

DISCOVERY OF A MAIN PROGRAM AND REUSABLE SUBROUTINES
USING GENETIC PROGRAMMING

John R. Koza
Computer Science Department

Margaret Jacks Hall
Stanford University

Stanford, California 94305-2140
 Koza@CS.Stanford.Edu

415-941-0336

ABSTRACT

This paper describes an approach for automatically
decomposing a problem into subproblems, automatically
creating reusable subroutines to solve the subproblems, and
automatically assembling the results produced by the
subroutines in order to solve the problem. The approach
uses genetic programming with the recently developed
additional facility of automatic function definition. Genetic
programming provides a way to genetically breed a
computer program to solve a problem and automatic
function definition enables genetic programming to create
reusable subroutines dynamically during a run. The
approach is applied to an illustrative problem containing a
considerable amount of regularity. Solutions to the problem
produced using automatic function definition are
considerably smaller in size and require processing of
considerably fewer individuals than is the case without
automatic function definition. Specifically, the average
program size for a solution to the problem without using
automatic function definition is 3.65 times larger than the
size for a solution when using automatic function definition.
The number of individuals required to be processed to yield
a solution with 99% probability without automatic function
definition is 9.09 times larger than the equivalent number
required with automatic function definition.

1. INTRODUCTION AND OVERVIEW

A three-step hierarchical approach is often advocated for
automating the solution to complex problems. In this
process, one first tries to discover a way to decompose a
given problem into subproblems. Second, one tries to solve
each of the presumably simpler subproblems. Third, one
seeks a way to assemble the solutions to the subproblems
into a solution to the original overall problem.

To the extent that the problem environment contains
regularities, it may be possible to decompose a given overall
problem in such a way that the solutions to some of the
subproblems are reusable many times in assembling the
solution to the overall problem. Repeated use of

subproblem solutions promises the potential of producing a
solution to the overall problem that is smaller in size than an
approach that fails to exploit such regularities of the
problem environment. Such reuse should also produce a
solution to the overall problem requiring the processing of
fewer individuals as part of the automated problem-solving
process. Thus, reuse of subproblem solutions should
potentially provide leverage to enable machine learning
methods to be scaled up from small "proof of principle"
problems to evermore complex tasks.

This paper describes a way for simultaneously
discovering reusable subroutines and a way of assembling
calls to the reusable subroutines in order to solve a problem.
Specifically, this paper describe a problem-solving process
that
• automatically decomposes a problem into subproblems,
• automatically discovers the solution to the subproblems,

and
• automatically discovers a way to assemble the solutions

of the subproblems into a solution of the overall problem.

The approach involves using genetic programming with
the recently developed additional facility of automatic
function definition.

Genetic programming provides a way to search the space
of computer programs composed of certain terminals and
primitive functions to find a function which solves, or
approximately solves, a problem. Automatic function
definition enables genetic programming to define
potentially reusable functions automatically and
dynamically during a run and also to assemble calls to these
defined functions dynamically during a run in order to solve
a problem.

Section 2 of this paper describes genetic programming
and section 3 describes automatic function definition.
Section 4 presents an illustrative problem. Section 5 details
the preparatory steps for applying genetic programming
without automatic function definition to the problem. The
problem is solved in section 6 without automatic function
definition. Section 7 details the preparatory steps with

automatic function definition and section 8 solves the
problem with automatic function definition. The two
approaches are compared in the concluding section 9.

2. BACKGROUND

Since John Holland first presented the genetic algorithm
in detail in his pioneering Adaptation in Natural and
Artificial Systems (1975), the genetic algorithm has proven
successful at finding an optimal point in a search space for a
wide variety of problems (Goldberg 1989, Davis 1987,
Davis 1991, Michalewicz 1992).

Genetic programming is an extension of the genetic
algorithm in which the genetic population consists of
computer programs (that is, compositions of primitive
functions and terminals).

Genetic programming provides a way to search the space
of programs to find a function which solves, or
approximately solves, a problem. The book Genetic
Programming: On the Programming of Computers by
Means of Natural Selection (Koza 1992a) describes genetic
programming and demonstrates that populations of
computer programs can be genetically bred to solve a
surprising variety of problems in a wide variety of fields. A
videotape visualization of numerous applications of genetic
programming can be found in the Genetic Programming:
The Movie (Koza and Rice 1992).

Genetic programming is a domain independent method
that genetically breeds populations of computer programs to
solve problems by executing the following three steps:
(1) Generate an initial population of random computer

programs composed of the primitive functions and
terminals of the problem.

(2) Iteratively perform the following sub-steps until the
termination criterion has been satisfied:
(a) Execute each program in the population and assign

it a fitness value according to how well it solves
the problem.

