

Revised November 29, 1990 for Proceedings of Second Conference on Artificial Life (AL-2)

 GENETIC EVOLUTION AND CO-EVOLUTION OF COMPUTER PROGRAMS

John R. Koza

Computer Science Department

Margaret Jacks Hall

Stanford University

Stanford, CA 94305 USA

E-MAIL: Koza@Sunburn.Stanford.Edu

PHONE: 415-941-0336

FAX: 415-941-9430

1

INTRODUCTION AND OVERVIEW

Research in the field of artificial life focuses on computer programs that exhibit some of the

properties of biological life (e.g. self-reproducibility, evolutionary adaptation to an environment,

etc.). In one area of artificial life research, human programmers write intentionally simple

computer programs (often incorporating observed features of actual biological processes) and

then study the "emergent" higher level behavior that may be exhibited by such seemingly simple

programs. In this chapter, we consider a different problem, namely, "How can computer

programs be automatically written by the computer itself using only measurements of a given

program's performance?" In particular, this chapter describes the recently developed "genetic

programming paradigm" which genetically breeds populations of computer programs in order to

find a computer program that solves the given problem. In the genetic programming paradigm,

the individuals in the population are hierarchical compositions of functions and arguments. The

hierarchies are of various sizes and shapes. Increasingly fit hierarchies are then evolved in

response to the problem environment using the genetic operations of fitness proportionate

reproduction (Darwinian survival and reproduction of the fittest) and crossover (sexual

recombination). In the genetic programming paradigm, the size and shape of the hierarchical

solution to the problem is not specified in advance. Instead, the size and shape of the hierarchy,

as well as the contents of the hierarchy, evolve in response to the Darwinian selective pressure

exerted by the problem environment.

This chapter also describes an extension of the genetic programming paradigm to the case where

two (or more) populations of hierarchical computer programs simultaneously co-evolve. In co-

evolution, each population acts as the environment for the other population. In particular, each

individual of the first population is evaluated for "relative fitness" by testing it against each

individual in the second population, and, simultaneously, each individual in the second

population is evaluated for relative fitness by testing them against each individual in the first

population. Over a period of many generations, individuals with high "absolute fitness" may

2

evolve as the two populations mutually bootstrap each other to increasingly high levels of

fitness.

The genetic programming paradigm is illustrated by genetically breeding a population of

hierarchical computer programs to allow an "artificial ant" to traverse an irregular trail. In

addition, we genetically breed a computer program controlling the behavior of an individual ant

in an ant colony which, when simultaneously executed by a large number of ants, causes the

emergence of interesting collective behavior for the colony as a whole. Co-evolution is

illustrated with a problem involving finding an optimal strategy for playing a simple discrete

two-person competitive game represented by a game tree in extensive form.

BACKGROUND ON GENETIC ALGORITHMS

Genetic algorithms are highly parallel mathematical algorithms that transform populations of

individual mathematical objects (typically fixed-length binary character strings) into new

populations using operations patterned after natural genetic operations such as sexual

recombination (crossover) and fitness proportionate reproduction (Darwinian survival of the

fittest). Genetic algorithms begin with an initial population of individuals (typically randomly

generated) and then iteratively (1) evaluate the individuals in the population for fitness with

respect to the problem environment and (2) perform genetic operations on various individuals in

the population to produce a new population. John Holland of the University of Michigan

presented the pioneering formulation of genetic algorithms for fixed-length character strings in

1975 in Adaptation in Natural and Artificial Systems (6). Holland established, among other

things, that the genetic algorithm is a mathematically near optimal approach to adaptation in that

it maximizes expected overall average payoff when the adaptive process is viewed as a multi-

armed slot machine problem requiring an optimal allocation of future trials in the search space,

given currently available information. Recent work in genetic algorithms and genetic classifier

systems can be surveyed in Goldberg (4), Davis (2), and Schaffer (14).

3

BACKGROUND ON GENETIC PROGRAMMING PARADIGM

Representation is a key issue in genetic algorithm work because genetic algorithms directly

manipulate the coded representation of the problem and because the representation scheme can

severely limit the window by which the system observes its world. Fixed length character strings

present difficulties for some problems — particularly problems where the desired solution is

hierarchical and where the size and shape of the solution is unknown in advance. The need for

more powerful representations has been recognized for some time (3).

The structure of the individual mathematical objects that are manipulated by the genetic

algorithm can be more complex than the fixed length character strings first described by Holland

(6) in 1975. Steven Smith (16) departed from the early fixed-length character strings by in-

troducing variable length strings, specifically, strings whose elements were if-then rules, rather

than single characters. Holland's introduction of the genetic classifier system (7) continued the

trend towards increasing the complexity of the structures undergoing adaptation. The classifier

system is a cognitive architecture containing a population of string-based if-then rules (whose

condition and action parts are fixed length binary strings) which can be modified by the genetic

algorithm.

The recently developed genetic programming paradigm further continues the above trend

towards increasing the complexity of the structures undergoing adaptation. In the genetic

programming paradigm, the individuals in the population are hierarchical compositions of

functions and terminals appropriate to the particular problem domain. The hierarchies are of

various sizes and shapes. The set of functions typically includes arithmetic operations,

mathematical functions, conditional logical operations, and domain-specific functions. Each

function in the function set should be well defined for any element in the range of every other

function in the set. The set of terminals used typically includes inputs (sensors) appropriate to

the problem domain and various constants. The search space is the hyperspace of all possible

compositions of functions and terminals that can be recursively composed of the available func-

4

tions and terminals. The symbolic expressions (S-expressions) of the LISP programming

language are an especially convenient way to create and manipulate the compositions of

functions and terminals described above. These S-expressions in LISP correspond directly to the

"parse tree" that is internally created by most compilers.

The basic genetic operations for the genetic programming paradigm are fitness based

reproduction and crossover (recombination).

