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Abstract 

The requirement that the user of a problem-
solving paradigm prespecify the size and shape 
of the ultimate solution to a problem has been a 
bane of automated machine learning from the 
earliest times.  This paper compares two 
techniques for automatically discovering the 
architecture of a multi-part computer program 
while concurrently solving the problem during a 
run of genetic programming.  In the first 
technique, called evolutionary selection, the 
initial random population is architecturally 
diverse and there is a competitive selection 
among the various architectures during the run.  
In the second technique, called evolution of 
architecture, six new architecture-altering 
operations provide a way to evolve the 
architecture of a multi-part program in the sense 
of actually changing the architecture of the 
program dynamically during the run.  The new 
architecture-altering operations are motivated by 
the naturally occurring operation of gene 
duplication, as described in Susumu Ohno's 
provocative book Evolution by Means of Gene 
Duplication, as well as the naturally occurring 
operation of gene deletion.   

1. INTRODUCTION 
The requirement that the user of a problem-solving 
paradigm prespecify the size and shape of the ultimate 
solution to a problem has been a bane of automated 
machine learning from the earliest times (Samuel 1959).   
In nature, sexual recombination (crossover) exchanges 
alleles (gene values) at particular locations (loci) along 
the chromosome (a molecule of DNA).  The DNA then 
controls the manufacture of various proteins that 
determine the structure, function, and behavior of the 
living organism.  The resulting organism then spends its 

life attempting to grapple with its environment.  Some 
organisms in a given population do better than others and 
are able to survive to the age of reproduction, produce 
offspring, and thereby pass on all or part of their genetic 
make-up to the next generation of the population.  Over 
many generations, the population as a whole evolves so 
as to give increasing representation to traits (and, more 
importantly, co-adapted combinations of traits) that 
contribute to survival of the organism and the fruitful 
production of offspring.  This process, which Charles 
Darwin called natural selection, tends to evolve near-
optimal co-adapted sets of alleles in the chromosomes of 
the organism (given its environment).   
John Holland's pioneering Adaptation in Natural and 
Artificial Systems (1975) described how an analog of the 
naturally-occurring evolutionary process can be applied 
to solving artificial problems using what is now called the 
genetic algorithm.  Before applying the genetic algorithm 
to the problem, the user designs an artificial chromosome 
of a certain fixed size and then defines a mapping 
(encoding) between the points in the search space of the 
problem and instances of the artificial chromosome.  For 
example, in applying the genetic algorithm to a 
multidimensional optimization problem (where the goal is 
to find the global optimum of an unknown 
multidimensional function), the artificial chromosome 
may be a linear character string (modeled directly after 
the linear string of information found in DNA).  A 
specific location (a gene) along this artificial chromosome 
is associated with each of the variables of the problem.  
Character(s) appearing at a particular location along the 
chromosome denote the value of a particular variable 
(i.e., the gene value or allele).  Each individual in the 
population has a fitness value (which, for a 
multidimensional optimization problem, is the value of 
the unknown function).  The genetic algorithm then 
manipulates a population of such artificial chromosomes 
(usually starting from a randomly-created initial 
population of strings) using the operations of 



 

