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INTRODUCTION AND OVERVIEW 

Research in the field of artificial life focuses on computer programs that exhibit some of the 

properties of biological life (e.g. self-reproducibility, evolutionary adaptation to an environment, 

etc.). In one area of artificial life research, human programmers write intentionally simple 

computer programs (often incorporating observed features of actual biological processes) and 

then study the "emergent" higher level behavior that may be exhibited by such seemingly simple 

programs. In this chapter, we consider a different problem, namely, "How can computer 

programs be automatically written by the computer itself using only measurements of a given 

program's performance?" In particular, this chapter describes the recently developed "genetic 

programming paradigm" which genetically breeds populations of computer programs in order to 

find a computer program that solves the given problem. In the genetic programming paradigm, 

the individuals in the population are hierarchical compositions of functions and arguments. The 

hierarchies are of various sizes and shapes. Increasingly fit hierarchies are then evolved in 

response to the problem environment using the genetic operations of fitness proportionate 

reproduction (Darwinian survival and reproduction of the fittest) and crossover (sexual 

recombination). In the genetic programming paradigm, the size and shape of the hierarchical 

solution to the problem is not specified in advance. Instead, the size and shape of the hierarchy, 

as well as the contents of the hierarchy, evolve in response to the Darwinian selective pressure 

exerted by the problem environment. 

This chapter also describes an extension of the genetic programming paradigm to the case where 

two (or more) populations of hierarchical computer programs simultaneously co-evolve. In co-

evolution, each population acts as the environment for the other population. In particular, each 

individual of the first population is evaluated for "relative fitness" by testing it against each 

individual in the second population, and, simultaneously, each individual in the second 

population is evaluated for relative fitness by testing them against each individual in the first 

population. Over a period of many generations, individuals with high "absolute fitness" may 
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evolve as the two populations mutually bootstrap each other to increasingly high levels of 

fitness.  

The genetic programming paradigm is illustrated by genetically breeding a population of 

hierarchical computer programs to allow an "artificial ant" to traverse an irregular trail. In 

addition, we genetically breed a computer program controlling the behavior of an individual ant 

in an ant colony which, when simultaneously executed by a large number of ants, causes the 

emergence of interesting collective behavior for the colony as a whole. Co-evolution is 

illustrated with a problem involving finding an optimal strategy for playing a simple discrete 

two-person competitive game represented by a game tree in extensive form. 

BACKGROUND ON GENETIC ALGORITHMS 

Genetic algorithms are highly parallel mathematical algorithms that transform populations of 

individual mathematical objects (typically fixed-length binary character strings) into new 

populations using operations patterned after natural genetic operations such as sexual 

recombination (crossover) and fitness proportionate reproduction (Darwinian survival of the 

fittest). Genetic algorithms begin with an initial population of individuals (typically randomly 

generated) and then iteratively (1) evaluate the individuals in the population for fitness with 

respect to the problem environment and (2) perform genetic operations on various individuals in 

the population to produce a new population. John Holland of the University of Michigan 

presented the pioneering formulation of genetic algorithms for fixed-length character strings in 

1975 in Adaptation in Natural and Artificial Systems (6). Holland established, among other 

things, that the genetic algorithm is a mathematically near optimal approach to adaptation in that 

it maximizes expected overall average payoff when the adaptive process is viewed as a multi-

armed slot machine problem requiring an optimal allocation of future trials in the search space, 

given currently available information. Recent work in genetic algorithms and genetic classifier 

systems can be surveyed in Goldberg (4), Davis (2),  and Schaffer (14). 
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BACKGROUND ON GENETIC PROGRAMMING PARADIGM 

Representation is a key issue in genetic algorithm work because genetic algorithms directly 

manipulate the coded representation of the problem and because the representation scheme can 

severely limit the window by which the system observes its world. Fixed length character strings 

present difficulties for some problems — particularly problems where the desired solution is 

hierarchical and where the size and shape of the solution is unknown in advance. The need for 

more powerful representations has been recognized for some time (3). 

The structure of the individual mathematical objects that are manipulated by the genetic 

algorithm can be more complex than the fixed length character strings first described by Holland 

(6) in 1975. Steven Smith (16) departed from the early fixed-length character strings by in-

troducing variable length strings, specifically, strings whose elements were if-then rules, rather 

than single characters. Holland's introduction of the genetic classifier system (7) continued the 

trend towards increasing the complexity of the structures undergoing adaptation. The classifier 

system is a cognitive architecture  containing a population of string-based if-then rules (whose 

condition and action parts are fixed length binary strings) which can be modified by the genetic 

algorithm. 

The recently developed genetic programming paradigm further continues the above trend 

towards increasing the complexity of the structures undergoing adaptation. In the genetic 

programming paradigm, the individuals in the population are hierarchical compositions of 

functions and terminals appropriate to the particular problem domain. The hierarchies are of 

various sizes and shapes. The set of functions typically includes arithmetic operations, 

mathematical functions, conditional logical operations, and domain-specific functions. Each 

function in the function set should be well defined for any element in the range of every other 

function in the set. The set of terminals used typically includes inputs (sensors) appropriate to 

the problem domain and various constants. The search space is the hyperspace of all possible 

compositions of functions and terminals that can be recursively composed of the available func-
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tions and terminals. The symbolic expressions (S-expressions) of the LISP programming 

language are an especially convenient way to create and manipulate the compositions of 

functions and terminals described above. These S-expressions in LISP correspond directly to the 

"parse tree" that is internally created by most compilers. 

The basic genetic operations for the genetic programming paradigm are fitness based 

reproduction and crossover (recombination).  

Fitness proportionate reproduction is the basic engine of Darwinian reproduction and survival of 

the fittest. It copies individuals with probability proportionate to fitness from one generation of 

the population into the next generation. In this respect, it operates for the genetic programming 

paradigm in the same way as it does for conventional genetic algorithms. The crossover 

operation for the genetic programming paradigm is a sexual operation that operates on two 

parental LISP S-expressions and produces two offspring S-expressions using parts of each par-

ent. Typically the two parents are hierarchical compositions of functions of different size and 

shape. In particular, the crossover operation starts by selecting a random crossover point in each 

parent and then creates two new offspring S-expressions by exchanging the sub-trees (i.e. sub-

lists) between the two parents.  Because entire sub-trees are swapped, this genetic crossover 

(recombination) operation produces syntactically and semantically valid LISP S-expressions as 

offspring regardless of which point is selected in either parent.   

