proceed as we did 
in the previous chapter.   We do not have access 
to the minimax opponent to train the population, 
as we did with the differential pursuer-evader 
game nor do we have the ability to exhaustively 
test each possible combination of choices by the 
opposing player as we did with the 32-outcome 
discrete game.  Instead, we must breed both pop-
ulations of players simultaneously.  That is, we 
must simultaneously co-evolve strategies for both 
players. 

Both populations start as random 
compositions of the same functions and terminals 
used in the 32-outcome discrete game.   

In co-evolution, the relative fitness of a 
particular strategy in a particular population is the 
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average of the payoffs that the strategy receives 
when it is played against fitness cases consisting 
of each strategy in the opposing population of 
strategies.  Note that the particular strategy is 
played only once against each strategy in the 
opposing population.  When a particular strategy 
from the first population is tested against a 
particular strategy from the opposing population, 
the outcome is completely determined because, by 
definition, a strategy specifies a choice for all 
possible situations.  Note that we use the average 
payoff, rather than the sum of the payoffs, for this 
particular problem because we envision sampling 
for larger problems of this type.  

In co-evolution, raw fitness is relative fitness.   
Since raw fitness is defined here in terms of 
averages, the maximum is 32. 

The standardized fitness of an individual 
strategy is the maximum possible value of raw 
fitness minus the raw fitness for that strategy.   

The absolute fitness of a strategy is used 
solely for monitoring and descriptive purposes 
and plays no role in the actual co-evolutionary 
process.  The absolute fitness of a particular 
strategy for a particular player in a game is the 
payoff received when that strategy is played 
against the minimax strategy for the opponent.  A 
minimax strategy takes advantage of non-
minimax play by the other player.  Note that this 
testing of four or eight combinations does not 
occur in the computation for relative fitness (i.e., 
raw fitness).   

Hits are the number of fitness cases for which 
the payoff to an individual strategy equals or 
exceeds the value of the game (i.e., the result of 
playing two minimax strategies against each 
other).   

When the two minimax strategies are played 
against each other, the payoff is the value of this 
game (i.e., 12 for this game).    

In one run involving co-evolution, the 
individual strategy for player X in generation 0 
with the best relative fitness was 
(COM1 L (COM2 (CXM1 (CXM2 R (CXM2 R R R) 
(CXM2 R L R)) L (CXM2 L R (COM2 R R R))) 
(COM1 R (COM2 (CXM2 L R L) (COM2 R L L) R) 
(COM2 (COM1 R R L) (CXM1 R L R) (CXM1 R L 
L))) (CXM1 (COM2 (CXM1 R L L) (CXM2 R R L) R) 
R (COM2 L R (CXM1 L L L)))) R). 

This simplifies to 
(COM1 L (COM2 L L R) R). 

This individual has relative fitness of 10.08. 
The individual in the initial random 

population for player O with the best relative 
fitness was an equally complex expression.  It 
simplifies to 
(CXM2 R (CXM1 $ L R) (CXM1 $ R L)), 

where $ denotes a portion of an S-expression 
which is inaccessible by virtue of unsatisfiable 
conditions.  This individual has relative fitness of 
7.57.  

Neither the best X individual nor the best O 
individual from generation 0 reached maximal 
absolute fitness. 

Note that the values of relative fitness for the 
relative best X individual and the relative best O 
individual from generation 0 (i.e., 10.08 and the 
7.57) are each computed by averaging the payoff 
from the interaction of the individual involved 
with all 300 individual strategies in the current 
opposing population.  

In generation 1, the individual strategy for 
player X with the best relative fitness had relative 
fitness of 11.28.  This individual X strategy is still 
not a minimax strategy.  It does not have the 
maximal absolute fitness.  

In generation 1, the best individual O strategy, 
(CXM2 (CXM1 R R L) (CXM2 L L (CXM2 R L R)) 
R), 

attained  relative fitness of 7.18.  This O strategy 
simplifies to  
(CXM2 (CXM1 $ R L) L R). 

This best-of-generation individual O strategy 
from generation 1 is, in fact, a minimax strategy 
for player O.  If it were played against the 
minimax X strategy, it would score 12 (i.e., the 
value of the game).  This one O individual was 
the first such O individual to attain this level of 
performance during this run.  In co-evolution, the 
algorithm does not know that this individual is a 
minimax strategy for player O.  The run merely 
continues. 

Figure 5 graphically depicts the best-of-
generation S-expression for player O from 
generation 1. 
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Figure 5  Minimax O strategy from generation 1. 

Between generations 2 and 14, the number of 
individuals in the O population equivalent to the 
minimax O strategy was 2, 7, 17, 28, 35, 40, 50, 
64, 73, 83, 93, 98, and 107, respectively.  That is, 
programs equivalent to the minimax O strategy 
began to dominate the O population. 

In generation 14, the individual strategy for 
player X with the best relative fitness had a 
relative fitness of 18.11. This individual  X 
strategy was 
(COM2 (COM1 L L (CXM1 R R R)) 
      L 
      (CXM1 (COM1 L L (CXM1 R R R)) 
            (CXM2 L R R) R)). 

This X strategy simplifies to 
(COM2 (COM1 L L R) L R). 

Although the algorithm does not know it, this 
best-of-generation individual X strategy from 
generation 14 is, in fact, a minimax strategy for 
player X.  If it were played against the minimax O 
strategy, it would score 12 (i.e., the value of the 
game). 

Between generations 15 and 29, the number of 
individuals in the X population equivalent to the 
minimax X strategy was 3, 4, 8, 11, 10, 9, 13, 21, 
24, 29, 43, 32, 52, 48, and 50, respectively.  That 
is, programs equivalent to the minimax X strategy 
began to dominate the X population.  Meanwhile, 
the O population became even more dominated by 
programs equivalent to the O minimax strategy. 

By generation 38, the number of O individuals 
in the population reaching maximal absolute 
fitness reached 188 (almost two thirds of the 
population) and the number of X individuals 
reaching maximal absolute fitness reached 74 
(about a quarter).  That is, by generation 38, the 
minimax strategies for both players were 
becoming dominant.  

Interestingly, these 74 individual X strategies 
had relative fitness of 19.11 and the 188 

individual O strategies had relative fitness of 
10.47.  Neither of these values equals 12, because 
the other population is not fully converged to its 
minimax strategy.  

In summary, we have seen the discovery, via 
co-evolution, of the minimax strategies for both 
players in the 32-outcome discrete game.  This 
mutually bootstrapping process found the 
minimax strategies for both players without using 
knowledge of the minimax strategy (i.e., any a 
priori knowledge of the game) for either player. 

7 CONCLUSIONS 

We used the genetic programming paradigm to 
breed a minimax strategy minimax strategy for a 
discrete game in extensive form and for a dif-
ferential game of simple pursuit. We then 
simultaneously bred an optimal game-playing 
strategy for both players of a discrete game in 
extensive form using co-evolution. In co-
evolution, two populations are simultaneously co-
evolved wherein each population serves as the 
environment to guide the evolution of the other 
population. 
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