

Two Ways of Discovering the Size and Shape of a Computer Program
to Solve a Problem

John R. Koza
Computer Science Department

Stanford University
Stanford, California 94305

 Koza@CS.Stanford.Edu 415-941-0336
http://www-cs-faculty.stanford.edu/~koza/

Abstract

The requirement that the user of a problem-
solving paradigm prespecify the size and shape
of the ultimate solution to a problem has been a
bane of automated machine learning from the
earliest times. This paper compares two
techniques for automatically discovering the
architecture of a multi-part computer program
while concurrently solving the problem during a
run of genetic programming. In the first
technique, called evolutionary selection, the
initial random population is architecturally
diverse and there is a competitive selection
among the various architectures during the run.
In the second technique, called evolution of
architecture, six new architecture-altering
operations provide a way to evolve the
architecture of a multi-part program in the sense
of actually changing the architecture of the
program dynamically during the run. The new
architecture-altering operations are motivated by
the naturally occurring operation of gene
duplication, as described in Susumu Ohno's
provocative book Evolution by Means of Gene
Duplication, as well as the naturally occurring
operation of gene deletion.

1. INTRODUCTION
The requirement that the user of a problem-solving
paradigm prespecify the size and shape of the ultimate
solution to a problem has been a bane of automated
machine learning from the earliest times (Samuel 1959).
In nature, sexual recombination (crossover) exchanges
alleles (gene values) at particular locations (loci) along
the chromosome (a molecule of DNA). The DNA then
controls the manufacture of various proteins that
determine the structure, function, and behavior of the
living organism. The resulting organism then spends its

life attempting to grapple with its environment. Some
organisms in a given population do better than others and
are able to survive to the age of reproduction, produce
offspring, and thereby pass on all or part of their genetic
make-up to the next generation of the population. Over
many generations, the population as a whole evolves so
as to give increasing representation to traits (and, more
importantly, co-adapted combinations of traits) that
contribute to survival of the organism and the fruitful
production of offspring. This process, which Charles
Darwin called natural selection, tends to evolve near-
optimal co-adapted sets of alleles in the chromosomes of
the organism (given its environment).
John Holland's pioneering Adaptation in Natural and
Artificial Systems (1975) described how an analog of the
naturally-occurring evolutionary process can be applied
to solving artificial problems using what is now called the
genetic algorithm. Before applying the genetic algorithm
to the problem, the user designs an artificial chromosome
of a certain fixed size and then defines a mapping
(encoding) between the points in the search space of the
problem and instances of the artificial chromosome. For
example, in applying the genetic algorithm to a
multidimensional optimization problem (where the goal is
to find the global optimum of an unknown
multidimensional function), the artificial chromosome
may be a linear character string (modeled directly after
the linear string of information found in DNA). A
specific location (a gene) along this artificial chromosome
is associated with each of the variables of the problem.
Character(s) appearing at a particular location along the
chromosome denote the value of a particular variable
(i.e., the gene value or allele). Each individual in the
population has a fitness value (which, for a
multidimensional optimization problem, is the value of
the unknown function). The genetic algorithm then
manipulates a population of such artificial chromosomes
(usually starting from a randomly-created initial
population of strings) using the operations of