reproduction, crossover, and mutation.  Individuals are 
probabilistically selected to participate in these genetic 
operations based on their fitness.  The goal of the genetic 
algorithm in a multidimensional optimization problem is 
to find an artificial chromosome which, when decoded 
and mapped back into the search space of the problem, 
corresponds to a globally optimum (or near-optimum) 
point in the original search space of the problem.   
The evolutionary process described above indicates how a 
globally optimum combination of alleles (gene values) 
within a fixed-size chromosome can be evolved.   
In both the natural and artificial evolutionary processes, 
the crossover operation merely exchanges alleles (gene 
values) at particular locations along an already-existing 
fixed-size chromosome.  The above description does not 
address the question of how totally new structures, new 
functions, new behaviors, and new species arise.  Of 
course, in nature, there is not only short-term optimization 
of alleles in their fixed locations within a fixed-size 
chromosome, but long-term emergence of new proteins 
(which, in turn, create new structures, functions, and 
behaviors and thereby create new and more complex 
organisms).  The emergence of new proteins corresponds 
to a change in the architecture of the chromosome.  
Indeed, genome lengths in nature have generally 
increased with the emergence of new and more complex 
organisms (Dyson and Sherratt 1985, Brooks Low 1988).   
Returning to genetic algorithms, a change in the 
architecture and length of a chromosome corresponds to a 
dynamic alteration, during a run of the algorithm, of the 
user-created mapping (both the encoding and decoding) 
between points from the search space of the problem and 
instances of the artificial chromosome.   
At IJCAI-89, genetic programming was proposed as a 
domain-independent method for evolving computer 
programs that solve, or approximately solve, problems 
(Koza 1989).  Genetic programming is an extension of 
the genetic algorithm in which the genetic population 
consists of computer programs (Koza 1992; Koza and 
Rice 1992; and Kinnear 1994).  Genetic programming 
extended the trend toward increased complexity in the 
entities undergoing adaptation in the genetic algorithm 
that started with Holland's proposed broadcast language 
(1975), the classifier system (Holland and Reitman 1978), 
Steven F. Smith's variable-length entities (1980), Nichael 
Cramer's highly innovative and creative experiments in 
program induction (1985), Hicklin's reproduction and 
mutation of programs (1986), Cory Fujiki's application of 
all genetic operations to programs(1986), Fujiki and 
Dickinson's induction of if-then clauses for playing the 
iterated prisoner’s dilemma game (1987), Antonisse and 
Keller 's work in applying genetic methods to higher-level 
representations (1987), and Bickel and Bickel's  
application of genetic methods to if-then expert system 
rules (1987).   

The programs evolved by genetic programming may be 
single-part programs (containing merely one result-
producing branch) or multi-part programs (containing one 
or more main result-producing branches and one or more 
function-defining branches.  An automatically defined 
function (ADF) is a function (i.e., subroutine, 
subprogram, DEFUN, procedure, module) that is evolved 
during a run of genetic programming in association with a 
particular individual program in the population and which 
may be invoked by a calling program (e.g., a main 
program or other ADF) that is simultaneously being 
evolved (Koza 1994a, 1994b).   
When single-part programs are involved, genetic 
programming automatically determines the size and shape 
of the solution (i.e., the size and shape of the program 
tree) as well as the sequence of work-performing 
primitive functions that can solve the problem.  However, 
when multi-part programs and automatically defined 
functions are being used, the question arises as to how to 
determine the architecture of the programs that are being 
evolved.  The architecture of a multi-part program 
consists of the number of function-defining branches 
(automatically defined functions) and the number of 
arguments (if any) possessed by each function-defining 
branch.  When there is more than one function-defining 
branch in an overall program, the architecture also 
encompasses a specification of how the automatically 
defined functions may (or may not) hierarchically refer to 
one another.   
In genetic programming (with or without automatically 
defined functions), sub-trees are exchanged by the 
crossover operation.  Crossover is analogous to the 
exchanging of alleles (gene values) in a chromosome.  
The analog of a genome change corresponds to a dynamic 
alteration (during a run of genetic programming) of the 
architecture of an overall multi-part computer program.   
Thus, the question arises as to whether it is possible to 
determine the architecture of a multi-part program 
dynamically during a run of genetic programming (rather 
than require that the user prespecify the architecture 
before the run starts).  That is, is it possible to make the 
size and shape of the solution part of the answer provided 
to the user by an automated machine learning process, 
rather than part of the question formulated by the user.  
Section 2 describes a first technique, called evolutionary 
selection, for determining the architecture of a multi-part 
program during a run of genetic programming.  Section 3 
describes naturally-occurring gene duplication.  Section 4 
describes a second technique, called evolution of 
architecture, that employs six new architecture-altering 
operations motivated by naturally-occurring gene 
duplication.  Section 5 compares the two techniques as to 
computational effort, wallclock time, and average size of 
the evolved solutions (i.e., parsimony).   



