
1

Presented July 15, 1992 to the International Conference on Game Theory and Its Applications held
at Stony Brook, New York.

GENETIC EVOLUTION AND CO-EVOLUTION OF GAME STRATEGIES

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305 USA

 Koza@Sunburn.Stanford.Edu
 415-941-0336

ABSTRACT
The problem of discovering a strategy for

playing a game can be viewed as requiring
discovery of a computer program. This paper
describes the recently developed "genetic
programming" paradigm which genetically
breeds populations of hierarchical computer
programs to solve problems. The computer
programs are evolved using the Darwinian
principle of survival of the fittest and the
genetic operation of sexual recombination.

1 INTRODUCTION AND OVERVIEW

The problem of discovering a strategy for playing
a game is an important problem in game theory.
This problem can be viewed as requiring
discovery of a computer program. The desired
computer program takes either the entire history
of past moves in the game or the current state of
the game as its input and produces the next move
as its output.

This paper describes the recently developed
"genetic programming" paradigm which
genetically breeds populations of computer
programs to solve problems. In genetic pro-
gramming, the individuals in the population are
independently acting hierarchical compositions of
functions and arguments of various sizes and
shapes. Each of these individual computer
programs is evaluated for its fitness in handling
the problem environment. A simulated
evolutionary process driven by this measure of
fitness then uses the Darwinian principle of
reproduction and survival of the fittest and the
genetic operation of crossover (sexual
recombination) to solve the problem.

The genetic programming paradigm can also
operate simultaneously on two (or more) popu-

lations of programs. In such "co-evolution," each
population acts as the environment for the other
population. In particular, each individual of the
first population is evaluated for “relative fitness”
by testing it against each individual in the second
population, and, simultaneously, each individual
in the second population is evaluated for “relative
fitness” by testing it against each individual in the
first population. Over a period of many
generations, individuals with high "absolute
fitness" may evolve as the two populations
mutually bootstrap each other to increasingly high
levels of fitness.

In this paper, the genetic programming
paradigm is illustrated with three different
problems from game theory.

• The first problem involves genetically
breeding a population of computer programs to
find an optimal strategy for a player of a discrete
two-person 32-outcome game represented by a
game tree in extensive form. In this problem, the
entire history of past moves of both players is
used as input to the computer program.

• The second problem involves genetically
breeding a minimax control strategy in a
differential game with an independently-acting
pursuer and evader. In this problem, the state of
the game is used as input to the computer
program.

• The third problem illustrates the "co-
evolution" and involves genetically breeding an
optimal strategy for a player of a discrete two-
person 32-outcome game represented by a game
tree in extensive form.

2 BACKGROUND ON GENETIC
ALGORITHMS

Genetic algorithms are highly parallel

2

mathematical algorithms that transform
populations of individual mathematical objects
(typically fixed-length binary character strings)
into new populations using operations patterned
after natural genetic operations such as sexual
recombination (crossover) and fitness pro-
portionate reproduction (Darwinian survival of
the fittest).

Genetic algorithms begin with an initial
population of individuals (typically randomly
generated) and then iteratively (1) evaluate the
individuals in the population for fitness with
respect to the problem environment and (2) per-
form genetic operations on various individuals in
the population to produce a new population.

John Holland's pioneering 1975 Adaptation in
Natural and Artificial Systems described how the
evolutionary process in nature can be applied to
artificial systems using the genetic algorithm
operating on fixed length character strings
(Holland 1975). Holland demonstrated that a
population of fixed length character strings (each
representing a proposed solution to a problem)
can be genetically bred using the Darwinian
operation of fitness proportionate reproduction
and the genetic operation of recombination. The
recombination operation combines parts of two
chromosome-like fixed length character strings,
each selected on the basis of their fitness, to
produce new offspring strings. Holland
established, among other things, that the genetic
algorithm is a mathematically near optimal
approach to adaptation in that it maximizes
expected overall average payoff when the
adaptive process is viewed as a multi-armed slot
machine problem requiring an optimal allocation
of future trials given currently available informa-
tion.

Recent work in genetic algorithms and genetic
classifier systems can be surveyed in Goldberg
(1989), Davis (1987), and Schaffer (1989).

3 BACKGROUND ON GENETIC
PROGRAMMING
Representation is a key issue in genetic

algorithm work because genetic algorithms
directly manipulate the coded representation of
the problem and because the representation
scheme can severely limit the window by which

the system observes its world. Fixed length
character strings present difficulties for some
problems — particularly problems where the
desired solution is hierarchical and where the size
and shape of the solution is unknown in advance.
The need for more powerful representations has
been recognized for some time (De Jong 1985,
1988).

The structure of the individual mathematical
objects that are manipulated by the genetic
algorithm can be more complex than the fixed
length character strings first described by Holland
(1975) in 1975. Steven Smith (1980) departed
from the early fixed-length character strings by
introducing variable length strings, specifically,
strings whose elements were if-then rules, rather
than single characters. Holland's introduction of
the genetic classifier system (1986) continued the
trend towards increasing the complexity of the
structures undergoing adaptation. The classifier
system is a cognitive architecture containing a
population of string-based if-then rules (whose
condition and action parts are fixed length binary
strings) which can be modified by the genetic
algorithm.

