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Abstract 

This paper describes an automated process for 
the dynamic creation of a pattern-recognizing 
computer program consisting of initially-unknown 
detectors, an initially-unknown iterative 
calculation incorporating the as-yet-uncreated 
detectors, and an initially-unspecified final 
calculation incorporating the results of the as-yet-
uncreated iteration.  The program's goal is to 
recognize a given protein segment as being a 
transmembrane domain or non-transmembrane 
area.  The recognizing program to solve this 
problem will be evolved using the recently-
developed genetic programming paradigm.  
Genetic programming starts with a primordial 
ooze of randomly generated computer programs 
composed of available programmatic ingredients 
and then genetically breeds the population using 
the Darwinian principle of survival of the fittest 
and the genetic crossover (sexual recombination) 
operation.  Automatic function definition enables 
genetic programming to dynamically create 
subroutines (detectors).  When cross-validated, 
the best genetically-evolved recognizer achieves 
an out-of-sample correlation of 0.968 and an out-
of-sample error rate of 1.6%.  This error rate is 
better than that recently reported for five other 
methods.  

1. Statement of the Problem 
The goal in this paper is to use genetic programming with 
automatically defined functions (ADFs) to create a 
computer program for recognizing a given subsequence of 
amino acids in a protein as being a transmembrane domain 
or non-transmembrane area of the protein.  The automated 
process that will create the recognizing program for this 
problem will be given a set of differently-sized protein 
segments and the correct classification for each segment.  
The recognizing program will consist of initially-
unspecified detectors, an initially-unspecified iterative 
calculation incorporating the as-yet-undiscovered 
detectors, and an initially-unspecified final calculation 

incorporating the results of the as-yet-undiscovered 
iteration.   
Although genetic programming does not know the 
chemical characteristics or biological meaning of the 
sequence of amino acids appearing in the protein segment, 
we will show that the results have an interesting biological 
interpretation.  Of course, the reader may ignore the 
biological interpretation and view this problem as a one-
dimensional pattern recognition problem.   
Genetic programming is a domain-independent method for 
evolving computer programs that solve, or approximately 
solve, problems.  To accomplish this, genetic programming 
starts with a primordial ooze of randomly generated 
computer programs composed of the available 
programmatic ingredients, and breeds the population or 
programs using the Darwinian principle of survival of the 
fittest and an analog of the naturally occurring genetic 
operation of crossover (sexual recombination).  Automatic 
function definition enables genetic programming to 
dynamically create subroutines dynamically during the run.   
The question arises as to whether genetic programming can 
evolve a recognizing program consisting of initially 
unspecified detectors, an initially unspecified iterative 
calculation incorporating the as-yet-undiscovered 
detectors, and an initially unspecified final calculation 
incorporating the results of the as-yet-undiscovered 
iteration. The genetically evolved program in this paper 
accomplishes this. It achieves a better error rate than all 
four algorithms described in Weiss et al. (1993).  When 
analyzed, the genetically evolved program has a simple 
biological interpretation.  
2. Transmembrane Domains in Proteins 
Proteins are polypeptide molecules composed of sequences 
of amino acids.  There are 20 amino acids (residues) in the 
alphabet of proteins.  They are denoted by the letters A, C, 
D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.  
Broadly speaking, the sequence of amino acids in a protein 
determines the locations of its atoms in three-dimensional 
space; this, in turn, determines the biological structure and 
function of a protein (Anfinsen 1973).   
A transmembrane protein is a protein that finds itself 
embedded in a membrane (e.g., a cell wall) in such a way 



