
Potential Fitness for Genetic Programming

Krzysztof Krawiec and Przemysław Polewski
Institute of Computing Science, Poznan University of Technology

Piotrowo 2, 60965 Poznań, Poland
kkrawiec@cs.put.poznan.pl, przemyslaw.polewski@gmail.com

ABSTRACT
We introduce potential fitness, a variant of fitness function
that operates in the space of schemata and is applicable to
tree-based genetic programing. The proposed evaluation al-
gorithm estimates the maximum possible gain in fitness of
an individual’s direct offspring. The value of the potential
fitness is calculated by analyzing the context semantics and
subtree semantics for all contexts (schemata) of the evalu-
ated tree. The key feature of the proposed approach is that
a tree is rewarded for the correctly classified fitness cases,
but it is not penalized for the incorrectly classified ones,
provided that such errors are recoverable by substitution of
an appropriate subtree (which is however not explicitly con-
sidered by the algorithm). The experimental evaluation on
a set of seven boolean benchmarks shows that the use of
potential fitness may lead to better convergence and higher
success rate of the evolutionary run.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic methods

General Terms: Algorithms

Keywords: Evolutionary Computation, Genetic program-
ming, Context, Semantics

1. INTRODUCTION
Most variants of fitness functions used in evolutionary

computation (EC) analyze individual’s actual behavior (phe-
notype) and usually does not explicitly consider its potential
offspring. The rationale for this is at least twofold. Firstly,
this is consistent with the biological evolution, which op-
erates here and now, and, to our current knowledge, has
no means of predicting the performance of individual’s off-
spring. Secondly, most of genotypic representations used in
EC make it difficult to tell in advance what are the odds for
a specific individual to give rise to a successful lineage.

We hypothesize that having such a foresight would be
profitable for the convergence of the evolutionary run. One

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

can argue that the fitness function as we know it already
does this job — if it didn’t promote the individuals that are
likely to produce well-performing offspring, we would not
observe any convergence at all. In other words, an individ-
ual performs well due to some fragments of its genetic code.
That performance makes him being promoted by the evolu-
tionary process so that some portions its code may be reused
in its offspring. However, in regular EC, such code portions
are never examined explicitly by the fitness function, neither
in syntactic nor in semantic sense.

The approach prestented in this paper is more explicit,
meaning that it semantically investigates the code of the
evaluated individual. It does so in order to predict the
chance of success for the individual’s potential offspring in
a more precise way than the regular fitness function. More
precisely, it estimates the fitness of the best possible child
of the individual, assuming that such a child is obtained
from the evaluated individual by modifying it by means
of a single-point mutation or a single-point crossover. In
other terms, an individual is rewarded for its potential fit-
ness rather than its actual fitness; hence the name of the
approach. The potential fitness may be calculated at a rea-
sonable computational cost for the tree-based genetic pro-
gramming (GP) applied to boolean-valued problems.

This paper is inspired by the work of McPhee et al. on
subtree semantics and context semantics [7] and indirectly
on Poli’s and Page’s study on subsymbolic node represen-
tations for GP [8]. In another related paper, Majeed et al.
[6] generalize the evolved trees to schemata and explicitly
consider their contributions to the fitness of the tree. The
authors claim that their method may be helpful for mod-
ule discovery and identification of introns, however, they do
not provide for theoretical or empirical evidence for that
hypothesis. In the technical implementation, our method
exhibits also some similarity to the variant of the context-
aware crossover proposed by Majeed and Ryan [5], which
finds the best possible context for a randomly chosen sub-
tree in the child. Their crossover operator selects randomly
a subtree in the first parent and tries to substitute it at ev-
ery possible position in the second parent. Each such tree
is evaluated, and the best of them is appointed as an off-
spring. The context-aware crossover leads to significantly
better performance than the standard GP on the problems
of symbolic regression, multiplexer, and lawnmower. Never-
theless, Majeed and Ryan do not refer to context semantics
and focus exclusively on crossover; the approach presented
here, on the contrary, abstracts from crossover and influ-
ences only the fitness function.