The recently developed genetic programming
paradigm further continues the above trend
towards increasing the complexity of the
structures undergoing adaptation. In the genetic
programming paradigm, the individuals in the
population are hierarchical compositions of
functions and terminals appropriate to the
particular problem domain. The hierarchies are of
various sizes and shapes. The set of functions
typically includes arithmetic operations,
mathematical functions, conditional logical opera-
tions, and domain-specific functions. Each
function in the function set should be well defined
for any element in the range of every other
function in the set. The set of terminals used
typically includes inputs (sensors) appropriate to
the problem domain and various constants. The
search space is the hyperspace of all possible
compositions of functions and terminals that can
be recursively composed of the available func-
tions and terminals. The symbolic expressions (S-
expressions) of the LISP programming language
are an especially convenient way to create and
manipulate the compositions of functions and

3

terminals described above. These S-expressions in
LISP correspond directly to the "parse tree" that is
internally created by most compilers.

The basic genetic operations for the genetic
programming paradigm are fitness based
reproduction and crossover (recombination).

Fitness proportionate reproduction is the basic
engine of Darwinian reproduction and survival of
the fittest. It copies individuals with probability
proportionate to fitness from one generation of the
population into the next generation. In this
respect, it operates for the genetic programming
paradigm in the same way as it does for
conventional genetic algorithms. The crossover
operation for the genetic programming paradigm
is a sexual operation that operates on two parental
LISP S-expressions and produces two offspring S-
expressions using parts of each parent. Typically
the two parents are hierarchical compositions of
functions of different size and shape. In particular,
the crossover operation starts by selecting a
random crossover point in each parent and then
creates two new offspring S-expressions by
exchanging the sub-trees (i.e. sub-lists) between
the two parents. Because entire sub-trees are
swapped, this genetic crossover (recombination)
operation produces syntactically and semantically
valid LISP S-expressions as offspring regardless
of which point is selected in either parent.

For example, consider the parental LISP S-
expression:
(OR (NOT D1) (AND D0 D1))

And, consider the second parental S-
expression below:
(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two LISP S-expressions can be depicted
graphically as rooted, point-labeled trees with
ordered branches. Assume that the points of both
trees are numbered in a depth-first way starting at
the left. Suppose that the second point (out of 6
points of the first parent) is randomly selected as
the crossover point for the first parent and that the
sixth point (out of 10 points of the second parent)
is randomly selected as the crossover point of the
second parent. The crossover points are therefore
the NOT in the first parent and the AND in the
second parent.

The two parental LISP S-expressions are

shown below:

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1

 The two crossover fragments are two sub-
trees shown below:

NOT

D1

AND

NOT NOT

D0 D1

These two crossover fragments correspond to
the bold, underlined sub-expressions (sub-lists) in
the two parental LISP S-expressions shown
above. The two offspring resulting from crossover
are shown below.

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Note that the first offspring above is a perfect
solution for the exclusive-or function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

Details can be found in Koza (1990a, 1992a,
1992b).

We have shown that entire computer programs
can be genetically bred to solve problems in a
variety of different areas of artificial intelligence,
machine learning, and symbolic processing (1989,
1990a, 1992a, 1992b). In particular, this new
paradigm has been successfully applied to
example problems in several different areas,
including
• automatic programming (e.g. discovering a

4

computational procedure for solving pairs of
linear equations, solving quadratic equations
for complex roots, and discovering
trigonometric identities),

• empirical discovery (e.g. rediscovering
Kepler's Third Law, rediscovering the well-
known econometric "exchange equation" MV
= PQ from actual noisy time series data for the
money supply, the velocity of money, the
price level, and the gross national product of
an economy), (Koza 1990b),

• planning (e.g. navigating an artificial ant
along an irregular trail, developing a robotic
action sequence that can stack an arbitrary
initial configuration of blocks into a specified
order),

• machine learning of functions (e.g. learning
the Boolean 11-multiplexer function),

• sequence induction (e.g. inducing a recursive
computational procedure for generating
sequences such as the Fibonacci and the
Hofstadter sequences),

• symbolic "data to function" regression, sym-
bolic "data to function" integration, and
symbolic "data to function" differentiation,
and

• symbolic solution to functional equations
(including differential equations with initial
conditions, integral equations, and general
functional equations).
The genetic programming paradigm permits

the evolution of computer programs which can

perform alternative computations conditioned on
the outcome of intermediate calculations, which
can perform computations on variables of many
different types, which can perform iterations and
recursions to achieve the desired result, which can
define and subsequently use computed values and
sub-programs, and whose size, shape, and
complexity is not specified in advance.

4 MINIMAX STRATEGY FOR A SIMPLE
DISCRETE GAME
As a first illustration of the genetic

programming paradigm, consider the discrete
game whose game tree is presented in extensive
form in Figure 1.

This game is a two-person, competitive, zero-
sum game in which the players make alternating
moves. On each move, a player can choose to go
L (left) or R (right). Each internal point of this
tree is labeled with the player who must move.
Each line is labeled with the choice (either L or R)
made by the moving player. Each endpoint of the
tree is labeled with the payoff (to player X). After
player X has made three moves and player O has
made two moves, player X receives (and player O
pays out) the particular payoff shown at the
particular endpoint of the game tree.

Since this 32-outcome discrete game is a

game of complete information, each player has
access to complete information about his

L R

R

R

L

L

L

L

L L L RRR

R

X

O O O O

X X

O

3132 15 16 7 8 24 23 3 4 20 19 28 27 11 12 21 18 17 26 25 9 10 30 29 13 14 5 6 22 21

L R

R

R

R

L

L

L

L L L RRR

R

O O O O

X X

O

X

L R

12

10

14

6

22302618

2

4

4

20832

12

12

12

12

16

16

16

8

24

10

10

102

14

14 628

Figure 1 Game Tree with Payoffs

5

opponent's previous moves and his own previous
moves. This information is contained in four
variables XM1 (X's move 1), OM1 (O's move 1),
XM2 (X's move 2), and OM2 (O's move 2). These
variables each assume one of three possible
values: L (left), R (right), or U (undefined). A
variable is undefined (U) prior to the time when
the move to which it refers has been made. Thus,
at the beginning of the game, all four variables are
undefined. The particular variables that are
defined and undefined at a particular time can be
used to indicate the point to which play has
progressed in the game. For example, if both
players have moved once, XM1 and OM1 are
both defined (each being either L or R) but the
other two variables (XM2, and OM2) are still
undefined (i.e., have the value U).