 

that part of the protein is located on one side of the 
membrane, part is within the membrane, and part is on the 
opposite side of the membrane.  Transmembrane proteins 
often cross back and forth through the membrane several 
times and have short loops immersed in the different 
milieu on each side of the membrane.  The length of each 
transmembrane domain and each loop or other non-
transmembrane area are usually different.  Transmembrane 
proteins perform functions such as sensing the presence of 
certain chemicals or certain stimuli on one side of the 
membrane and transporting chemicals or transmitting 
signals to the other side of the membrane.  Understanding 
the behavior of transmembrane proteins requires 
identification of their transmembrane domains.   
Biological membranes are of hydrophobic (water-hating) 
composition.  The amino acids in the transmembrane 
domain of a protein that are exposed to the membrane 
therefore have a pronounced tendency to be hydrophobic.  
This tendency toward hydrophobicity is an overall 
distributional characteristic of the entire segment (not of 
any particular few amino acids of the segment).  Many 
transmembrane domains are α-helices and our discussion 
here is limited to α-helical transmembrane domains.     
For example, a successful recognizing program should 
identify the following 24-residue segment from positions 
96–119 of mouse peripheral myelin protein 22 (identified 
as "PM22_MOUSE" in the SWISS-PROT computerized 
database of proteins) as a transmembrane domain: 

(1)     FYITGFFQILAGLCVMSAAAIYTV, 
Conversely, a successful program should identify the 
following 27-residue segment between positions 35–61 as 
being in a non-transmembrane area of the protein:  

(2)     TTDLWQNCTTSALGAVQHCYSSSVSEW 
This classification problem will be solved by genetic 
programming without reference to any knowledge about 
the hydrophobicity of the 20 amino acids; however, we 
will use such knowledge to explain the problem (and, later, 
to interpret the genetically evolved program).  Two thirds 
of the 24 residues of segment (1) are in the category 
consisting of I, V, L, F, C, M, or A having the highest 
numerical values of  hydrophobicity on Kyte-Doolittle 
scale.  If a human were clustering the 20 hydrophobicity 
values into three categories with the benefit of knowledge 
of the Kyte-Doolittle hydrophobicity scale, these seven 
residues would be categorized into a hydrophobic 
category.  Seven of the 24 residues of segment (1) (i.e., 
two Gs, two Ts, two Ys, and one S) are in the category 
consisting of G, T, S, W, Y, P (which the knowledgeable 
human would cluster into a neutral category).  Only one 
residue of segment (1) (i.e., the Q at position 103) is in the 
category consisting of H, Q, N, E, D, K, R (which the 
knowledgeable human would cluster into a hydrophilic 
category).  Even through there are some residues from all 
three categories in segments(1), segment (1) is 

predominantly hydrophobic and is, in fact, a 
transmembrane domain of PM22_MOUSE.   
In contrast, 13 of the 27 (about half) of the residues of 
segment (2) are neutral, eight (about a quarter) are 
hydrophobic, and six (about a quarter) are hydrophilic.  
This distribution is very different from that of segment (1).  
Segment (2) is, in fact, a non-transmembrane area.   
3. Background on Genetic Programming 
John Holland's pioneering Adaptation in Natural and 
Artificial Systems (1975, 1992) described how the 
evolutionary process in nature can be applied to artificial 
systems using the genetic algorithm operating on fixed 
length character strings.  
Genetic programming is an extension of the genetic 
algorithm in which the genetic population consists of 
computer programs (that is, compositions of primitive 
functions and terminals).  As described in Genetic 
Programming: On the Programming of Computers by 
Means of Natural Selection (Koza 1992), genetic 
programming is a domain independent method that 
genetically breeds populations of computer programs to 
solve problems by executing the following three steps: 
(1) Generate an initial population of random computer 

programs composed of the primitive functions and 
terminals of the problem. 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and 

assign it a fitness value according to how well it 
solves the problem. 

(b) Create a new population of programs by applying 
the following two primary operations.  The 
operations are applied to program(s) in the 
population selected with a probability based on 
fitness (i.e., the fitter the program, the more likely 
it is to be selected). 
(i) Reproduction: Copy an existing program to 

the new population. 
(ii) Crossover: Create two new offspring 

programs for the new population by 
genetically recombining randomly chosen 
parts of two existing programs.  The genetic 
crossover (sexual recombination) operation 
(described below) operates on two parental 
computer programs and produces two 
offspring programs using parts of each 
parent.  