(b) Create a new population of programs by applying
the following two primary operations. The
operations are applied to program(s) in the
population selected with a probability based on
fitness (i.e., the fitter the program, the more likely
it is to be selected).
(i) Reproduction: Copy an existing program to

the new population.
(ii) Crossover: Create two new offspring

programs for the new population by
genetically recombining randomly chosen
parts of two existing programs. The genetic
crossover (sexual recombination) operation
(described below) operates on two parental
computer programs and produces two
offspring programs using parts of each parent.

(3) The single best computer program in the population
produced during the run is designated as the result of
the run of genetic programming. This result may be a
solution (or approximate solution) to the problem.

Crossover Operation
The genetic crossover (sexual recombination) operation

operates on two parental computer programs selected with a
probability based on fitness and produces two new offspring
programs consisting of parts of each parent.

For example, consider the following computer program
(LISP symbolic expression):
(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as

0.234 Z + X – 0.789.
This program takes two inputs (X and Z) and produces a
single floating point output. In the prefix notation used in
Lisp, the multiplication function * is first applied to the
terminal 0.234 and the value of the terminal Z to produce
an intermediate result. Then, the subtraction function – is
applied to the terminals X and 0.789 to produce a second
intermediate result. Finally, the addition function + is
applied to the two intermediate results to produce the
overall result.

Also, consider a second program:
(* (* Z Y) (+ Y (* 0.314 Z))),

which is equivalent to

ZY (Y + 0.314 Z).

In figure 1, these two programs are depicted as rooted,
point-labeled trees with ordered branches. Internal points
(i.e., nodes) of the tree correspond to functions (i.e.,
operations) and external points (i.e., leaves, endpoints)
correspond to terminals (i.e., input data). The numbers
beside the function and terminal points of the tree appear for
reference only.

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

Figure 1 Two Parental computer programs.

The crossover operation creates new offspring by
exchanging sub-trees (i.e., sub-lists, subroutines,
subprocedures) between the two parents.

Assume that the points of both trees are numbered in a
depth-first way starting at the left. Suppose that the point
number 2 (out of 7 points of the first parent) is randomly
selected as the crossover point for the first parent and that
the point number 5 (out of 9 points of the second parent) is
randomly selected as the crossover point of the second
parent. The crossover points in the trees above are therefore
the * in the first parent and the + in the second parent. The
two crossover fragments are the two sub-trees shown in
Figure 2.

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z
Figure 2 Two Crossover Fragments

These two crossover fragments correspond to the
underlined sub-programs (sub-lists) in the two parental
computer programs.

The two offspring resulting from crossover are
(+ (+ Y (* 0.314 Z)) (- X 0.789))

and
(* (* Z Y) (* 0.234 Z)).

The two offspring are shown in Figure 3.

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y2
Figure 3 Two Offspring.

Thus, crossover creates new computer programs using
parts of existing parental programs. Assuming closure
among the given set of functions and terminals, this
crossover operation produces syntactically and semantically
valid programs as offspring. Because programs are selected
to participate in the crossover operation with a probability
based on fitness, crossover allocates future trials to regions
of the search space whose programs contain parts from
promising programs.

3. AUTOMATIC FUNCTION DEFINITION
A human programmer writing a computer program to

solve a problem often creates a subroutine (procedure,
function) enabling a common calculation to be performed
without tediously rewriting the code for that calculation.

For example, a programmer writing a program for
Boolean parity functions of several different orders might
find it convenient first to write a subroutine for some lower-
order parity function. The programmer would call on the
code for this low-order parity function at different places
and in different ways in his main program and combine the
results to produce the desired higher-order parity function.
Specifically, a programmer using the LISP programming
language might first write a function definition for the odd-
2-parity function xor (exclusive-or) as follows:
(defun xor (arg0 arg1)
 (values (or (and arg0 (not arg1))
 (and (not arg0) arg1)))).

This function definition (called a "defun" in LISP)
does four things. First, it assigns a name, xor, to the
function being defined thereby permitting subsequent
reference to it from the main program. Second, this
function definition identifies the argument list of the
function being defined, namely the list (arg0 arg1)
containing two dummy variables (formal parameters) called
arg0 and arg1. Third, this function definition contains a
body which performs the work of the function. Fourth, this
function definition identifies the value to be returned by the
function. In this example, the single value to be returned is
emphasized and highlighted using an explicit invocation of
the values function.

This particular function definition has two dummy
variables, returns only a single value, has no side effects,
and refers only to the two local dummy variables (i.e., it
does not refer to any of the actual variables of the overall
problem contained in the main program). However, in
general, defined functions may have any number of
arguments (including no arguments), may return multiple
values (or no values), may or may not perform side effects,
and may or may not explicitly refer to the actual (global)
variables of the main program.

Once the function xor is defined, it may then be
repeatedly called with different instantiations of its dummy
variables from more than one place in the main program.
For example, a programmer needing the even-4-parity
function might write
(xor (xor d0 d1) (not (xor d2 d3))).

The process of defining and calling a function, in effect,
decomposes the problem into a hierarchy of subproblems.
When this decomposition is performed so as to create
reusable defined functions, the function definitions can

exploit the underlying regularities and symmetries of a
problem by obviating the need to tediously rewrite lines of
essentially similar code.