reproduction, crossover, and mutation. Individuals are
probabilistically selected to participate in these genetic
operations based on their fitness. The goal of the genetic
algorithm in a multidimensional optimization problem is
to find an artificial chromosome which, when decoded
and mapped back into the search space of the problem,
corresponds to a globally optimum (or near-optimum)
point in the original search space of the problem.
The evolutionary process described above indicates how a
globally optimum combination of alleles (gene values)
within a fixed-size chromosome can be evolved.
In both the natural and artificial evolutionary processes,
the crossover operation merely exchanges alleles (gene
values) at particular locations along an already-existing
fixed-size chromosome. The above description does not
address the question of how totally new structures, new
functions, new behaviors, and new species arise. Of
course, in nature, there is not only short-term optimization
of alleles in their fixed locations within a fixed-size
chromosome, but long-term emergence of new proteins
(which, in turn, create new structures, functions, and
behaviors and thereby create new and more complex
organisms). The emergence of new proteins corresponds
to a change in the architecture of the chromosome.
Indeed, genome lengths in nature have generally
increased with the emergence of new and more complex
organisms (Dyson and Sherratt 1985, Brooks Low 1988).
Returning to genetic algorithms, a change in the
architecture and length of a chromosome corresponds to a
dynamic alteration, during a run of the algorithm, of the
user-created mapping (both the encoding and decoding)
between points from the search space of the problem and
instances of the artificial chromosome.
At IJCAI-89, genetic programming was proposed as a
domain-independent method for evolving computer
programs that solve, or approximately solve, problems
(Koza 1989). Genetic programming is an extension of
the genetic algorithm in which the genetic population
consists of computer programs (Koza 1992; Koza and
Rice 1992; and Kinnear 1994). Genetic programming
extended the trend toward increased complexity in the
entities undergoing adaptation in the genetic algorithm
that started with Holland's proposed broadcast language
(1975), the classifier system (Holland and Reitman 1978),
Steven F. Smith's variable-length entities (1980), Nichael
Cramer's highly innovative and creative experiments in
program induction (1985), Hicklin's reproduction and
mutation of programs (1986), Cory Fujiki's application of
all genetic operations to programs(1986), Fujiki and
Dickinson's induction of if-then clauses for playing the
iterated prisoner’s dilemma game (1987), Antonisse and
Keller 's work in applying genetic methods to higher-level
representations (1987), and Bickel and Bickel's
application of genetic methods to if-then expert system
rules (1987).

The programs evolved by genetic programming may be
single-part programs (containing merely one result-
producing branch) or multi-part programs (containing one
or more main result-producing branches and one or more
function-defining branches. An automatically defined
function (ADF) is a function (i.e., subroutine,
subprogram, DEFUN, procedure, module) that is evolved
during a run of genetic programming in association with a
particular individual program in the population and which
may be invoked by a calling program (e.g., a main
program or other ADF) that is simultaneously being
evolved (Koza 1994a, 1994b).
When single-part programs are involved, genetic
programming automatically determines the size and shape
of the solution (i.e., the size and shape of the program
tree) as well as the sequence of work-performing
primitive functions that can solve the problem. However,
when multi-part programs and automatically defined
functions are being used, the question arises as to how to
determine the architecture of the programs that are being
evolved. The architecture of a multi-part program
consists of the number of function-defining branches
(automatically defined functions) and the number of
arguments (if any) possessed by each function-defining
branch. When there is more than one function-defining
branch in an overall program, the architecture also
encompasses a specification of how the automatically
defined functions may (or may not) hierarchically refer to
one another.
In genetic programming (with or without automatically
defined functions), sub-trees are exchanged by the
crossover operation. Crossover is analogous to the
exchanging of alleles (gene values) in a chromosome.
The analog of a genome change corresponds to a dynamic
alteration (during a run of genetic programming) of the
architecture of an overall multi-part computer program.
Thus, the question arises as to whether it is possible to
determine the architecture of a multi-part program
dynamically during a run of genetic programming (rather
than require that the user prespecify the architecture
before the run starts). That is, is it possible to make the
size and shape of the solution part of the answer provided
to the user by an automated machine learning process,
rather than part of the question formulated by the user.
Section 2 describes a first technique, called evolutionary
selection, for determining the architecture of a multi-part
program during a run of genetic programming. Section 3
describes naturally-occurring gene duplication. Section 4
describes a second technique, called evolution of
architecture, that employs six new architecture-altering
operations motivated by naturally-occurring gene
duplication. Section 5 compares the two techniques as to
computational effort, wallclock time, and average size of
the evolved solutions (i.e., parsimony).