Fitness proportionate reproduction is the basic engine of Darwinian reproduction and survival of

the fittest. It copies individuals with probability proportionate to fitness from one generation of

the population into the next generation. In this respect, it operates for the genetic programming

paradigm in the same way as it does for conventional genetic algorithms. The crossover

operation for the genetic programming paradigm is a sexual operation that operates on two

parental LISP S-expressions and produces two offspring S-expressions using parts of each par-

ent. Typically the two parents are hierarchical compositions of functions of different size and

shape. In particular, the crossover operation starts by selecting a random crossover point in each

parent and then creates two new offspring S-expressions by exchanging the sub-trees (i.e. sub-

lists) between the two parents. Because entire sub-trees are swapped, this genetic crossover

(recombination) operation produces syntactically and semantically valid LISP S-expressions as

offspring regardless of which point is selected in either parent.

For example, consider the parental LISP S-expression:
(OR (NOT D1) (AND D0 D1))

And, consider the second parental S-expression below:
(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two LISP S-expressions can be depicted graphically as rooted, point-labeled trees with

ordered branches. Assume that the points of both trees are numbered in a depth-first way starting

at the left. Suppose that the second point (out of 6 points of the first parent) is randomly selected

as the crossover point for the first parent and that the sixth point (out of 10 points of the second

5

parent) is randomly selected as the crossover point of the second parent. The crossover points are

therefore the NOT in the first parent and the AND in the second parent.

The two parental LISP S-expressions are shown below:

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1

 The two crossover fragments are two sub-trees shown below:

NOT

D1

AND

NOT NOT

D0 D1

These two crossover fragments correspond to the bold, underlined sub-expressions (sub-lists) in

the two parental LISP S-expressions shown above. The two offspring resulting from crossover

are shown below.

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Note that the first offspring above is a perfect solution for the exclusive-or function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

In addition to the basic genetic operations of fitness proportionate reproduction and crossover, a

6

mutation operation can also be defined to provide a means for occasionally introducing small

random mutations into the population. The mutation operation is an asexual operation in that it

operates on only one parental S-expression. selected based on fitness. The result of this operation

is a single offspring S-expression. The mutation operation selects a point of the LISP S-

expression at random. The point can be an internal (function) or external (terminal) point of the

tree. This operation removes whatever is currently at the selected point and inserts a randomly

generated sub-tree at the randomly selected point of a given tree. This randomly generated

subtree is created in the same manner as the initial random individuals in the initial random

generation. This operation is controlled by a parameter which specifies the maximum depth for

the newly created and inserted sub-tree. A special case of this operation involves inserting only a

single terminal (i.e. a sub-tree of depth 0) at a randomly selected point of the tree. For example,

in the figure below, the third point of the S-expression shown on the left below was selected as

the mutation point and the sub-expression (NOT D1) was randomly generated and inserted at

that point to produce the S-expression shown on the right below.

OR

AND D0

D0 D1

OR

AND D0

D1NOT

D1

Before After

The mutation operation potentially can be beneficial in reintroducing diversity in a population

that may be tending to prematurely converge.

Additional details can be found in Koza (10,11).

We have shown that entire computer programs can be genetically bred to solve problems in a

7

variety of different areas of artificial intelligence, machine learning, and symbolic processing

(10, 11). In particular, this new paradigm has been successfully applied to example problems in

several different areas, including

• machine learning of functions (e.g. learning the Boolean 11-multiplexer function),

• planning (e.g. developing a robotic action sequence that can stack an arbitrary initial

configuration of blocks into a specified order),

• automatic programming (e.g. discovering a computational procedure for solving pairs of lin-

ear equations, solving quadratic equations for complex roots, and discovering trigonometric

identities),

• sequence induction (e.g. inducing a recursive computational procedure for the Fibonacci and

the Hofstadter sequences),

• pattern recognition (e.g. translation-invariant recognition of a simple one-dimensional shape

in a linear retina),

• optimal control (e.g. centering a cart and balancing a broom on a moving cart in minimal

time by applying a "bang bang" force to the cart)

• symbolic "data to function" regression, symbolic "data to function" integration, and symbolic

"data to function" differentiation,

• symbolic solution to functional equations (including differential equations with initial condi-

tions, integral equations, and general functional equations),

• empirical discovery (e.g. rediscovering Kepler's Third Law, rediscovering the well-known

econometric "exchange equation" MV = PQ from actual noisy time series data for the money

supply, the velocity of money, the price level, and the gross national product of an economy),

• finding the minimax strategy for a differential pursuer-evader game, and

• simultaneous architectural design and training of neural networks.

8

The genetic programming paradigm permits the evolution of computer programs which can

perform alternative computations conditioned on the outcome of intermediate calculations,

which can perform computations on variables of many different types, which can perform

iterations and recursions to achieve the desired result, which can define and subsequently use

computed values and sub-programs, and whose size, shape, and complexity is not specified in

advance.

THE "ARTIFICIAL ANT" PROBLEM

In order to illustrate the genetic programming paradigm, we consider the complex planning task

devised by Jefferson et. al. (9) for an “artificial ant” attempting to traverse a trail.

Jefferson et. al. successfully solved a string-based genetic algorithm to discover a finite state

automaton enabling the "artificial ant" to traverse the trail.

The setting for the problem is a square 32 by 32 toroidal grid in the plane. The “Santa Fe trail" is

a winding trail with food in 89 of the 1024 cells. This trail (designed by Christopher Langton) is

considered the more difficult of the two trails tested by Jefferson et. al.. The trail is irregular and

has single gaps, double gaps, single gaps at some corners, double gaps (knight moves) at other

corners , and triple gaps (long knight moves) at other corners . The “artificial ant” begins in the

cell identified by the coordinates (0,0) and is facing in a particular direction (i.e. east). The

artificial ant has a sensor that can see only the single adjacent cell in the direction the ant is

currently facing. At each time step, the ant has the capacity to execute any of four operations,

namely, to move forward (advance) in the direction it is facing, to turn right (and not move), to

turn left (and not move), or to sense the contents of the single adjacent cell in the direction the

ant is facing.

The objective of the ant is to traverse the entire trail and collect all of the food. Jefferson, Collins

et. al. limited the ant to a certain number of time steps (200).

9

Jefferson, Collins et. al. started by assuming

that the finite automaton necessary to solve

the problem would have 32 or fewer states.

They then represented an individual in their

population of automata by a 453-bit string

representing the state transition diagram (and

its initial state) of the individual automaton.

