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ABSTRACT 

This paper describes an approach for automatically 
decomposing a problem into subproblems, automatically 
creating reusable subroutines to solve the subproblems, and 
automatically assembling the results produced by the 
subroutines in order to solve the problem.  The approach 
uses genetic programming with the recently developed 
additional facility of automatic function definition.  Genetic 
programming provides a way to genetically breed a 
computer program to solve a problem and automatic 
function definition enables genetic programming to create 
reusable subroutines dynamically during a run.  The 
approach is applied to an illustrative problem containing a 
considerable amount of regularity.  Solutions to the problem 
produced using automatic function definition are 
considerably smaller in size and require processing of 
considerably fewer individuals than is the case without 
automatic function definition.  Specifically, the average 
program size for a solution to the problem without using 
automatic function definition is 3.65 times larger than the 
size for a solution when using automatic function definition.  
The number of individuals required to be processed to yield 
a solution with 99% probability without automatic function 
definition is 9.09 times larger than the equivalent number 
required with automatic function definition.    

1. INTRODUCTION AND OVERVIEW 

A three-step hierarchical approach is often advocated for 
automating the solution to complex problems.  In this 
process, one first tries to discover a way to decompose a 
given problem into subproblems.  Second, one tries to solve 
each of the presumably simpler subproblems.  Third, one 
seeks a way to assemble the solutions to the subproblems 
into a solution to the original overall problem.   

To the extent that the problem environment contains 
regularities, it may be possible to decompose a given overall 
problem in such a way that the solutions to some of the 
subproblems are reusable many times in assembling the 
solution to the overall problem.  Repeated use of 

subproblem solutions promises the potential of producing a 
solution to the overall problem that is smaller in size than an 
approach that fails to exploit such regularities of the 
problem environment.  Such reuse should also produce a 
solution to the overall problem requiring the processing of 
fewer individuals as part of the automated problem-solving 
process.  Thus, reuse of subproblem solutions should 
potentially provide leverage to enable machine learning 
methods to be scaled up from small "proof of principle" 
problems to evermore complex tasks.   

This paper describes a way for simultaneously 
discovering reusable subroutines and a way of assembling 
calls to the reusable subroutines in order to solve a problem.  
Specifically, this paper describe a problem-solving process 
that 
• automatically decomposes a problem into subproblems, 
• automatically discovers the solution to the subproblems, 

and 
• automatically discovers a way to assemble the solutions 

of the subproblems into a solution of the overall problem.   

The approach involves using genetic programming with 
the recently developed additional facility of automatic 
function definition.   

Genetic programming provides a way to search the space 
of computer programs composed of certain terminals and 
primitive functions to find a function which solves, or 
approximately solves, a problem.  Automatic function 
definition enables genetic programming to define 
potentially reusable functions automatically and 
dynamically during a run and also to assemble calls to these 
defined functions dynamically during a run in order to solve 
a problem.   

Section 2 of this paper describes genetic programming 
and section 3 describes automatic function definition.  
Section 4 presents an illustrative problem.   Section 5 details 
the preparatory steps for applying genetic programming 
without automatic function definition to the problem.  The 
problem is solved in section 6 without automatic function 
definition.  Section 7 details the preparatory steps with 



 

automatic function definition and section 8 solves the 
problem with automatic function definition.  The two 
approaches are compared in the concluding section 9. 

2. BACKGROUND 

Since John Holland first presented the genetic algorithm 
in detail in his pioneering Adaptation in Natural and 
Artificial Systems (1975), the genetic algorithm has proven 
successful at finding an optimal point in a search space for a 
wide variety of problems (Goldberg 1989, Davis 1987, 
Davis 1991, Michalewicz 1992).   

Genetic programming is an extension of the genetic 
algorithm in which the genetic population consists of 
computer programs (that is, compositions of primitive 
functions and terminals).   

Genetic programming provides a way to search the space 
of programs to find a function which solves, or 
approximately solves, a problem.  The book Genetic 
Programming: On the Programming of Computers by 
Means of Natural Selection (Koza 1992a) describes genetic 
programming and demonstrates that populations of 
computer programs can be genetically bred to solve a 
surprising variety of problems in a wide variety of fields.  A 
videotape visualization of numerous applications of genetic 
programming can be found in the Genetic Programming: 
The Movie (Koza and Rice 1992).   

Genetic programming is a domain independent method 
that genetically breeds populations of computer programs to 
solve problems by executing the following three steps: 
(1) Generate an initial population of random computer 

programs composed of the primitive functions and 
terminals of the problem. 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and assign 

it a fitness value according to how well it solves 
the problem. 