Automatic function definition can be implemented
within the context of genetic programming by establishing a
constrained syntactic structure for the individual programs
in the population (Koza 1992a; Koza and Rice 1992). Each
program in the population contains one (or more) function-
defining branches and one (or more) "main" result-
producing branches. A result-producing branch usually
calls the defined functions from one or more places. A
defined function may hierarchically refer to another
already-defined function. A defined function may even
refer to itself, although such recursive references are not
discussed in this paper.

Figure 4 shows the overall structure of a program
consisting of one function-defining branch and one result-
producing branch. The function-defining branch appears in
the left part of this figure and the result-producing branch
appears on the right.

DEFUN

PROGN

VALUES

Argument
ListADF0

Body of ADF0
Function Definition

Body of V
Returning B

VALUES

1

2

3 4 5

6

7 8

Figure 4 Program with one function-defining branch and

one result-producing branch

There are eight different "types" of points in this
program. The first six types are invariant and appear above
the horizontal dotted line in this figure. The eight types are
as follows:
(1) the root of the tree (which consists of the place-holding

PROGN connective function),
(2) the top point, DEFUN, of the function-defining branch,
(3) the name, ADF0, of the automatically defined function,
(4) the argument list of the automatically defined function,
(5) the VALUES function of the function-defining branch

identifying, for emphasis, the value(s) to be returned by
the automatically defined function,

(6) the VALUES function of the result-producing branch
identifying, for emphasis, the value(s) to be returned by
the result-producing branch,

(7) the body (i.e., work) of the automatically defined
function ADF0, and

(8) the body of the result-producing branch.

When the overall program is evaluated, the PROGN
causes the sequential evaluation of the two branches. The
function-defining branch merely defines the automatically
defined function ADF0 and does not immediately return any
useful value. The value(s) returned by the overall program
consists only of the value(s) returned by the VALUES
function associated with the result-producing branch. If

there were a second function definition (defining ADF1),
there would an additional function-defining branch
containing points of types 2, 3, 4, and 5 and there would be
an additional type 7a for points in the body of automatically
defined function ADF1.

4. THE PROBLEM

After determining that genetic programming with
automatic function definition could perform Boolean
function learning on parity problems of various orders
(Koza 1992a, 1992b), could discover an impulse response
function of a time-invariant linear system (Koza, Keane,
and Rice 1993), could create a pattern-recognizing program
(Koza 1993a), and could generate a computer program for
controlling the movement of an artificial ant so that the ant
can find all the food lying along an irregular trail (Koza
1993b), the question arose as to whether this new technique
was applicable to other types of problems where the
problem environment contains exploitable regularities.

This paper explores this question in the context of a
problem where the goal is to find a program for controlling
the lawn mower so that the lawn mower cuts all the grass in
the yard. The lawn mower operates in a 8 by 8 square area
of lawn initially containing grass in all 64 squares. Each
square is uniquely identified by a vector of integers modulo
8 of the form (i,j), where 0 ≤ i, j ≤ 7. The lawn is toroidal in
both directions, so that whenever the lawn mower moves off
the side of the lawn, it reappears on the opposite side. The
state of the lawn mower consists of its location on the lawn
and the direction in which it is facing. The lawn mower
starts at location (3,3) facing north.

The lawn mower is capable of turning left, of moving
forward one square in the direction in which it is currently
facing, and of jumping by a specified displacement in the
vertical and horizontal directions. Whenever the lawn
mower moves onto a new square (either by means of a
single move or a jump), it mows the grass, if any, at the
location onto which it arrives.

A human programmer writing a program to solve this
problem would almost certainly not solve it by tediously
writing a sequence of 64 separate mowing operations.
Instead, a human programmer would exploit the
considerable symmetry and regularity inherent in this
problem environment by writing a program that mows a
certain small area of the lawn in a particular way,
repositioning the lawn mower in some efficient and regular
way, and then repeating the particular mowing action on the
new area of the lawn. That is, the human programmer
would decompose the overall problem into a set of
subproblems (i.e., mowing the small area), solve the
subproblem, and then repeatedly reuse the subproblem
solution in order to solve the overall problem.

5. PREPARATORY STEPS WITHOUT AUTOMATIC
FUNCTION DEFINITION

There are five major steps in preparing to use genetic
programming on any problem, namely determining
(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the method for designating a result and the criterion for

terminating a run.
The terminal set for this problem consists of two side-

effecting operators and random vector constants. That is,
T = {(LEFT), (MOW), ←}.

Each random constant ← consists of a vector #(i j)
of integers modulo 8.

(LEFT) and (MOW) each are operators that take no
explicit arguments, but have side effects of the state of the
lawn mower. The operator (LEFT) rotates the orientation
of the lawn mower left by 90° (without moving the lawn
mower). (LEFT) returns the vector value (0,0).