The ant’s sensory input at each time step was

coded as one bit and the output at each time

step was coded as two bits. The next state of

the automaton was coded with 5 bits. The

complete behavior of an automaton was thus

specified with a genome consisting of a

binary string with 453 bits (5 bits representing the initial state of the automaton plus 64

substrings of length 7 representing the state transitions). Jefferson, Collins et. al. then processed

a population of 65,536 individual bit strings of length 453 on a Connection Machine™ using a

genetic algorithm using crossover and mutation operating on a selected (relatively small) fraction

of the population. After 200 generations in a particular run (taking about 10 hours on the

Connection Machine), they reported that a single individual in the population emerged which

attained a perfect score of 89 stones. As it happened, this single individual completed the task in

exactly 200 operations.

In our approach to this task using the genetic programming paradigm, we used the function set

consisting of the functions F = {IF-SENSOR, PROGN}. The IF-SENSOR function has two arguments

and evaluates the first argument if the ant’s sensor senses a stone or, otherwise, evaluates the

second argument. The PROGN function is the LISP connective (glue) function that sequentially

evaluates its arguments as individual steps in a program. The terminal set was T = {ADVANCE,

TURN-RIGHT, TURN-LEFT}. These three terminals are actually functions with no arguments. They

Start

62

89

38 31

11

24

3

10

operate via their side effects on the ant’s state (i.e. the ant's position on the grid or the ant's

facing direction). Note that IF-SENSOR, ADVANCE, TURN-RIGHT, and TURN-LEFT correspond directly

to the operators defined and used by Jefferson, Collins et. al. We allowed 400 time steps before

timing out. Note that we made no assumption about the complexity of the eventual solution. The

complexity of this problem is such that it cannot be solved by any random search method using

either method.

The initial generation (generation 0) consisted of randomly generated individual S-expressions

recursively created using the available functions and available terminals of the problem. Many

of these randomly generated individual did nothing at all. For example, (PROGN (TURN-

RIGHT) (TURN-RIGHT)) turns without ever moving the ant anywhere. Other random

individuals move without turning [e.g. (ADVANCE)]. Other individuals in the initial random

population move forward after sensing food but can only handle a right turn in the trail [e.g. (IF-

SENSOR (ADVANCE) (TURN-RIGHT))].

Throughout this chapter (and in virtually all of our experiments), each new generation was

created from the preceding generation by applying the fitness proportionate reproduction

operation to 10% of the population and by applying the crossover operation to 90% of the popu-

lation (with reselection allowed). The selection of crossover points in the population was biased

90% towards internal (function) points of the tree and 10% towards external (terminal) points of

the tree. For practical reasons (i.e. conservation of computer time), a limit of 4 was placed on the

depth of initial random S-expressions and a limit of 15 was placed on the depth of S-expressions

created by crossover. As to mutation, our experience has been that no run using only mutation

and fitness proportionate reproduction (i.e. no crossover) ever produced a solution to any

problem (although such solutions are theoretically possible given enough time). In other words,

“mutating and saving the best” does not work any better for hierarchical genetic algorithms than

it does for string-based genetic algorithms. This conclusion as to the relative unimportance of the

mutation operation is similar to the conclusions reached by most other research work on string-

11

based genetic algorithms [see, for example, Holland (6) and Goldberg (4)]. Accordingly,

mutation was not used here.

In one run, a reasonably parsimonious individual LISP S-expression scoring 89 out of 89

emerged on the seventh generation, namely,
(IF-SENSOR (ADVANCE)
 (PROGN (TURN-RIGHT)
 (IF-SENSOR (ADVANCE) (TURN-LEFT))
 (PROGN (TURN-LEFT)
 (IF-SENSOR (ADVANCE)
 (TURN-RIGHT))
 (ADVANCE)))).

This plan is graphically depicted in Figure 1.

This individual LISP S-expression is the solution to the problem. In particular, this plan moves

the ant forward if a stone is sensed. Otherwise it turns right and then moves the ant forward if a

stone is sensed but turns left (returning to its original orientation) if no stone is sensed. Then it

turns left and moves forward if a stone is sensed but turns right (returning to its original

orientation) if no stone is sensed. If the ant originally did not sense a stone, the ant moves for-

ward unconditionally as its fifth operation. Note that there is no testing of the backwards

directions.

We can measure the performance of a probabilistic algorithm by estimating the expected

number of individuals that need to be processed by the algorithm in order to produce a solution

IF-SENSOR

IF-SENSOR

ADVANCE TURN-R

TURN-L ADVANCE

PROGNIF-SENSOR

ADVANCE TURN-L

TURN-R

PROGNADVANCE

Figure. 1 Artificial Ant Solution

12

to the given problem with a certain probability (say 99%). Suppose, for example, a particular run

of a genetic algorithm produces the desired result with only a probability of success ps after a

specified choice (perhaps arbitrary and non-optimal) of number of generations Ngen and

population of size N. Suppose also that we are seeking to achieve the desired result with a

probability of, say, z = 1 - ε= 99%. Then, the number K of independent runs required is

K =
log (1-z)
log (1-ps) =

log ε
log (1-ps) , where ε= 1-z.

For example, we ran 111 runs of the Artificial Ant problem with a population size of 1000 and

51 generations. We found that the probability of success ps on a particular single run was 43%.

With this probability of success, K = 8 independent runs are required to assure a 99% probability

of solving the problem on at least one of the runs. That is, it is sufficient to process 408,000

individuals to achieve the desired 99% probability. Processing a full 408,000 individuals

requires about 6 hours of computing time on the Texas Instruments Explorer II+™ workstation

for this problem. In addition, as the graph below shows, the probability of success ps of a run

with a population size of 2000 with 51 generations is 67% so that a population of 2000 requires

K = 4 independent runs (i.e. 408,000 individuals to be processed) to achieve the desired 99%

probability. In contrast, the probability of success of a run with a population of 4000 with 51

generations.is 81% so that a population of 4000 requires K = 3 independent runs (i.e. 612,000

individuals to be processed) to achieve the desired 99% probability.