(b) Create a new population of programs by applying 
the following two primary operations.  The 
operations are applied to program(s) in the 
population selected with a probability based on 
fitness (i.e., the fitter the program, the more likely 
it is to be selected). 
(i) Reproduction: Copy an existing program to 

the new population. 
(ii) Crossover: Create two new offspring 

programs for the new population by 
genetically recombining randomly chosen 
parts of two existing programs.  The genetic 
crossover (sexual recombination) operation 
(described below) operates on two parental 
computer programs and produces two 
offspring programs using parts of each parent.  

(3) The single best computer program in the population 
produced during the run is designated as the result of 
the run of genetic programming.  This result may be a 
solution (or approximate solution) to the problem.   

Crossover  Operation 
The genetic crossover (sexual recombination) operation 

operates on two parental computer programs selected with a 
probability based on fitness and produces two new offspring 
programs consisting of parts of each parent.   

For example, consider the following computer program 
(LISP symbolic expression):  
(+ (* 0.234 Z) (- X 0.789)), 

which we would ordinarily write as 

0.234 Z + X – 0.789. 
This program takes two inputs (X and Z) and produces a 
single floating point output.  In the prefix notation used in 
Lisp, the  multiplication function * is first applied to the 
terminal 0.234 and the value of the terminal Z to produce 
an intermediate result.  Then,  the subtraction function – is 
applied to the terminals X and 0.789 to produce a second 
intermediate result.  Finally, the addition function + is 
applied to the two intermediate results to produce the 
overall result.  

Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))), 

which is equivalent to 

ZY (Y + 0.314 Z). 

In figure 1, these two programs are depicted as rooted, 
point-labeled trees with ordered branches.  Internal points 
(i.e., nodes) of the tree correspond to functions (i.e., 
operations) and external points (i.e., leaves, endpoints) 
correspond to terminals (i.e., input data).  The numbers 
beside the function and terminal points of the tree appear for 
reference only. 

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

 
Figure 1  Two Parental computer programs.   

The crossover operation creates new offspring by 
exchanging sub-trees (i.e., sub-lists, subroutines, 
subprocedures) between the two parents.   



 

Assume that the points of both trees are numbered in a 
depth-first way starting at the left.  Suppose that the point 
number 2 (out of 7 points of the first parent) is randomly 
selected as the crossover point for the first parent and that 
the point number 5 (out of 9 points of the second parent) is 
randomly selected as the crossover point of the second 
parent. The crossover points in the trees above are therefore 
the * in the first parent and the + in the second parent.  The 
two crossover fragments are the two sub-trees shown in 
Figure 2. 

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z  
Figure 2  Two Crossover Fragments 

These two crossover fragments correspond to the 
underlined sub-programs (sub-lists) in the two parental 
computer programs. 

The two offspring resulting from crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 

and 
(* (* Z Y) (* 0.234 Z)). 

The two offspring are shown in Figure 3.   
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Figure 3  Two Offspring. 

Thus, crossover creates new computer programs using 
parts of existing parental programs.  Assuming closure 
among the given set of functions and terminals, this 
crossover operation produces syntactically and semantically 
valid programs as offspring.  Because programs are selected 
to participate in the crossover operation with a probability 
based on fitness, crossover allocates future trials to regions 
of the search space whose programs contain parts from 
promising programs.   

3. AUTOMATIC FUNCTION DEFINITION 
A human programmer writing a computer program to 

solve a problem often creates a subroutine (procedure, 
function) enabling a common calculation to be performed 
without tediously rewriting the code for that calculation.   

For example, a programmer writing a program for 
Boolean parity functions of several different orders might 
find it convenient first to write a subroutine for some lower-
order parity function.  The programmer would call on the 
code for this low-order parity function at different places 
and in different ways in his main program and combine the 
results to produce the desired higher-order parity function.   
Specifically, a programmer using the LISP programming 
language might first write a function definition for the odd-
2-parity function xor (exclusive-or) as follows: 
(defun xor (arg0 arg1) 
  (values (or (and arg0 (not arg1)) 
              (and (not arg0) arg1)))). 

This function definition (called a "defun" in LISP) 
does four things.  First, it assigns a name, xor, to the 
function being defined thereby permitting subsequent 
reference to it from the main program.  Second, this 
function definition identifies the argument list of the 
function being defined, namely the list (arg0 arg1) 
containing two dummy variables (formal parameters) called 
arg0 and arg1.  Third, this function definition contains a 
body which performs the work of the function.  Fourth, this 
function definition identifies the value to be returned by the 
function.  In this example, the single value to be returned is 
emphasized and highlighted using an explicit invocation of 
the values function.   

This particular function definition has two dummy 
variables, returns only a single value, has no side effects, 
and refers only to the two local dummy variables (i.e., it 
does not refer to any of the actual variables of the overall 
problem contained in the main program).  However, in 
general, defined functions may have any number of 
arguments (including no arguments), may return multiple 
values (or no values), may or may not perform side effects, 
and may or may not explicitly refer to the actual (global) 
variables of the main program.   