For example, consider the parental LISP S-expression:  
(OR (NOT D1) (AND D0 D1)) 

And, consider the second parental S-expression below:  
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

These two LISP S-expressions can be depicted graphically as rooted, point-labeled trees with 

ordered branches. Assume that the points of both trees are numbered in a depth-first way starting 

at the left. Suppose that the second point (out of 6 points of the first parent) is randomly selected 

as the crossover point for the first parent and that the sixth point (out of 10 points of the second 
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parent) is randomly selected as the crossover point of the second parent. The crossover points are 

therefore the NOT in the first parent and the AND in the second parent. 

The two parental LISP S-expressions are shown below: 

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1
   

 The two crossover fragments are two sub-trees shown below: 

NOT

D1

AND

NOT NOT

D0 D1
  

These two crossover fragments correspond to the bold, underlined sub-expressions (sub-lists) in 

the two parental LISP S-expressions shown above. The two offspring resulting from crossover 

are shown below. 

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

   

Note that the first offspring above is a perfect solution for the exclusive-or function, namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

In addition to the basic genetic operations of fitness proportionate reproduction and crossover, a 
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mutation operation can also be defined to provide a means for occasionally introducing small 

random mutations into the population. The mutation operation is an asexual operation in that it 

operates on only one parental S-expression. selected based on fitness. The result of this operation 

is a single offspring S-expression. The mutation operation selects a point of the LISP S-

expression at random. The point can be an internal (function) or external (terminal) point of the 

tree. This operation removes whatever is currently at the selected point and inserts a randomly 

generated sub-tree at the randomly selected point of a given tree. This randomly generated 

subtree is created in the same manner as the initial random individuals in the initial random 

generation. This operation is controlled by a parameter which specifies the maximum depth for 

the newly created and inserted sub-tree. A special case of this operation involves inserting only a 

single terminal (i.e. a sub-tree of depth 0) at a randomly selected point of the tree. For example, 

in the figure below, the third point of the S-expression shown on the left below was selected as 

the mutation point and the sub-expression (NOT D1) was randomly generated and inserted at 

that point to produce the S-expression shown on the right below. 

 

OR

AND D0

D0 D1

OR

AND D0

D1NOT

D1

Before After  

The mutation operation potentially can be beneficial in reintroducing diversity in a population 

that may be tending to prematurely converge. 

Additional details can be found in Koza (10,11). 

We have shown that entire computer programs can be genetically bred to solve problems in a 
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variety of different areas of artificial intelligence, machine learning, and symbolic processing 

(10, 11). In particular, this new paradigm has been successfully applied to example problems in 

several different areas, including  

•  machine learning of functions (e.g. learning the Boolean 11-multiplexer function),  

• planning (e.g. developing a robotic action sequence that can stack an arbitrary initial 

configuration of blocks into a specified order),  

• automatic programming (e.g. discovering a computational procedure for solving pairs of lin-

ear equations, solving quadratic equations for complex roots, and discovering trigonometric 

identities), 

• sequence induction (e.g. inducing a recursive computational procedure for the Fibonacci and 

the Hofstadter sequences),  

• pattern recognition (e.g. translation-invariant recognition of a simple one-dimensional shape 

in a linear retina),  

• optimal control (e.g. centering a cart and balancing a broom on a moving cart in minimal 

time by applying a "bang bang" force to the cart )   

• symbolic "data to function" regression, symbolic "data to function" integration, and symbolic 

"data to function" differentiation,  

• symbolic solution to functional equations (including differential equations with initial condi-

tions, integral equations, and general functional equations),  

• empirical discovery (e.g. rediscovering Kepler's Third Law, rediscovering the well-known 

econometric "exchange equation" MV = PQ from actual noisy time series data for the money 

supply, the velocity of money, the price level, and the gross national product of an economy),   

•  finding the minimax strategy for a differential pursuer-evader game, and 

• simultaneous architectural design and training of neural networks.  
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The genetic programming paradigm permits the evolution of computer programs which can 

perform alternative computations conditioned on the outcome of intermediate calculations, 

which can perform computations on variables of many different types, which can perform 

iterations and recursions to achieve the desired result, which can define and subsequently use 

computed values and sub-programs, and whose size, shape, and complexity is not specified in 

advance.  

THE "ARTIFICIAL ANT" PROBLEM  

In order to illustrate the genetic programming paradigm, we consider the complex planning task 

devised by Jefferson et. al. (9) for an “artificial ant” attempting to traverse a trail.   

Jefferson et. al. successfully solved a string-based genetic algorithm to discover a finite state 

automaton enabling the "artificial ant" to traverse the trail.   

The setting for the problem is a square 32 by 32 toroidal grid in the plane. The “Santa Fe trail" is 

a winding trail with food in 89 of the 1024 cells. This trail (designed by Christopher Langton) is 

considered the more difficult of the two trails tested by Jefferson et. al.. The trail is irregular and 

has single gaps, double gaps, single gaps at some corners, double gaps (knight moves) at other 

corners , and triple gaps (long knight moves) at other corners . The “artificial ant” begins in the 

cell identified by the coordinates (0,0) and is facing in a particular direction (i.e. east). The 

artificial ant has a sensor that can see only the single adjacent cell in the direction the ant is 

currently facing. At each time step, the ant has the capacity to execute any of four operations, 

namely, to move forward (advance) in the direction it is facing, to turn right (and not move), to 

turn left (and not move), or to sense the contents of the single adjacent cell in the direction the 

ant is facing.  

The objective of the ant is to traverse the entire trail and collect all of the food. Jefferson, Collins 

et. al. limited the ant to a certain number of time steps (200). 
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Jefferson, Collins et. al. started by assuming 

that the finite automaton necessary to solve 

the problem would have 32 or fewer states. 

They then represented an individual in their 

population of automata by a 453-bit string 

representing the state transition diagram (and 

its initial state) of the individual automaton. 