13

0 25 50
0

25

50

75

100

Pop=1000
Pop=2000
Pop=4000

Artificial Ant-Santa Fe Trail

Generation

Pe
rc

en
t S

uc
ce

ss
fu

lly
 S

ol
ve

d

The 6 hours of computer time required to process the 408,000 individuals required by this

problem (either with a population of size 1000 or 2000) on the considerably smaller and slower

serial computer (Explorer workstation) represents substantially less computational resources than

even a single 10-hour run on the massively parallel Connection Machine with 65,536 processors

(even if it were the case that all such 10-hour runs on the Connection Machine were successful

in solving the problem). Thus, the genetic programming paradigm is comparatively speedy for

this problem.

EMERGENCE OF COLLECTIVE BEHAVIOR IN AN ANT COLONY

Conway's "game of life" and other work in cellular automata, fractals, chaos, and Lindenmayer

systems (L-systems) are suggestive of how the repetitive application of seemingly simple rules

can lead to complex "emergent" overall behavior. In this section, we present an example of how

such rules (computer programs) can be evolved using genetic recombination and the Darwinian

principle of survival of the fittest as contained in the genetic programming paradigm.

In particular, we show the emergence of interesting collective behavior in a colony of ants by

genetically breeding a computer program to govern the behavior of the individual ants in the

colony. The goal is to genetically evolve a common computer program governing the behavior of

14

the individual ants in a colony such that the collective behavior of the ants consists of efficient

transportation of food to the nest. In nature, when an ant discovers food, it deposits a trail of

pheromones as it returns to the nest with the food. The pheromonal cloud (which dissipates over

time) aids other ants in efficiently locating and exploiting the food source.

In this example, 144 pellets of food are piled eight deep in two 3-by-3 piles located in a 32-by-32

toroidal area. There are 20 ants. The state of each ant consists of its position and the direction it

is facing (out of eight possible directions). Each ant initially starts at the nest and faces in a

random direction. Each ant in the colony is governed by a common computer program associated

with the colony. The computer program is a composition of the following nine available

functions:

• MOVE-RANDOM randomly changes the direction in which an ant is facing and then moves

the ant two steps in the new direction.

• MOVE-TO-NEST moves the ant one step in the direction of the nest. This implements the

gyroscopic ability of ants to navigate back to their nest.

• PICK-UP picks up food (if any) at the current position of the ant.

• DROP-PHEROMONE drops a pheromone at the current position of the ant (if the ant is

carrying food). The pheromone immediately forms a 3-by-3 cloud around the drop point. The

cloud decays over a period of time.

• IF-FOOD-HERE is a two-argument function that executes its first argument is there is food

at the ant's current position and, otherwise, executes the second (else) argument.

• IF-CARRYING-FOOD is a similar two-argument function that tests whether the ant is

currently carrying food.

• MOVE-TO-ADJACENT-FOOD-ELSE is a one-argument function that allows the ant to test

for immediately adjacent food and then move one step towards it. If food is present in more

than one adjacent position, the ant moves to the position requiring the least change of

15

direction. If no food is adjacent, the "else" clause of this function is executed.

• MOVE-TO-ADJACENT-PHEROMONE-ELSE is a function similar to the above based on

adjacent pheromone.

• PROGN is the LISP connective function that executes its argument in sequence

Each of the 20 ants in a given colony executes the colony's common computer program. Since

the ants initially face in random directions, make random moves, and encounter a changing

pattern of food and pheromones created by the activities of other ants, the 20 individual ants

each have different states and pursue different trajectories.

The fitness of a colony is measured by how many of the 144 food pellets are transported to the

nest within the "allotted time" (which limits both the total number of time steps and the total

number of operations which any one ant can execute). The goal is to genetically evolve

increasingly fit computer programs to govern the colony.

Mere random motion by the 20 ants in a colony will typically bring the ants into contact with

only about 56 of the 144 food pellets within the allotted time. Moreover, the ants' task is

substantially more complicated than merely coming in contact with food. After randomly

stumbling into food, the ant must pick up the food. Then, the ant must move towards the nest.

Moreover, while this sequence of behavior is desirable, it is still insufficient to efficiently solve

the problem in any reasonable amount of time. It is also necessary that the ants that accidentally

stumble into food must also establish a pheromonal trail as they carry the food back to the nest.

Moreover, all ants must always be on the lookout for such pheromonal trails established by other

ants and must follow such trails to the food when they encounter such trails. In a typical run,

93% of the random computer programs in the initial random generation did not transport even

one of the 144 food pellets to the nest within the allotted time. About 3% of these initial random

programs transported only one of the 144 pellets. Even the best single computer program of the

random computer programs created in the initial generation successfully transported only 41

pellets.

16

As the genetic programming paradigm is run, the population as a whole and its best single

individual both generally improve from generation to generation. In the one specific run which

we describe in detail hereinbelow, the best single individual in the population on generation 10

scored 54; the best single individual on generation 20 scored 72; the best single individual on

generation 30 scored 110; the best single individual on generation 35 scored 129; and, the best

single individual on generation 37 scored 142.

On generation 38, a program emerged which causes the 20 ants to successfully transport all 144

food pellets to the nest within the allotted time. This 100% fit program is shown below:
(PROGN (PICK-UP) (IF-CARRYING-FOOD (PROGN (MOVE-TO-ADJACENT-PHEROMONE-
ELSE (MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-
ADJACENT-FOOD-ELSE (PICK-UP))))) (PROGN (PROGN (PROGN (PROGN (MOVE-TO-
ADJACENT-FOOD-ELSE (PICK-UP)) (PICK-UP)) (PROGN (MOVE-TO-NEST) (DROP-
PHEROMONE))) (PICK-UP)) (PROGN (MOVE-TO-NEST) (DROP-PHEROMONE)))) (MOVE-
TO-ADJACENT-FOOD-ELSE (IF-CARRYING-FOOD (PROGN (PROGN (DROP-PHEROMONE)
(MOVE-TO-ADJACENT-PHEROMONE-ELSE (IF-CARRYING-FOOD (MOVE-TO-ADJACENT-
FOOD-ELSE (PICK-UP)) (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))))) (MOVE-TO-
NEST)) (IF-FOOD-HERE (PICK-UP) (IF-CARRYING-FOOD (PROGN (IF-FOOD-HERE
(MOVE-RANDOM) (IF-CARRYING-FOOD (MOVE-RANDOM) (PICK-UP))) (DROP-
PHEROMONE)) (MOVE-TO-ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM))))))))