The operator (MOW) moves the lawn mower in the di-
rection it is currently facing and mows the grass, if any, in
the square onto which it is moving (thereby removing grass,
if any, from that square). (MOW) returns the vector value
#(0 0). For example, if the lawn mower is at location
(1,3) facing east, (MOW) increments the first component
(i.e., the X location) of the state vector of the lawn mower
thus moving the lawn mower to location (2,3) with the lawn
mower still facing east. As a further example, if the lawn
mower is at location (7,3) facing east, (MOW) moves the
lawn mower to location (0,3) because of the toroidal
geometry.

The function set consists of
F = {V+, FROG, PROGN},

with these functions taking 2, 1, and 2 arguments,
respectively.

V+ is a two-argument vector addition modulo 8. For
example, (V+ #(1 2) #(3 7)) returns the vector
value #(4 1).

FROG is a one-argument operator that causes the lawn
mower to move relative to the direction it is currently facing
by an amount specified by its vector argument. For
example, if the lawn mower is at location (1,2) and is facing
east, (FROG #(3 5)) causes the lawn mower to end up
at location (6,5) with the lawn mower still facing east.
FROG acts as the identity operator on its argument, so in
this example it would return #(3 5).

PROGN is a two-argument connective form that causes
the execution of its two arguments in sequence and returns
the value of the last argument.

Each branch of the overall program without automatic
function definition is a composition of primitive functions
from the function set F and terminals from the terminal set
T.

The third major step in preparing to use genetic
programming is the identification of the fitness measure for
evaluating the goodness of each individual in the
population.

The lawn mower's goal is to mow all the grass in the 64
squares. The activity of the lawn mower is terminated
when the lawn mower has executed either a total of 100
LEFT turns or 100 moving operations (i.e., a MOW or
FROG). The raw fitness of a particular program is the
amount of grass (from 0 to 64) mowed within the allowed
amount of time.

The fourth major step in preparing to use genetic
programming is the selection of values for certain
parameters. The primary parameters in genetic
programming are the population size and the maximum
number of generations to be run. Our choice of 1,000 as the
population size and our choice of 51 as the maximum
number of generations to be run reflect an estimate on our
part as to the likely difficulty of this problem. Our choice
of values for the various secondary parameters that control a
run of genetic programming are the same default values as
we have consistently used on numerous other problems
(Koza 1992a), except that we continue our recently adopted
practice of using tournament selection (with a group size of
seven) as the selection method (as opposed to fitness
proportionate selection) and of not using greedy over-
selection.

Finally, the fifth major step in preparing to use genetic
programming is the selection of the criterion for terminating
a run and the selection of the method for designating a
result. We will terminate a given run if we encounter an
individual that mows all 64 areas of grass within the allotted
time or after 51 generations. We designate the best
individual obtained during the run (the best-so-far
individual) as the result of the run.

6. RESULTS WITHOUT AUTOMATIC FUNCTION
DEFINITION

In one particular and typical successful run of genetic
programming without automatic function definition on this
problem, the following 296-point individual scoring 64 hits
emerged on generation 34:
(V+ (V+ (V+ (FROG (PROGN (PROGN (V+ (MOW) (MOW))
(FROG #(3 2))) (PROGN (V+ (PROGN (V+ (PROGN (PROGN