The ant’s sensory input at each time step was 

coded as one bit and the output at each time 

step was coded as two bits. The next state of 

the automaton was coded with 5 bits. The 

complete behavior of an automaton was thus 

specified with a genome consisting of a 

binary string with 453 bits (5 bits representing the initial state of the automaton plus 64 

substrings of length 7 representing the state transitions). Jefferson, Collins et. al.  then processed 

a population of 65,536 individual bit strings of length 453 on a Connection Machine™ using a 

genetic algorithm using crossover and mutation operating on a selected (relatively small) fraction 

of the population. After 200 generations in a particular run (taking about 10 hours on the 

Connection Machine), they reported that a single individual in the population emerged which 

attained a perfect score of 89 stones. As it happened, this single individual completed the task in 

exactly 200 operations. 

In our approach to this task using the genetic programming paradigm, we used the function set 

consisting of the functions F = {IF-SENSOR, PROGN}. The IF-SENSOR function has two arguments 

and evaluates the first argument if the ant’s sensor senses a stone or, otherwise, evaluates the 

second argument.  The PROGN function is the LISP connective (glue) function that sequentially 

evaluates its arguments as individual steps in a program. The terminal set was T = {ADVANCE, 

TURN-RIGHT, TURN-LEFT}. These three terminals are actually functions with no arguments. They 

Start

62

89

38 31

11

24

3
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operate via their side effects on the ant’s state (i.e. the ant's position on the grid or the ant's 

facing direction). Note that  IF-SENSOR, ADVANCE, TURN-RIGHT, and TURN-LEFT correspond directly 

to the operators defined and used by Jefferson, Collins et. al. We allowed 400 time steps before 

timing out. Note that we made no assumption about the complexity of the eventual solution. The 

complexity of this problem is such that  it cannot be solved by any random search method using 

either method. 

The initial generation (generation 0) consisted of randomly generated individual S-expressions 

recursively created using the available functions and available terminals of the problem.  Many 

of these randomly generated individual did nothing at all. For example, (PROGN  (TURN-

RIGHT) (TURN-RIGHT)) turns without ever moving the ant anywhere. Other random 

individuals move without turning [e.g. (ADVANCE)]. Other individuals in the initial random 

population move forward after sensing food but can only handle a right turn in the trail [e.g. (IF-

SENSOR (ADVANCE) (TURN-RIGHT))]. 

Throughout this chapter (and in virtually all of our experiments), each new generation was 

created from the preceding generation by applying the fitness proportionate reproduction 

operation to 10% of the population and by applying the crossover operation to 90% of the popu-

lation (with reselection allowed). The selection of crossover points in the population was biased 

90% towards internal (function) points of the tree and 10% towards external (terminal) points of 

the tree. For practical reasons (i.e. conservation of computer time), a limit of 4 was placed on the 

depth of initial random S-expressions and a limit of 15 was placed on the depth of S-expressions 

created by crossover. As to mutation, our experience has been that no run using only mutation 

and fitness proportionate reproduction (i.e. no crossover) ever produced a solution to any 

problem (although such solutions are theoretically possible given enough time). In other words, 

“mutating and saving the best” does not work any better for hierarchical genetic algorithms than 

it does for string-based genetic algorithms. This conclusion as to the relative unimportance of the 

mutation operation is similar to the conclusions reached by most other research work  on string-
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based genetic algorithms [see, for example, Holland (6)  and Goldberg (4)]. Accordingly, 

mutation was not used here. 

In one run, a reasonably parsimonious individual LISP S-expression scoring 89 out of 89 

emerged on the seventh generation, namely, 
(IF-SENSOR (ADVANCE) 
  (PROGN (TURN-RIGHT) 
         (IF-SENSOR (ADVANCE) (TURN-LEFT)) 
         (PROGN (TURN-LEFT) 
                (IF-SENSOR (ADVANCE) 
                  (TURN-RIGHT)) 
                (ADVANCE)))). 

This plan is graphically depicted in Figure 1. 

This individual LISP S-expression is the solution to the problem. In particular, this plan moves 

the ant forward if a stone is sensed. Otherwise it turns right and then moves the ant forward if a 

stone is sensed but turns left (returning to its original orientation) if no stone is sensed. Then it 

turns left and moves forward if a stone is sensed but turns right (returning to its original 

orientation) if no stone is sensed. If the ant originally did not sense a stone, the ant moves for-

ward unconditionally as its fifth operation. Note that there is no testing of the backwards 

directions.  

We can  measure the performance of a probabilistic algorithm by estimating the expected 

number of individuals that need to be processed by the algorithm in order to produce a solution 

IF-SENSOR

IF-SENSOR

ADVANCE TURN-R

TURN-L    ADVANCE

PROGNIF-SENSOR

ADVANCE TURN-L    

TURN-R

PROGNADVANCE

 

Figure. 1 Artificial Ant Solution 
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to the given problem with a certain probability (say 99%). Suppose, for example, a particular run 

of a genetic algorithm produces the desired result with only a probability of success ps after a 

specified choice (perhaps arbitrary and non-optimal) of number of generations Ngen and 

population of size N. Suppose also that we are seeking to achieve the desired result with a 

probability of, say,  z = 1 - ε= 99%. Then, the number K of independent runs required is  

K = 
log (1-z)
log (1-ps)  = 

log ε
log (1-ps) , where  ε= 1-z.  

For example, we ran 111 runs of the Artificial Ant problem with a population size of 1000 and 

51 generations. We found that the probability of success ps on a particular single run was 43%. 

With this probability of success, K = 8 independent runs are required to assure a 99% probability 

of solving the problem on at least one of the runs. That is, it is sufficient to process 408,000 

individuals to achieve the desired 99% probability. Processing a full 408,000 individuals 

requires about 6 hours of computing time on the Texas Instruments Explorer II+™ workstation 

for this problem. In addition, as the graph below shows, the probability of success ps of a run 

with a population size of 2000 with 51 generations is 67% so that a population of 2000 requires 

K = 4 independent runs (i.e. 408,000 individuals to be processed) to achieve the desired 99% 

probability. In contrast, the probability of success of a run with a population of 4000 with 51 

generations.is 81% so that a population of 4000  requires K = 3 independent runs (i.e. 612,000 

individuals to be processed) to achieve the desired 99% probability.  
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The 6 hours of computer time required to process the 408,000 individuals required by this 

problem (either with a population of size 1000 or 2000) on the considerably smaller and slower 

serial computer (Explorer workstation) represents substantially less computational resources than 

even a single 10-hour run on the massively parallel Connection Machine with 65,536 processors 

(even if it were the case that  all such 10-hour runs on the Connection Machine were successful 

in solving the problem). Thus, the genetic programming paradigm is comparatively speedy for 

this problem.  