 

2. EVOLUTIONARY SELECTION OF 
THE ARCHITECTURE 

One technique for creating the architecture of the overall 
program for solving a problem is to evolutionarily select 
the architecture dynamically during a run of genetic 
programming.  This technique is described in chapters 21 
– 25 of Genetic Programming II : Automatic Discovery of 
Reusable Programs (Koza 1994a).  The technique of 
evolutionary selection starts with an architecturally 
diverse initial random population.  As the evolutionary 
process proceeds, individuals with certain architectures 
may prove to be more fit than others at solving the 
problem.  The more fit architectures will tend to prosper, 
while the less fit architectures will tend to wither away.  
The architecturally diverse populations used with the 
technique of evolutionary selection require a modification 
of both the method of creating the initial random 
population and the two-offspring subtree-swapping 
crossover operation previously used in genetic 
programming.  Specifically, the architecturally diverse 
population is created at generation 0 so as to contain 
randomly-created representatives of a broad range of 
different architectures.  Structure-preserving crossover 
with point typing is a one-offspring crossover operation 
that permits robust recombination while guaranteeing that 
any pair of architecturally different parents will produce 
syntactically and semantically valid offspring.   
2.1 Example 
The technique of evolutionary selection of the 
architecture can be illustrated by one run of the problem 
of symbolic regression of the Boolean even-5-parity 
function.   
Generation 0 consists of randomly-generated 
architecturally-diverse programs.  In the illustrative run, 
the best-of-generation program from generation 0 scores 
18 hits and contains a four-argument ADF0 and a three-
argument ADF1.  The argument map of the set of 
automatically defined functions belonging to a program is 
the list (ordered set) containing the number of arguments 
possessed by each automatically defined function in the 
overall program.  This program, therefore, has an 
argument map of {4, 3}.   
The argument map of the best-of-generation individual 
typically changes from generation to generation.  In 
generations 1, 2, 3, and 4 of this run,  the argument map 
of the best-of-generation individual is {4, 4}, {3, 4, 4},  
{3, 4, 4}, and {3, 5}, respectively.  The problem is solved 
on generation 5 of this run with a 100%-correct program 
with an argument map of {3, 5}.  In this solution, ADF0 is 
three-argument Boolean rule 195 which performs the 
even-2-parity function on two of the three arguments.  
ADF1 is a five-argument Boolean rule that performs the 
odd-2-parity function on two of the five arguments.   
Figure 1 is a three-dimensional branch histogram 
showing, by generation, the number of programs in the 

population (4,000 for this particular run) with a specified 
number (from 0 to 5) of automatically defined functions.  
As can be seen from the front row of skyscrapers in this 
histogram, there is approximate equality in the number of 
programs in the population with zero, one, two, three, 
four, or five automatically defined functions in generation 
0 for the technique of evolutionary selection.  However, 
by generation 5, two is the most common number of 
automatically defined functions for programs in this run.  
Only 2% of the individuals in the population have no 
automatically defined functions by generation 5.  In fact, 
in most other runs of this problem, the programs with no 
automatically defined functions become extinct in the 
population before a solution is found.  The ADF-less 
programs tend to disappear because they accrue fitness, 
from generation to generation, more slowly than the 
programs with automatically defined functions.   
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Figure 1 is a branch histogram for the technique of 
evolutionary selection of the architecture.  

Note that, in the technique of evolutionary selection, 
although various different architectures are created at the 
initial random generation (generation 0), no new 
architectures are ever created (or altered) during the run.   

3. GENE DUPLICATION IN NATURE 
A gene duplication is an illegitimate recombination event 
that results in the duplication of a subsequence of DNA.  
Susumu Ohno's seminal 1970 book Evolution by Gene 
Duplication proposed the provocative thesis that the 
creation of new proteins (and hence new structures and 
behaviors in living things) begins with a gene duplication 
and that gene duplication is  

"the major force of evolution." 

Gene duplications are rare and unpredictable events in the 
evolution of genomic sequences.  The effect of a gene 
duplication is to create two identical ways of 
manufacturing the same protein.  When a gene 
duplication occurs, there is no immediate change in the 
proteins that are manufactured by the living cell.  In the 
terminology of computer science, gene duplication is a 
semantics-preserving operation.  Then, over time, another 