2. EVOLUTIONARY SELECTION OF
THE ARCHITECTURE

One technique for creating the architecture of the overall
program for solving a problem is to evolutionarily select
the architecture dynamically during a run of genetic
programming. This technique is described in chapters 21
– 25 of Genetic Programming II : Automatic Discovery of
Reusable Programs (Koza 1994a). The technique of
evolutionary selection starts with an architecturally
diverse initial random population. As the evolutionary
process proceeds, individuals with certain architectures
may prove to be more fit than others at solving the
problem. The more fit architectures will tend to prosper,
while the less fit architectures will tend to wither away.
The architecturally diverse populations used with the
technique of evolutionary selection require a modification
of both the method of creating the initial random
population and the two-offspring subtree-swapping
crossover operation previously used in genetic
programming. Specifically, the architecturally diverse
population is created at generation 0 so as to contain
randomly-created representatives of a broad range of
different architectures. Structure-preserving crossover
with point typing is a one-offspring crossover operation
that permits robust recombination while guaranteeing that
any pair of architecturally different parents will produce
syntactically and semantically valid offspring.
2.1 Example
The technique of evolutionary selection of the
architecture can be illustrated by one run of the problem
of symbolic regression of the Boolean even-5-parity
function.
Generation 0 consists of randomly-generated
architecturally-diverse programs. In the illustrative run,
the best-of-generation program from generation 0 scores
18 hits and contains a four-argument ADF0 and a three-
argument ADF1. The argument map of the set of
automatically defined functions belonging to a program is
the list (ordered set) containing the number of arguments
possessed by each automatically defined function in the
overall program. This program, therefore, has an
argument map of {4, 3}.
The argument map of the best-of-generation individual
typically changes from generation to generation. In
generations 1, 2, 3, and 4 of this run, the argument map
of the best-of-generation individual is {4, 4}, {3, 4, 4},
{3, 4, 4}, and {3, 5}, respectively. The problem is solved
on generation 5 of this run with a 100%-correct program
with an argument map of {3, 5}. In this solution, ADF0 is
three-argument Boolean rule 195 which performs the
even-2-parity function on two of the three arguments.
ADF1 is a five-argument Boolean rule that performs the
odd-2-parity function on two of the five arguments.
Figure 1 is a three-dimensional branch histogram
showing, by generation, the number of programs in the

population (4,000 for this particular run) with a specified
number (from 0 to 5) of automatically defined functions.
As can be seen from the front row of skyscrapers in this
histogram, there is approximate equality in the number of
programs in the population with zero, one, two, three,
four, or five automatically defined functions in generation
0 for the technique of evolutionary selection. However,
by generation 5, two is the most common number of
automatically defined functions for programs in this run.
Only 2% of the individuals in the population have no
automatically defined functions by generation 5. In fact,
in most other runs of this problem, the programs with no
automatically defined functions become extinct in the
population before a solution is found. The ADF-less
programs tend to disappear because they accrue fitness,
from generation to generation, more slowly than the
programs with automatically defined functions.

0 1 2 3 4 5

0
1
2
3
4
5

0
200
400
600
800

1000
1200
1400
1600

ADFS Ge
ne
rat
ion

Fr
eq
ue
nc
y

Figure 1 is a branch histogram for the technique of
evolutionary selection of the architecture.

Note that, in the technique of evolutionary selection,
although various different architectures are created at the
initial random generation (generation 0), no new
architectures are ever created (or altered) during the run.

3. GENE DUPLICATION IN NATURE
A gene duplication is an illegitimate recombination event
that results in the duplication of a subsequence of DNA.
Susumu Ohno's seminal 1970 book Evolution by Gene
Duplication proposed the provocative thesis that the
creation of new proteins (and hence new structures and
behaviors in living things) begins with a gene duplication
and that gene duplication is

"the major force of evolution."

Gene duplications are rare and unpredictable events in the
evolution of genomic sequences. The effect of a gene
duplication is to create two identical ways of
manufacturing the same protein. When a gene
duplication occurs, there is no immediate change in the
proteins that are manufactured by the living cell. In the
terminology of computer science, gene duplication is a
semantics-preserving operation. Then, over time, another