A strategy for a particular player in a game
specifies which choice that player is to make for
every possible situation that may arise for that
player. For this particular game, a strategy for
player X must specify his first move if the game is
just beginning. Second, a strategy for player X
must specify his second move if player O has
already made exactly one move. Third, a strategy
for player X must specify his third move if player
O has already made exactly two moves.

Since player X moves first, his first move is
not conditioned on any previous move. But
player X's second move will depend on player O's
first move (i.e., OM1), and in general it will also
depend on his own first move (XM1). Similarly,
player X's third move will depend on player O's
first two moves and, in general, his own first two
moves.

Similarly, a strategy for player O must specify
what choice player O is to make for every
possible situation that may arise for player O.

A strategy is a computer program whose
inputs are the relevant historical variables (XM1,
OM1, XM2, and OM2) and whose output is a
move (L or R) for the player involved.

The testing functions CXM1, COM1, CXM2,
and COM2 provide the ability to test each
historical variable (XM1, OM1, XM2, and OM2)
that is relevant to deciding a player's move. Each
of these functions is a specialized form of the
CASE function in LISP. In particular, for

example, the function CXM1 has three arguments.
It evaluates its first argument if XM1 (X's move
1) is undefined; it evaluates its second argument if
XM1 is L (Left); and it evaluates its third ar-
gument if XM1 is R (Right). The functions
CXM2, COM1, and COM2 are similarly defined.

The terminal set for this problem is

T = {L, R}.

The function set for this problem is

F = {CXM1, COM1, CXM2, COM2},

each taking three arguments.
A typical S-expression for this problem

therefore consists of a composition of the four
testing functions just described and the two
terminals L or R. The value returned by such an
S-expression at a given time during the play of the
game is the terminal (L or R) found at the
endpoint of the tree that is reached by virtue of the
actual moves that have been made in the game at
that time.

The raw fitness of a particular strategy for a
particular player is the sum of the payoffs
received when that strategy is played against all
possible sequences of combinations of moves by
the opposing player. Note that the two players of
this particular game make different numbers of
moves.

Thus, when we compute the fitness of an X
strategy, we must test the X strategy against all
four possible combinations of O moves, namely O
choosing L or R for moves 1 and 2. Similarly,
when we compute the fitness of an O strategy, we
must test it against all eight possible combinations
of X moves, namely X choosing L or R for moves
1, 2, and 3.

When two minimax strategies are played
against each other, the payoff is the value of this
game (i.e., 12 for this particular game). A
minimax strategy takes advantage of non-
minimax play by the other player.

A hit for this problem is the number of fitness
cases (out of four for player X or eight for player
O) where the strategy being tested achieves a
payoff at least as good as that achieved by the

6

minimax strategy.
We now proceed to evolve a game playing

strategy for player X for this game.
In one run, the best-of-generation individual

game playing strategy for player X in generation 6
had a raw fitness of 88 and scored four hits:
(COM2 (COM1 (COM1 L (CXM2 R (COM2 L L L)
 (CXM1 L R L))
 (CXM1 L L R)) L R)
 L (COM1 L R R)).

This strategy for player X simplifies to
(COM2 (COM1 L L R) L R).

Note that this strategy for player X is a
composition of the four functions (CXM1, COM1,
CXM2, COM2) and two terminals (L and R) and
that it returns a value of either L or R.

The interpretation of this best-of-run strategy
for player X is as follows. If both OM2 (O's move
2) and OM1 (O's move 1) are undefined (U), it
must be player X's first move. That is, we are at
the beginning of the game (i.e., the root of the
game tree). In this situation, the first argument of
the COM1 function embedded inside the COM2
function of this strategy specifies that player X is
to move L. The left move by player X at the
beginning of the game is player X's minimax
move because it takes the game to a point with a
minimax value of 12 (to player X) rather than to a
point with a minimax value of only 10.

If OM2 (O's move 2) is undefined but OM1 is
defined, it must be player X's second move. In
this situation, this best-of-run strategy specifies
that player X moves L if OM1 (O's move 1) was L
and player X moves R if OM1 was R. If OM1 (O's
move 1) was L, player O has moved to a point
with a minimax value of 16. Player X should then
move L (rather than R) because that move will
take the game to a point with a minimax value of
16 (rather than 8). If OM1 was R, player O has
moved to a point with minimax value 12. This
move is better for O than moving L. Player X
should then move R (rather than L) because that
move will take the game to a point with a
minimax value of 12 (rather than 4).

If both OM1 and OM2 are defined, it must be
player X's third move. If OM2 was L, player X
can either choose between a payoff of 32 or 31 or
between a payoff of 28 or 27. In either case,
player X moves L. If OM2 was R, player X can

choose between a payoff of 15 or 16 or between a
payoff of 11 or 12. In either case, player X moves
R. In this situation, this best-of-run S-expression
specifies that player X moves L if OM2 (O's move
2) was L and player X moves R if OM2 was R.