EMERGENCE OF COLLECTIVE BEHAVIOR IN AN ANT COLONY 

Conway's "game of life" and other work in cellular automata, fractals, chaos, and Lindenmayer 

systems (L-systems) are suggestive of how the repetitive application of seemingly simple rules 

can lead to complex "emergent" overall behavior. In this section, we present an example of how 

such rules (computer programs) can be evolved using genetic recombination and the Darwinian 

principle of survival of the fittest as contained in the genetic programming paradigm. 

In particular, we show the emergence of interesting collective behavior in a colony of ants by 

genetically breeding a computer program to govern the behavior of the individual ants in the 

colony. The goal is to genetically evolve a common computer program governing the behavior of 
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the individual ants in a colony such that the collective behavior of the ants consists of efficient 

transportation of food to the nest. In nature, when an ant discovers food, it deposits a trail of 

pheromones as it returns to the nest with the food. The pheromonal cloud (which dissipates over 

time) aids other ants in efficiently locating and exploiting the food source. 

In this example, 144 pellets of food are piled eight deep in two 3-by-3 piles located in a 32-by-32 

toroidal area. There are 20 ants. The state of each ant consists of its position and the direction it 

is facing (out of eight possible directions). Each ant initially starts at the nest and faces in a 

random direction. Each ant in the colony is governed by a common computer program associated 

with the colony. The computer program is a composition of the following nine available 

functions: 

• MOVE-RANDOM randomly changes the direction in which an ant is facing and then moves 

the ant two steps in the new direction. 

• MOVE-TO-NEST moves the ant one step in the direction of the nest. This implements the 

gyroscopic ability of ants to navigate back to their nest. 

• PICK-UP picks up food (if any) at the current position of the ant. 

• DROP-PHEROMONE drops a pheromone at the current position of the ant (if the ant is 

carrying food). The pheromone immediately forms a 3-by-3 cloud around the drop point. The 

cloud decays over a period of time. 

• IF-FOOD-HERE is a two-argument function that executes its first argument is there is food 

at the ant's current position and, otherwise, executes the second (else) argument. 

• IF-CARRYING-FOOD is a similar two-argument function that tests whether the ant is 

currently carrying food. 

• MOVE-TO-ADJACENT-FOOD-ELSE is a one-argument function that allows the ant to test 

for immediately adjacent food and then move one step towards it. If food is present in more 

than one adjacent position, the ant moves to the position requiring the least change of 
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direction. If no food is adjacent, the "else" clause of this function is executed.  

• MOVE-TO-ADJACENT-PHEROMONE-ELSE is a function similar to the above based on 

adjacent pheromone. 

• PROGN is the LISP connective function that executes its argument in sequence  

Each of the 20 ants in a given colony executes the colony's common computer program. Since 

the ants initially face in random directions, make random moves, and encounter a changing 

pattern of food and pheromones created by the activities of other ants, the 20 individual ants 

each have different states and pursue different trajectories.  

The fitness of a colony is measured by how many of the 144 food pellets are transported to the 

nest within the "allotted time" (which limits both the total number of time steps and the total 

number of operations which any one ant can execute). The goal is to genetically evolve 

increasingly fit computer programs to govern the colony. 

Mere random motion by the 20 ants in a colony will typically bring the ants into contact with 

only about 56 of the 144 food pellets within the allotted time. Moreover, the ants' task is 

substantially more complicated than merely coming in contact with food. After randomly 

stumbling into food, the ant must pick up the food. Then, the ant must move towards the nest. 

Moreover, while this sequence of behavior is desirable, it is still insufficient to efficiently solve 

the problem in any reasonable amount of time. It is also necessary that the ants that accidentally 

stumble into food must also establish a pheromonal trail as they carry the food back to the nest. 

Moreover, all ants must always be on the lookout for such pheromonal trails established by other 

ants and must follow such trails to the food when they encounter such trails. In a typical run, 

93% of the random computer programs in the initial random generation did not transport even 

one of the 144 food pellets to the nest within the allotted time. About 3% of these initial random 

programs transported only one of the 144 pellets. Even the best single computer program of the 

random computer programs created in the initial generation successfully transported only 41 

pellets. 
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As the genetic programming paradigm is run, the population as a whole and its best single 

individual both generally improve from generation to generation. In the one specific run which 

we describe in detail hereinbelow, the best single individual in the population on generation 10 

scored 54; the best single individual on generation 20 scored 72; the best single individual on 

generation 30 scored 110; the best single individual on generation 35 scored 129; and, the best 

single individual on generation 37 scored 142.  

On generation 38, a program emerged which causes the 20 ants to successfully transport all 144 

food pellets to the nest within the allotted time. This 100% fit program is shown below: 
(PROGN (PICK-UP) (IF-CARRYING-FOOD (PROGN (MOVE-TO-ADJACENT-PHEROMONE-
ELSE (MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-
ADJACENT-FOOD-ELSE (PICK-UP))))) (PROGN (PROGN (PROGN (PROGN (MOVE-TO-
ADJACENT-FOOD-ELSE (PICK-UP)) (PICK-UP)) (PROGN (MOVE-TO-NEST) (DROP-
PHEROMONE))) (PICK-UP)) (PROGN (MOVE-TO-NEST) (DROP-PHEROMONE)))) (MOVE-
TO-ADJACENT-FOOD-ELSE (IF-CARRYING-FOOD (PROGN (PROGN (DROP-PHEROMONE) 
(MOVE-TO-ADJACENT-PHEROMONE-ELSE (IF-CARRYING-FOOD (MOVE-TO-ADJACENT-
FOOD-ELSE (PICK-UP)) (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))))) (MOVE-TO-
NEST)) (IF-FOOD-HERE (PICK-UP) (IF-CARRYING-FOOD (PROGN (IF-FOOD-HERE 
(MOVE-RANDOM) (IF-CARRYING-FOOD (MOVE-RANDOM) (PICK-UP))) (DROP-
PHEROMONE)) (MOVE-TO-ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM)))))))) 