(3) The single best computer program in the population 
produced during the run is designated as the result of 
the run of genetic programming.  This result may be a 
solution (or approximate solution) to the problem.   

Recent advances in genetic programming are described in 
Kinnear (1994).  A videotape visualization of numerous 
applications of genetic programming can be found in Koza 
and Rice (1992) and Koza and Rice (1994).   



 

3.1. Crossover 
The genetic crossover operation operates on two parental 
computer programs selected with a probability based on 
fitness and produces two new offspring programs 
consisting of parts of each parent.   
For example, consider the following computer program 
(shown here as a LISP symbolic expression):  
(+ (* 0.234 Z) (- X 0.789)). 
We would ordinarily write this LISP S-expression as 
0.234z + x − 0.789.  This two-input, one-output 
computer program takes X and Z as inputs and produces a 
single floating point output.   
Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))). 

This program is equivalent to zy(y + 0.314z).  
The crossover operation creates new offspring by 
exchanging sub-trees (i.e., subroutines, sublists, 
subprocedures, subfunctions) between the two parents.  
The two parents are typically of different sizes and shapes.  
The sub-trees to be exchanged (called crossover 
fragments) are selected at random by selecting crossover 
points at random.  Suppose that crossover points are the 
multiplication (*) in the first parent and the addition (+) in 
the second parent.  The two crossover fragments are the 
underlined sub-programs (sub-lists) in the two parents. 
The two offspring resulting from crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) and 
(* (* Z Y) (* 0.234 Z)). 
Assuming closure of the functions and terminals of which 
the programs are composed, crossover produces 
syntactically and semantically valid programs as offspring.    
3.2. Automatic Function Definition 
Automatic function definition is used to enable genetic 
programming to evolve subroutines during a run.  
Automatic function definition can be implemented within 
the context of genetic programming by establishing a 
constrained syntactic structure for the individual programs 
in the population as described in Genetic Programming II: 
Scalable Automatic Programming by Means of 
Automatically Defined Functions (Koza 1994).  Each 
program in the population contains one (or more) function-
defining branches, one main result-producing branch, and 
possibly other types of branches (such as iteration-
performing branches).  The function-defining branch(es) 
define the automatically defined functions ADF0, ADF1, 
etc.  The result-producing branch may invoke the ADFs.  
The value returned by the overall program is the value 
returned by the result-producing branch.   
The initial random generation of the population 
(generation 0) is created so that every individual program 
in the population has a constrained syntactic structure 
consisting of the problem's particular arrangement of 
branches.  Each branch is composed of functions and 
terminals appropriate to that branch.  This constrained 

syntactic structure must be preserved as the run proceeds 
from generation to generation.  Structure-preserving 
crossover is implemented by limiting crossover to points 
lying within the bodies of the various branches (branch 
typing).  The crossover point for the first parent is 
randomly selected, without restriction, from the body of 
any one of the branches.  However, once this selection is 
made for the first parent, the crossover point of the second 
parent is randomly selected from the body from the same 
type of branch.   This method of performing crossover 
preserves the syntactic validity of all offspring throughout 
the run.  As the run progresses, genetic programming will 
evolve different function-defining branches, different 
result-producing branches, and different ways of calling 
these automatically defined functions from the result-
producing branch.  
4. Preparatory Steps 
In applying genetic programming with automatic function 
definition to a problem, there are six major preparatory 
steps.  These steps involve determining  
(1) the set of terminals for each branch, 
(2) the set of functions for each branch,  
(3) the fitness measure, 
(4) the parameters and variables for controlling the run,  
(5) the result designation and termination method and 
(6) the architecture of the overall program.    
4.1. Architecture of the Overall Program 
We begin by deciding that the overall architecture of the 
yet-to-be-evolved recognizing program will have to be 
capable of categorizing the residues into useful categories, 
then iteratively performing some arithmetic calculations 
and conditional operations on the categories, and finally 
performing some arithmetic calculations and conditional 
operations to reach a conclusion.  This suggests an overall 
architecture for the recognizing program of several 
automatically defined functions  (say ADF0, ADF1, ADF2) 
to serve as detectors for categorization, an iteration-
performing branch, IPB0, for performing arithmetic 
operations and conditional operations for examining the 
residues of the protein segment using the as-yet-
undiscovered detectors, and a result-producing branch, 
RPB0, for performing arithmetic and conditional 
operations for reaching a conclusion.   
4.2. Function-Defining Branches  
Automatically defined functions seem well suited to the 
role of dynamically defining categories of the amino acids.  
If the automatically defined functions are to play the role 
of set formation, each defined function should be able to 
interrogate the current residue as to which of the 20 amino 
acids it is.  Since we anticipate that some numerical 
calculations will subsequently be performed on the result 
of the categorization of the residues, we employ numerical-
valued logic, rather than Boolean-valued logic returning 
the non-numerical values of True and False.  One way to 