If player O has been playing his minimax
strategy, this best-of-run S-expression for player
X will cause the game to finish at the endpoint
with the payoff of 12 to player X. However, if
player O was not playing his minimax strategy,
this strategy will cause the game to finish with a
payoff of 32, 16, or 28 for player X. The total of
12, 32, 16, and 28 is 88. The attainment of these
four values for player X (each at least as good as
the minimax value of 12) constitutes four hits for
player X.

We used a similar method to evolve a game
playing strategy for player O for this game.

In one run, the best-of-generation individual
strategy for player O in generation 9 had a raw
fitness of 52 and scored eight hits and was, in fact,
the minimax strategy for player O:
(CXM2 (CXM1 L (COM1 R L L) L) (COM1 R L (CXM2
L L R))
 (COM1 L R (CXM2 R (COM1 L L R) (COM1 R
L R)))).

This strategy for player O simplifies to
(CXM2 (CXM1 $ R L) L R),

where the $ denotes a portion of an S-expression
that is inaccessible by virtue of unsatisfiable
conditions.

5 DIFFERENTIAL PURSUIT GAME

As a second illustration of genetic programming
involving games, consider a differential pursuer-
evader game. In particular, consider the "game of
simple pursuit" described in Isaacs' Differential
Games (1965) in which the goal is to find a
minimax strategy for one player when playing
against a minimax opponent.

This differential pursuer-evader game is a
two-person, competitive, zero-sum, simultaneous-
move, complete-information game in which a fast
pursuing player P is trying to capture a slower
evading player E. The choice available to a
player at a given moment consists of choosing a
direction (angle) in which to travel. In this game,
the players may travel anywhere in a plane and

7

both players may instantaneously change direc-
tion without restriction. Each player travels at a
constant speed, and the pursuing player’s speed
wp (1.0) is greater than the evading player’s speed
we (0.67).

The state variables of the game are xp, yp, xe,
and ye representing the coordinate positions (xp,
yp) and (xe, ye) of the pursuer P and evader E in
the plane.

Figure 2 shows the pursuer and the evader. At
each time step, both players know the positions
(state variables) of both players. The choice for
each player is to select a value of his control
variable (i.e., the angular direction in which to
travel). The pursuer’s control variable is the
angle φ (from 0 to 2π radians), and the evader’s
control variable is the angle ψ. The players
choose their respective control variables
simultaneously. In the figure, the evader's
angle ψ is shown equal to the pursuer's angle φ .

(0, 0)

P Φ
X

Y

(X, Y)
E Ψ

Figure 2 Pursuer P and Evader E.

The analysis of this game can be simplified by

reducing the number of state variables from four
to two (Isaacs 1965). This state reduction is
accomplished by simply viewing the pursuer P as
being at the origin point (0,0) of a new coordinate
system at all times and then viewing the evader E
as being at position (x, y) in this new coordinate
system. The two numbers x and y representing

the position (x, y) of the evader E thus become the
two reduced state variables of the game.
Whenever the pursuer P travels in a particular di-
rection, the coordinate system is immediately
adjusted so that the pursuer is repositioned to the
origin (0, 0). The position (x, y) of the evader is
then adjusted to reflect the travel of the pursuer.

The state-transition equations for the evader E
are

x(t + 1) = x(t) + weCos ψ – wpCos φ
y(t + 1) = y(t) + weSin ψ – wpSin φ.

We use a set of 20 fitness cases consisting of
random initial condition positions (xi, yi) for the
evader. Each initial condition value of xi and yi
lies between –5.0 and +5.0. We regard the
pursuer as having captured the evader when the
pursuer gets to within a small capture radius ε =
0.5 of the evader.

The payoff for a given player is measured by
time. The payoff for the pursuer P is the total time
it takes to capture the evader E over all the initial
condition cases (i.e., fitness cases). The pursuer
tries to minimize the time to capture. The payoff
for the evader is the total time of survival for E.
The evader tries to maximize this time of survival.

A maximum allowed time of 100 time steps is
established so that if a particular pursuer strategy
has not made the capture within that amount of
time, that maximum time becomes the payoff for
that particular fitness case and that particular
strategy.

The problem is to find the strategy for
choosing the control variable of the pursuer so as
to minimize the total time to capture for any set of
fitness cases when playing against an optimal
evader.

For this game, the best strategy for the pursuer
P at any given time step is to chase the evader E
in the direction of the straight line currently
connecting the pursuer to the evader. And, for this
game, the best strategy for the evader E is to race
away from the pursuer in the direction of the
straight line connecting the pursuer to the evader.

In comparison, the worst strategy for the
pursuer P is to avoid the evader E by racing away
from the evader in the direction precisely opposite
to the straight line currently connecting the

8

pursuer to the evader. The worst strategy for the
evader E is to race toward the pursuer P along this
same straight line.

If the evader chooses some action other than
the strategy of racing away from the pursuer in
the direction of the straight line connecting the
pursuer to the evader (as shown in figure 3), the
evader will survive for less time than if he follows
his best strategy. If the evader initially chooses a
suboptimal direction and then belatedly chooses
the optimal direction, his time of survival is still
less than if he had chosen the optimal direction
from the beginning.

P Φ

(0, 0) X

Y

E
(X, Y)

Ψ

Figure 3 Evader E choosing a suboptimal evasion
strategy.

The situation is symmetric in that if the

pursuer does not chase after the evader E along
the straight line, he fails to minimize the time to
capture.

The value of the game is the payoff (time)
such that, no matter what the evader does, the
evader cannot hold out for longer than this
amount of time. If the evader does anything other
than direct fleeing, his survival time is a shorter.
Conversely, no matter what the pursuer does, the
pursuer P cannot capture an optimal evader E in
less than that amount of time. And, if the pursuer
does anything other than direct pursuit, the evader
can remain at large for a longer amount of time.