The 100% fit program above is equivalent to the simplified program below (except for the 

special case when an ant is in the nest): 
1 (PROGN (PICK-UP)  

2       (IF-CARRYING-FOOD 

3         (PROGN (MOVE-TO-ADJACENT-PHEROMONE-ELSE  

4                  (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))) 

5                (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP)) 

6                (MOVE-TO-NEST) (DROP-PHEROMONE)  

7                (MOVE-TO-NEST) (DROP-PHEROMONE)) 

8        (MOVE-TO-ADJACENT-FOOD-ELSE 

9           (IF-FOOD-HERE 

10             (PICK-UP) 

11             (MOVE-TO-ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM)))))) 

This simplified program can be interpreted as follows: The ant begins by picking-up the food, if 

any, located at the ant's current position. If the ant is now carrying food (line 2), then the six 

parts of the PROGN beginning on line 3 and ending on line 7 are executed. Line 3 moves the ant 

to the adjacent pheromone (if any). If there is no adjacent pheromone, line 4  moves the ant to 
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the adjacent food (if any). In view of the fact that the ant is already carrying food, these two 

potential moves on lines 3 and 4 generally distract the ant from the most direct return to the nest 

and therefore merely reduce efficiency. Line 5 is a similar distraction. Note that the PICK-UP 

operations on lines 4 and 5 are redundant since the ant is already carrying food. 

Given that the ant is already carrying food, the sequence of MOVE-TO-NEST and DROP-

PHEROMONE on lines 6 and 7 is the winning combination that establishes the pheromone trail 

as the ant moves towards the nest with the food. The establishment of the pheromone trail 

between the pile of food and the nest is an essential part of efficient collective behavior for 

exploiting the food source. 

The sequence of conditional behavior in lines 8 through 11 efficiently prioritizes the search 

activities of the ant. If the ant is not carrying food, line 8 moves the ant to adjacent food (if any). 

If there is no adjacent food but there is food at the ant's current position (line 9), the ant picks up 

the food (line 10). On the other hand, if there is no food at the ant's current position (line 11), the 

ant moves towards any adjacent pheromones (if any). If there are no adjacent pheromones, the 

ant moves randomly. This sequence of conditional behavior causes the ant to pick up any food it 

may encounter. Failing that, the second priority established by this conditional sequence causes 

the ant to follow a previously established pheromonal trail. And, failing that, the third priority of 

this conditional sequence causes the ant to move at random.  

The collective behavior of the ant colony governed by the above 100% fit program above can be 

visualized as a series of major phases. The first phase occurs when the ants are dispersing from 

the nest and are randomly searching for food. In the figure below (representing time step 3 of 

one execution of the 100% fit program above), the two 3-by-3 piles of food are shown in black in 

the western and northern parts of the grid. The nest is indicated by nine + signs slightly southeast 

of the center of the grid. The ants are shown in gray with their facing direction indicated. 
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The second phase occurs when some ants have discovered some food, have picked up the food, 

and have started back towards the nest dropping pheromones as they go. The beginnings of the 

pheromonal clouds around both the western and northern pile of food are shown below 

(representing time step 12). 

 

The third phase occurs when the pheromonal clouds have coalesced into recognizable 

pheromonal trails linking the piles of food with the nest. In the figure below (representing time 

step 15), the first two (of the 144) food pellets have just reached the nest. 
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The figure below shows the premature (and temporary) disintegration of the pheromonal trail 

connecting the northern pile of food with the nest while food still remains in the northern pile. 

The pheromonal trail connecting the western pile of food with the nest is still intact. 118 of the 

144 food pellets have been transported to the nest at this point (representing time step 129). 

 

The fourth phase occurs when the food in a given pile is entirely picked up and its pheromonal 

trail starts to dissolve. In the figure below (representing time step 152), the western pile has been 

entirely picked up by the ants and the pheromonal trail connecting it to the nest has already 

dissolved. The former location of the western pile is shown as the blank white area. 136 of the 

144 food pellets have been transported to the nest at this point  The pheromone trail connecting 

the nest and the northern pile (with 8 remaining food pellets) has been reestablished.  
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Shortly thereafter, the run ends with all 144 food pellets in the nest. 

Note that the overall collective behavior of the ant colony observed above is not the result of a 

central controller orchestrating the activity. Rather, it emerges from the simultaneous execution, 

in parallel, of a common computer program by a large number of individual ants. 

CO-EVOLUTION IN NATURE 

The evolutionary process in nature is often described as if one population of individuals is trying 

to adapt to a fixed environment. This description is, however, only a first order approximation to 

the actual situation. The environment actually consists of both the physical environment (which 

is usually relatively unchanging) as well as other independently-acting biological populations of 

individuals which are simultaneously trying to adapt to “their” environment. The actions of each 

of these other independently-acting biological populations (species) usually affect all the others. 

In other words, the environment of a given species includes all the other biological species that 

contemporaneously occupy the physical environment and which are simultaneously trying to 

survive. In biology, the term “co-evolution” is sometimes used to reflect the fact that all species 

are simultaneously co-evolving in a given physical environment. 

A biological example presented by Holland illustrates the point (8). A given species of plant may 

be faced with an environment containing insects that like to eat it. To defend against its predators 
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(and increase its probability of survival in the environment), the plant may, over a period of time, 

evolve a tough exterior that makes it difficult for the insect to eat it.  But, over a period of time, 

the insect may retaliate by evolving a stronger jaw so that the insect population can continue to 

feed on the plant (and increase its probability of survival in the environment). Then, over an 

additional period of time, the plant may evolve a poison to help defend itself further against the 

insects. But, then again, over a period of time, the insect may evolve a digestive enzyme that 

negates the effect of the poison so that the insect population can continue to feed on the plant.  

In effect, both the plant and the insects get better and better at their respective defensive and 

offensive roles in this “biological arms race”. Each species changes in response to the actions of 

the other. 

BACKGROUND ON CO-EVOLUTION AND GENETIC ALGORITHMS 

In the “genetic algorithm,” described by John Holland in his pioneering Adaptation in Natural 

and Artificial Systems (6), a population of individuals attempts to adapt to a fixed 

“environment.” In the basic genetic algorithm as described by Holland in 1975, the individuals in 

the population are fixed-length character strings (typically binary strings) that are encoded to 

represent some problem in some way.  In the basic “genetic algorithm”, the performance of the 

individuals in the population is measured using a fitness measure which is, in effect, the 

“environment” for the population. Over a period of many generations, the genetic algorithm 

causes the individuals in the population to adapt in a direction that is dictated by the fitness 

measure (its environment). 