The 100% fit program above is equivalent to the simplified program below (except for the

special case when an ant is in the nest):
1 (PROGN (PICK-UP)

2 (IF-CARRYING-FOOD

3 (PROGN (MOVE-TO-ADJACENT-PHEROMONE-ELSE

4 (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP)))

5 (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))

6 (MOVE-TO-NEST) (DROP-PHEROMONE)

7 (MOVE-TO-NEST) (DROP-PHEROMONE))

8 (MOVE-TO-ADJACENT-FOOD-ELSE

9 (IF-FOOD-HERE

10 (PICK-UP)

11 (MOVE-TO-ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM))))))

This simplified program can be interpreted as follows: The ant begins by picking-up the food, if

any, located at the ant's current position. If the ant is now carrying food (line 2), then the six

parts of the PROGN beginning on line 3 and ending on line 7 are executed. Line 3 moves the ant

to the adjacent pheromone (if any). If there is no adjacent pheromone, line 4 moves the ant to

17

the adjacent food (if any). In view of the fact that the ant is already carrying food, these two

potential moves on lines 3 and 4 generally distract the ant from the most direct return to the nest

and therefore merely reduce efficiency. Line 5 is a similar distraction. Note that the PICK-UP

operations on lines 4 and 5 are redundant since the ant is already carrying food.

Given that the ant is already carrying food, the sequence of MOVE-TO-NEST and DROP-

PHEROMONE on lines 6 and 7 is the winning combination that establishes the pheromone trail

as the ant moves towards the nest with the food. The establishment of the pheromone trail

between the pile of food and the nest is an essential part of efficient collective behavior for

exploiting the food source.

The sequence of conditional behavior in lines 8 through 11 efficiently prioritizes the search

activities of the ant. If the ant is not carrying food, line 8 moves the ant to adjacent food (if any).

If there is no adjacent food but there is food at the ant's current position (line 9), the ant picks up

the food (line 10). On the other hand, if there is no food at the ant's current position (line 11), the

ant moves towards any adjacent pheromones (if any). If there are no adjacent pheromones, the

ant moves randomly. This sequence of conditional behavior causes the ant to pick up any food it

may encounter. Failing that, the second priority established by this conditional sequence causes

the ant to follow a previously established pheromonal trail. And, failing that, the third priority of

this conditional sequence causes the ant to move at random.

The collective behavior of the ant colony governed by the above 100% fit program above can be

visualized as a series of major phases. The first phase occurs when the ants are dispersing from

the nest and are randomly searching for food. In the figure below (representing time step 3 of

one execution of the 100% fit program above), the two 3-by-3 piles of food are shown in black in

the western and northern parts of the grid. The nest is indicated by nine + signs slightly southeast

of the center of the grid. The ants are shown in gray with their facing direction indicated.

18

The second phase occurs when some ants have discovered some food, have picked up the food,

and have started back towards the nest dropping pheromones as they go. The beginnings of the

pheromonal clouds around both the western and northern pile of food are shown below

(representing time step 12).

The third phase occurs when the pheromonal clouds have coalesced into recognizable

pheromonal trails linking the piles of food with the nest. In the figure below (representing time

step 15), the first two (of the 144) food pellets have just reached the nest.

19

The figure below shows the premature (and temporary) disintegration of the pheromonal trail

connecting the northern pile of food with the nest while food still remains in the northern pile.

The pheromonal trail connecting the western pile of food with the nest is still intact. 118 of the

144 food pellets have been transported to the nest at this point (representing time step 129).

The fourth phase occurs when the food in a given pile is entirely picked up and its pheromonal

trail starts to dissolve. In the figure below (representing time step 152), the western pile has been

entirely picked up by the ants and the pheromonal trail connecting it to the nest has already

dissolved. The former location of the western pile is shown as the blank white area. 136 of the

144 food pellets have been transported to the nest at this point The pheromone trail connecting

the nest and the northern pile (with 8 remaining food pellets) has been reestablished.

20

Shortly thereafter, the run ends with all 144 food pellets in the nest.

Note that the overall collective behavior of the ant colony observed above is not the result of a

central controller orchestrating the activity. Rather, it emerges from the simultaneous execution,

in parallel, of a common computer program by a large number of individual ants.

CO-EVOLUTION IN NATURE

The evolutionary process in nature is often described as if one population of individuals is trying

to adapt to a fixed environment. This description is, however, only a first order approximation to

the actual situation. The environment actually consists of both the physical environment (which

is usually relatively unchanging) as well as other independently-acting biological populations of

individuals which are simultaneously trying to adapt to “their” environment. The actions of each

of these other independently-acting biological populations (species) usually affect all the others.

In other words, the environment of a given species includes all the other biological species that

contemporaneously occupy the physical environment and which are simultaneously trying to

survive. In biology, the term “co-evolution” is sometimes used to reflect the fact that all species

are simultaneously co-evolving in a given physical environment.

A biological example presented by Holland illustrates the point (8). A given species of plant may

be faced with an environment containing insects that like to eat it. To defend against its predators

21

(and increase its probability of survival in the environment), the plant may, over a period of time,

evolve a tough exterior that makes it difficult for the insect to eat it. But, over a period of time,

the insect may retaliate by evolving a stronger jaw so that the insect population can continue to

feed on the plant (and increase its probability of survival in the environment). Then, over an

additional period of time, the plant may evolve a poison to help defend itself further against the

insects. But, then again, over a period of time, the insect may evolve a digestive enzyme that

negates the effect of the poison so that the insect population can continue to feed on the plant.

In effect, both the plant and the insects get better and better at their respective defensive and

offensive roles in this “biological arms race”. Each species changes in response to the actions of

the other.

BACKGROUND ON CO-EVOLUTION AND GENETIC ALGORITHMS

In the “genetic algorithm,” described by John Holland in his pioneering Adaptation in Natural

and Artificial Systems (6), a population of individuals attempts to adapt to a fixed

“environment.” In the basic genetic algorithm as described by Holland in 1975, the individuals in

the population are fixed-length character strings (typically binary strings) that are encoded to

represent some problem in some way. In the basic “genetic algorithm”, the performance of the

individuals in the population is measured using a fitness measure which is, in effect, the

“environment” for the population. Over a period of many generations, the genetic algorithm

causes the individuals in the population to adapt in a direction that is dictated by the fitness

measure (its environment).