 

implement this approach is to define 20 numerical-valued 
zero-argument logical functions for determining whether 
the residue currently being examined is a particular amino 
acid.  For example, (A?) is the zero-argument residue-
detecting function returning a numerical +1 if the current 
residue is alanine (A) but otherwise returning a numerical 
–1.  A similar residue-detecting function is defined for 
each of the 19 other amino acids.  Since we envisage that 
the automatically defined functions will be used for set 
formation, it seems reasonable to include the logical 
disjunctive function in the function set of the automatically 
defined functions.  ORN is the two-argument numerical-
valued disjunctive function returning +1 if either or both of 
its arguments are positive, but returning –1 otherwise. 
The terminal set for each of the three function-defining 
branches (ADF0, ADF1, and ADF2) contains the 20 zero-
argument numerical-valued residue-detecting functions.   

Tfd = {(A?), (C?), ... , (Y?)}. 
The function set for the three function-defining branches 
(ADF0, ADF1, and ADF2) contains only the two-argument 
numerically-valued logical disjunctive function.   
Ffd = {ORN}.   
4.3. Iteration-Performing Branch 
Typical computer programs contain iterative operators that 
perform some specified work until some condition 
expressed by a termination predicate is satisfied.  When we 
attempt to include iterative operators in genetically-
evolved programs, we face the practical problem that both 
the work and the termination predicate are initially created 
at random and are subsequently subject to modification by 
the crossover operation.  Consequently, iterative operators 
will, at best, be nested and consume enormous amounts of 
computer time or will, at worst, have unsatisfiable 
termination predicates and go into infinite loops.  This 
problem can sometimes be partially alleviated by imposing 
arbitrary time-out limits (e.g., on each iterative loop 
individually and all iterative loops cumulatively).   
In problems where we can envisage one iterative 
calculation being usefully performed over a particular 
known, finite set, there is an attractive alternative to 
permitting imposing arbitrary time-out limits.   For such 
problems, the iteration can be restricted to exactly one 
iteration over the finite set.  The termination predicate of 
the iteration is thereby fixed and is not subject to 
evolutionary modification.  Thus, there is no nesting and 
there are no infinite loops.   
In the case of problems involving the examination of the 
residues of a protein, iteration can very naturally be limited 
to the ordered set of amino acid residues of the protein 
segment involved.  Thus, for this problem, we employ one 
iteration-performing branch, with the iteration restricted to 
the ordered set of amino acid residues in the protein 
segment.  That is, each time iterative work is performed by 
the body of the iteration-performing branch, the current 