2175

The explicit analysis of the context semantics used in our
approach may be linked to the study by Lones and Tyrrel
[2], who introduce the notion of implicit context. They use
it within their enzyme GP model, where each program com-
ponent (part of the solution), biological enzymes alike, has
a set of behavioral (phenotypic) properties expressed as a
‘shape’. Using shape, a program component expresses the
properties of the other component(s) it would like to receive
input from. In other words, the shape declares the com-
ponent’s expected role within a program. The conducted
experiments confirm the authors’ hypothesis that the use of
implicit context promotes evolvability.

2. THE POTENTIAL FITNESS
In this section, we introduce the potential fitness as an

extension of the standard tree-based GP paradigm [1]. Two
assumptions are necessary at this point: (i) the task to be
solved has to be defined in the boolean domain; (ii) the de-
sired value to be returned by GP trees has to be known for
each fitness case. Most of the popular boolean GP bench-
marks like parity and multiplexers fulfill these conditions.
However, the tasks that require running a simulation to cal-
culate fitness do not fulfill condition (ii).

Following [8] and [7], we define a context as an expression
tree with a temporarily removed subtree marked by the #
character, referred to as insertion point. Given a GP tree
of n nodes, it is possible to build n − 1 nontrivial contexts
from it by removing particular nodes (we discard the trivial
case of removing the entire tree). For instance, the three-
node tree (or x y) gives rise to two contexts: (or # y)

and (or x #). As pointed out in [7], a context is essentially
equivalent to a schemata, with the important difference that
it is not intended to represent a set of trees.

Context semantics, or semantics for short, is a string of
zeros, ones, plus signs, and minus signs ({0, 1, +,−}) [7].
A position in the context semantics corresponds to a spe-
cific fitness case in the fitness set, so that the string length
equals the number of fitness cases. For a specific context,
the character at the ith position in the corresponding con-
text semantics reflects the dependency of the tree outcome
on the value substituted for #, assuming the remaining part
of the context uses the ith fitness case for calculation. If the
value returned by the tree does not depend on the value sub-
stituted for # when processing the ith fitness case, the ith
position in the context semantics contains that value (0 or
1). Otherwise, two cases are possible: the tree either returns
the same value as the value substituted for # or the negation
of the value substituted for #. These scenarios are marked
by the presence of ‘+’ or ‘−’ characters, respectively, at the
ith position of the context semantics.

Let us demonstrate the calculation of the context seman-
tics on the tree (or x y), assuming the following ordered
list of fitness cases (x, y) = (0, 0), (0, 1), (1, 0), (1, 1). Our
goal is to compute the context semantics of the context (or
y). For the first and the third fitness case, the tree re-
turns the same value as the value substituted for #. For the
second and the fourth fitness case, the tree returns 1 no mat-
ter what we substitute for #. Thus, the context semantics
of the context (or # y) is +1+1. Analogously, the context
semantics of the context (or x #) is 00+-.

Let us note that, in general, the deeper the location of the
symbol in the tree, the more fixed the semantics, i.e., the
more 0’s and 1’s it contains. In particular, the semantics

of a context with # replacing an intron — a subtree that
has no impact on the tree output — is completely fixed,
i.e., contains exclusively 0’s and 1’s. For instance, assuming
the same fitness set as above, the context semantics of the
context (or x (or # true)) is 0011, because # does not in-
fluence the tree output. Moreover, all the nodes in a subtree
comprising an intron have the same fixed semantics. This
property significantly speeds up our algorithm, which needs
to calculate the context semantics for all possible insertion
points of a tree.