Holland (8) has incorporated co-evolution and genetic algorithms in his ECHO system for ex-

ploring the co-evolution of artificial organisms described by fixed-length character strings

(chromosomes) in a “miniature world.” In ECHO, there is a single population of artificial organ-

isms. The environment of each organism includes all other organisms.

Miller (12,13) has used co-evolution in a genetic algorithm to evolve a finite automaton as the

22

strategy for playing the Repeated Prisoner’s Dilemma game. Miller’s population consisted of

strings (chromosomes) of 148 binary digits to represent finite automata with 16 states. Each

string in the population represented a complete strategy by which to play the game. That is, it

specified what move the player was to make for any sequence of moves by the other player.

Miller then used co-evolution to evolve strategies. Miller’s co-evolutionary approach to the

repeated prisoner’s dilemma using genetic algorithms. contrasts with Alexrod’s (1) evolutionary

approach using genetic algorithms. Axelrod measured performance of a particular strategy by

playing it against eight selected superior computer programs submitted in an international

programming tournament for the prisoner’s dilemma. A best strategy for one player (represented

as a 70 bit string with a 3-move look-back) was then evolved with a weighted mix of eight

opposing computer programs serving as the environment.

Hillis (5) used co-evolution in genetic algorithms to solve optimization problems.

John Maynard Smith (15) discussed co-evolution in connection with discovering strategies for

game.

CO-EVOLUTION AND THE GENETIC PROGRAMMING PARADIGM

In the "hierarchical co-evolution algorithm," there are two (or more) populations of individuals.

The environment for the first population consists of the second population. And, conversely, the

environment for the second population consists of the first population.

The co-evolutionary process typically starts with both populations being highly unfit (when

measured by an absolute fitness measure). Then, the first population tries to adapt to the

“environment” created by the second population. Simultaneously, the second population tries to

adapt to the “environment” created by the first population.

This process is carried out by testing the performance of each individual in the first population

against each individual (or a sampling of individuals) from the second population. We call this

performance the “relative fitness” of an individual because it represents the performance of one

23

individual in one population relative to the environment consisting of the entire second

population. Then, each individual in the second population is tested against each individual (or a

sampling of individuals) from the first population.

Note that this measurement of relative fitness for an individual in co-evolution is not an absolute

measure of fitness against an optimal opponent, but merely a relative measure when the

individual is tested against the current opposing population. If one population contains boxers

who only throw left punches, then an individual whose defensive repertoire contains only

defenses against left punches will have high relative fitness. But, this individual will have only

mediocre absolute fitness when tested against an opponent who knows how to throw both left

punches and right punches (i.e. an optimal opponent).

Even when both initial populations are initially highly unfit (both relatively and absolutely), the

virtually inevitable variation of the initial random population will mean that some individuals

have slightly better relative fitness than others. That means that some individuals in each

population have somewhat better performance than others in dealing with the current opposing

population.

The operation of fitness proportionate reproduction (based on the Darwinian principle of survival

and reproduction of the fittest) can then be applied to each population using the relative fitness of

each individual currently in each population. In addition, the operation of genetic recombination

(crossover) can also be applied to a pair of parents, at least one of which is selected based on its

relative fitness.

Over a period of time, both populations of individuals will tend to “co-evolve” and to rise to

higher levels of performance as measured in terms of absolute fitness. Both populations do this

without the aid of any externally supplied absolute fitness measure serving as the environment.

In the limiting case, both populations of individuals can evolve to a level of performance that

equals the absolute optimal fitness. Thus, the hierarchical co-evolution algorithm is a self-

organizing, mutually-bootstrapping process that is driven only by relative fitness (and not by

24

absolute fitness).

Co-evolution is especially important in problems from game theory because one almost never

has a priori access to a minimax strategy for either player. One therefore encounters a "chicken

and egg" situation. In trying to develop a minimax strategy for the first player, one does not have

the advantage of having a minimax second player against which to test candidate strategies. In

checkers or chess, for example, it is difficult for a new player to learn to play well if he does not

have the advantage of playing against a highly competent player.

CO-EVOLUTION OF A GAME STRATEGY

We now illustrate the “hierarchical co-evolution algorithm” to discover minimax strategies for

both players simultaneously in a simple discrete two-person game represented by a game tree in

extensive form.

In the hierarchical co-evolution algorithm, we do not have access to the optimal opponent to

train the population. Instead, our objective is to breed two populations simultaneously. Both

populations start as random compositions of the available functions and arguments.

Consider the following simple discrete game whose game tree is presented in extensive form in

L R

R

R

L

L

L

L

L L L RRR

R

X

O O O O

X X

O

3132 15 16 7 8 24 23 3 4 20 19 28 27 11 12 21 18 17 26 25 9 10 30 29 13 14 5 6 22 21

L R

R

R

R

L

L

L

L L L RRR

R

O O O O

X X

O

X

L R

12

10

14

6

22302618

2

4

4

20832

12

12

12

12

16

16

16

8

24

10

10

102

14

14 628

Figure 2 Game Tree with Payoffs

25

Figure 2. Each internal point of this tree is labeled with the player who must move. Each line is

labeled with the choice (either L or R) made by the moving player. Each endpoint of the tree is

labeled with the payoff (to player X).

This game is a two-person, competitive, zero-sum game in which the players make alternating

moves. On each move, a player can choose to go L (left) or R (right). After player X has made

three moves and player O has made two moves, player X receives (and player O pays out) the

payoff shown at the particular endpoint of the game tree (1 of 32).

Each player has access to complete information about his opponent's previous moves (and his

own previous moves). This historical information is contained in five variables XM1 (X's move

1), OM1 (O's move 1), XM2 (X's move 2), OM2 (O's move 2), and XM3 (X's move 3). These five

variables each assume one of three possible values: L (left), R (right), or U (undefined). A

variable is undefined prior to the time when the move to which it refers has been made. Thus, at

the beginning of the game, all five variables are undefined. The particular variables that are

defined and undefined indicate the point to which play has progressed during the play of the

game. For example, if both players have moved once, XM1 and OM1 are defined (as either L or R)

but the other three variables (XM2, OM2, and XM3) are undefined (have the value U).