residue of the protein is advanced to the next residue of the 
protein segment until the end of the entire protein segment 
is encountered.  The result-producing (wrap-up) branch 
produces the final output of the overall program.  
Useful iterative calculations typically require both an 
iteration variable and memory (state).  That is, the nature 
of the work performed by the body of the iteration-
performing branch typically varies depending on the 
current value of the iteration variable.  Memory is typically 
required to transmit information from one iteration to the 
next.  In this problem, the same work is executed as many 
times as there are residues in a protein segment, so the 
iteration variable is the residue at the current position in 
the segment.  Depending on the problem, the iteration 
variable may be explicitly available or be implicitly 
available through functions that permit it to be 
interrogated.  For this problem, the automatically defined 
functions provide a way to interrogate the residues of the 
protein sequence.    
Memory can be introduced into any program by means of 
settable variables, M0, M1, M2, and M3.   Settable variables 
are initialized to some appropriate value (e.g., zero) at the 
beginning of the execution of the iteration-performing 
branch.  These settable variables typically change as a 
result of each iteration.    
The terminal set for the iteration-performing branch is  
Tipb0 = {LEN, M0, M1, M2, M3, ←}. 
Here ← represents floating-point random constants 
between –10.000 and +10.000 with a granularity of 0.001 
and LEN is the length of the current protein segment.   
Since we envisage that the iteration-performing branch will 
perform numerical calculations and make decisions based 
on these calculations, it seems reasonable to include the 
four arithmetic operations and a conditional operator in the 
function set.  We have used the four arithmetic functions 
(+, -, *, and %) and the conditional comparative operator 
IFLTE (If Less Than or Equal) on many previous 
problems, so we include them in the function set for the 
iteration-performing branch.   The protected division 
function % takes two arguments and returns one when 
division by 0 is attempted (including 0 divided by 0), and, 
otherwise, returns the normal quotient.  The four-argument 
conditional branching function IFLTE evaluates and 
returns its third argument if its first argument is less than or 
equal to its second argument and otherwise evaluates and 
returns its fourth argument.   
Since a numerical calculation is to be performed on the 
results of the categorization performed by the function-
defining branches, the functions ADF0, ADF1, and ADF2 
are included in the function set for the iteration-performing 
branch.   
We need a way to change the settable variables M0, M1, 
M2, and M3.  The one-argument setting function SETM0 
can be used to set M0 to a particular value.  Similarly, the 



 

setting functions SETM1, SETM2, and SETM3 can be used 
to set the respective values of the settable variables M1, 
M2, and M3, respectively.  Thus, memory can be written 
(i.e., the state can be set) with the setting functions, 
SETM0, SETM1, SETM2, and SETM3, and memory can be 
read (i.e., the state can be interrogated) merely by referring 
to the terminals, M0, M1, M2, and M3.   
Thus, the function set for the iteration-performing branch, 
IPB0, is  
Fipb0 = {ADF0, ADF1, ADF2, SETM0, SETM1, 

SETM2, SETM3, IFLTE, +, -, *, %}. 
taking 0, 0, 0, 1, 1, 1, 1, 4, 2, 2, 2, and 2 arguments. 
4.4. Result-Producing Branch 
The result-producing (wrap-up) branch then performs a 
non-iterative floating-point calculation and produces the 
final result of the overall program.  The settable variables 
M0, M1, M2, and M3 provide a way to pass the results of 
the iteration-performing branch to the result-producing 
branch.     
The terminal set for the result-producing branch, RPB0, is  
Trpb0 = {LEN, M0, M1, M2, M3, ←}. 
The function set for the result-producing branch RPB0, is  
Frpb0 = {IFLTE, +, -, *, %} 
taking 4, 2, 2, 2, and 2 arguments, respectively.   
A wrapper is used to convert the floating-point value 
produced by the result-producing branch into a binary 
outcome.  If the genetically-evolved program returns a 
positive value, the segment will be classified as a 
transmembrane domain, but otherwise it will be classified 
as a non-transmembrane area.   
4.5. Fitness Cases 
Release 25 of the SWISS-PROT protein data base (Bairoch 
and Boeckmann 1991) contains 248 mouse transmembrane 
proteins averaging 499.8 residues in length.  Each protein 
contains between one and 12 transmembrane domains, the 
average being 2.4.  The transmembrane domains range in 
length from 15 and 101 residues and average 23.0.   
123 of the 248 proteins were arbitrarily selected to create 
the in-sample set of fitness cases to measure fitness during 
the evolutionary process.  One of the transmembrane 
domains of each of these 123 proteins was selected at 
random as a positive fitness case for this in-sample set.  
One segment of the same length as a random one of the 
transmembrane segments that is not contained in any of the 
protein's transmembrane domains was selected from each 
protein as a negative fitness case.  There are 123 positive 
and 123 negative fitness cases in the in-sample set.   
The evolutionary process is driven by fitness as measured 
by the set of in-sample fitness cases.  However, the true 
measure of performance for a recognizing program is how 
well it generalizes to different cases from the same 
problem environment.  Thus, 250 out-of-sample fitness 