 

genetic operation (e.g., mutation or crossover) may 
change one or the other of the two identical genes.  Over 
short periods of time, the changes accumulating in a gene 
may have no practical effect.  In fact, the changed part of 
the DNA will often not even produce a viable protein.  
However, as long as one of the two genes remains 
unchanged, the original protein manufactured from the 
unchanged gene will continue to be manufactured and the 
structure and behavior of the organism involved may 
continue as before.  The changed gene is simply carried 
along in the DNA from generation to generation. 
Natural selection exerts considerable force in favor of 
maintaining a gene that encodes for the manufacture of a 
protein that is important for the successful performance 
and survival of the organism.  However, after a gene 
duplication has occurred, there is no disadvantage 
associated with the loss of the second way of 
manufacturing the original protein.  Consequently, natural 
selection usually exerts little or no pressure to maintain a 
second way of manufacturing the same protein.  Over a 
period of time, the second gene may accumulate 
additional changes and diverge more and more from the 
original gene.  Eventually the changed gene may lead to 
the manufacture of a distinctly new and different viable 
protein that actually does affect the structure and behavior 
of the living thing in some advantageous or 
disadvantageous way.  When a changed gene leads to the 
manufacture of a advantageous new protein, natural 
selection again starts to work to preserve that new gene. 
Ohno's Evolution by Gene Duplication (1970) points out 
that ordinary point mutation and crossover are insufficient 
to explain major evolutionary changes. 

"...while allelic changes at already existing gene loci suffice 
for racial differentiation within species as well as for 
adaptive radiation from an immediate ancestor, they cannot 
account for large changes in evolution, because large 
changes are made possible by the acquisition of new gene 
loci with previously non-existent functions."  (Emphasis 
added).  

Ohno continues, 
"Only by the accumulation of forbidden mutations at the 
active sites can the gene locus change its basic character and 
become a new gene locus.  An escape from the ruthless 
pressure of natural selection is provided by the mechanism 
of gene duplication.  By duplication, a redundant copy of a 
locus is created.  Natural selection often ignores such a 
redundant copy, and, while being ignored, it accumulates 
formerly forbidden mutations and is reborn as a new gene 
locus with a hitherto non-existent function."  (Emphasis in 
original). 

Ohno's provocative thesis is supported by the discovery 
of pairs of proteins with similar sequences of DNA and 
similar sequences of amino acids, but different functions.  
Examples include trypsin and chymotrypsin; myoglobin 
and the monomeric hemoglobin of hagfish and lamprey;  
myoglobin used for storing oxygen in muscle cells and 
the subunits of hemoglobin in red blood cells of 
vertebrates; the protein of microtubules and actin of the 

skeletal muscle; and the light and heavy immunoglobin 
chains (Brooks Low 1988, Hood and Hunkapiller 1991, 
Dyson and Sherratt 1985).   
The midge, Chironomus tentans, in figure 2, provides an 
additional example of gene duplication (Galli and 
Wislander 1993).  In the sequence containing 3,959 
nucleiotide bases of the DNA of Chironomus tentans 
(EMBL accession number X70063), the 732 nucleiotide 
bases located at positions 918–1,649 become expressed as 
a protein (called the "C. tentans Sp38–40.A" gene) 
containing 244 (i.e., one third of 732) amino acid 
residues.  The 759 nucleiotide bases at positions 2,513–
3,271 become expressed as a protein (called "C. tentans 
Sp38–40.B") containing 253 residues.   

 
Figure 2  The midge, Chironomus tentans.  

Both the "A" and the "B" proteins are secreted from the 
fly's salivary gland to form two similar, but different, 
kinds of water-insoluble fibers.  The two kinds of fibers 
are, in turn, spun into one of two similar, but different, 
kinds of tubes.  One tube is for larval protection and 
feeding while the other tube is for pupation.  The two 
proteins are similar, but different.  When the A" and the 
"B" proteins are aligned using the Smith-Waterman 
algorithm (Smith and Waterman 1981), there is 8l% 
identity between the two protein sequences.  These two 
similar proteins arise as a consequence of a gene 
duplication.  Immediately after the gene duplication 
occurred at some time in the distant past, there were two 
identical copies of the duplicated sequence of DNA.  
Over a period of millions of years since the initial gene 
duplication, additional mutations accumulated so that the 
two proteins are now only 81% identical (after 
alignment).  More importantly, the two proteins now 
create different structures performing different functions 
in the fly. 
More complex organisms have a general tendency to have 
more expressed proteins, more different kinds of 
structures, more complex structures, more different 
functions, and longer genomes (Dyson and Sherratt 
1985).  The new functions associated with gene 
duplication are consistent with the observed longer 
genomes of more complex organisms.   
Gene deletion also occurs in nature.  In gene deletion, 
there is a deletion of a portion of the linear string of 
nucleiotide bases that would otherwise be translated and 
manufactured into work-performing proteins in the living 
cell.  After a gene deletion occurs, some particular protein 
that was formerly manufactured will no longer be 
manufactured and there may be some change in the 
structure or behavior of the biological entity.  The 
absence of the protein may then affect the structure and 
behavior of the living thing in some advantageous or 
disadvantageous way.  If the deletion is advantageous, 