A strategy for a particular player in a game specifies which choice that player is to make for

every possible situation that may arise for that player. In particular, in this game, a strategy for

player X must specify his first move if he happens to be at the beginning of the game. A strategy

for player X must also specify his second move if player O has already made one move and it

must specify his third move if player O has already made two moves. Since Player X moves first,

player X's first move is not conditioned on any previous move. But, player X's second move will

depend on Player O's first move (i.e. OM1) and, in general, it will also depend on his own first

move (XM1). Similarly, player X's third move will depend on player O's first two moves and, in

general, his own first two moves. Similarly, a strategy for player O must specify what choice

player O is to make for every possible situation that may arise for player O. A strategy here is a

26

computer program (i.e. S-expression) whose inputs are the relevant historical variables and

whose output is a move (L or R) for the player involved. Thus, the set of terminals is T = {L, R}.

Four testing functions CXM1, COM1, CXM2, and COM2 provide the facility to test each of the

historical variables that are relevant to deciding upon a player's move. Each of these functions is

a specialized form of the CASE function in LISP. For example, function CXM1 has three arguments

and evaluates it first argument if XM1 (X's move 1) is undefined, evaluates its second argument if

XM1 is L (Left), and evaluates its third argument if XM1 is R (Right). Functions CXM2, COM1, and

COM2 are similarly defined. Thus, the function set for this problem is F = {CXM1, COM1, CXM2,

COM2}. Each of these functions takes three arguments.

Our goal is to simultaneously co-evolve strategies for both players of this game.

In co-evolution, the relative fitness of a particular strategy for a particular player in a game is the

average of the payoffs received when that strategy is played against the entire population of

opposing strategies.

The absolute fitness of a particular strategy for a particular player in a game is the payoff

received when that strategy is played against the minimax strategy for the opponent. Note that

when we compute the absolute fitness of an X strategy for our descriptive purposes here, we test

the X strategy against 4 possible combinations of O moves — that is, O's choice of L or R for his

moves 1 and 2. When we compute the absolute fitness of an O strategy, we test it against 8

possible combinations of X moves — that is, X's choice of L or R for his moves 1, 2, and 3. Note

that this testing of 4 or 8 combinations does not occur in the computation for relative fitness.

When the two minimax strategies are played against each other, the payoff is 12. This score is

known as the value of this game. A minimax strategy takes advantage of non-minimax play by

the other player.

As previously mentioned, the co-evolution algorithm does not use the minimax strategy of the

opponent in any way. We use it in this paper for descriptive purposes only. The co-evolution

algorithm uses only relative fitness.

27

In one run (with population size of 300), the individual strategy for player X in the initial random

generation (generation 0) with the best relative fitness was
(COM1 L (COM2 (CXM1 (CXM2 R (CXM2 R R R) (CXM2 R L R)) L (CXM2 L R (COM2
R R R))) (COM1 R (COM2 (CXM2 L R L) (COM2 R L L) R) (COM2 (COM1 R R L)
(CXM1 R L R) (CXM1 R L L))) (CXM1 (COM2 (CXM1 R L L) (CXM2 R R L) R) R
(COM2 L R (CXM1 L L L)))) R).

This simplifies to
(COM1 L (COM2 L L R) R).

This individual has relative fitness of 10.08.

The individual in the initial random population (generation 0) for player O with the best relative

fitness was an equally complex expression. It simplifies to
(CXM2 R (CXM1 # L R) (CXM1 # R L)).

Note that, in simplifying this strategy, we inserted the symbol # to indicate that the situation

involved can never arise. This individual has relative fitness of 7.57.

Neither the best X individual nor the best O individual from generation 0 reached maximal

absolute fitness.

Note that the values of relative fitness for the relative best X individual and the relative best O

individual from generation 0 (i.e. 10.08 and the 7.57) are each computed by averaging the payoff

from the interaction of the individual involved with all 300 individual strategies in the current

opposing population.

In generation 1, the individual strategy for player X with the best relative fitness had relative

fitness of 11.28. This individual X strategy is still not a minimax strategy. It does not have the

maximal absolute fitness.

In generation 1, the best individual O strategy attained relative fitness of 7.18. It is shown

below:
(CXM2 (CXM1 R R L) (CXM2 L L (CXM2 R L R)) R).

Although the co-evolution algorithm does not know it, this best single individual O strategy for

generation 1 is, in fact, a minimax strategy for player O. It has maximal absolute fitness in this

28

game. This one O individual was the first such O individual to attain this level of performance

during this run. If it were played against the minimax X strategy, it would score 12 (i.e. the value

of this game).

This individual O strategy can be graphically depicted as shown below:

CXM1

R R L

R

CXM2

R L

LL

CXM2 R

CXM2

This individual O strategy simplifies to
(CXM2 (CXM1 # R L) L R).

Between generations 2 and 14, the number of individuals in the O population reaching maximal

absolute fitness was 2, 7, 17, 28, 35, 40, 50, 64, 73, 83, 93, 98, and 107, respectively. That is,

programs equivalent to the minimax O strategy began to dominate the O population.

In generation 14, the individual strategy for player X with the best relative fitness had relative

fitness of 18.11. This individual X strategy was
(COM2 (COM1 L L (CXM1 R R R)) L (CXM1 (COM1 L L (CXM1 R R R))
 (CXM2 L R R) R)).

Although the co-evolution algorithm does not know it, this best single individual X strategy is, in

fact, a minimax strategy for player X. This individual X strategy was the first such X individual

to attain this level of performance during this run. If it were played against the minimax O

strategy, it would score 12 (i.e. the value of this game).

This individual X strategy can be graphically depicted as shown below:

29

CXM1

R R R

LL

COM1 L

CXM1

R R R

LL

COM1 CXM2

L R R

R

CXM1

COM2

This individual X strategy simplifies to
(COM2 (COM1 L L R) L R).