Holland (8) has incorporated co-evolution and genetic algorithms in his ECHO system for ex-

ploring the co-evolution of artificial organisms described by fixed-length character strings 

(chromosomes) in a “miniature world.” In ECHO, there is a single population of artificial organ-

isms. The environment of each organism includes all other organisms. 

Miller (12,13) has used co-evolution in a genetic algorithm to evolve a finite automaton as the 
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strategy for playing the Repeated Prisoner’s Dilemma game. Miller’s population consisted of 

strings (chromosomes) of 148 binary digits to represent finite automata with 16 states. Each 

string in the population represented a complete strategy by which to play the game. That is, it 

specified what move the player was to make for any sequence of moves by the other player. 

Miller then used co-evolution to evolve strategies. Miller’s co-evolutionary approach to the 

repeated prisoner’s dilemma using genetic algorithms. contrasts with Alexrod’s (1) evolutionary 

approach using genetic algorithms. Axelrod measured performance of a particular strategy by 

playing it against eight selected superior computer programs submitted in an international 

programming tournament for the prisoner’s dilemma. A best strategy for one player (represented 

as a 70 bit string with a 3-move look-back) was then evolved with a weighted mix of eight 

opposing computer programs serving as the environment. 

Hillis (5) used co-evolution in genetic algorithms to solve optimization problems. 

John Maynard Smith (15) discussed co-evolution in connection with discovering strategies for 

game. 

CO-EVOLUTION AND THE GENETIC PROGRAMMING PARADIGM  

In the "hierarchical co-evolution algorithm," there are two (or more) populations of individuals. 

The environment for the first population consists of the second population. And, conversely, the 

environment for the second population consists of the first population.  

The co-evolutionary process typically starts with both populations being highly unfit (when 

measured by an absolute fitness measure). Then, the first population tries to adapt to the 

“environment” created by the second population. Simultaneously, the second population tries to 

adapt to the “environment” created by the first population. 

This process is carried out by testing the performance of each individual in the first population 

against each individual (or a sampling of individuals) from the second population. We call this 

performance the “relative fitness” of an individual because it represents the performance of one 
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individual in one population relative to the environment consisting of the entire second 

population. Then, each individual in the second population is tested against each individual (or a 

sampling of individuals) from the first population. 

Note that this measurement of relative fitness for an individual in co-evolution is not an absolute 

measure of fitness against an optimal opponent, but merely a relative measure when the 

individual is tested against the current opposing population. If one population contains boxers 

who only throw left punches, then an individual whose defensive repertoire contains only 

defenses against left punches will have high relative fitness.  But, this individual will have only 

mediocre absolute fitness when tested against an opponent who knows how to throw both left 

punches and right punches (i.e. an optimal opponent).  

Even when both initial populations are initially highly unfit (both relatively and absolutely), the 

virtually inevitable variation of the initial random population will mean that some individuals 

have slightly better relative fitness than others. That means that some individuals in each 

population have somewhat better performance than others in dealing with the current opposing 

population.  

The operation of fitness proportionate reproduction (based on the Darwinian principle of survival 

and reproduction of the fittest) can then be applied to each population using the relative fitness of 

each individual currently in each population. In addition, the operation of genetic recombination 

(crossover) can also be applied to a pair of parents, at least one of which is selected based on its 

relative fitness.  

Over a period of time, both populations of individuals will tend to “co-evolve” and to rise to 

higher levels of performance as measured in terms of absolute fitness. Both populations do this 

without the aid of any externally supplied absolute fitness measure serving as the environment. 

In the limiting case, both populations of individuals can evolve to a level of performance that 

equals the absolute optimal fitness. Thus, the hierarchical co-evolution algorithm is a self-

organizing, mutually-bootstrapping process that is driven only by relative fitness (and not by 
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absolute fitness).  

Co-evolution is especially important in problems from game theory because one almost never 

has a priori  access to a minimax strategy for either player. One therefore encounters a "chicken 

and egg" situation. In trying to develop a minimax strategy for the first player, one does not have 

the advantage of having a minimax second player against which to test candidate strategies. In 

checkers or chess, for example, it is difficult for a new player to learn to play well if he does not 

have the advantage of playing against a highly competent player.    

CO-EVOLUTION OF A GAME STRATEGY 

We now illustrate the “hierarchical co-evolution algorithm” to discover minimax strategies for 

both players simultaneously in a simple discrete two-person game represented by a game tree in 

extensive form.  

In the hierarchical co-evolution algorithm, we do not have access to the optimal opponent to 

train the population. Instead, our objective is to breed two populations simultaneously.  Both 

populations start as random compositions of the available functions and arguments.   

Consider the following simple discrete game whose game tree is presented in extensive form in 
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Figure 2 Game Tree with Payoffs 
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Figure 2. Each internal point of this tree is labeled with the player who must move. Each line is 

labeled with the choice (either L or R) made by the moving player. Each endpoint of the tree is 

labeled with the payoff (to player X). 

This game is a two-person, competitive, zero-sum game in which the players make alternating 

moves. On each move, a player can choose to go L (left) or R (right). After player X has made 

three moves and player O has made two moves, player X receives (and player O pays out) the 

payoff shown at the particular endpoint of the game tree (1 of 32). 

Each player has access to complete information about his opponent's previous moves (and his 

own previous moves). This historical information is contained in five variables XM1 (X's move 

1), OM1 (O's move 1), XM2 (X's move 2), OM2 (O's move 2), and XM3 (X's move 3). These five 

variables each assume one of three possible values: L (left), R (right), or U (undefined). A 

variable is undefined prior to the time when the move to which it refers has been made. Thus, at 

the beginning of the game, all five variables are undefined. The particular variables that are 

defined and undefined indicate the point to which play has progressed during the play of the 

game. For example, if both players have moved once, XM1 and OM1 are defined (as either L or R) 

but the other three variables (XM2, OM2, and XM3) are undefined (have the value U).  