cases (125 positive and 125 negative) were created from 
the remaining 125 proteins in a manner similar to the 
above.   These out-of-sample fitness cases were then used 
to validate the performance of the genetically-evolved 
programs.   
4.6. Fitness Measure 
Fitness will measure how well a particular genetically-
evolved recognizing program predicts whether the segment 
is, or is not, transmembrane domain.  Fitness is measured 
over a number of trials, which we call fitness cases.  The 
fitness cases for this problem consist of protein segments.   
When a genetically-evolved recognizing program in the 
population is tested against a particular fitness case, the 
outcome can be a true-positive, true-negative, false-
positive, or false-negative.  Fitness can be measured by the 
correlation coefficient C.  When the predictions and 
observations each take on only two possible values, 
correlation is a general, and easily computed, measure for 
evaluating the performance of a recognizing program.   
The correlation, C, lends itself immediately to being the 
measure of raw fitness measure for a genetically evolved 
computer program.  Since raw fitness ranges between –1.0 
and +1.0 (higher values being better), standardized fitness 

("zero is best") can then be defined as 
1 −C

2
.  Standardized 

fitness ranges between 0.0 and +1.0, lower values being 
better and a value of 0 being the best.  A standardized 
fitness of 0 indicates perfect agreement between the 
predicting program and the observed reality; a 
standardized fitness of +1.0 indicates total disagreement; 
0.50 indicates that the predictor is no better than random.   
The error rate is the number of fitness cases for which the 
recognizing program is incorrect divided by the total 
number of fitness cases.  The error rate is a less general 
measure of performance for a recognizing program; 
however, Weiss et al. (1993) use the error rate as their 
yardstick for comparing three methods in the biological 
literature with their new algorithm created using the 
SWAP-1 induction technique.   Therefore, we present our 
final results in terms of both correlation and error rate and 
we use error rate for the purpose of comparing results.   
4.7. Control Parameters 
Population size, M, was 4,000.  The maximum number of 
generations to be run, G, was set to 21.  The other 
parameters for controlling the runs of genetic programming 
were the default values specified in Koza (1994) and 
which have been used for a number of different problems.  
5. Results 
The best program over 11 runs produced a value of out-of-
sample correlation of 0.968 on generation 20. The in-
sample correlation of 0.976 results from 121 true positives, 
122 true negatives, 1 false positive, and 2 false negatives 
over the 246 in-sample fitness cases.  The out-of-sample 
correlation of 0.968 is the result of 123 true positives, 123 



 

true negatives, 2 false positives, and 2 false negatives .  
The out-of-sample error rate is only 1.6%.  This 105-point 
best program is shown below:   
(progn (defun ADF0 () 

(values (ORN (ORN (ORN (I?) (H?)) (ORN (P?) 
(G?))) (ORN (ORN (ORN (Y?) (N?)) (ORN (T?) 
(Q?))) (ORN (A?) (H?)))))) 
(defun ADF1 () 

(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) 
(W?))) (ORN (ORN (T?) (L?)) (ORN (T?) 
(W?)))))) 
(defun ADF2 () 

(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) 
(ORN (ORN (ORN (D?) (E?)) (ORN (ORN (T?) 
(W?)) (ORN (Q?) (D?)))) (ORN (K?) (P?)))) (ORN 
(K?) (P?))) (ORN (T?) (W?))) (ORN (ORN (E?) 
(A?)) (ORN (N?) (R?)))))) 