 

natural selection will tend to perpetuate the change, but if 
the deletion is disadvantageous, the change will tend to 
become extinct.  

4. ARCHITECTURE-ALTERING 
OPERATIONS 

Six new architecture-altering genetic operations provide a 
way of changing the architecture of the participating 
individuals changes during a run of genetic programming 
and thereby determining the architecture of a multi-part 
program dynamically during the run.  Meanwhile, the 
Darwinian reproduction operation, the crossover 
operation, and the mutation operation continue to be 
performed.  
4.1 Branch Duplication 
The operation of branch duplication duplicates one of the 
branches of a program.  First, a program is selected from 
the population to participate in this operation.  This step is 
performed probabilistically on the basis of fitness for this 
operation (and all the other architecture-altering 
operations described herein).  Second, one of the 
function-defining branches of the selected program is 
picked as the branch-to-be-duplicated.  Third, a uniquely-
named new function-defining branch is added to the 
selected program, thus increasing the number of function-
defining branches in the selected program.  The new 
function-defining branch has the same argument list and 
the same body as the branch-to-be-duplicated.  Fourth, for 
each occurrence of an invocation of the branch-to-be-
duplicated anywhere in the selected program (e.g., the 
result-producing branch or any other branch that invokes 
the branch-to-be-duplicated), a random choice is made 
either to leave that invocation unchanged or to replace 
that invocation with an invocation of the new branch. The 
operation of branch duplication (and all the other 
architecture-altering operations described herein) always 
produces a syntactically valid program. 
Figure 3 shows an overall program consisting of one two-
argument automatically defined function and one result-
producing main branch (i.e., an argument map of {2}). 
Figure 4 shows the program resulting after applying the 
operation of branch duplication.  Specifically, the 
function-defining branch 410 of figure 3 defining ADF0 
(also shown as 510 of figure 4) is duplicated and a new 
function-defining branch (defining ADF1 at 540) appears 
in figure 4.  There are two occurrences in figure 3 of 
invocations of the branch-to-be-duplicated, ADF0, in the 
result-producing branch of the selected program, namely 
ADF0 at 481 and 487.  For each of these two occurrences, 

a random choice is made to either leave the occurrence of 
ADF0 unchanged or to replace it with the newly created 
ADF1.  For the first invocation of ADF0 at 481 of figure 
3, the choice is randomly made to replace ADF0 481 with 
ADF1 581 in figure 4.  The arguments for the invocation 
of ADF1 581 are D1 582 and D2 583 in figure 4 (i.e., they 
are identical to the arguments D1 482 and D2 483 for the 
invocation of ADF0 at 481 as part of the original program 
in figure 3).  For the second invocation of ADF0 at 487 of 
figure 3, the choice is randomly made to leave ADF0 
unchanged.  The new function-defining branch, ADF1, is 
identical to the previous function-defining branch, ADF0 
(except for its name, ADF1, at 541 in figure 4).  ADF1 is 
invoked with the very same arguments as ADF0 had been 
invoked.  Consequently, the operation of branch 
duplication is a semantics-preserving operation.  
Analogs of the naturally occurring operation of gene 
duplication have been previously used with genetic 
algorithms operating on character strings and with other 
evolutionary algorithms (Holland 1975; Goldberg, Korb, 
and Deb 1989; Lindgren 1991).   
4.2 Argument Duplication 