We start by evolving a minimax pursuer. In
doing this, each individual in the population of

pursuing individuals is tested against one
minimax evader. The optimal evader travels with
the established constant evader speed we in the
angular direction specified by the two argument
Arctangent function (which is able to return an
angle in the correct quadrant since it can examine
the signs of the two arguments).

We later, separately, evolve a minimax
evader. Each individual in the population of
evading individuals is tested against the minimax
pursuer.

The terminal set for this problem consists of
the two state variables X and Y representing the
position of the evader E in the plane in a reduced
coordinate system where the pursuer is always
positioned (or repositioned) at the origin and the
ephemeral random floating-point constant ←
ranging between –1.000 and +1.000 as shown
below:

T = {X, Y, ←}.

The function set for this problem is

F = {+, -, *, %, EXP, IFLTZ}.

Note that we did not include any trigonometric or
inverse trigonometric function in this function set.
Instead, we included the four arithmetic functions,
the exponential function, and the three argument
conditional operation IFLTZ (If Less Than
Zero) for making decisions.

For any given S-expression composed of
functions from this function set and terminals
from this terminal set and any given current
position (x,y) of the pursuer, the S-expression will
evaluate to a number that provides the new
direction of motion, in radians, for the pursuer.

The fitness cases for this problem consist of
20 initial condition points (x,y) in a square whose
opposite corners are (–5.0, –5.0) and (+5.0, +5.0).
The raw fitness for this problem is the average
time to capture for each of the fitness cases. The
shorter the time, the better.

As one progresses from generation to
generation, the population of pursuing individuals
typically improves. In early generations, the best
pursuing individual in the population can capture

9

the evader in only a fraction of the 20 fitness
cases within the allotted time. These individuals
typically do not move in the 100%-efficient
straight line called for by the Arctangent strategy,
but instead follow a leisurely curved nonoptimal
trajectory. Then, after additional generations, the
best pursuing individuals in the population can
capture the evader in a larger fraction of the
fitness cases and within a shorter amount of time.
Typically, these partially effective pursuers are
effective in some identifiable fraction of the plane
or at some identifiable range of distances, but
ineffective in other parts of the plane or at other
distances.

In one run, the population improved to the
point where the best-of-generation individual
from generation 11 was able to capture the evader
in 20 of the 20 fitness cases; however, its time
was 196% of the optimal time.

Then, after an additional 37 generations, a
pursuer strategy emerged in generation 48 that
resulted in the capture of the evader for all 20 of
the fitness cases in 100.61% of optimal time.
This best-of-run S-expression is shown below:
(% (+ (IFLTZ (* X 0.6370001) (+ X X) (IFLTZ -
0.674 Y Y)) (IFLTZ X (+ X Y) (* (IFLTZ (* X
0.6370001) (IFLTZ (* X X) (- X (EXP (- (% Y
Y) (IFLTZ (EXP (* Y Y)) (* (- X 0.12900007) -
0.029999971) (+ -0.796 X))))) Y) (IFLTZ (EXP
(- (% (IFLTZ (* X 0.6370001) (+ X X) (- Y
0.12900007)) (- -0.992 Y)) (IFLTZ (IFLTZ Y Y
X) Y X))) (+ (% Y Y) (IFLTZ X (+ X Y) (+
(IFLTZ (* X 0.6370001) (* Y Y) 0.018000007)
(IFLTZ X (+ X Y) (% (IFLTZ Y Y X) (+ -0.617
X)))))) Y)) -0.029999971))) (- X (* (% (*
(IFLTZ (* X 0.6370001) (+ X X) (IFLTZ (* X X)
(- X (EXP (- (% Y Y) (* X X)))) Y)) (- Y (- X
(% Y 0.8460001)))) X) -0.029999971))).

This best-of-run S-expression closely matches
the desired Arctangent behavior. A near-optimal
evader has been similarly evolved using an
optimal pursuer (i.e., the Arctangent strategy).

We can measure the performance of a
probabilistic algorithm by estimating the expected
number of individuals that need to be processed
by the algorithm in order to produce a solution to
the given problem with a certain probability (say
99%). Suppose, for example, a particular run of a
genetic algorithm produces the desired result with
only a probability of success ps after a specified
choice (perhaps arbitrary and non-optimal) of
number of generations Ngen and population of
size N. Suppose also that we are seeking to

achieve the desired result with a probability of,
say, z = 1 - ε= 99%. Then, the number K of
independent runs required is

K =
log (1-z)
log (1-ps) =

log ε
log (1-ps) , where ε= 1-z.

For example, we ran 111 runs of the
differential pursuer-evader game problem with a
population of 500 pursuers and found that the
probability of success ps, after 51 generations,
was 55% (see graph below). With a probability of
success ps of 55%, K = 6 independent runs are
required to assure a 99% probability of solving
the problem on at least one of the runs. That is, it
is sufficient to process 153,000 individuals to
achieve the desired 99% probability of solving the
problem.

0 25 50
0

25

50

75

100
Game of Pursuit

Generation

Pe
rc

en
t S

uc
ce

ss
fu

lly
 S

ol
ve

d

Figure 4 Probability of success ps by generation.

6 CO-EVOLUTION OF A GAME
PLAYING STRATEGY

In the previous section, we genetically bred the
strategy for one player in a game by testing each
individual in the evolving population of strategies
against the minimax strategy for the opposing
player or against an exhaustive set of
combinations of choices by the opposing player.
However, in game theory and in practice, one
almost never has a priori access to a minimax
strategy for the opposing player or the ability to
perform an exhaustive test. Since exhaustive
testing is practical only for very small games, one
faces a situation where genetically breeding a
minimax strategy for one player requires already
having the minimax strategy for the other player.