Once the function xor is defined, it may then be 
repeatedly called with different instantiations of its dummy 
variables from more than one place in the main program.  
For example, a programmer needing the even-4-parity 
function might write 
(xor (xor d0 d1) (not (xor d2 d3))). 

The process of defining and calling a function, in effect, 
decomposes the problem into a hierarchy of subproblems.  
When this decomposition is performed so as to create 
reusable defined functions, the function definitions can 



 

exploit the underlying regularities and symmetries of a 
problem by obviating the need to tediously rewrite lines of 
essentially similar code.   

Automatic function definition can be implemented 
within the context of genetic programming by establishing a 
constrained syntactic structure for the individual programs 
in the population (Koza 1992a; Koza and Rice 1992).  Each 
program in the population contains one (or more) function-
defining branches and one (or more) "main" result-
producing branches.  A result-producing branch usually 
calls the defined functions from one or more places.  A 
defined function may hierarchically refer to another 
already-defined function.  A defined function may even 
refer to itself, although such recursive references are not 
discussed in this paper.   

Figure 4 shows the overall structure of a program 
consisting of one function-defining branch and one result-
producing branch.  The function-defining branch appears in 
the left part of this figure and the result-producing branch 
appears on the right.   
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Figure 4  Program with one function-defining branch and 

one result-producing branch 

There are eight different "types" of points in this 
program.  The first six types are invariant and appear above 
the horizontal dotted line in this figure.  The eight types are 
as follows:  
(1) the root of the tree (which consists of the place-holding 

PROGN connective function),  
(2) the top point, DEFUN, of the function-defining branch,  
(3) the name, ADF0, of the automatically defined function,  
(4) the argument list of the automatically defined function,  
(5) the VALUES function of the function-defining branch 

identifying, for emphasis, the value(s) to be returned by 
the automatically defined function,  

(6) the VALUES function of the result-producing branch 
identifying, for emphasis, the value(s) to be returned by 
the result-producing branch,  

(7) the body (i.e., work) of the automatically defined 
function ADF0, and  

(8) the body of the result-producing branch.   

When the overall program is evaluated, the PROGN 
causes the sequential evaluation of the two branches.  The 
function-defining branch merely defines the automatically 
defined function ADF0 and does not immediately return any 
useful value.  The value(s) returned by the overall program 
consists only of the value(s) returned by the VALUES 
function associated with the result-producing branch.  If 

there were a second function definition (defining ADF1), 
there would an additional function-defining branch 
containing points of types 2, 3, 4, and 5 and there would be 
an additional type 7a for points in the body of automatically 
defined function ADF1.   

4. THE PROBLEM 

After determining that genetic programming with 
automatic function definition could perform Boolean 
function learning on parity problems of various orders 
(Koza 1992a, 1992b), could discover an impulse response 
function of a time-invariant linear system (Koza, Keane, 
and Rice 1993), could create a pattern-recognizing program 
(Koza 1993a), and could generate a computer program for 
controlling the movement of an artificial ant so that the ant 
can find all the food lying along an irregular trail (Koza 
1993b), the question arose as to whether this new technique 
was applicable to other types of problems where the 
problem environment contains exploitable regularities.   

This paper explores this question in the context of a 
problem where the goal is to find a program for controlling 
the lawn mower so that the lawn mower cuts all the grass in 
the yard.  The lawn mower operates in a 8 by 8 square area 
of lawn initially containing grass in all 64 squares.  Each 
square is uniquely identified by a vector of integers modulo 
8 of the form (i,j), where 0 ≤ i, j ≤ 7.  The lawn is toroidal in 
both directions, so that whenever the lawn mower moves off 
the side of the lawn, it reappears on the opposite side.  The 
state of the lawn mower consists of its location on the lawn 
and the direction in which it is facing.  The lawn mower 
starts at location (3,3) facing north.   

The lawn mower is capable of turning left, of moving 
forward one square in the direction in which it is currently 
facing, and of jumping by a specified displacement in the 
vertical and horizontal directions.  Whenever the lawn 
mower moves onto a new square (either by means of a 
single move or a jump), it mows the grass, if any, at the 
location onto which it arrives.   

A human programmer writing a program to solve this 
problem would almost certainly not solve it by tediously 
writing a sequence of 64 separate mowing operations.  
Instead, a human programmer would exploit the 
considerable symmetry and regularity inherent in this 
problem environment by writing a program that mows a 
certain small area of the lawn in a particular way, 
repositioning the lawn mower in some efficient and regular 
way, and then repeating the particular mowing action on the 
new area of the lawn.   That is, the human programmer 
would decompose the overall problem into a set of 
subproblems (i.e., mowing the small area), solve the 
subproblem, and then repeatedly reuse the subproblem 
solution in order to solve the overall problem.   