The distinction of the fixed and non-fixed elements in the
context semantics is essential for our idea of potential fit-
ness. We start with the observation that context semantics
clearly tells apart the fitness cases for which the semantics is
fixed (0’s and 1’s) from those for which the semantics is non-
fixed (pluses and minuses). In other words, the fixed part of
the semantics indicates the fitness cases for which the return
value of the context cannot be changed (improved or dete-
riorated), no matter what we substitute in place of #. The
non-fixed part of the semantics, on the contrary, indicates
the fitness cases for which the return value of the context
may be changed by substituting an appropriate subtree in
place of #.

The potential fitness function estimates the maximum fit-
ness that may be obtained by appropriately substituting
a single insertion point. For this purpose, we first define
the score of a context in the following way. We start with
score=0 and iterate over the corresponding context seman-
tics. For a fixed value of semantics (0 or 1) the score is in-
cremented if that value is consistent with the tree’s desired
output, and decremented otherwise. The non-fixed elements
of the context semantics are ignored.

As a demonstration, let us assume that the formerly con-
sidered tree (or x y) belongs to the population that tries
to solve the task given by the following sequence of desired
return values: 1100. We showed above that the semantics of
the context (or # y) is +1+1. As the non-fixed fixed ele-
ments are ignored during score calculation, only the second
and the fourth elements of this semantics are relevant. In
the former case, the semantics is consistent with the tree’s
desired output, so the score is incremented and amounts mo-
mentarily to 1. However, for the last, fourth fitness case, the
semantics is different from the tree’s desired output. This
causes the score to be decreased and brings its back to its
original value of zero. Thus, the overall score of this context
amounts to 0.

The score function rewards a context for hits and penalizes
it for misses. However, it does not care about the remaining
fitness cases, i.e., those ones that could be correctly classified
provided an appropriate tree substituted in place of #. Two
contexts that are fixed to a different extent (i.e., one of them
being fixed at 2 positions and the other one having 4 fixed
positions) may have the same score. Clearly, for n fitness
cases, the worst possible score is −n and the best possible
score (ideal) is n.

The potential fitness (PF) of a tree is simply the maximum
of scores of all its contexts1. In other words, the potential
fitness finds the best possible context with respect to evolv-
ability, i.e., such a location in the tree that would result in

1Technically, to avoid negative fitness values, the potential
fitness is the maximum score plus n. However, we do not
show that offset in the text to preserve better correspon-
dence between these two quantities for the reader.

2176

the best fitness when substituted by an appropriate subtree.
Let us emphasize that we take into account only one such
context. Thus, even if the tree has many contexts with the
maximal score, individual’s fitness will be the same as if it
had just one such context.

We hypothesize that potential fitness will promote in-
dividuals that offer significant chance of producing well-
performing offspring. Many of such individuals remain undis-
covered when evaluated by a regular fitness function, be-
cause their actual performance at the root node is only mod-
est and does not reflect the possibility of improvement.

3. THE ALGORITHM
To calculate the potential fitness (PF), it is convenient to

compute first the semantics of all subtrees of the tree being
evaluated. By subtree semantics we mean a string of zeros
and ones returned by the subtree for the consecutive fitness
cases [7]. Similarly to context semantics, the position in that
string corresponds to a specific fitness case. For instance,
given the aforementioned fitness set, the semantics of the
tree (or x y) is 0111. Obviously, calculating the semantics
of all subtrees of a tree does not increase the computational
expense when compared to the regular fitness function, as
all tree nodes have to be anyway evaluated.

After computing the semantics of all subtrees, the calcu-
lation of context semantics is a straightforward top-down
process that starts at the root node. McPhee et al. have
shown that the semantics of a particular context may be
easily determined based on (i) the function implemented by
the parent node of the insertion point, (ii) the context se-
mantics of the parent node, and (iii) the subtree semantics
of the remaining arguments (siblings) of the parent node
[7]. For a given two-argument parent node, there are only
4 × 2 = 8 combinations of the parent’s context semantics
{0, 1, +,−} and the subtree semantics of the sibling branch
{0, 1}, which may be conveniently tabelarized (see Table 2
in [7]).