genetic operation (e.g., mutation or crossover) may
change one or the other of the two identical genes. Over
short periods of time, the changes accumulating in a gene
may have no practical effect. In fact, the changed part of
the DNA will often not even produce a viable protein.
However, as long as one of the two genes remains
unchanged, the original protein manufactured from the
unchanged gene will continue to be manufactured and the
structure and behavior of the organism involved may
continue as before. The changed gene is simply carried
along in the DNA from generation to generation.
Natural selection exerts considerable force in favor of
maintaining a gene that encodes for the manufacture of a
protein that is important for the successful performance
and survival of the organism. However, after a gene
duplication has occurred, there is no disadvantage
associated with the loss of the second way of
manufacturing the original protein. Consequently, natural
selection usually exerts little or no pressure to maintain a
second way of manufacturing the same protein. Over a
period of time, the second gene may accumulate
additional changes and diverge more and more from the
original gene. Eventually the changed gene may lead to
the manufacture of a distinctly new and different viable
protein that actually does affect the structure and behavior
of the living thing in some advantageous or
disadvantageous way. When a changed gene leads to the
manufacture of a advantageous new protein, natural
selection again starts to work to preserve that new gene.
Ohno's Evolution by Gene Duplication (1970) points out
that ordinary point mutation and crossover are insufficient
to explain major evolutionary changes.

"...while allelic changes at already existing gene loci suffice
for racial differentiation within species as well as for
adaptive radiation from an immediate ancestor, they cannot
account for large changes in evolution, because large
changes are made possible by the acquisition of new gene
loci with previously non-existent functions." (Emphasis
added).

Ohno continues,
"Only by the accumulation of forbidden mutations at the
active sites can the gene locus change its basic character and
become a new gene locus. An escape from the ruthless
pressure of natural selection is provided by the mechanism
of gene duplication. By duplication, a redundant copy of a
locus is created. Natural selection often ignores such a
redundant copy, and, while being ignored, it accumulates
formerly forbidden mutations and is reborn as a new gene
locus with a hitherto non-existent function." (Emphasis in
original).

Ohno's provocative thesis is supported by the discovery
of pairs of proteins with similar sequences of DNA and
similar sequences of amino acids, but different functions.
Examples include trypsin and chymotrypsin; myoglobin
and the monomeric hemoglobin of hagfish and lamprey;
myoglobin used for storing oxygen in muscle cells and
the subunits of hemoglobin in red blood cells of
vertebrates; the protein of microtubules and actin of the

skeletal muscle; and the light and heavy immunoglobin
chains (Brooks Low 1988, Hood and Hunkapiller 1991,
Dyson and Sherratt 1985).
The midge, Chironomus tentans, in figure 2, provides an
additional example of gene duplication (Galli and
Wislander 1993). In the sequence containing 3,959
nucleiotide bases of the DNA of Chironomus tentans
(EMBL accession number X70063), the 732 nucleiotide
bases located at positions 918–1,649 become expressed as
a protein (called the "C. tentans Sp38–40.A" gene)
containing 244 (i.e., one third of 732) amino acid
residues. The 759 nucleiotide bases at positions 2,513–
3,271 become expressed as a protein (called "C. tentans
Sp38–40.B") containing 253 residues.

Figure 2 The midge, Chironomus tentans.

Both the "A" and the "B" proteins are secreted from the
fly's salivary gland to form two similar, but different,
kinds of water-insoluble fibers. The two kinds of fibers
are, in turn, spun into one of two similar, but different,
kinds of tubes. One tube is for larval protection and
feeding while the other tube is for pupation. The two
proteins are similar, but different. When the A" and the
"B" proteins are aligned using the Smith-Waterman
algorithm (Smith and Waterman 1981), there is 8l%
identity between the two protein sequences. These two
similar proteins arise as a consequence of a gene
duplication. Immediately after the gene duplication
occurred at some time in the distant past, there were two
identical copies of the duplicated sequence of DNA.
Over a period of millions of years since the initial gene
duplication, additional mutations accumulated so that the
two proteins are now only 81% identical (after
alignment). More importantly, the two proteins now
create different structures performing different functions
in the fly.
More complex organisms have a general tendency to have
more expressed proteins, more different kinds of
structures, more complex structures, more different
functions, and longer genomes (Dyson and Sherratt
1985). The new functions associated with gene
duplication are consistent with the observed longer
genomes of more complex organisms.
Gene deletion also occurs in nature. In gene deletion,
there is a deletion of a portion of the linear string of
nucleiotide bases that would otherwise be translated and
manufactured into work-performing proteins in the living
cell. After a gene deletion occurs, some particular protein
that was formerly manufactured will no longer be
manufactured and there may be some change in the
structure or behavior of the biological entity. The
absence of the protein may then affect the structure and
behavior of the living thing in some advantageous or
disadvantageous way. If the deletion is advantageous,

natural selection will tend to perpetuate the change, but if
the deletion is disadvantageous, the change will tend to
become extinct.