10

Players of checkers or chess know that it is
difficult for a new player to learn to play well if
he does not have the advantage of playing against
a reasonably competent player.

The evolutionary process in nature is often
described as if one population of individuals is
alone in adapting to a fixed environment;
however, this description is only a first order
approximation to the actual situation. The
environment actually consists of both the physical
environment (which may be relatively
unchanging) and other independently acting
biological populations of individuals which are si-
multaneously actively adapting to their
environment. The actions of each of these other
independently acting biological populations
(species) usually affect all the other coexisting
species. In other words, the environment of a
given species includes all the other species that
contemporaneously occupy the physical
environment and which are simultaneously trying
to survive. In biology, the term “co-evolution” is
sometimes used to reflect the fact that all species
are simultaneously co-evolving in a given
physical environment.

A biological example presented by Holland
(1990) illustrates the point. A given species of
plant may be faced with an environment
containing insects that like to eat it. To defend
against its predators (and increase its probability
of survival in the environment), the plant may,
over a period of time, evolve a tough exterior that
makes it difficult for the insect to eat it. But, as
time passes, the insect may retaliate by evolving a
stronger jaw so that the insect population can
continue to feed on the plant (and increase its
probability of survival in the environment). Then,
over an additional period of time, the plant may
evolve a poison to help defend itself further
against the insects. The insect may subsequently
evolve a digestive enzyme that negates the effect
of the poison so that the insect population can
continue to feed on the plant.

In effect, both the plant and the insects get
better and better at their respective defensive and
offensive roles in this “biological arms race.”
Each species changes in response to the actions of
the other (Dawkins 1987).

In the basic genetic algorithm described by

Holland (1975), a population of individuals
attempts to adapt to a fixed environment. The
individuals in the population are fixed-length
character strings (typically binary strings) that are
encoded to represent the problem in some way. In
the basic genetic algorithm, the performance of
the individuals in the population is measured
using a fitness measure which is, in effect, the
environment for the population. Over a period of
many generations, the genetic algorithm causes
the individuals in the population to adapt in a
direction that is dictated by the fitness measure
(that is, the environment).

In his ECHO system, Holland (1990, 1992)
used co-evolution along with a conventional ge-
netic algorithm for exploring the co-evolution of
artificial organisms in a “miniature world.” Each
of the diverse artificial organisms is described by
a character string (chromosome). The
environment of each organism includes all other
organisms.

John Miller (1988, 1989) used co-evolution
along with a genetic algorithm to evolve a finite-
state automaton as the strategy for playing the
repeated prisoner’s dilemma game. Miller used a
fixed-length character string of 148 binary digits
to represent a finite automaton with 16 states.
Each automaton, in turn, represented a complete
strategy by which to play the game. That is, the
automaton specified what move the player was to
make for any sequence of previous moves by both
players in the game. Miller then used co-
evolution to evolve strategies.

Miller’s co-evolutionary approach to the
repeated prisoner’s dilemma using the
conventional genetic algorithm contrasts with
Axelrod’s evolutionary approach (1987) to the
repeated prisoner’s dilemma using the
conventional genetic algorithm. Axelrod
measured the performance of a particular strategy
by playing it against a fixed suite of eight superior
opposing computer programs which he had
selected from those entered into an international
programming tournament for the repeated
prisoner’s dilemma game. In Axelrod's work,
fitness was a weighted mix of the results of
playing the eight selected opposing computer
programs. In other words, the eight selected
computer programs served as the environment for

11

evolving Alexrod's fixed-length character strings.
John Maynard Smith (1989) discussed co-

evolution in connection with discovering
strategies for games, but without using genetic
algorithms. See also Hillis (1990).

In co-evolution, there are two (or more)
populations of individuals. The environment for
the first population consists of the second
population. And, conversely, the environment for
the second population consists of the first
population.

The co-evolutionary process typically starts
with both populations being highly unfit (when
measured by an absolute fitness measure). Then,
the first population tries to adapt to the
environment consisting of the second population.
Simultaneously, the second population tries to
adapt to the environment consisting of the first
population.

This process is carried out by testing the
performance of each individual in the first
population against each individual (or a sampling
of individuals) from the second population. The
average performance observed is called the
relative fitness of that individual, because it
represents the performance of that individual
relative to the environment consisting of the entire
second population. Then, each individual in the
second population is tested against each
individual (or a sampling of individuals) from the
first population. Relative fitness comes from the
actual testing of individuals against some or all of
the individuals in an opposing population.

Note that this measurement of relative fitness
for an individual in co-evolution is not an
absolute measure of fitness against an optimal
opponent, but merely a relative measure when the
individual is tested against the current opposing
population. If one population contains boxers
who throw only left punches, then an individual
whose defensive repertoire contains only of
defenses against left punches will have high
relative fitness. But this individual would have
low absolute fitness when tested against any
opponent who knows how to throw both left
punches and right punches.

Even when both initial populations are highly
unfit (relatively and absolutely), the virtually

inevitable variation of the initial random popula-
tion will mean that some individuals have slightly
better relative fitness than others. That means that
some individuals in each population have
somewhat better performance than others in
dealing with the current opposing population.

The operations of crossover and reproduction
(based on the Darwinian principle of survival and
reproduction of the fittest) can then be separately
applied to each population using the relative
fitness of each individual in each separate
population.