A strategy for a particular player in a game specifies which choice that player is to make for 

every possible situation that may arise for that player. In particular, in this game, a strategy for 

player X must specify his first move if he happens to be at the beginning of the game. A strategy 

for player X must also specify his second move if player O has already made one move and it 

must specify his third move if player O has already made two moves. Since Player X moves first, 

player X's first move is not conditioned on any previous move. But, player X's second move will 

depend on Player O's first move (i.e. OM1) and, in general, it will also depend on his own first 

move (XM1). Similarly, player X's third move will depend on player O's first two moves and, in 

general, his own first two moves. Similarly, a strategy for player O must specify what choice 

player O is to make for every possible situation that may arise for player O.  A strategy here is a 



26 

computer program (i.e. S-expression) whose inputs are the relevant historical variables and 

whose output is a move (L or R) for the player involved. Thus, the set of terminals is T = {L, R}.  

Four testing functions CXM1, COM1, CXM2, and COM2 provide the facility to test each of the 

historical variables that are relevant to deciding upon a player's move. Each of these functions is 

a specialized form of the CASE function in LISP. For example, function CXM1 has three arguments 

and evaluates it first argument if XM1 (X's move 1) is undefined, evaluates its second argument if 

XM1 is L (Left), and evaluates its third argument if XM1 is R (Right). Functions CXM2, COM1, and 

COM2 are similarly defined. Thus, the function set for this problem is F = {CXM1, COM1, CXM2, 

COM2}. Each of these functions takes three arguments. 

Our goal is to simultaneously co-evolve strategies for both players of this game. 

In co-evolution, the relative fitness of a particular strategy for a particular player in a game is the 

average of the payoffs received when that strategy is played against the entire population of 

opposing strategies.  

The absolute fitness of a particular strategy for a particular player in a game is the payoff 

received when that strategy is played against the minimax strategy for the opponent. Note that 

when we compute the absolute fitness of an X strategy for our descriptive purposes here, we test 

the X strategy against 4 possible combinations of O moves — that is, O's choice of L or R for his 

moves 1 and 2. When we compute the absolute fitness of an O strategy, we test it against 8 

possible combinations of X moves — that is, X's choice of L or R for his moves 1, 2, and 3. Note 

that this testing of 4 or 8 combinations does not occur in the computation for relative fitness. 

When the two minimax strategies are played against each other, the payoff is 12. This score is 

known as the value of this game. A minimax strategy takes advantage of non-minimax play by 

the other player.   

As previously mentioned, the co-evolution algorithm does not use the minimax strategy of the 

opponent in any way. We use it in this paper for descriptive purposes only. The co-evolution 

algorithm uses only relative fitness. 
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In one run (with population size of 300), the individual strategy for player X in the initial random 

generation (generation 0) with the best relative fitness was 
(COM1 L (COM2 (CXM1 (CXM2 R (CXM2 R R R) (CXM2 R L R)) L (CXM2 L R (COM2 
R R R))) (COM1 R (COM2 (CXM2 L R L) (COM2 R L L) R) (COM2 (COM1 R R L) 
(CXM1 R L R) (CXM1 R L L))) (CXM1 (COM2 (CXM1 R L L) (CXM2 R R L) R) R 
(COM2 L R (CXM1 L L L)))) R). 

This simplifies to 
(COM1 L (COM2 L L R) R). 

This individual has relative fitness of 10.08. 

The individual in the initial random population (generation 0) for player O with the best relative 

fitness was an equally complex expression. It simplifies to 
(CXM2 R (CXM1 # L R) (CXM1 # R L)). 

Note that, in simplifying this strategy, we inserted the symbol # to indicate that the situation 

involved can never arise. This individual has relative fitness of 7.57.  

Neither the best X individual nor the best O individual from generation 0 reached maximal 

absolute fitness. 

Note that the values of relative fitness for the relative best X individual and the relative best O 

individual from generation 0 (i.e. 10.08 and the 7.57) are each computed by averaging the payoff 

from the interaction of the individual involved with all 300 individual strategies in the current 

opposing population.  

In generation 1, the individual strategy for player X with the best relative fitness had relative 

fitness of 11.28. This individual X strategy is still not a minimax strategy. It does not have the 

maximal absolute fitness.  

In generation 1, the best individual O strategy attained  relative fitness of 7.18. It is shown 

below: 
(CXM2 (CXM1 R R L) (CXM2 L L (CXM2 R L R)) R). 

Although the co-evolution algorithm does not know it, this best single individual O strategy for 

generation 1 is, in fact, a minimax strategy for player O. It has maximal absolute fitness in this 



28 

game. This one O individual was the first such O individual to attain this level of performance 

during this run. If it were played against the minimax X strategy, it would score 12 (i.e. the value 

of this game). 

This individual O strategy can be graphically depicted as shown below: 
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R R L

R

CXM2

R L

LL

CXM2 R

CXM2

 

This individual O strategy simplifies to  
(CXM2 (CXM1 # R L) L R). 

Between generations 2 and 14, the number of individuals in the O population reaching maximal 

absolute fitness was 2, 7, 17, 28, 35, 40, 50, 64, 73, 83, 93, 98, and 107, respectively. That is, 

programs equivalent to the minimax O strategy began to dominate the O population. 

In generation 14, the individual strategy for player X with the best relative fitness had relative 

fitness of 18.11. This individual  X strategy was 
(COM2 (COM1 L L (CXM1 R R R)) L (CXM1 (COM1 L L (CXM1 R R R)) 
      (CXM2 L R R) R)). 

Although the co-evolution algorithm does not know it, this best single individual X strategy is, in 

fact, a minimax strategy for player X. This individual X strategy was the first such X individual 

to attain this level of performance during this run. If it were played against the minimax O 

strategy, it would score 12 (i.e. the value of this game). 

This individual X strategy can be graphically depicted as shown below: 
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This individual X strategy simplifies to 
(COM2 (COM1 L L R) L R). 

Between generations 15 and 29, the number of individuals in the X population reaching maximal 

absolute fitness was 3, 4, 8, 11, 10, 9, 13, 21, 24, 29, 43, 32, 52, 48, and 50, respectively. That is, 

programs equivalent to the minimax X strategy began to dominate the X population. Meanwhile, 

the O population became even more dominated by programs equivalent to the O minimax 

strategy. 