4. ARCHITECTURE-ALTERING
OPERATIONS

Six new architecture-altering genetic operations provide a
way of changing the architecture of the participating
individuals changes during a run of genetic programming
and thereby determining the architecture of a multi-part
program dynamically during the run. Meanwhile, the
Darwinian reproduction operation, the crossover
operation, and the mutation operation continue to be
performed.
4.1 Branch Duplication
The operation of branch duplication duplicates one of the
branches of a program. First, a program is selected from
the population to participate in this operation. This step is
performed probabilistically on the basis of fitness for this
operation (and all the other architecture-altering
operations described herein). Second, one of the
function-defining branches of the selected program is
picked as the branch-to-be-duplicated. Third, a uniquely-
named new function-defining branch is added to the
selected program, thus increasing the number of function-
defining branches in the selected program. The new
function-defining branch has the same argument list and
the same body as the branch-to-be-duplicated. Fourth, for
each occurrence of an invocation of the branch-to-be-
duplicated anywhere in the selected program (e.g., the
result-producing branch or any other branch that invokes
the branch-to-be-duplicated), a random choice is made
either to leave that invocation unchanged or to replace
that invocation with an invocation of the new branch. The
operation of branch duplication (and all the other
architecture-altering operations described herein) always
produces a syntactically valid program.
Figure 3 shows an overall program consisting of one two-
argument automatically defined function and one result-
producing main branch (i.e., an argument map of {2}).
Figure 4 shows the program resulting after applying the
operation of branch duplication. Specifically, the
function-defining branch 410 of figure 3 defining ADF0
(also shown as 510 of figure 4) is duplicated and a new
function-defining branch (defining ADF1 at 540) appears
in figure 4. There are two occurrences in figure 3 of
invocations of the branch-to-be-duplicated, ADF0, in the
result-producing branch of the selected program, namely
ADF0 at 481 and 487. For each of these two occurrences,

a random choice is made to either leave the occurrence of
ADF0 unchanged or to replace it with the newly created
ADF1. For the first invocation of ADF0 at 481 of figure
3, the choice is randomly made to replace ADF0 481 with
ADF1 581 in figure 4. The arguments for the invocation
of ADF1 581 are D1 582 and D2 583 in figure 4 (i.e., they
are identical to the arguments D1 482 and D2 483 for the
invocation of ADF0 at 481 as part of the original program
in figure 3). For the second invocation of ADF0 at 487 of
figure 3, the choice is randomly made to leave ADF0
unchanged. The new function-defining branch, ADF1, is
identical to the previous function-defining branch, ADF0
(except for its name, ADF1, at 541 in figure 4). ADF1 is
invoked with the very same arguments as ADF0 had been
invoked. Consequently, the operation of branch
duplication is a semantics-preserving operation.
Analogs of the naturally occurring operation of gene
duplication have been previously used with genetic
algorithms operating on character strings and with other
evolutionary algorithms (Holland 1975; Goldberg, Korb,
and Deb 1989; Lindgren 1991).
4.2 Argument Duplication

In the operation of argument duplication, a uniquely-
named new argument is added to the argument list of the
picked function-defining branch of the selected program,
thus increasing, by one, the number of arguments in its
argument list. Then, for each occurrence of the
argument-to-be-duplicated anywhere in the body of
picked function-defining branch of the selected program,
a random choice is made either to leave that occurrence
unchanged or to replace that occurrence with the new
argument.
For each occurrence of an invocation of the picked
function-defining branch anywhere in the selected
program, the argument subtree corresponding to the
argument-to-be-duplicated is identified and duplicated in
that argument subtree in that invocation, thereby
increasing the number of arguments in the invocation.
The effect of this operation is to leave unchanged the
value returned by the overall program.
4.3 Branch Creation

The operation of branch creation creates a new
automatically defined function within an overall program
by picking a point in the body of one of the function-
defining branches or result-producing branches of the
selected program.

progn400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491
Figure 3 Program with an argument map of {2} consisting of one two-argument function-defining branch (ADF0) and
one result-producing branch that invokes ADF0 twice (at 481 and 487).

