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Abstract—When conducting genetic improvement experiments, a
large amount of individuals (≈ population size * generations) is created
and evaluated. The corresponding experiments contain valuable data
concerning the fitness of individuals for the defined criteria, such as
run-time performance, memory use or robustness. This publication
presents an approach to utilize this information in order to identify
recurring context independent patterns in abstract syntax trees (ASTs).
These patterns can be applied for restricting the search space (in the
form of anti-patterns) or for grafting operators in the population.
Future work includes an evaluation of this approach, as well as
extending it with wildcards and class hierarchies for larger and more
generalized patterns.
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I. INTRODUCTION

A recurring challenge in Genetic Improvement (GI) of programs,
is that a large part of the population fail to compile, or alternatively
produces undesirable behavior, such as endless loops [1], [2], [3],
[4]. Identifying anti-patterns could help to restrict the search space
during the creation or modification of individuals, to increase the
amount of valid solutions in a population, as well as reducing the
run time of the GI run itself, since solutions that don’t compile
won’t be explored.

Grafting operators usually transplant code from other parts of the
same program or from input defined by a human [5], [6]. Recurring
parts of solutions with a high quality could be identified as grafting
patterns, and extend the current grafting operator approach.

II. APPROACH

Our approach for pattern mining extends an existing GI frame-
work that uses Abstract Syntax Trees (AST) as a representation
[7]. Any existing framework could be extended by this approach
by logging the following data into a graph database:

• The original program(-part) to be optimized
• Experiment metadata, such as mutation probability etc.
• Language metadata, like existing operators and operands
• Attempted optimizations (single or multi-objective)
• Every individual in the population, including its fitness eval-

uations
• The relationships between individuals (e.g. graft, crossover,

mutation, ...)
From recordings of multiple GI experiments, Frequent Subgraph

Mining (FSM) is then applied to identify potential candidates for
patterns. This works by first selecting the appropriate domain of
graphs that should be mined.

To mine anti-patterns, trees are selected that have a low quality.
In the case of test-driven GI, ASTs are selected that fail all tests
in the suite, or don’t compile at all.

Optimization-patterns are intended for use in grafting. There
are multiple options to mine these patterns. The simplest option
is to mine patterns in one specific program, but to get more
generalizable patterns other options are to mine all graphs which
perform well over all parameters in the pareto front, or graphs
that perform similarly on one parameter. Additionally, the domain
can be extended beyond a single program by selecting the domain
through the similarity of input and/or output data in the applied
test suites.

After selecting the search space the identified trees are normal-
ized. This includes numbering of variables to avoid missing patterns
due to different naming schemes of variables. The unnecessary
bloat, that often occurs in GI and genetic programming [8], contains
frequently recurring patterns that are misidentified as highly rele-
vant. Trees are pruned beforehand, to prevent identifying patterns
from bloat. In the future, we also plan to mine pruning-patterns
which needs to omit this normalization step to find prunable paths.

After preparing the appropriate search space, an adaption of the
SLEUTH algorithm for mining frequent sub trees is used to identify
potential candidates for patterns [9]. Candidates are all frequently
recurring sub trees in the search population. To avoid the over-
estimation of smaller trees, which often occur multiple times in the
same AST (e.g. access to a variable usually recurs multiple times
in the same function), two separate metrics exist. One metric only
counts in how many ASTs the subgraph occurs, whereas the other
counts all occurrences in all ASTs. According to the apriori rule,
which states that for any frequent graph all its subgraphs are also
frequent, sub ASTs are pruned and only the largest frequent ASTs
are considered as patterns. This is similar to the term frequency to
inverse document frequency (tf-idf), which is used in text mining
to determine the importance of terms [10].

From this point, frequently occurring ASTs are manually ana-
lyzed for the applicability as an anti-pattern or optimization-pattern.
This is currently being done in a subset of the C language, as well
as the JavaScript language. As of the time of writing by using this
approach of pattern mining several anti-patterns were identified.
These include accessing function parameters out of bounds and
incorrectly accessing global objects.

These patterns are currently applied manually. The optimization-
patterns are used as grafts during the creation of the initial
population, as well as in a grafting mutator. The anti-patterns are
grouped into a hierarchy that is used for the creation of (sub) ASTs
in the mutator or at the initial creation of the population. This
hierarchy prunes the options available during the creation process,
as the AST creation descends the tree.



III. CHALLENGES AND FUTURE WORK

The next step to improve our approach, is the introduction of
pattern wildcards to combine smaller patterns into larger ones.
These wildcards attempt to link multiple patterns structurally over
the (*) wildcard, meaning any number of nodes in-between, the (.)
wildcard meaning any single node, the (?) wildcard, meaning one
or no node. These wildcards are currently still being experimented
with, as they increase the search space for patterns, and thus often
make the search unfeasible.

Patterns can be generalized over the type hierarchy of the nodes
occurring in the ASTs. For example, an integer literal node can
be generalized to an integer node or even further to a numerical
node. This is attempted through a class hierarchy that is defined
for every operator and operand that the GI experiments can use.

Both, the wildcards and the extension of patterns towards a class
hierarchy increase the complexity how the patterns can be applied,
as they can’t be simply grafted into an existing tree anymore. For
the creation of a tree, the patterns can simply create something
matching the wildcards. However, for mutation the question is,
if patterns should just be used to create new sub ASTs, or if they
should be partially matched onto the wildcards. The effects of these
approaches will be analyzed in the future.

Another currently open challenge is that mined patterns are still
evaluated for feasibility manually. A possible approach to partially
automate pattern identification, is automatically applying pattern
candidates in experiments, and to test if they behave as expected.
For anti-patterns this could be as simple as randomly generating
trees around the anti-patterns and verifying that the tree fails. For
optimization-patterns this verification is much more complex. One
possible solution is to re-run experiments that contained ASTs in
which a pattern candidate was identified and to apply the pattern in
a grafting operator in order to check if this has a positive effect on
finding better solutions. This check could be done by comparing
the amount of evaluations needed until a good solution is found or
by checking if the average quality of the populations increases.

In the future, we will also attempt to define transformation
patterns. This means that the patterns themselves should be ap-
plicable to a given AST instead of being used simply as grafts
or anti-patterns. Transformation patterns require the identification
of a pattern in the source and target domain and matching those
two patterns to create a transformation pattern. This means that if
an AST matches a source pattern, it can be transformed into the
target pattern. The transformation requires the use of wildcards,
to find out which nodes are transferred from the applicable AST
into a new AST, and which ones are replaced or modified. For GI,
transformation patterns can be useful for pruning, or as a form of
mutator operator. In addition, this could lead to generally applicable
optimization-patterns, that can be used on their own.

IV. DISCUSSION AND OUTLOOK

This paper outlines an early-stage approach to mine and utilize
the data produced during GI experiments. The mining of patterns as
well as their application to prune the search-space and to use them
for grafting is currently being done, but a study on the effectiveness
of the approach is still needed. This approach will likely benefit
from the use of wildcards and additional class hierarchies for
finding and creating patterns, altough its feasibility still has to be
evaluated.

Our approach is currently only applicable for GI frameworks that
use an AST-based representation for optimization. Many frequent
subgraph mining algorithms exist that allow mining on graphs, and
switching to one, would easily adapt our approach towards graph-
based representations. On a conceptual level, pattern mining could
be used in any representation, but requires a completely different
approach for mining if they are not graph based.
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