 

5. PREPARATORY STEPS WITHOUT AUTOMATIC 
FUNCTION DEFINITION 

There are five major steps in preparing to use genetic 
programming on any problem, namely determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the criterion for 

terminating a run. 
The terminal set for this problem consists of two side-

effecting operators and random vector constants.  That is, 
T = {(LEFT), (MOW), ←}. 

Each random constant ← consists of a vector #(i j) 
of integers modulo 8.   

(LEFT) and (MOW) each are operators that take no 
explicit arguments, but have side effects of the state of the 
lawn mower.  The operator (LEFT) rotates the orientation 
of the lawn mower left by 90° (without moving the lawn 
mower).  (LEFT) returns the vector value (0,0).   

The operator (MOW) moves the lawn mower in the di-
rection it is currently facing and mows the grass, if any, in 
the square onto which it is moving (thereby removing grass, 
if any, from that square).  (MOW) returns the vector value 
#(0 0).  For example, if the lawn mower is at location 
(1,3) facing east, (MOW) increments the first component 
(i.e., the X location) of the state vector of the lawn mower 
thus moving the lawn mower to location (2,3) with the lawn 
mower still facing east.  As a further example, if the lawn 
mower is at location (7,3) facing east, (MOW) moves the 
lawn mower to location (0,3) because of the toroidal 
geometry.   

The function set consists of 
F = {V+, FROG, PROGN},   

with these functions taking 2, 1, and 2 arguments, 
respectively.   

V+ is a two-argument vector addition modulo 8.  For 
example, (V+ #(1 2) #(3 7)) returns the vector 
value #(4 1).   

FROG is a one-argument operator that causes the lawn 
mower to move relative to the direction it is currently facing 
by an amount specified by its vector argument.  For 
example, if the lawn mower is at location (1,2) and is facing 
east, (FROG #(3 5)) causes the lawn mower to end up 
at location (6,5) with the lawn mower still facing east.  
FROG acts as the identity operator on its argument, so in 
this example it would return #(3 5).   

PROGN is a two-argument connective form that causes 
the execution of its two arguments in sequence and returns 
the value of the last argument.   

Each branch of the overall program without automatic 
function definition is a composition of primitive functions 
from the function set F and terminals from the terminal set 
T.   

The third major step in preparing to use genetic 
programming is the identification of the fitness measure for 
evaluating the goodness of each individual in the 
population.   

The lawn mower's goal is to mow all the grass in the 64 
squares.   The activity of the lawn mower is terminated 
when the lawn mower has executed either a total of 100 
LEFT turns or 100 moving operations (i.e., a MOW or 
FROG).  The raw fitness of a particular program is the 
amount of grass (from 0 to 64) mowed within the allowed 
amount of time.   

The fourth major step in preparing to use genetic 
programming is the selection of values for certain 
parameters.  The primary parameters in genetic 
programming are the population size and the maximum 
number of generations to be run.  Our choice of 1,000 as the 
population size and our choice of 51 as the maximum 
number of generations to be run reflect an estimate on our 
part as to the likely difficulty of this problem.  Our choice 
of values for the various secondary parameters that control a 
run of genetic programming are the same default values as 
we have consistently used on numerous other problems 
(Koza 1992a), except that we continue our recently adopted 
practice of using tournament selection (with a group size of 
seven) as the selection method (as opposed to fitness 
proportionate selection) and of not using greedy over-
selection.   

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for terminating 
a run and the selection of the method for designating a 
result.  We will terminate a given run if we encounter an 
individual that mows all 64 areas of grass within the allotted 
time or after 51 generations.  We designate the best 
individual obtained during the run (the best-so-far 
individual) as the result of the run.   

6. RESULTS WITHOUT AUTOMATIC FUNCTION 
DEFINITION 

In one particular and typical successful run of genetic 
programming without automatic function definition on this 
problem, the following 296-point individual scoring 64 hits 
emerged on generation 34: 
(V+ (V+ (V+ (FROG (PROGN (PROGN (V+ (MOW) (MOW)) 
(FROG #(3 2))) (PROGN (V+ (PROGN (V+ (PROGN (PROGN 



 