This picked point becomes the top-most point of the body
of the branch-to-be-created.
Details of this operation (and the other new operations
below) are found in Koza 1994c. Branch creation is
similar to, but different than, the compression (module
acquisition) operation of Angeline and Pollack (1994).
4.4 Argument Creation
The operation of argument creation creates a new dummy
argument (formal parameter) within a function-defining
branch of an overall program.
4.5 Branch Deletion
The operations of argument duplication, branch
duplication, branch creation, and argument creation create
larger programs. The operations of argument deletion
and branch deletion (described below) can create smaller
programs and thereby counter-balance this growth.
The operation of branch deletion deletes one of the
automatically defined functions. When a function-
defining branch is deleted, the question arises as to how
to modify invocations of the branch-to-be-deleted by the
other branches of the overall program. One alternative
(called branch deletion with random regeneration) is to
randomly generate new subtrees composed of the
available functions and terminals in lieu of the branch-to-
be-deleted.
4.6 Argument Deletion
The operation of argument deletion deletes one of the
arguments to one of the automatically defined functions
of a program. When an argument is deleted, references to
the argument-to-be-deleted may by argument deletion
with random regeneration.
4.7 Creation of the Initial Random Population
When the architecture-altering operations are used, the
initial population of programs may be created in any one
of three ways. One possibility (called the "minimalist

approach") is that each multi-part program in the
population at generation 0 has a uniform architecture with
exactly one automatically defined function possessing a
minimal number of arguments appropriate to the problem.
A second possibility (called the "big bang") is that each
program in the population has a uniform architecture with
no automatically defined functions (i.e., only a result-
producing branch). This approach relies on the operation
of branch creation to create multi-part programs during
the run. A third possibility is that the population at
generation 0 is architecturally diverse.
4.8 Example
The architecture-altering operations will now be
illustrated by a run of the even-5-parity problem. The run
uses the “minimalist approach" in which each program in
generation 0 consists of one result-producing branch and
a two-argument function-defining branch.
On each generation there were 74% crossovers; 10%
reproductions; 0% mutations; 5% branch duplications;
5% argument duplications; 0.5% branch deletion with
random regeneration; 0.5% argument deletion with
random regeneration; 5% branch creations; and 0%
argument creations. Minor parameters were as in Koza
1994a. On generation 13, a 100%-correct solution
emerged in the form of a computer program with an
argument map of {3, 2}. The result-producing branch of
this solution invokes both ADF0 and ADF1. Three-
argument ADF0 (which had only two arguments when it
started at generation 0) performs Boolean rule 106, a non-
parity rule. Two-argument ADF1 (which did not exist at
all in generation 0) is equivalent to the odd-2-parity
function.
Figure 5 is a branch histogram for this run using the
architecture-altering operations. It shows that all
programs at generation 0 had an argument map of {2}
and that the distribution of number of function-defining
branches spread out on subsequent generations.

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

Figure 4 Program with an argument map of {2, 2} consisting of two two-argument function-defining branches (ADF0
and ADF1) and one result-producing branch that invokes ADF0 and ADF1 one time each (at 581 and 587).

0 1 2 3 4
0

2

6

13

Ge
ne
rat
ion

0

20000

40000

60000

80000

100000

ADFs

Fr
eq
ue
nc
y

4

8
10

Figure 5 Branch histogram for technique of evolution
of architecture using architecture-altering operations.