(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6
0)) (FROG #(2 2)))) (V+ (MOW) (MOW))) (PROGN (V+
(PROGN (PROGN #(0 3) #(7 2)) (FROG #(5 6))) (PROGN
(V+ (MOW) #(6 0)) (FROG #(2 2)))) (V+ (MOW)
(MOW)))) (PROGN (FROG (MOW)) (PROGN (PROGN (PROGN
(V+ (MOW) (MOW)) (FROG (LEFT))) (PROGN (MOW) (V+
(MOW) (MOW)))) (PROGN (V+ (PROGN #(0 3) #(7 2))
(V+ (MOW) (MOW))) (PROGN (V+ (MOW) (MOW)) (PROGN
(LEFT) (MOW))))))))) (V+ (PROGN (V+ (PROGN (PROGN
(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6
0)) (FROG #(2 2)))) (V+ (MOW) (MOW))) (V+ (FROG
(LEFT)) (FROG (MOW))))) (V+ (FROG (V+ (PROGN (V+
(PROGN (V+ (MOW) (MOW)) (FROG #(3 7))) (V+ (PROGN
(MOW) (LEFT)) (V+ (MOW) #(5 3)))) (PROGN (PROGN
(V+ (PROGN (LEFT) (MOW)) (V+ #(1 4) (LEFT)))
(PROGN (FROG (MOW)) (V+ (MOW) #(3 7)))) (V+ (PROGN
(FROG (MOW)) (V+ (LEFT) (MOW))) (V+ (FROG #(1 2))
(V+ (MOW) (LEFT)))))) (PROGN (V+ (FROG #(3 1)) (V+
(FROG (PROGN (PROGN (V+ (MOW) (MOW)) (FROG #(3
2))) (FROG (FROG #(5 0))))) (V+ (PROGN (FROG
(MOW)) (V+ (MOW) (MOW))) (V+ (FROG (LEFT)) (FROG
(MOW)))))) (PROGN (PROGN (PROGN (PROGN (LEFT)
(MOW)) (V+ (MOW) #(3 7))) (V+ (V+ (MOW) (MOW))
(PROGN (LEFT) (LEFT)))) (V+ (FROG (PROGN #(3 0)
(LEFT))) (V+ (PROGN (MOW) (LEFT)) (FROG #(5
4)))))))) (PROGN (FROG (V+ (PROGN (V+ (PROGN
(PROGN (V+ (PROGN (PROGN (MOW) #(2 4)) (FROG #(5
6))) (PROGN (V+ (MOW) #(1 2)) (FROG #(2 2)))) (V+
(MOW) (MOW))) (FROG #(3 7))) (V+ (PROGN (PROGN
(MOW) #(2 4)) (FROG #(5 6))) (PROGN (V+ (MOW) #(6
0)) (FROG #(2 2))))) (PROGN (PROGN (V+ (FROG
(MOW)) (V+ #(1 4) (LEFT))) (PROGN (FROG (MOW)) (V+
(MOW) #(3 7)))) (V+ (PROGN (FROG (MOW)) (V+ (LEFT)
(MOW))) (V+ (FROG #(1 2)) (V+ (MOW) (LEFT))))))
(PROGN (V+ (PROGN (FROG #(2 4)) (V+ (MOW) (MOW)))
(V+ (FROG (MOW)) (LEFT))) (PROGN #(3 0) (LEFT)))))
(FROG (V+ #(7 4) (MOW)))))) (V+ (V+ (PROGN (MOW)
#(4 3)) (V+ (LEFT) #(6 1))) (MOW)))

0

1

2

3

4

5

6

7

8

9

10

13

14

15

16

171822 23
24

26

25

27

28

29

30

21

12

1920

11

Figure 5 Partial trajectory for operations 0 through 30

of 296-point program without automatic function
definition.

Figure 5 shows a partial trajectory of this best-of run
296-point individual for operations 0 through 30; figure 6
shows a partial trajectory for operations 31 through 60; and
figure 7 shows a partial trajectory for operations 61 through
85. The overall trajectory is divided over three figures as a
visual aid. As can be seen, even though the problem
environment contains considerable regularity in that it

requires mowing all 64 squares of the lawn, this solution
operates in an entirely ad hoc fashion. For example,
between operations 2 and 3, the lawn mower flits up two
rows and three columns to the right, then goes up six and
three to the left between operations 4 and 5, and then goes
up two (i.e., down six) and two to the right between
operations 6 and 7. This 296-point program solves the
problem by agglomerating enough erratic movements so as
to cover the entire area of the lawn.

42

56

47

46

58

60 59

57

55

3332 34

35

36

38

43 44

4849
5051

52

53

54

37

39

40

41

45

31

30

Figure 6 Partial trajectory for operations 31 through 60

of 296-point program without automatic function
definition.

60

85

84 83 82 81

80

79

78

77767574

73

72

71

70

69

68

67

66

65

64

63

62

61

Figure 7 Partial trajectory for operations 61 through 85

of 296-point program without automatic function
definition.

Over a series of 38 runs, the average structural
complexity of the 35 successful solutions to the lawn
mower problem without automatic function definition was
280.82 points.

The rising curve in figure 8 shows, by generation, the
experimentally observed cumulative probability of success,
P(M,i), of solving the problem by generation i (i.e., finding
at least one program in the population which scores 64). As
can be seen, the experimentally observed value of P(M,i) is
92% by generation 49, and 92% by generation 50 over the
38 runs.

The second curve in the figure (which starts falling from
the upper left) shows, by generation, the number of
individuals that must be processed, I(M,i,z), to yield, with
probability z = 99%, a solution to the problem by generation
i. I(M,i,z) is derived from the experimentally observed
values of P(M,i). Specifically, I(M,i,z) is the product of the
population size M, the generation number i, and the number
of independent runs, R(z), necessary to yield a solution to
the problem with probability z by generation i. In turn, the
number of runs required is given by

R(z) =
log(1− z)

log(1− P(M,i))

 ,

where the brackets indicate the ceiling function for
rounding up to the next highest integer.

The I(M,i,z) curve reaches a minimum value in the figure
at generation 49 (highlighted by the light dotted vertical
line). For a value of P(M,i) of 92%, the number of
independent runs, R(z), necessary to yield a solution to the
problem with a 99% probability by generation i is 2. The
two summary numbers (49 and 100,000) in the oval indicate
that if this problem is run through to generation 49 (the
initial random generation being counted as generation 0),
processing a total of 100,000 individuals (i.e., 1,000 ∞ 50
generations ∞ 2 runs) is sufficient to yield a solution to this
problem with 99% probability. This number, 100,000, is a
measure of the computational effort necessary to yield a
solution to this problem with 99% probability without
automatic function definition.