(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6 
0)) (FROG #(2 2)))) (V+ (MOW) (MOW))) (PROGN (V+ 
(PROGN (PROGN #(0 3) #(7 2)) (FROG #(5 6))) (PROGN 
(V+ (MOW) #(6 0)) (FROG #(2 2)))) (V+ (MOW) 
(MOW)))) (PROGN (FROG (MOW)) (PROGN (PROGN (PROGN 
(V+ (MOW) (MOW)) (FROG (LEFT))) (PROGN (MOW) (V+ 
(MOW) (MOW)))) (PROGN (V+ (PROGN #(0 3) #(7 2)) 
(V+ (MOW) (MOW))) (PROGN (V+ (MOW) (MOW)) (PROGN 
(LEFT) (MOW))))))))) (V+ (PROGN (V+ (PROGN (PROGN 
(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6 
0)) (FROG #(2 2)))) (V+ (MOW) (MOW))) (V+ (FROG 
(LEFT)) (FROG (MOW))))) (V+ (FROG (V+ (PROGN (V+ 
(PROGN (V+ (MOW) (MOW)) (FROG #(3 7))) (V+ (PROGN 
(MOW) (LEFT)) (V+ (MOW) #(5 3)))) (PROGN (PROGN 
(V+ (PROGN (LEFT) (MOW)) (V+ #(1 4) (LEFT))) 
(PROGN (FROG (MOW)) (V+ (MOW) #(3 7)))) (V+ (PROGN 
(FROG (MOW)) (V+ (LEFT) (MOW))) (V+ (FROG #(1 2)) 
(V+ (MOW) (LEFT)))))) (PROGN (V+ (FROG #(3 1)) (V+ 
(FROG (PROGN (PROGN (V+ (MOW) (MOW)) (FROG #(3 
2))) (FROG (FROG #(5 0))))) (V+ (PROGN (FROG 
(MOW)) (V+ (MOW) (MOW))) (V+ (FROG (LEFT)) (FROG 
(MOW)))))) (PROGN (PROGN (PROGN (PROGN (LEFT) 
(MOW)) (V+ (MOW) #(3 7))) (V+ (V+ (MOW) (MOW)) 
(PROGN (LEFT) (LEFT)))) (V+ (FROG (PROGN #(3 0) 
(LEFT))) (V+ (PROGN (MOW) (LEFT)) (FROG #(5 
4)))))))) (PROGN (FROG (V+ (PROGN (V+ (PROGN 
(PROGN (V+ (PROGN (PROGN (MOW) #(2 4)) (FROG #(5 
6))) (PROGN (V+ (MOW) #(1 2)) (FROG #(2 2)))) (V+ 
(MOW) (MOW))) (FROG #(3 7))) (V+ (PROGN (PROGN 
(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6 
0)) (FROG #(2 2))))) (PROGN (PROGN (V+ (FROG 
(MOW)) (V+ #(1 4) (LEFT))) (PROGN (FROG (MOW)) (V+ 
(MOW) #(3 7)))) (V+ (PROGN (FROG (MOW)) (V+ (LEFT) 
(MOW))) (V+ (FROG #(1 2)) (V+ (MOW) (LEFT)))))) 
(PROGN (V+ (PROGN (FROG #(2 4)) (V+ (MOW) (MOW))) 
(V+ (FROG (MOW)) (LEFT))) (PROGN #(3 0) (LEFT))))) 
(FROG (V+ #(7 4) (MOW)))))) (V+ (V+ (PROGN (MOW) 
#(4 3)) (V+ (LEFT) #(6 1))) (MOW))) 
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Figure 5  Partial trajectory for operations 0 through 30  

of 296-point program without automatic function 
definition.    

Figure 5 shows a partial trajectory of this best-of run 
296-point individual for operations 0 through 30; figure 6 
shows a partial trajectory for operations 31 through 60; and 
figure 7 shows a partial trajectory for operations 61 through 
85.  The overall trajectory is divided over three figures as a 
visual aid.  As can be seen, even though the problem 
environment contains considerable regularity in that it 

requires mowing all 64 squares of the lawn, this solution 
operates in an entirely ad hoc fashion.  For example, 
between operations 2 and 3, the lawn mower flits up two 
rows and three columns to the right, then goes up six and 
three to the left between operations 4 and 5, and then goes 
up two (i.e., down six) and two to the right between 
operations 6 and 7.  This 296-point program solves the 
problem by agglomerating enough erratic movements so as 
to cover the entire area of the lawn.   
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Figure 6  Partial trajectory for operations 31 through 60  

of 296-point program without automatic function 
definition.   
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Figure 7  Partial trajectory for operations 61 through 85  

of 296-point program without automatic function 
definition.   

Over a series of 38 runs, the average structural 
complexity of the 35 successful solutions to the lawn 
mower problem without automatic function definition was 
280.82 points.   



 

The rising curve in figure 8 shows, by generation, the 
experimentally observed cumulative probability of success, 
P(M,i), of solving the problem by generation i (i.e., finding 
at least one program in the population which scores 64).  As 
can be seen, the experimentally observed value of P(M,i) is 
92% by generation 49, and 92% by generation 50 over the 
38 runs. 