5. COMPARISON
We now use the even-5-parity problem to compare, over
a series of runs, the performance of the architecture-
altering operations for the following five approaches:
(A) without automatically defined functions

(corresponding to the style of runs discussed
throughout most of Genetic Programming),

(B) with automatically defined functions, evolutionary
selection of the architecture (corresponding to the style
of chapters 21–25 of Genetic Programming II on the
evolutionary selection of the architecture), an
architecturally diverse initial population, and structure-
preserving crossover with point typing,

(C) with automatically defined functions, the
architecture-altering operations, a potentially
architecturally diverse population, and structure-
preserving crossover with point typing,

(D) with automatically defined functions, a fixed user-
supplied architecture (i.e., an argument map of {3, 2}
that is known to be a good choice of architecture for
this problem), and structure-preserving crossover with
point typing,

(E) with automatically defined functions, the fixed
known-good user-supplied architecture, and structure-
preserving crossover with branch typing

(corresponding to the style of most of Genetic
Programming II).

Comparisons are made for computational effort, E (with
99% probability); wallclock time, W(M,t,z) in seconds
(with 99% probability); and the average structural
complexity, S (all as described in detail in Koza 1994a).
The comparisons in table 1 all used a common population
size, M, of 96,000 and a targeted maximum number of
generations, G, of 76. The problem was run on a
medium-grained parallel computer system. Different
semi-isolated subpopulations (called demes in Wright
1943) are situated at the different processing nodes. The
system consisted of a host PC 486 type computer running
Windows and 64 Transtech TRAMs (containing one
INMOS T805 transputer and 4 megabytes of RAM
memory) arranged in a toroidal mesh. Generations were
run asynchronously. There were D = 64 demes, a
population size of Q = 1,500 per deme, and a migration
rate (boatload size) of B = 8% (in each of four directions
on each generation for each deme). Details of the parallel
implementation are in Koza and Andre 1995.
As can be seen from table 1, both approaches for
determining the architecture dynamically during the run
(i.e., B and C) require less computational effort than
solving the problem without automatically defined
functions (approach A), but more computational effort
than with the fixed, known-good, user-supplied
architecture (approach E). That is, a price must be paid
for dynamically determining the architecture. However,
the price is intermediate between the extreme of not using
ADFs at all and using ADFs with a fixed, known-good,
user-supplied architecture. Approach B (evolutionary
selection) is inferior, for this problem, to approach C
(evolution of architecture) in that it requires greater
computational effort, greater wallclock time, and
produces bigger solutions (i.e., delivers less parsimony).
In fact, the wallclock time for approach B exceeds that of
the ADF-less approach (A) – perhaps because it involves
so many inappropriate architectures.
Approach C produces the smallest-sized solutions, on
average, for this problem (perhaps because it starts small
and expands programs only as necessary). Approach E
(using the most user-supplied information and the most
economical form of tuping) requires the least
computational effort.

Table 1 Comparison of the five approaches.

Approach Runs Computational
effort E

Wallclock
(M,t,z)

Average
Size S

A - No ADFs 14 5,025,000 36,950 469.1
B - ADFs + Evolutionary Selection of
Architecture

14 4,263,000 66,667 180.9

C - ADFs + Architecture-Altering Operations 25 1,789,500 13,594 88.8
D - ADFs + Point Typing + Fixed Architecture 25 1,705,500 14,088 130.0

E - ADFs + Branch Typing + Fixed Architecture 25 1,261,500 6,481 112.2

Approach D isolates the additional computational effort
required by point typing as opposed to branch typing
(approach E). Since the computational effort for
approaches C and D are virtually tied, the cost of the
architecture-altering operations for this problem is about
the same as the cost of point typing. Note that all four
approaches (B, C, D, or E) employing ADFs require less
computational effort, require less wallclock time, and are
more parsimonious than the ADF-less approach.
Acknowledgements
David Andre and Walter Alden Tackett programmed the
above. The picture of the midge comes from "Destructive
and useful insects" by C.L. Metcalf and W.P Flint.