M = 1,000

R(z) = 2
z = 99%

N = 38

P(M,i)
I(M, i, z)

0 25 50
0

50

100

0

2,000,000

4,000,000

Without Defined Functions

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

(17, 3%)

(50, 92%)

49 E = 100,000

(49, 92%)

Figure 8 Performance curves showing that it is sufficient

to process 100,000 individuals to yield a solution with
99% probability without automatic function definition.

7. PREPARATORY STEPS WITH AUTOMATIC
FUNCTION DEFINITION

In applying genetic programming with automatic
function definition to the lawn mower problem, we first
decided that each individual overall program in the
population will consist of two function-defining branches
(defining a zero-argument function called ADF0 and a one-
argument function ADF1) and a final (rightmost) result-
producing branch. Since ADF0 is defined before ADF1,
ADF0 is allowed to hierarchically call ADF0.

We first consider ADF0, the first of the two
automatically defined functions.

The terminal set Tfd0 for the zero-argument defined
function ADF0 consists of

Tfd0 = {(LEFT), (MOW), ←}.

The function set Ffd0 for the zero-argument defined
function ADF0 is

Ffd0 = {V+, PROGN},

each taking 2 arguments.

The body of ADF0 is a composition of primitive
functions from the function set Ffd0 and terminals from the
terminal set Tfd0.

We now consider ADF1.

The terminal set Tfd1 for the one-argument defined
function ADF1 taking dummy variable ARG0 consists of

Tfd1 = {ARG0, (LEFT), (MOW), ←}.

The function set Ffd1 for the one-argument defined
function ADF1 is

Ffd1 = {ADF0, V+, FROG, PROGN},

taking 0, 2, 1, and 2 arguments, respectively,

The body of ADF1 is a composition of primitive
functions from the function set Ffd1 and terminals from the
terminal set Tfd1.

Since (LEFT) and (MOW) each evaluate to #(0 0)
and since FROG acts as an identity function returning its
own argument, the value returned by ADF0 and ADF1 is
either #(0 0) or the result of vector addition V+ operating
on random constants or random constants or ARG0 in the
case of ADF1.

We now consider the result-producing branch.

The terminal set Trp for the result-producing branch is
Trp = {(LEFT), (MOW), ←}.

The function set Frp for the result-producing branch is
Frp = {ADF0, ADF1, V+, FROG, PROGN},

with the functions taking 0, 1, 2, 1, and 2 arguments,
respectively.

The result-producing branch is a composition of the
functions from the function set Frp and terminals from the
terminal set Trp.

Since each individual program in the population consists
of two function-defining branches and one result-producing
branch, we create the initial random generation so that every
individual program in the population has this particular
constrained syntactic structure.

Since a constrained syntactic structure is involved, we
must perform crossover so as to preserve the syntactic
validity of all offspring as the run proceeds from generation
to generation. To implement structure-preserving
crossover, crossover is limited to points lying within the
bodies of ADF0, ADF1, or the result-producing branch. The
crossover point for the first parent is selected at random
from one of these three bodies. However, once this
selection is made, the crossover point of the second parent
is selected at random from the same body from which the
crossover point of the first parent was selected, i.e., the
crossover points always share the same "type" as defined in
Section 3.

As the run progresses, genetic programming will evolve
different function definitions in the function-defining
branches of each overall program and then, at its discretion,
may call such defined functions from its result-producing
branch. The structures of both the function-defining and the
result-producing branch are determined by the combined
effect, over many generations, of the selective pressure
exerted by the fitness measure and by the effects of the
operations of Darwinian fitness proportionate reproduction
and crossover.

8. RESULTS WITH AUTOMATIC FUNCTION
DEFINITION

In one particular successful run with automatic function
definition, the following 100% correct 42-point program
scoring 64 (out of 64) emerged in generation 5:
(progn (defun ADF0 ()

(values (PROGN (V+ #(0 1) #(2 0)) (V+ (V+
(PROGN (MOW) (LEFT)) (V+ (MOW) (LEFT)))
(PROGN (V+ (LEFT) (LEFT)) (PROGN (MOW)
(MOW)))))))

 (defun ADF1 (ARG0)
(values (V+ (FROG (FROG (ADF0))) (PROGN
(PROGN (V+ (MOW) (ADF0)) (V+ (ADF0)
(MOW))) (V+ (FROG (ADF0)) (V+ ARG0
ARG0))))))

 (values (ADF1 (ADF1 (ADF1 (ADF1
(ADF0)))))))

Note that this 42-point solution is a hierarchical
decomposition of the problem. Genetic programming
discovered the decomposition of the overall problem,
discovered the content of each subroutine, and assembled
the results of the multiple calls to the subroutines into a
solution of the overall problem. Specifically, in the result-
producing branch at the top level, genetic programming
discovered a decomposition of the overall problem into five
subproblems (four ADF1s and one ADF0). As it happens,
the result-producing branch does not contain any (LEFT),
(MOW), or FROG operations. ADF1 contains four
invocations of ADF0, two (MOW)'s, and no (LEFT) or
FROG operations. ADF0 contains four (MOW)'s, and four
(LEFT)'s.