The second curve in the figure (which starts falling from 
the upper left) shows, by generation, the number of 
individuals that must be processed, I(M,i,z), to yield, with 
probability z = 99%, a solution to the problem by generation 
i.  I(M,i,z) is derived from the experimentally observed 
values of P(M,i).  Specifically, I(M,i,z) is the product of the 
population size M, the generation number i, and the number 
of independent runs, R(z), necessary to yield a solution to 
the problem with probability z by generation i.  In turn, the 
number of runs required  is given by 

R(z ) =
log(1− z)

log(1− P( M,i))
 
  

 
  , 

where the brackets indicate the ceiling function for 
rounding up to the next highest integer.    

The I(M,i,z) curve reaches a minimum value in the figure 
at generation 49 (highlighted by the light dotted vertical 
line).   For a value of P(M,i) of 92%, the number of 
independent runs, R(z), necessary to yield a solution to the 
problem with a 99% probability by generation i is 2.  The 
two summary numbers (49 and 100,000) in the oval indicate 
that if this problem is run through to generation 49 (the 
initial random generation being counted as generation 0), 
processing a total of 100,000 individuals (i.e., 1,000 ∞ 50 
generations ∞ 2 runs) is sufficient to yield a solution to this 
problem with 99% probability.  This number, 100,000, is a 
measure of the computational effort necessary to yield a 
solution to this problem with 99% probability without 
automatic function definition.   
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Figure 8  Performance curves showing that it is sufficient 

to process 100,000 individuals to yield a solution with 
99% probability without automatic function definition.   

7. PREPARATORY STEPS WITH AUTOMATIC 
FUNCTION DEFINITION 

In applying genetic programming with automatic 
function definition to the lawn mower problem, we first 
decided that each individual overall program in the 
population will consist of two function-defining branches 
(defining a zero-argument function called ADF0 and a one-
argument function ADF1) and a final (rightmost) result-
producing branch.  Since ADF0 is defined before ADF1, 
ADF0 is allowed to hierarchically call ADF0.   

We first consider ADF0, the first of the two 
automatically defined functions. 

The terminal set Tfd0 for the zero-argument defined 
function ADF0 consists of 

Tfd0 = {(LEFT), (MOW), ←}.   

The function set Ffd0 for the zero-argument defined 
function ADF0 is  

Ffd0 = {V+, PROGN}, 

each taking 2 arguments.   

The body of ADF0 is a composition of primitive 
functions from the function set Ffd0 and terminals from the 
terminal set Tfd0.   

We now consider ADF1. 

The terminal set Tfd1 for the one-argument defined 
function ADF1 taking dummy variable ARG0 consists of 

Tfd1 = {ARG0, (LEFT), (MOW), ←}.   

The function set Ffd1 for the one-argument defined 
function ADF1 is  

Ffd1 = {ADF0, V+, FROG, PROGN}, 

taking 0, 2, 1, and 2 arguments, respectively,   

The body of ADF1 is a composition of primitive 
functions from the function set Ffd1 and terminals from the 
terminal set Tfd1.   

Since (LEFT) and (MOW) each evaluate to #(0 0) 
and since FROG acts as an identity function returning its 
own argument, the value returned by ADF0 and ADF1 is 
either #(0 0) or the result of vector addition V+ operating 
on random constants or random constants or ARG0 in the 
case of ADF1. 

We now consider the result-producing branch. 

The terminal set Trp for the result-producing branch is 
Trp = {(LEFT), (MOW), ←}. 



 

The function set Frp for the result-producing branch is  
Frp = {ADF0, ADF1, V+, FROG, PROGN}, 

with the functions taking 0, 1, 2, 1, and 2 arguments, 
respectively. 

The result-producing branch is a composition of the 
functions from the function set Frp and terminals from the 
terminal set Trp. 

Since each individual program in the population consists 
of two function-defining branches and one result-producing 
branch, we create the initial random generation so that every 
individual program in the population has this particular 
constrained syntactic structure.   

Since a constrained syntactic structure is involved, we 
must perform crossover so as to preserve the syntactic 
validity of all offspring as the run proceeds from generation 
to generation.  To implement structure-preserving 
crossover, crossover is limited to points lying within the 
bodies of ADF0, ADF1, or the result-producing branch.  The 
crossover point for the first parent is selected at random 
from one of these three bodies.  However, once this 
selection is made, the crossover point of the second parent 
is selected at random from the same body from which the 
crossover point of the first parent was selected, i.e., the 
crossover points always share the same "type" as defined in 
Section 3. 