Between generations 15 and 29, the number of individuals in the X population reaching maximal

absolute fitness was 3, 4, 8, 11, 10, 9, 13, 21, 24, 29, 43, 32, 52, 48, and 50, respectively. That is,

programs equivalent to the minimax X strategy began to dominate the X population. Meanwhile,

the O population became even more dominated by programs equivalent to the O minimax

strategy.

By generation 38, the number of O individuals in the population reaching maximal absolute

fitness reached 188 (almost two thirds of the population) and the number of X individuals

reaching maximal absolute fitness reached 74 (about a quarter). That is, by generation 38, the

minimax strategies for both players were becoming dominant.

Interestingly, these 74 individual X strategies had relative fitness of 19.11 and these 188

individual O strategies had relative fitness of 10.47. Neither of these values equals 12 because

the other population is not fully converged to its minimax strategy.

In summary, we genetically bred the minimax strategies for both players of this game without

using knowledge of the minimax strategy for either player.

CONCLUSION

In this paper, we have demonstrated the use of the newly developed genetic programming

30

paradigm to evolve hierarchical computer programs to solve three illustrative problems. These

three illustrative problems are only a small subset of the benchmark problems already

successfully solved by the genetic programming paradigm (10, 11). These three illustrative

problems highlight some of the features of the genetic programming paradigm as compared to

other existing paradigms for machine learning and artificial intelligence (such as neural networks

and conventional string-based genetic algorithms) that may commend it for future work in the

field of artificial life. These features include the following:

• In the genetic programming paradigm, the size and shape of the solution is not specified

in advance, but, instead, evolves as the problem is being solved. For many problems, it is

difficult, impossible, or unnatural to try to specify (or restrict) the size and shape of the eventual

solution in advance. Moreover, advance specification (or restriction) of the size and shape of the

solution to a problem narrows the window by which the system views the world and may well

preclude finding the solution to the problem. The dynamic variability of the size and shape of the

computer programs in the genetic programming paradigm is in marked contrast to both neural

network paradigms and conventional string-based genetic algorithms.

• The genetic programming paradigm evolves solutions that are directly expressed in a

natural programming structure that overtly contains the functions and arguments naturally

arising from the problem domain itself. Solutions expressed in this way are immediately

understandable in the terms of the problem domain. Another consequence of this is that the

results are relatively easy to audit. This is in marked contrast to solutions produced by, for

example, neural network paradigms.

• In the genetic programming paradigm, there is no preprocessing of inputs (in contrast to

neural networks, conventional string-based genetic algorithms, and most other machine learning

paradigms).

• The genetic programming paradigm works with hierarchical structures at each stage of

the process. As a result, the solutions are always hierarchical. Hierarchical structures offer the

31

possibility of efficiently and understandably representing solutions to problems and also offer the

possibility of scaling up well to larger, more significant problems.

In summary, we have shown, by the use the three illustrative problems here (and the wide variety

of other seemingly different problems cited from other areas), the power and flexibility of the

genetic programming paradigm.

REFERENCES

1 Axelrod, R. "The evolution of strategies in the iterated prisoner’s dilemma." In Genetic

Algorithms and Simulated Annealing , edited by L. Davis. London: Pittman l987.

2 Davis, L. (editor) Genetic Algorithms and Simulated Annealing London: Pittman l987.

3 De Jong, Kenneth A. "Genetic algorithms: A l0 year perspective." In Grefenstette, J.

J.(editor). Proceedings of an International Conference on Genetic Algorithms and Their

Applications. Hillsdale, NJ: Lawrence Erlbaum Associates l985.

4 Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA: Addison-Wesley l989.

5 Hillis, W. Daniel. "Co-Evolving Parasites Improve Simulated Evolution as an Optimization

Procedure." In Emergent Computation: Self-organizing, Collective, and Cooperative

Computing Networks. edited by S. Forrest. Cambridge, MA: MIT Press 1990.

 Also in Langton, Christopher G. and Farmer, J. Doyne. (editors) Proceedings of the

Second Conference on Artificial Life. Redwood City, CA; Addison-Wesley 1990.

6 Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of

Michigan Press 1975.

7 Holland, John H. Escaping brittleness: The possibilities of general-purpose learning

algorithms applied to parallel rule-based systems. In Michalski, Ryszard S., Carbonell,

Jaime G. and Mitchell, Tom M. Machine Learning: An Artificial Intelligence Approach,

32

Volume II. P. 593-623. Los Altos, CA: Morgan Kaufman l986.

8 Holland, J. H. "ECHO: Explorations of Evolution in a Minature World." In Proceedings of

the Second Conference on Artificial Life. edited by C. G. Langton, and J. D. Farmer, J.

Doyne. Redwood City, CA; Addison-Wesley 1990.

9 Jefferson, David, Collins, Rob, et. al. "The Genesys System: Evolution as a Theme in

Artificial Life." In Proceedings of Second Conference on Artificial Life, edited by C. G.

Langton and D Farmer. Redwood City, CA: Addison-Wesley. 1990.

10 Koza, John R. "Hierarchical Genetic Algorithms Operating on Populations of Computer

Programs. In Proceedings of the 11th International Joint Conference on Artificial

Intelligence (IJCAI). San Mateo, CA: Morgan Kaufman 1989.

11 Koza, John R. Genetic Programming: A Paradigm for Genetically Breeding Populations of

Computer Programs to Solve Problems. Stanford University Computer Science

Department Technical Report STAN-CS-90-1314. June 1990. 1990.

12 Miller, J. H. "The Co-evolution of Automata in the Repeated Prisoner’s Dilemma." Sante

Fe Institute Report 89-003. 1989.

13 Miller, J. H. "The Evolution of Automata in the Repeated Prisoner’s Dilemma." In Two

Essays on the Economics of Imperfect Information. PhD Dissertation, Department of

Economics, University of Michigan, 1988.

14 Schaffer , J. D. (editor) Proceedings of the Third International Conference on Genetic

Algorithms. San Mateo, Ca: Morgan Kaufmann Publishers Inc. 1989.

15 Smith, John Maynard. Evolutionary Genetics. Oxford: Oxford University Press. 1989.

16 Smith, Steven F. A Learning System Based on Genetic Adaptive Algorithms. PhD

Dissertation. Pittsburgh: University of Pittsburgh 1980.