References
Angeline, Peter J. and Pollack, Jordan B. 1994.
Coevolving high-level representations. In Langton,
Christopher G. (editor). Artificial Life III, SFI Studies in
the Sciences of Complexity. Volume XVII Redwood
City, CA: Addison-Wesley. Pages 55–71.
Antonisse, H. J., and Keller, K. 1987. Genetic operators
for high-level knowledge representations. Proceedings of
the Second International Conference on Genetic
Algorithms. Lawrence Erlbaum.
Bickel, A. S. and Bickel, R. W. l987. Tree structured
rules in genetic algorithms. Proceedings of the Second
International Conference on Genetic Algorithms.
Lawrence Erlbaum.
Brooks Low, K. 1988. Genetic recombination: A brief
overview. In Brooks Low, K. (editor) The
Recombination of Genetic Material. San Diego:
Academic Press. P. 1–21.
Cramer, Nichael Lynn. l985. A representation for the
adaptive generation of simple sequential programs.
Proceedings of an International Conference on Genetic
Algorithms and Their Applications. Lawrence Erlbaum.
Dyson, P. and Sherratt, D. 1985. Molecular mechanisms
of duplication, deletion, and transposition of DNA. In
Cavalier-Smith, T. (editor). The Evolution of Genome
Size. Chichester: John Wiley & Sons.
Fujiki, Cory and Dickinson, J. l987. Using the genetic
algorithm to generate LISP source code to solve the
prisoner's dilemma. Proceedings of the Second
International Conference on Genetic Algorithms.
Lawrence Erlbaum.
Fujiki, Cory. l986. An Evaluation of Holland's Genetic
Algorithm Applied to a Program Generator. M. S. thesis,
Computer Science Dept. , University of Idaho.
Galli, Joakim and Wislander, Lars. 1993. Two secretory
protein genes in Chironomus tentans have arisen by gene
duplication and exhibit different developmental
expression patterns. Journal of Molecular Biology. 231:
324–334.
Goldberg, David E., Korb, Bradley, and Deb,
Kalyanmoy. 1989. Messy genetic algorithms:

Motivation, analysis, and first results. Complex Systems.
3(5): 493–530.
Hicklin, J. F. 1986. Application of the Genetic Algorithm
to Automatic Program Generation. M. S. thesis,
Computer Science Dept. , University of Idaho.
Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.
Holland, John H., and Reitman, J. S. l978. Cognitive
systems based on adaptive algorithms. In Waterman, D.
A., and Hayes-Roth, Frederick, Pattern-Directed
Inference Systems. Academic Press.
Hood, Leory and Hunkapiller, Tim. 1991. Modular
evolution and the immunoglobin gene superfamily. In
Osawa, S. and Honjo, T. (editors). Evolution of Life.
Tokyo: Springer-Verlag.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: MIT Press.
Koza, John R. 1989. Hierarchical genetic algorithms
operating on populations of computer programs.
Proceedings of the 11th International Joint Conference
on Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann. Volume I. Pages 768-774.
Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA:The MIT Press.
Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs. Cambridge,
MA: The MIT Press.
Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA: MIT
Press.
Koza, John R. 1994c. Architecture-Altering Operations
for Evolving the Architecture of a Multi-Part Program in
Genetic Programming. Stanford University Computer
Science Department technical report STAN-CS-TR-94-
1528. October 21, 1994.
Koza, John R. and Andre, David. 1995. Parallel Genetic
Programming on a Network of Transputers. Stanford
University Computer Science Department technical report
STAN-CS-TR-95-1542. January 30, 1995.
Koza, John R., and Rice, James P. 1992 .Genetic
Programming: The Movie. Cambridge, MA: MIT Press.
Lindgren, Kristian. 1991. Evolutionary phenomena in
simple dynamics. In Langton, Christopher, Taylor,
Charles, Farmer, J. Doyne, and Rasmussen, Steen
(editors). Artificial Life II, SFI Studies in the Sciences of
Complexity. Volume X. Redwood City, CA: Addison-
Wesley. Pages 295-312.
Ohno, Susumu. 1970. Evolution by Gene Duplication.
New York: Springer-Verlag.
Samuel, Arthur L. 1959. Some studies in machine
learning using the game of checkers. IBM Journal of
Research and Development. 3(3): 210–229.

Smith, Steven F. 1980. A Learning System Based on
Genetic Adaptive Algorithms. Ph.D. dissertation,
University of Pittsburgh.
Smith, T. F. and Waterman, M. S. 1981.Identification of
common molecular subsequences. Journal of Molecular
Biology. 147: 195-197.
Wright, Sewall. 1943. Isolation by distance. Genetics
28: 114–138.