As the run progresses, genetic programming will evolve 
different function definitions in the function-defining 
branches of each overall program and then, at its discretion, 
may call such defined functions from its result-producing 
branch.  The structures of both the function-defining and the 
result-producing branch are determined by the combined 
effect, over many generations, of the selective pressure 
exerted by the fitness measure and by the effects of the 
operations of Darwinian fitness proportionate reproduction 
and crossover.   

8. RESULTS WITH AUTOMATIC FUNCTION 
DEFINITION 

In one particular successful run with automatic function 
definition, the following 100% correct 42-point program 
scoring 64 (out of 64) emerged in generation 5: 
(progn (defun ADF0 () 

(values (PROGN (V+ #(0 1) #(2 0)) (V+ (V+ 
(PROGN (MOW) (LEFT)) (V+ (MOW) (LEFT))) 
(PROGN (V+ (LEFT) (LEFT)) (PROGN (MOW) 
(MOW))))))) 

 (defun ADF1 (ARG0) 
(values (V+ (FROG (FROG (ADF0))) (PROGN 
(PROGN (V+ (MOW) (ADF0)) (V+ (ADF0) 
(MOW))) (V+ (FROG (ADF0)) (V+ ARG0 
ARG0)))))) 

 (values (ADF1 (ADF1 (ADF1 (ADF1 
(ADF0))))))) 

Note that this 42-point solution is a hierarchical 
decomposition of the problem.  Genetic programming 
discovered the decomposition of the overall problem, 
discovered the content of each subroutine, and assembled 
the results of the multiple calls to the subroutines into a 
solution of the overall problem.  Specifically, in the result-
producing branch at the top level, genetic programming 
discovered a decomposition of the overall problem into five 
subproblems (four ADF1s and one ADF0).  As it happens, 
the result-producing branch does not contain any (LEFT), 
(MOW), or FROG operations.  ADF1 contains four 
invocations of ADF0, two (MOW)'s, and no (LEFT) or 
FROG operations.  ADF0 contains four (MOW)'s, and four 
(LEFT)'s.  

Figure 9 shows the trajectory of the lawn mower for this 
42-point solution.  Note the difference between this regular, 
largely non overlapping trajectory and the haphazard 
character of the three partial trajectories shown in figures 5, 
6, and 7.  The lawn mower here takes advantage of the 
regularity of the problem environment.  It employs a  
tessellating activity that covers the entire lawn in a regular 
manner.  Specifically, it mows four consecutive squares in a 
column in a northerly direction, shifts one column to the 
west, and then does the same thing in the next column.    
The fact that the entire trajectory can be conveniently 
presented in only one figure testifies to this solution's 
regular and mostly non-overlapping behavior.    

 
Figure 9  Trajectory of 42-point program with automatic 

function definition. 

When this 42-point program is evaluated, ADF0 is 
executed first by the result-producing branch.  ADF0 begins 
with a PROGN whose first argument is (V+ (#0,1) 
(#(2,0)).  Since vector addition V+ has no side effects 
and since the return value of PROGN is the value returned 



 

by its second argument, this first argument to the PROGN 
can be totally ignored.  Since the remainder of ADF0 
contains only (MOW) and (LEFT) operations, ADF0 
returns (0,0).  As it turns out, ADF1 never uses its argument.   

The basic activity of ADF0 is to mow four squares of 
lawn in a northwesterly zigzag pattern.  This zigzag action 
is illustrated at the starting point (3,3) in the middle of the 
figure.  When simplified, ADF0 moves forward (i.e., north) 
one square and mows that square; it then turns left (i.e., 
west) and moves forward and mows that square; it then 
turns left three times (so that it is again oriented north); and 
it then moves and mows two squares.   

The northwesterly zigzag mowing activity of ADF0 is 
then repeatedly invoked.  The result-producing branch 
invokes ADF1 a total of four times.  Each time ADF1 is 
invoked, ADF0 is invoked four times.  This hierarchy of 
invocations produce a total of 16 calls for the zigzag activity 
of ADF0.  Because of the initial direct call of ADF0 at the 
beginning of evaluation of the result-producing branch, the 
last of the 16 hierarchical invocations of ADF0 is not 
needed since the program is terminated by virtue of the 
completion of the overall task.   

Note that this solution is an hierarchical decomposition 
of the problem.  Genetic programming discovered a 
decomposition of the overall problem into 16 subproblems 
each consisting of the northwesterly zigzag mowing pattern.  
Genetic programming discovered the sequence of turns and 
moves to implement the northwesterly zigzag mowing 
activity.  Genetic programming assembled the results of the 
northwesterly zigzag mowing into a solution of the overall 
problem by appropriately repositioning the lawn mower.   