Figure 9 shows the trajectory of the lawn mower for this
42-point solution. Note the difference between this regular,
largely non overlapping trajectory and the haphazard
character of the three partial trajectories shown in figures 5,
6, and 7. The lawn mower here takes advantage of the
regularity of the problem environment. It employs a
tessellating activity that covers the entire lawn in a regular
manner. Specifically, it mows four consecutive squares in a
column in a northerly direction, shifts one column to the
west, and then does the same thing in the next column.
The fact that the entire trajectory can be conveniently
presented in only one figure testifies to this solution's
regular and mostly non-overlapping behavior.

Figure 9 Trajectory of 42-point program with automatic

function definition.

When this 42-point program is evaluated, ADF0 is
executed first by the result-producing branch. ADF0 begins
with a PROGN whose first argument is (V+ (#0,1)
(#(2,0)). Since vector addition V+ has no side effects
and since the return value of PROGN is the value returned

by its second argument, this first argument to the PROGN
can be totally ignored. Since the remainder of ADF0
contains only (MOW) and (LEFT) operations, ADF0
returns (0,0). As it turns out, ADF1 never uses its argument.

The basic activity of ADF0 is to mow four squares of
lawn in a northwesterly zigzag pattern. This zigzag action
is illustrated at the starting point (3,3) in the middle of the
figure. When simplified, ADF0 moves forward (i.e., north)
one square and mows that square; it then turns left (i.e.,
west) and moves forward and mows that square; it then
turns left three times (so that it is again oriented north); and
it then moves and mows two squares.

The northwesterly zigzag mowing activity of ADF0 is
then repeatedly invoked. The result-producing branch
invokes ADF1 a total of four times. Each time ADF1 is
invoked, ADF0 is invoked four times. This hierarchy of
invocations produce a total of 16 calls for the zigzag activity
of ADF0. Because of the initial direct call of ADF0 at the
beginning of evaluation of the result-producing branch, the
last of the 16 hierarchical invocations of ADF0 is not
needed since the program is terminated by virtue of the
completion of the overall task.

Note that this solution is an hierarchical decomposition
of the problem. Genetic programming discovered a
decomposition of the overall problem into 16 subproblems
each consisting of the northwesterly zigzag mowing pattern.
Genetic programming discovered the sequence of turns and
moves to implement the northwesterly zigzag mowing
activity. Genetic programming assembled the results of the
northwesterly zigzag mowing into a solution of the overall
problem by appropriately repositioning the lawn mower.

In a second run with automatic function definition, the
following 100% correct 78-point program scoring 64 (out of
64) emerged in generation 2:
(progn (defun ADF0 ()

(values (V+ (PROGN (V+ (V+ (LEFT) #(6 5))
(PROGN (MOW) (LEFT))) (V+ (PROGN (MOW)
(MOW)) (V+ (MOW) (MOW)))) (V+ (PROGN
(V+ #(1 4) (MOW)) (PROGN #(3 1) (MOW)))
(PROGN (PROGN #(3 1) (MOW)) (PROGN
(LEFT) (LEFT)))))))

 (defun ADF1 (ARG0)
(values (V+ (PROGN (FROG (PROGN ARG0
(ADF0))) (V+ (PROGN (MOW) (ADF0)) (V+
(V+ (ADF0) #(3 4)) (V+ (ADF0) ARG0))))
(V+ (FROG (FROG (MOW))) (PROGN (PROGN
(MOW) #(3 5)) (PROGN (MOW) (MOW)))))))

 (values (V+ (ADF1 (ADF1 (V+ #(7 1)
(LEFT)))) (V+ (V+ (PROGN (LEFT) (LEFT))
(V+ #(7 0) (LEFT))) (FROG (V+ (ADF0)
(MOW)))))))

The result-producing branch of this 78-point program
contains two invocations of ADF1, one invocation of ADF0,
four (LEFT)'s, and one (MOW). ADF1 contains four
invocations of ADF0, no turns, and five (MOW)'s. ADF0
contains eight (MOW)'s and four (LEFT)'s.

Figure 10 shows the trajectory of the lawn mower for
this 78-point solution with automatic function definition.
Again we see that the lawn mower here takes advantage of
the regularity of the problem environment. Here it mows an
entire row consisting of eight consecutive squares in an
easterly direction and then proceeds to the next row to the
south and does the same.