Over a period of time, both populations of
individuals will tend to co-evolve and to rise to
higher levels of performance as measured in terms
of absolute fitness. Both populations do this
without the aid of any externally supplied
measure of absolute fitness serving as the
environment. In the limiting case, both
populations of individuals may evolve to a level
of performance that equals the absolute optimal
fitness. There is, of course, no guarantee that
either population will co-evolve to absolute
optimal fitness. Co-evolution is a self-organizing,
mutually bootstrapping process that is driven only
by relative fitness (and not by absolute fitness).

We now illustrate co-evolution by means of
genetic programming to simultaneously discover
minimax strategies for both players in the same
discrete two-person 32-outcome game represented
by the game tree in extensive form shown in
figure 1.

In co-evolution, we cannot proceed as we did
in the previous chapter. We do not have access
to the minimax opponent to train the population,
as we did with the differential pursuer-evader
game nor do we have the ability to exhaustively
test each possible combination of choices by the
opposing player as we did with the 32-outcome
discrete game. Instead, we must breed both pop-
ulations of players simultaneously. That is, we
must simultaneously co-evolve strategies for both
players.

Both populations start as random
compositions of the same functions and terminals
used in the 32-outcome discrete game.

In co-evolution, the relative fitness of a
particular strategy in a particular population is the

12

average of the payoffs that the strategy receives
when it is played against fitness cases consisting
of each strategy in the opposing population of
strategies. Note that the particular strategy is
played only once against each strategy in the
opposing population. When a particular strategy
from the first population is tested against a
particular strategy from the opposing population,
the outcome is completely determined because, by
definition, a strategy specifies a choice for all
possible situations. Note that we use the average
payoff, rather than the sum of the payoffs, for this
particular problem because we envision sampling
for larger problems of this type.

In co-evolution, raw fitness is relative fitness.
Since raw fitness is defined here in terms of
averages, the maximum is 32.

The standardized fitness of an individual
strategy is the maximum possible value of raw
fitness minus the raw fitness for that strategy.

The absolute fitness of a strategy is used
solely for monitoring and descriptive purposes
and plays no role in the actual co-evolutionary
process. The absolute fitness of a particular
strategy for a particular player in a game is the
payoff received when that strategy is played
against the minimax strategy for the opponent. A
minimax strategy takes advantage of non-
minimax play by the other player. Note that this
testing of four or eight combinations does not
occur in the computation for relative fitness (i.e.,
raw fitness).

Hits are the number of fitness cases for which
the payoff to an individual strategy equals or
exceeds the value of the game (i.e., the result of
playing two minimax strategies against each
other).

When the two minimax strategies are played
against each other, the payoff is the value of this
game (i.e., 12 for this game).

In one run involving co-evolution, the
individual strategy for player X in generation 0
with the best relative fitness was
(COM1 L (COM2 (CXM1 (CXM2 R (CXM2 R R R)
(CXM2 R L R)) L (CXM2 L R (COM2 R R R)))
(COM1 R (COM2 (CXM2 L R L) (COM2 R L L) R)
(COM2 (COM1 R R L) (CXM1 R L R) (CXM1 R L
L))) (CXM1 (COM2 (CXM1 R L L) (CXM2 R R L) R)
R (COM2 L R (CXM1 L L L)))) R).

This simplifies to
(COM1 L (COM2 L L R) R).

This individual has relative fitness of 10.08.
The individual in the initial random

population for player O with the best relative
fitness was an equally complex expression. It
simplifies to
(CXM2 R (CXM1 $ L R) (CXM1 $ R L)),

where $ denotes a portion of an S-expression
which is inaccessible by virtue of unsatisfiable
conditions. This individual has relative fitness of
7.57.

Neither the best X individual nor the best O
individual from generation 0 reached maximal
absolute fitness.

Note that the values of relative fitness for the
relative best X individual and the relative best O
individual from generation 0 (i.e., 10.08 and the
7.57) are each computed by averaging the payoff
from the interaction of the individual involved
with all 300 individual strategies in the current
opposing population.

In generation 1, the individual strategy for
player X with the best relative fitness had relative
fitness of 11.28. This individual X strategy is still
not a minimax strategy. It does not have the
maximal absolute fitness.

In generation 1, the best individual O strategy,
(CXM2 (CXM1 R R L) (CXM2 L L (CXM2 R L R))
R),

attained relative fitness of 7.18. This O strategy
simplifies to
(CXM2 (CXM1 $ R L) L R).

This best-of-generation individual O strategy
from generation 1 is, in fact, a minimax strategy
for player O. If it were played against the
minimax X strategy, it would score 12 (i.e., the
value of the game). This one O individual was
the first such O individual to attain this level of
performance during this run. In co-evolution, the
algorithm does not know that this individual is a
minimax strategy for player O. The run merely
continues.

Figure 5 graphically depicts the best-of-
generation S-expression for player O from
generation 1.

13

CXM1

R R L

R

CXM2

R L

LL

CXM2 R

CXM2

Figure 5 Minimax O strategy from generation 1.

Between generations 2 and 14, the number of
individuals in the O population equivalent to the
minimax O strategy was 2, 7, 17, 28, 35, 40, 50,
64, 73, 83, 93, 98, and 107, respectively. That is,
programs equivalent to the minimax O strategy
began to dominate the O population.

In generation 14, the individual strategy for
player X with the best relative fitness had a
relative fitness of 18.11. This individual X
strategy was
(COM2 (COM1 L L (CXM1 R R R))
 L
 (CXM1 (COM1 L L (CXM1 R R R))
 (CXM2 L R R) R)).

This X strategy simplifies to
(COM2 (COM1 L L R) L R).

Although the algorithm does not know it, this
best-of-generation individual X strategy from
generation 14 is, in fact, a minimax strategy for
player X. If it were played against the minimax O
strategy, it would score 12 (i.e., the value of the
game).