To assess the computational expense of PF calculation, it
is convenient to resort to the unit of Genetic Programming
Operation (GPO). We assume that 1 GPO is equivalent to
the cost of evaluation of a single tree node on a single fitness
case. For simplicity, in the following we limit our interest to
a single fitness case, unless otherwise stated.

In GP, the cost of calculating the value returned by a
n-node tree amounts to n GPO. Assuming that the cost of
comparing the returned value with the desired value is ap-
proximately the same as a single GPO, the overall cost of
evaluating an individual on a single fitness case is n+1 GPO.

For PF, the tree must be first calculated in a regular way,
at the cost of n + 1 GPO. Then, we need to propagate the
context semantics in a top-down manner described earlier.
To this aim, at each tree node, we calculate the value of
context semantics based on the function realized by the par-
ent node of the insertion point, the semantics of the parent
node, and the semantics of the remaining arguments of the
parent node. This boils down to a simple table lookup op-
eration, so it is reasonable to assume that it costs us 1 GPO
per node, hence n GPO for the entire tree. Finally, at each
node, we have to calculate the score based on the context
semantics and the desired output, which, again, may be as-
sumed to require an effort of 1 GPO per node. Thus, the
overall cost of PF for a tree of size n totals to 3n + 1 GPO,
i.e., approximately three times more than the regular GP.

At first sight, tripling the computational cost of standard
GP may seem a high price to pay for the potential increase of
success rate. The computational effort required by PF may
be however easily reduced based on two observations that
concern the top-down traversing of the tree when calculating
the scores. Firstly, as mentioned before, as soon as we reach
a node N with a completely fixed context semantics (only 0’s
and 1’s in the context semantics string), we can immediately
conclude that all the nodes in the subtree below N may be
skipped, as their context semantics is the same. Secondly, at
any node N , it is easily to calculate what is the best possible
score s that may be attained in the subtree below N . This
allows us to apply the Branch & Bound principle: if s is not
greater than the best score found so far, the subtree may be
discarded from the search.

4. THE EXPERIMENT
In the following experiment, we analyze the impact of the

potential fitness on the performance of genetic programming
applied to popular boolean problems. Our baseline is genetic
programming with standard Koza-I-style settings (without
ADFs) [1], referred simply to as GP in the following. How-
ever, we found out that using the standard GP as a yardstick
for PF would flaw the comparison, as the way we define the
score is not the only factor that may potentially boost the
convergence of a PF run. The other one is the fact that, by
maximizing the score over all the contexts (all tree nodes),
the potential fitness considers many more trees than the reg-
ular GP. Thus, the differences to be observed between PF
and GP are the joint effect of using the score and a more
intense exploration of the search space.

To make the comparison between GP and PF fair, we
come up with another control approach, termed GPS (GP
+ subtrees). Effectively, GPS is a hybrid of GP and PF:
similarly to PF, it considers all tree nodes, but evaluates
them using the fitness function instead of the score. The
fitness of an individual is the maximum of the fitnesses of its
subtrees. Thanks to that, GPS has the chance of examining
the number of solutions that is comparable to the number of
solutions visited by PF. The theoretical computational effort
of GPS amounts to 2 GPO, i.e., in between of the efforts of
GP (n + 1 GPO) and PF (3n + 1 GPO).

The experiment involved seven instances of the following
problems: odd-parity, multiplexer, and comparators (see Ta-
ble 1). The former two problems are well-known in the GP
community; the latter one is an n-bit problem and consists
in evolving an expression that returns 1 if the binary number
encoded in the least significant n/2 bits of the input vector
is greater than the number encoded in the most significant
n/2 bits of the input vector, and 0 otherwise.