In the operation of argument duplication, a uniquely-
named new argument is added to the argument list of the 
picked function-defining branch of the selected program, 
thus increasing, by one, the number of arguments in its 
argument list.  Then, for each occurrence of the 
argument-to-be-duplicated anywhere in the body of 
picked function-defining branch of the selected program, 
a random choice is made either to leave that occurrence 
unchanged or to replace that occurrence with the new 
argument.   
For each occurrence of an invocation of the picked 
function-defining branch anywhere in the selected 
program, the argument subtree corresponding to the 
argument-to-be-duplicated is identified and duplicated in 
that argument subtree in that invocation, thereby 
increasing the number of arguments in the invocation.  
The effect of this operation is to leave unchanged the 
value returned by the overall program.   
4.3 Branch Creation 

The operation of branch creation creates a new 
automatically defined function within an overall program 
by picking a point in the body of one of the function-
defining branches or result-producing branches of the 
selected program.   
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Figure 3  Program with an argument map of {2} consisting of one two-argument function-defining branch (ADF0) and 
one result-producing branch that invokes ADF0 twice (at 481 and 487).  

This picked point becomes the top-most point of the body 
of the branch-to-be-created.   
Details of this operation (and the other new operations 
below) are found in Koza 1994c.  Branch creation is 
similar to, but different than, the compression (module 
acquisition) operation of Angeline and Pollack (1994).   
4.4 Argument Creation  
The operation of argument creation creates a new dummy 
argument (formal parameter) within a function-defining 
branch of an overall program.   
4.5 Branch Deletion 
The operations of argument duplication, branch 
duplication, branch creation, and argument creation create 
larger programs.  The operations of argument deletion 
and branch deletion (described below) can create smaller 
programs and thereby counter-balance this growth.   
The operation of branch deletion deletes one of the 
automatically defined functions.  When a function-
defining branch is deleted, the question arises as to how 
to modify invocations of the branch-to-be-deleted by the 
other branches of the overall program.  One alternative 
(called branch deletion with random regeneration) is to 
randomly generate new subtrees composed of the 
available functions and terminals in lieu of the branch-to-
be-deleted.   
4.6 Argument Deletion 
The operation of argument deletion deletes one of the 
arguments to one of the automatically defined functions 
of a program.  When an argument is deleted, references to 
the argument-to-be-deleted may by argument deletion 
with random regeneration.   
4.7 Creation of the Initial Random Population 
When the architecture-altering operations are used, the 
initial population of programs may be created in any one 
of three ways.  One possibility (called the "minimalist 

approach") is that each multi-part program in the 
population at generation 0 has a uniform architecture with 
exactly one automatically defined function possessing a 
minimal number of arguments appropriate to the problem.  
A second possibility (called the "big bang") is that each 
program in the population has a uniform architecture with 
no automatically defined functions (i.e., only a result-
producing branch).  This approach relies on the operation 
of branch creation to create multi-part programs during 
the run.  A third possibility is that the population at 
generation 0 is architecturally diverse.  
4.8 Example 
The architecture-altering operations will now be 
illustrated by a run of the even-5-parity problem.  The run 
uses the “minimalist approach" in which each program in 
generation 0 consists of one result-producing branch and 
a two-argument function-defining branch.    
On each generation there were 74% crossovers; 10% 
reproductions; 0% mutations; 5% branch duplications; 
5% argument duplications; 0.5% branch deletion with 
random regeneration; 0.5% argument deletion with 
random regeneration; 5% branch creations; and 0% 
argument creations.  Minor parameters were as in Koza 
1994a.  On generation 13, a 100%-correct solution 
emerged in the form of a computer program with an 
argument map of {3, 2}.  The result-producing branch of 
this solution invokes both ADF0 and ADF1.  Three-
argument ADF0 (which had only two arguments when it 
started at generation 0) performs Boolean rule 106, a non-
parity rule.  Two-argument ADF1 (which did not exist at 
all in generation 0) is equivalent to the odd-2-parity 
function.   
Figure 5 is a branch histogram for this run using the 
architecture-altering operations.  It shows that all 
programs at generation 0 had an argument map of {2} 
and that the distribution of number of function-defining 
branches spread out on subsequent generations.   
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Figure 4   Program with an argument map of {2, 2} consisting of two two-argument function-defining branches (ADF0 
and ADF1) and one result-producing branch that invokes ADF0 and ADF1 one time each (at 581 and 587).   
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Figure 5   Branch histogram for technique of evolution 
of architecture using architecture-altering operations.   