Between generations 15 and 29, the number of
individuals in the X population equivalent to the
minimax X strategy was 3, 4, 8, 11, 10, 9, 13, 21,
24, 29, 43, 32, 52, 48, and 50, respectively. That
is, programs equivalent to the minimax X strategy
began to dominate the X population. Meanwhile,
the O population became even more dominated by
programs equivalent to the O minimax strategy.

By generation 38, the number of O individuals
in the population reaching maximal absolute
fitness reached 188 (almost two thirds of the
population) and the number of X individuals
reaching maximal absolute fitness reached 74
(about a quarter). That is, by generation 38, the
minimax strategies for both players were
becoming dominant.

Interestingly, these 74 individual X strategies
had relative fitness of 19.11 and the 188

individual O strategies had relative fitness of
10.47. Neither of these values equals 12, because
the other population is not fully converged to its
minimax strategy.

In summary, we have seen the discovery, via
co-evolution, of the minimax strategies for both
players in the 32-outcome discrete game. This
mutually bootstrapping process found the
minimax strategies for both players without using
knowledge of the minimax strategy (i.e., any a
priori knowledge of the game) for either player.

7 CONCLUSIONS

We used the genetic programming paradigm to
breed a minimax strategy minimax strategy for a
discrete game in extensive form and for a dif-
ferential game of simple pursuit. We then
simultaneously bred an optimal game-playing
strategy for both players of a discrete game in
extensive form using co-evolution. In co-
evolution, two populations are simultaneously co-
evolved wherein each population serves as the
environment to guide the evolution of the other
population.

8 ACKNOWLEDGMENTS

James P. Rice of the Knowledge Systems
Laboratory at Stanford University made numerous
contributions in connection with the computer
programming of the above.

9 REFERENCES
Axelrod, R. "The evolution of strategies in the

iterated prisoner’s dilemma." In Genetic
Algorithms and Simulated Annealing , edited by
L. Davis. London: Pittman l987.

Davis, L. (editor) Genetic Algorithms and
Simulated Annealing London: Pittman l987.

Dawkins, Richard. The Blind Watchmaker. New
York: W. W. Norton 1987.

De Jong, Kenneth A. Genetic algorithms: A l0
year perspective. Proceedings of an
International Conference on Genetic Algorithms
and Their Applications. Hillsdale, NJ: Lawrence
Erlbaum Associates l985.

De Jong, Kenneth A. Learning with genetic
algorithms: an overview. Machine Learning,
3(2), 121-138, 1988.

14

Goldberg, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
MA: Addison-Wesley l989.

Hillis, W. Daniel. "Co-Evolving Parasites
Improve Simulated Evolution as an
Optimization Procedure." In Emergent
Computation: Self-organizing, Collective, and
Cooperative Computing Networks. edited by S.
Forrest. Cambridge, MA: MIT Press 1990.

Holland, J. H. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press 1975.

Holland, John H. Escaping brittleness: The
possibilities of general-purpose learning
algorithms applied to parallel rule-based
systems. In Michalski, Ryszard S., Carbonell,
Jaime G. and Mitchell, Tom M. Machine
Learning: An Artificial Intelligence Approach,
Volume II. P. 593-623. Los Altos, CA: Morgan
Kaufman l986.

Holland, John H. ECHO: Explorations of
evolution in a miniature world. Paper presented
at Second Workshop on Artificial Life in Santa
Fe, New Mexico, February 1990.

Holland, John H. Second edition of Adaptation in
Natural and Artificial Systems. Cambridge,
MA: The MIT Press 1992.

Isaacs, Rufus.. Differential Games. New York:
John Wiley 1965.

Koza, John R. "Hierarchical Genetic Algorithms
Operating on Populations of Computer
Programs." In Proceedings of the 11th
International Joint Conference on Artificial
Intelligence (IJCAI). San Mateo: Morgan
Kaufman 1989.

Koza, John R. Genetic Programming: A
Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems.
Stanford University Computer Science
Department Technical Report STAN-CS-90-
1314. June 1990. 1990a.

Koza, John R. "A Genetic Approach to
Econometric Modeling." Sixth World Congress
of the Econometric Society. Barcelona, Spain.
August 27, 1990. 1990b.

Koza, John R. Genetic Programming: On the
Programming of Computers by Means of
Natural Selection . Cambridge, MA: The MIT

Press. 1992a.
Koza, John R. The genetic programming

paradigm: genetically breeding populations of
computer programs to solve problems. In
Soucek, Branko and the IRIS Group (editors).
Dynamic, Genetic, and Chaotic Programming.
New York: John Wiley 1992. Pages 203-321.
1992b.

Koza, John R., and Rice, James P. Genetic
Programming: The Movie. Cambridge, MA:
The MIT Press 1992.

Miller, J. H. "The Evolution of Automata in the
Repeated Prisoner’s Dilemma." In Two Essays
on the Economics of Imperfect Information.
PhD dissertation, Department of Economics,
University of Michigan, 1988.

Miller, J. H. The Co-evolution of Automata in the
Repeated Prisoner’s Dilemma. Santa Fe
Institute Report 89-003. 1989.

Schaffer , J. D. (editor) Proceedings of the Third
International Conference on Genetic
Algorithms. San Mateo, Ca: Morgan Kaufmann
Publishers Inc. 1989.

Smith, John Maynard. Evolutionary Genetics.
Oxford: Oxford University Press. 1989.

Smith, Steven F. A Learning System Based on
Genetic Adaptive Algorithms. PhD dissertation.
Pittsburgh: University of Pittsburgh 1980.