For each problem, 400 evolutionary runs have been carried
out. All the methods have been implemented by extending
the ECJ library written in Java [3]. The evolutionary set-
tings were the same for all three methods and followed ex-
actly those specified in ECJ, including discarding the muta-
tion operator to preserve the compatibility with Koza’s work
[1]: generational GP, population size 1024, 100 generations,
max. tree depth 17, tree-swapping crossover, crossover prob-
ability 0.9, reproduction probability 0.1. For GP and GPS,
the fitness is simply the number of hits (the correctly clas-
sified fitness cases). To speed up the processing, we packed
the desired output values and subtree semantics into integers
a la sub-machine-code GP proposed in [8].

2177

Table 1: The performance of GP, GPS, and PF, averaged over 400 evolutionary runs. Statistically significant
differences in hit rate marked in bold (t-test, significance level 0.01).

Success rate Ideal found in generation Best-of-run hit rate Best-of-run tree size

GP GPS PF GP GPS PF GP GPS PF GP GPS PF

Odd-4-parity 0.755 0.755 0.918 33.1 33.1 23.8 15.67 15.69 15.90 243.8 260.8 242.7
Odd-5-parity 0.048 0.055 0.220 74.3 67.1 69.9 28.39 28.49 30.05 402.8 416.4 452.2
Odd-6-parity 0.000 0.000 0.000 — — — 50.43 50.88 53.45 455.8 461.8 523.3
Mux-6 0.995 0.998 1.000 9.2 11.4 11.1 63.99 63.99 64.00 49.8 107.7 83.8
Mux-11 0.283 0.145 0.530 61.1 68.4 63.0 1950.87 1919.51 1996.79 275.2 324.2 357.4
Cmp-4 0.990 1.000 1.000 7.6 8.6 6.2 15.99 16.00 16.00 67.1 87.7 69.6
Cmp-6 0.390 0.178 0.740 53.8 57.6 44.3 62.97 62.46 63.68 230.1 245.2 256.9

Table 2: The performance of GP, GPS, and PF, averaged over 400 runs with lexicographic parsimony pressure.
Statistically significant differences in hit rate marked in bold (t-test, significance level 0.01).

Success rate Ideal found in generation Best-of-run hit rate Best-of-run tree size

GP GPS PF GP GPS PF GP GPS PF GP GPS PF

Odd-4-parity 0.830 0.878 0.928 26.4 27.2 23.1 15.73 15.82 15.91 117.6 116.3 157.8
Odd-5-parity 0.103 0.140 0.295 69.9 70.3 73.1 28.99 29.32 30.37 174.0 179.4 254.1
Odd-6-parity 0.005 0.010 0.018 71.0 72.0 85.4 51.70 52.83 54.45 239.0 234.5 338.4
Mux-6 0.998 0.998 1.000 8.1 7.5 10.5 63.98 63.99 64.00 26.7 33.2 60.6
Mux-11 0.328 0.278 0.535 54.0 48.8 61.3 1950.05 1922.34 1988.01 132.7 115.1 217.9
Cmp-4 0.910 0.843 0.998 7.2 7.3 6.3 15.91 15.82 15.99 45.3 43.5 53.3
Cmp-6 0.250 0.153 0.738 52.7 52.3 43.9 61.95 61.12 63.56 76.2 64.6 137.8

Table 1 compares the outcomes of the three methods av-
eraged over 400 runs. The table reports the success rate,
the mean generation in which the ideal was found (calcu-
lated only over those runs that found the ideal), the mean
hit rate of the best-of-run individual (calculated over both
ideals and non-ideals), and the mean size (number of tree
nodes) of the best-of-run individual. For each problem, the
ideal hit rate is two to the power of number of bits involved,
e.g., 26 = 64 for the Odd-6-parity, Mux-6, and Cmp-6 prob-
lems.

In most cases, PF performs significantly better than GP
and GPS in terms of success rate and best-of-run hit rate.
For the difficult problems (Odd-5-parity, Mux-11, Cmp-6),
it is approximately two (or more) times more likely to find
the ideal. It often needs also fewer generations to reach the
global optimum.