In a second run with automatic function definition, the 
following 100% correct 78-point program scoring 64 (out of 
64) emerged in generation 2:  
(progn (defun ADF0 () 

(values (V+ (PROGN (V+ (V+ (LEFT) #(6 5)) 
(PROGN (MOW) (LEFT))) (V+ (PROGN (MOW) 
(MOW)) (V+ (MOW) (MOW)))) (V+ (PROGN 
(V+ #(1 4) (MOW)) (PROGN #(3 1) (MOW))) 
(PROGN (PROGN #(3 1) (MOW)) (PROGN 
(LEFT) (LEFT))))))) 

 (defun ADF1 (ARG0) 
(values (V+ (PROGN (FROG (PROGN ARG0 
(ADF0))) (V+ (PROGN (MOW) (ADF0)) (V+ 
(V+ (ADF0) #(3 4)) (V+ (ADF0) ARG0)))) 
(V+ (FROG (FROG (MOW))) (PROGN (PROGN 
(MOW) #(3 5)) (PROGN (MOW) (MOW))))))) 

 (values (V+ (ADF1 (ADF1 (V+ #(7 1) 
(LEFT)))) (V+ (V+ (PROGN (LEFT) (LEFT)) 
(V+ #(7 0) (LEFT))) (FROG (V+ (ADF0) 
(MOW))))))) 

The result-producing branch of this 78-point program 
contains two invocations of ADF1, one invocation of ADF0, 
four (LEFT)'s, and one (MOW).  ADF1 contains four 
invocations of ADF0, no turns, and five (MOW)'s.   ADF0 
contains eight (MOW)'s and four (LEFT)'s.   

Figure 10 shows the trajectory of the lawn mower for 
this 78-point solution with automatic function definition.  
Again we see that the lawn mower here takes advantage of 
the regularity of the problem environment.  Here it mows an 
entire row consisting of eight consecutive squares in an 
easterly direction and then proceeds to the next row to the 
south and does the same.  

Note that this solution is an hierarchical decomposition 
of the problem.  First, genetic programming discovered a 
decomposition of the overall problem into eight 
subproblems each consisting of mowing a single row of 
eight consecutive squares.  Then, genetic programming 
discovered the sequence of turns and moves to implement 
the mowing of an entire row of eight squares.  Thirdly, 
genetic programming assembled the results of the row 
mowing by repositioning the lawn mower to the next 
consecutive row.   

 
Figure 10  Trajectory of 78-point program with 

automatic function definition. 

Over a series of 76 runs of this problem with automatic 
function definition, the average structural complexity of the 
76 100%-correct solutions was 76.95 points.  This average 
size is smaller by a factor of 3.65 than the average size of 
280.82 without automatic function definition.  
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Figure 11  Performance curves showing that it is 
sufficient to process 11,000 individuals to yield a solution 
with 99% probability with automatic function definition.  

Figure 11 presents the performance curves based on the 
76 runs for this problem with automatic function definition.  
The cumulative probability of success P(M,i) was 100% by 
generation 10.  For a value of P(M,i) of 100%, the number 
of independent runs, R(z), necessary to yield a solution to 
the problem with a 99% probability by generation i is 1. The 
two numbers in the oval indicate that if this problem is run 
through to generation 10, processing a total of 11,000 
individuals (i.e., 1,000 ∞ 11 generations ∞ 1 run) is 
sufficient to yield a solution to this problem with 99% 
probability.   

9. CONCLUSION 
This paper has described a general automatic approach 

for simultaneously discovering reusable subroutines and a 
way to invoke them to solve problems.    

As we have now seen, genetic programming can solve 
this particular illustrative problem with or without automatic 
function definition.   

Table 1 compares the solutions of this problem with and 
without automatic function definition with respect to the 
average structural complexity of the 100%-correct solutions 
and the computational effort I(M,i,z) sufficient to yield a 
solution to this problem with 99% probability.   

Table 1  Comparison table 
 Without 

Automatic 
Function 
Definition 

With Automatic 
Function 
Definition 

Average 
Structural 
Complexity 

280.82 76.95 

Computational 
Effort I(M,i,z) 

100,000 11,000 

Table 1 shows that the average structural complexity, S , 
of 280.82 points for 100% correct solutions without 
automatic function definition is 3.65 times the 76.95 points 
for such solutions with automatic function definition.  That 
is, there is a reduction in the structural complexity of the 
solutions as a result of using automatic function definition.   

Table 1 also shows that the 100,000 individuals required 
to be processed to yield an 100% correct solution to the 
problem with 99% probability without automatic function 
definition is 9.09 times the 11,000 individuals required with 
automatic function definition.  That is, there is a reduction 
in the number of individuals required to be processed as a 
result of using automatic function definition.   

Figure 10 summarizes these conclusions by showing that 
the structural complexity ratio is 3.65 and that the efficiency 
ratio is 9.09.   
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Figure 10  Summary graphs 
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