By generation 38, the number of O individuals in the population reaching maximal absolute 

fitness reached 188 (almost two thirds of the population) and the number of X individuals 

reaching maximal absolute fitness reached 74 (about a quarter). That is, by generation 38, the 

minimax strategies for both players were becoming dominant.  

Interestingly, these 74 individual X strategies had relative fitness of 19.11 and these 188 

individual O strategies had relative fitness of 10.47. Neither of these values equals 12 because 

the other population is not fully converged to its minimax strategy.  

In summary, we genetically bred the minimax strategies for both players of this game without 

using knowledge of the minimax strategy for either player. 

CONCLUSION 

In this paper, we have demonstrated the use of the newly developed genetic programming 
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paradigm to evolve hierarchical computer programs to solve three illustrative problems. These 

three illustrative problems are only a small subset of the benchmark problems already 

successfully solved by the genetic programming paradigm (10, 11). These three illustrative 

problems highlight some of the features of the genetic programming paradigm as compared to 

other existing paradigms for machine learning and artificial intelligence (such as neural networks 

and conventional string-based genetic algorithms) that may commend it for future work in the 

field of artificial life. These features include the following:  

• In the genetic programming paradigm, the size and shape of the solution is not specified 

in advance, but, instead, evolves as the problem is being solved. For many problems, it is 

difficult, impossible, or unnatural to try to specify (or restrict) the size and shape of the eventual 

solution in advance. Moreover, advance specification (or restriction) of the size and shape of the 

solution to a problem narrows the window by which the system views the world and may well 

preclude finding the solution to the problem. The dynamic variability of the size and shape of the 

computer programs in the genetic programming paradigm is in marked contrast to both neural 

network paradigms and conventional string-based genetic algorithms.   

• The genetic programming paradigm evolves solutions that are directly expressed in a 

natural programming structure that overtly contains the functions and arguments naturally 

arising from the problem domain itself. Solutions expressed in this way are immediately 

understandable in the terms of the problem domain. Another consequence of this is that the 

results are relatively easy to audit. This is in marked contrast to solutions produced by, for 

example, neural network paradigms. 

• In the genetic programming paradigm, there is no preprocessing of inputs (in contrast to 

neural networks, conventional string-based genetic algorithms, and most other machine learning 

paradigms). 

• The genetic programming paradigm works with hierarchical structures at each stage of 

the process. As a result, the solutions are always hierarchical. Hierarchical structures offer the 
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possibility of efficiently and understandably representing solutions to problems and also offer the 

possibility of scaling up well to larger, more significant problems. 

In summary, we have shown, by the use the three illustrative problems here (and the wide variety 

of other seemingly different  problems cited from other areas), the power and flexibility of the 

genetic programming paradigm. 

REFERENCES 

1 Axelrod, R. "The evolution of strategies in the iterated prisoner’s dilemma."  In Genetic 

Algorithms and Simulated Annealing , edited by L. Davis.   London: Pittman l987. 

2 Davis, L. (editor) Genetic Algorithms and Simulated Annealing  London: Pittman l987. 

3 De Jong, Kenneth A. "Genetic algorithms: A l0 year perspective." In Grefenstette, J. 

J.(editor). Proceedings of an International Conference on Genetic Algorithms and Their 

Applications. Hillsdale, NJ: Lawrence Erlbaum Associates l985. 

4 Goldberg, D. E.   Genetic Algorithms in Search, Optimization, and Machine Learning. 

Reading, MA: Addison-Wesley l989. 

5 Hillis, W. Daniel. "Co-Evolving Parasites Improve Simulated Evolution as an Optimization 

Procedure." In  Emergent Computation: Self-organizing, Collective, and Cooperative 

Computing Networks. edited by S. Forrest.  Cambridge, MA: MIT Press 1990.  

         Also in Langton, Christopher G. and Farmer, J. Doyne. (editors)   Proceedings of the 

Second Conference on Artificial Life. Redwood City, CA; Addison-Wesley 1990.   

6 Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of 

Michigan Press 1975. 

7 Holland, John H. Escaping brittleness: The possibilities of general-purpose learning 

algorithms applied to parallel rule-based systems.  In  Michalski, Ryszard S., Carbonell, 

Jaime G. and  Mitchell, Tom M. Machine Learning: An Artificial Intelligence Approach, 



32 

Volume II. P. 593-623. Los Altos, CA: Morgan Kaufman l986. 

8 Holland, J. H. "ECHO: Explorations of Evolution in a Minature World."  In Proceedings of 

the Second Conference on Artificial Life.  edited by C. G. Langton, and J. D. Farmer, J. 

Doyne.  Redwood City, CA; Addison-Wesley 1990.  

9 Jefferson, David, Collins, Rob, et. al.  "The Genesys System: Evolution as a Theme in 

Artificial Life."  In Proceedings of Second Conference on Artificial Life, edited by C. G. 

Langton and D Farmer.  Redwood City, CA: Addison-Wesley. 1990.  

10 Koza, John R. "Hierarchical Genetic Algorithms Operating on Populations of Computer 

Programs. In Proceedings of the 11th  International Joint Conference on Artificial 

Intelligence (IJCAI). San Mateo, CA: Morgan Kaufman 1989. 

11 Koza, John R. Genetic Programming: A Paradigm for Genetically Breeding Populations of 

Computer Programs to Solve Problems. Stanford University Computer Science 

Department Technical Report STAN-CS-90-1314. June 1990. 1990. 

12 Miller, J. H. "The Co-evolution of Automata in the Repeated Prisoner’s Dilemma."  Sante 

Fe Institute Report 89-003. 1989. 

13 Miller, J. H. "The Evolution of Automata in the Repeated Prisoner’s Dilemma."  In Two 

Essays on the Economics of Imperfect Information.  PhD Dissertation, Department of 

Economics, University of Michigan, 1988. 

14 Schaffer , J. D. (editor) Proceedings of the Third International Conference on Genetic 

Algorithms. San Mateo, Ca: Morgan Kaufmann Publishers Inc. 1989. 

15 Smith, John Maynard. Evolutionary Genetics. Oxford: Oxford University Press. 1989. 

16 Smith, Steven F. A Learning System Based on Genetic Adaptive Algorithms. PhD 

Dissertation.  Pittsburgh: University of Pittsburgh 1980. 