On the other hand, GPS does only slightly better than
GP. This clearly indicates that the superiority of PF should
be attributed to the concept of score, and not to the fact
that all tree nodes are tested against the desired values.

Table 1 demonstrates that all considered algorithms pro-
duce similarly sized trees and suffer from the code bloat to
a similar extent. To alleviate the negative consequences of
such behavior (increased computational effort and memory
occupancy), we run another series of experiments, applying
the lexicographic parsimony pressure [4]: each time a tour-
nament ends in a draw, the smaller individual is preferred.
If there is still draw, a randomly selected contestant wins
the tournament.

Table 2 presents the performance of particular methods

with lexicographic parsimony pressure turned on. Apart
from reducing the average tree size and thus shortening the
average run time, parsimony pressure usually increases the
success rate and the best-of-run’s hit rate. In particular, all
the methods become able to occasionally find the optimal
solution for the Odd-6-parity problem. PF is still superior
in terms of success rate and best-of-run hit rate, though on
average it benefits less from the parsimony pressure than GP
and GPS: its trees are smaller only about 35% than those
evolved without parsimony pressure, whereas the best trees
from the GP and GPS runs are reduced by 50% and 60%,
respectively. As a result, PF trees are now approximately
60% larger than those produced by the other methods. We
hypothesize that this is a side-effect of the potential fitness
function that promotes individuals, which, when evaluated
by means of the regular fitness function, would get worse
evaluation and lose tournaments to equally-performing yet
smaller trees.

As it appears, applying parsimony pressure is not always
beneficial to the evolutionary process. This is clearly the
case with both comparator problems, where the best-of run
hit rate deteriorated for both GP and GPS. Interestingly
enough, the PF variant seems exempt from this degener-
ative effect, and we have yet to observe a case where its
performance under parsimony pressure is significantly worse
than without it. This is also a way to improve the execution
times of the PF-driven algorithm compared to the standard
GP version, as the smaller tree sizes enable PF to make up
for some of the time lost due to more complex calculations.

Figures 1-7 present the mean fitness graphs of GP, PF,

2178

 10

 11

 12

 13

 14

 15

 16

 0 10 20 30 40 50 60 70 80 90

4-Odd Parity

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 1: Fitness graph for Odd-4-parity.

 18

 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60 70 80 90

5-Odd Parity

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 2: Fitness graph for Odd-5-parity.

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70 80 90

6-Odd Parity

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 3: Fitness graph for Odd-6-parity.

 46

 48

 50

 52

 54

 56

 58

 60

 62

 64

 0 10 20 30 40 50 60 70 80 90

6-Multiplexer

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 4: Fitness graph for Mux-6.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 10 20 30 40 50 60 70 80 90

11-Multiplexer

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 5: Fitness graph for Mux-11.

 13.5

 14

 14.5

 15

 15.5

 16

 0 10 20 30 40 50 60 70 80 90

4-Comparator

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 6: Fitness graph for Cmp-4.

2179

 50

 52

 54

 56

 58

 60

 62

 64

 0 10 20 30 40 50 60 70 80 90

6-Comparator

GP
PF

GP with parsimony pressure
PF with parsimony pressure

Figure 7: Fitness graph for Cmp-6.

and their variants equipped with parsimony pressure (mean
number of hits as a function of generation number). In most
cases, PF shows faster convergence from the very beginning
of the evolutionary run. Only for Mux-11 (see Fig. 5), PF
initially lags behind GP, but around 35th generation starts
to overtake it. Of course, for a very easy problem like Mux-6
(Fig. 4), all methods almost always converge quickly to the
ideal solution and their comparison is inconclusive.