5. COMPARISON 
We now use the even-5-parity problem to compare, over 
a series of runs, the performance of the architecture-
altering operations for the following five approaches: 
(A) without automatically defined functions 

(corresponding to the style of runs discussed 
throughout most of Genetic Programming), 

(B) with automatically defined functions, evolutionary 
selection of the architecture  (corresponding to the style 
of chapters 21–25 of Genetic Programming II on the 
evolutionary selection of the architecture), an 
architecturally diverse initial population, and structure-
preserving crossover with point typing,  

(C) with automatically defined functions, the 
architecture-altering operations, a potentially 
architecturally diverse population, and structure-
preserving crossover with point typing,   

(D) with automatically defined functions, a fixed user-
supplied architecture (i.e., an argument map of {3, 2} 
that is known to be a good choice of architecture for 
this problem), and structure-preserving crossover with 
point typing,  

(E) with automatically defined functions, the fixed 
known-good user-supplied architecture, and structure-
preserving crossover with branch typing 

(corresponding to the style of most of Genetic 
Programming II).   

Comparisons are made for computational effort, E (with 
99% probability); wallclock time, W(M,t,z) in seconds 
(with 99% probability); and the average structural 
complexity, S  (all as described in detail in Koza 1994a).  
The comparisons in table 1 all used a common population 
size, M, of 96,000 and a targeted maximum number of 
generations, G, of 76.  The problem was run on a 
medium-grained parallel computer system.  Different 
semi-isolated subpopulations (called demes in Wright 
1943) are situated at the different processing nodes.  The 
system consisted of a host PC 486 type computer running 
Windows and 64 Transtech TRAMs (containing one 
INMOS T805 transputer and 4 megabytes of RAM 
memory) arranged in a toroidal mesh.  Generations were 
run asynchronously.  There were D = 64 demes, a 
population size of Q =  1,500 per deme, and a migration 
rate (boatload size) of B = 8% (in each of four directions 
on each generation for each deme).  Details of the parallel 
implementation are in Koza and Andre 1995.   
As can be seen from table 1, both approaches for 
determining the architecture dynamically during the run  
(i.e., B and C) require less computational effort than 
solving the problem without automatically defined 
functions (approach A), but more computational effort 
than with the fixed, known-good, user-supplied 
architecture (approach E).  That is, a price must be paid 
for dynamically determining the architecture.  However, 
the price is intermediate between the extreme of not using 
ADFs at all and using ADFs with a fixed, known-good, 
user-supplied architecture.  Approach B (evolutionary 
selection) is inferior, for this problem, to approach C 
(evolution of architecture) in that it requires greater 
computational effort, greater wallclock time, and 
produces bigger solutions (i.e., delivers less parsimony).  
In fact, the wallclock time for approach B exceeds that of 
the ADF-less approach (A) – perhaps because it involves 
so many inappropriate architectures.   
Approach C produces the smallest-sized solutions, on 
average, for this problem (perhaps because it starts small 
and expands programs only  as necessary).  Approach E 
(using the most user-supplied information and the most 
economical form of tuping) requires the least 
computational effort.   

Table 1  Comparison of the five approaches.   

Approach Runs Computational 
effort E 

Wallclock 
(M,t,z) 

Average 
Size S  

A - No ADFs 14 5,025,000 36,950 469.1 
B - ADFs + Evolutionary Selection of 
Architecture 

14 4,263,000 66,667 180.9 

C - ADFs + Architecture-Altering Operations 25 1,789,500 13,594 88.8 
D - ADFs + Point Typing + Fixed Architecture  25 1,705,500 14,088 130.0 



 

E - ADFs + Branch Typing + Fixed Architecture 25 1,261,500 6,481 112.2 



 

Approach D isolates the additional computational effort 
required by point typing as opposed to branch typing 
(approach E).   Since the computational effort for 
approaches C and D are virtually tied, the cost of the 
architecture-altering operations for this problem is about 
the same as the cost of point typing. Note that all four 
approaches (B, C, D, or E) employing ADFs require less 
computational effort, require less wallclock time, and are 
more parsimonious than the ADF-less approach.   
Acknowledgements 
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