Note that this solution is an hierarchical decomposition
of the problem. First, genetic programming discovered a
decomposition of the overall problem into eight
subproblems each consisting of mowing a single row of
eight consecutive squares. Then, genetic programming
discovered the sequence of turns and moves to implement
the mowing of an entire row of eight squares. Thirdly,
genetic programming assembled the results of the row
mowing by repositioning the lawn mower to the next
consecutive row.

Figure 10 Trajectory of 78-point program with

automatic function definition.

Over a series of 76 runs of this problem with automatic
function definition, the average structural complexity of the
76 100%-correct solutions was 76.95 points. This average
size is smaller by a factor of 3.65 than the average size of
280.82 without automatic function definition.

M = 4,000

R(z) = 1
z = 99%

N = 76

P(M,i)
I(M, i, z)

0 25 50
0

With Defined Functions

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

(1, 1%)

(50, 100%)

10 E = 11,000

(10, 100%)

0 25 50
0

50

100

0

2,000,000

4,000,000

Figure 11 Performance curves showing that it is
sufficient to process 11,000 individuals to yield a solution
with 99% probability with automatic function definition.

Figure 11 presents the performance curves based on the
76 runs for this problem with automatic function definition.
The cumulative probability of success P(M,i) was 100% by
generation 10. For a value of P(M,i) of 100%, the number
of independent runs, R(z), necessary to yield a solution to
the problem with a 99% probability by generation i is 1. The
two numbers in the oval indicate that if this problem is run
through to generation 10, processing a total of 11,000
individuals (i.e., 1,000 ∞ 11 generations ∞ 1 run) is
sufficient to yield a solution to this problem with 99%
probability.

9. CONCLUSION
This paper has described a general automatic approach

for simultaneously discovering reusable subroutines and a
way to invoke them to solve problems.

As we have now seen, genetic programming can solve
this particular illustrative problem with or without automatic
function definition.

Table 1 compares the solutions of this problem with and
without automatic function definition with respect to the
average structural complexity of the 100%-correct solutions
and the computational effort I(M,i,z) sufficient to yield a
solution to this problem with 99% probability.

Table 1 Comparison table
 Without

Automatic
Function
Definition

With Automatic
Function
Definition

Average
Structural
Complexity

280.82 76.95

Computational
Effort I(M,i,z)

100,000 11,000

Table 1 shows that the average structural complexity, S ,
of 280.82 points for 100% correct solutions without
automatic function definition is 3.65 times the 76.95 points
for such solutions with automatic function definition. That
is, there is a reduction in the structural complexity of the
solutions as a result of using automatic function definition.

Table 1 also shows that the 100,000 individuals required
to be processed to yield an 100% correct solution to the
problem with 99% probability without automatic function
definition is 9.09 times the 11,000 individuals required with
automatic function definition. That is, there is a reduction
in the number of individuals required to be processed as a
result of using automatic function definition.

Figure 10 summarizes these conclusions by showing that
the structural complexity ratio is 3.65 and that the efficiency
ratio is 9.09.

Without ADFs With ADFs
0

100

200

300

S

R = 3.65S

Without ADFs With ADFs
0

50,000

100,000

R = 9.09
E

C
om

pu
ta

tio
na

l E
ffo

rt

Figure 10 Summary graphs

ACKNOWLEDGEMENTS
James P. Rice of the Knowledge Systems Laboratory at

Stanford University did the computer programming of the
above on a Texas Instruments Explorer II+ computer.

REFERENCES

Davis, Lawrence (editor). Genetic Algorithms and
Simulated Annealing. London: Pittman l987.

Davis, Lawrence. Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold 1991.

Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley l989.

Holland, John H. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press
1975. Revised Second Edition 1992 from The MIT Press.

Koza, John R. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
Cambridge, MA: The MIT Press 1992. 1992a.

Koza, John R. Hierarchical automatic function definition in
genetic programming. In Whitley, Darrell (editor).
Proceedings of Workshop on the Foundations of Genetic
Algorithms and Classifier Systems, Vail, Colorado 1992.
San Mateo, CA: Morgan Kaufmann Publishers Inc. 1992.
1992b.

Koza, John R. Simultaneous discovery of detectors and a
way of using the detectors via genetic programming. 1993
IEEE International Conference on Neural Networks, San
Francisco. Piscataway, NJ: IEEE 1993. Volume III. Pages
1794-1801. 1993a.

Koza, John R. Simultaneous discovery of reusable
detectors and subroutines using genetic programming. In
Forrest, Stephanie (editor). Proceedings of the Fifth
International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann 1993b.

Koza, John R., Keane, Martin A., and Rice, James P.
Performance improvement of machine learning via
automatic discovery of facilitating functions as applied to a
problem of symbolic system identification. 1993 IEEE
International Conference on Neural Networks, San

Francisco. Piscataway, NJ: IEEE 1993. Volume I. Pages
191-198. 1993 .

Koza, John R. and Rice, James P. Genetic Programming:
The Movie. Cambridge, MA: The MIT Press 1992.

Michalewicz, Zbignlew. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag 1992.