5. CONCLUSIONS
The potential fitness function is a relatively simple mecha-

nism that estimates the maximum possible gain in fitness of
individual’s direct offspring. The experimental verification
on popular benchmark problems demonstrates that poten-
tial fitness provides better convergence and chance of success
than the regular GP. The price we pay for that is an ex-
tra computational cost, which currently amounts to approx.
200% of the GP runtime. This overhead is the major draw-
back of our method and should be addressed in the future
research. Nevertheless, the encouraging results in terms of
success rate and hit rate give rise to other extensions of this
idea.

McPhee et al. pointed out in [7] that context semantics
may be a useful means for building intelligent recombina-
tion operators that promote combining subtrees and con-
texts with compatible semantics. It would be interesting
to make use of this option together with the potential fit-
ness. This is especially appealing taking into account that
all context semantics of all individuals are computed any-
way by the potential fitness function, so the extra overhead
of introducing an intelligent operator would be probably low.

The potential fitness algorithm in its current form per-
forms a kind of one-step look-ahead. A natural extension
of this procedure would be to search for another promising
context (insertion point) after the first one has been found.
However, this would be probably computationally expen-
sive. Even more importantly, the probability that two such
insertion points would be successfully exploited by the in-
dividual’s offspring is much smaller than the probability of
exploiting just one of them, as it was the case in this paper.

The encouraging outcomes reported here may be partially
attributed to the ease of defining the notions of subtree se-
mantics and context semantics for the boolean problems.

Further research could aim at extending the approach be-
yond this problem category. However, this seems to be a
serious challenge, as it requires a complete re-definition of
the notions of semantics and score. One may expect them to
become more complicated in the domain of, e.g., real-valued
functions and symbolic regression. Unfortunately, this may
imply also higher computational overhead and render the
whole idea prohibitively expensive in terms of the computa-
tional effort.

Acknowledgment
This research has been supported by the Ministry of Science
and Higher Education grants # N N519 3505 33 and DS 91-
452.

6. REFERENCES
[1] Koza, J. R. Genetic Programming: On the

Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[2] Lones, M. A., and Tyrrell, A. M. Modelling
biological evolvability: Implicit context and variation
filtering in enzyme genetic programming. BioSystems
76, 1–3 (Aug.–Oct. 2004), 229–238.

[3] Luke, S. ECJ evolutionary computation system, 2002.
(http://cs.gmu.edu/ eclab/projects/ecj/).

[4] Luke, S., and Panait, L. Lexicographic parsimony
pressure. In GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference (New York,
9-13 July 2002), W. B. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
E. Burke, and N. Jonoska, Eds., Morgan Kaufmann
Publishers, pp. 829–836.

[5] Majeed, H., and Ryan, C. A less destructive,
context-aware crossover operator for GP. In Proceedings
of the 9th European Conference on Genetic
Programming (Budapest, Hungary, 10 - 12 Apr. 2006),
P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and
A. Ekárt, Eds., vol. 3905 of Lecture Notes in Computer
Science, Springer, pp. 36–48.

[6] Majeed, H., Ryan, C., and Azad, R. M. A.
Evaluating GP schema in context. In GECCO 2005:
Proceedings of the 2005 conference on Genetic and
evolutionary computation (Washington DC, USA, 25-29
June 2005), H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold,
W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz,
D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong,
H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R.
Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and
E. Zitzler, Eds., vol. 2, ACM Press, pp. 1773–1774.

[7] McPhee, N. F., Ohs, B., and Hutchison, T.
Semantic building blocks in genetic programming. In
Genetic Programming (2008), M. O’Neill, L. Vanneschi,
S. Gustafson, A. I. E. Alcázar, I. D. Falco, A. D.
Cioppa, and E. Tarantino, Eds., vol. 4971 of LNCS,
Springer, pp. 134–145.

[8] Poli, R., and Page, J. Solving high-order boolean
parity problems with smooth uniform crossover,
sub-machine code GP and demes. Genetic Programming
and Evolvable Machines 1, 1/2 (Apr. 2000), 37–56.

2180

	Introduction
	The potential fitness
	The algorithm
	The experiment
	Conclusions
	References