(progn (loop-over-residues (SETM0 (+ (- (ADF1) 
(ADF2)) (SETM3 M0)))) 
 (values (% (% M3 M0) (% (% (% (- L -0.53) (* 
M0 M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 
M2))) M2)) (% M3 M0)))))) 

Ignoring the three residues common to the definition of 
both ADF1 and ADF2, ADF1 returns 1 if the current 
residue is I or L and ADF2 returns 1 if the current residue is 
D, E, K, R, Q, N, or P.  I and L are two of the seven 
hydrophobic residues on the Kyte-Doolittle scale.  D, E, K, 
R, Q, and N are six of the seven hydrophilic residues, and 
P is one of the neutral residues.   
In the iteration-performing branch of this program from 
generation 20, M0 is the running sum of the differences of 
the values returned by ADF1 and ADF2.  M0 will be 
positive only if the hydrophobic residues in the protein 
segment are so numerous that the occurrences of I and L 
outnumber the occurrences of the six hydrophilic residues 
and one neutral residue of ADF2.  M3 is the same as the 
accumulated value of M0 except that M3 lags M0 by one 
residue.  Because the contribution to M3 in the iteration-
performing branch of the last residue is either 0 or 1, M3 is 
either equal to M0 or is one less than M0.   
The result-producing branch is equivalent to 

M3
3

M0 (M0 + M3 )(Len + 0. 53)
 

The subexpression (- LEN -0.53) is always positive 
and therefore can be ignored in determining whether the 
result-producing branch is positive or nonpositive.  
Because of the close relationship between M0 and M3, 
analysis shows that the result-producing branch identifies a 
protein segment as a transmembrane domain whenever the 
running sum of the differences, M0, is greater than 0, 
except for the special case when M0 = 1 and M3 = 0.  This 
special case occurs only when the running values of M0 
and M3 are tied at 0 and when the very last residue of the 
protein segment is I or L (i.e., ADF1 returns 1).   

Ignoring this special case, we can summarize the operation 
of this overall best-of-all program from generation 20 as 
follows:  If the number of occurrences of I and L in a given 
protein segment exceeds the number of occurrences of D, 
E, K, R, Q, N, and P, classify the segment as a 
transmembrane domain; otherwise, classify it as a non-
transmembrane area.   
6. Conclusions 
Table 1 shows the out-of-sample error rate for the four 
algorithms for recognizing transmembrane domains 
reviewed in Weiss et al. (1993) as well as the out-of-
sample error rate of our best-of-all genetically-evolved 
program above.  We wrote a computer program to test the 
solution discovered by the SWAP-1 induction technique 
used in the first experiment of Weiss et al. (1993).  Our 
implementation of their solution produced an error rate on 
our test data identical to the error rate reported by them on 
their own test data (i.e., the 2.5% of row 4 of the table). 
As can be seen, the error rate of the best-of-all genetically-
evolved program  from generation 20 is better than the 
error rates of the other four methods reported in the table.  
This genetically evolved program is an instance of an 
algorithm discovered by an automated learning paradigm 
that is superior to that written by human investigators.  
In summary, without using foreknowledge of 
hydrophobicity, genetic programming with automatic 
function definition was able to evolve a successful 
recognizing program consisting of initially-unspecified 
detectors, an initially-unspecified iterative calculation 
incorporating the as-yet-undiscovered detectors, and an 
initially-unspecified final calculation incorporating the 
results of the as-yet-undiscovered iteration.   
Table 1  Comparison of five methods.   
Method Error rate 
von Heijne 1992 2.8% 
Engelman et al. 1986 2.7% 
Kyte-Doolittle 1982 2.5% 
Weiss et al. 1993 2.5% 
Best evolved program 1.6% 
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