
Evolving Cascades of Voting Feature Detectors
for Vehicle Detection in Satellite Imagery

Krzysztof Krawiec, Member, IEEE and Bartosz Kukawka and Tomasz Maciejewski

Abstract—We propose an evolutionary method for detection
of vehicles in satellite imagery which involves a large number
of simple elementary features and multiple detectors trained by
genetic programming. The complete detection system is com-
posed of several detectors that are chained into a cascade and
successively filter out the negative examples. Each detector is a
committee of genetic programming trees that together vote over
the decision concerning vehicle presence, and is trained only on
the examples classified as positive by the previous cascade node.
The individual trees use typical arithmetic transformations to
aggregate features selected from a very large collections of
Haar-like features derived from the input image. The paper
presents detailed description of the proposed algorithm and
reports the results of an extensive computational experiment
carried out on real-world satellite images. The evolved detection
system exhibits competitive sensitivity and relatively low false
positive rate for testing images, despite not making use of
domain-specific knowledge.

I. INTRODUCTION

The task of vehicle detection in visible band in aerial
and satellite imagery is challenging for several reasons: low
spatial resolution, heterogeneity of the positive class (various
body styles and colors), uncontrolled lighting, partial occlu-
sions (e.g., by trees), and other undesired phenomena (e.g.,
strong sunlight reflexes from wind shields). The presence
of man-made objects that closely resemble cars (like air
conditioning equipment on rooftops, cargo containers, etc.)
can additionally confuse the learner and give raise to false
positive detections. And, last but not least, this is a typical
needle-in-a-haystack task: the a priori probability of vehicle
presence at particular image location is typically very low, so
the negative examples outnumber the positive ones by several
orders of magnitude. These features make car detection a
challenging and interesting testbed for pattern recognition
algorithms, with numerous actual and potential real-world
applications.

Vehicle detection methods typically engage some form of
sliding window (window of attention, region of interest) to
focus on single image fragment at a time. Considering the
approach, they can be roughly divided into matching-based
and feature-based. In the former category, recognition system
stores a library of positive examples (models) and recognition
consists in a, more or less literal, measurement of similarity
of the image part visible in the window to the models. In
the latter, there are no explicit models; rather than that, some
features are extracted from the window and typically fed into

K. Krawiec, B. Kukawka, and T. Maciejewski are with the Institute of
Computing Science, Poznan University of Technology, Piotrowo 2, 60965
Poznań, Poland; email: kkrawiec@cs.put.poznan.pl.

a previously trained machine learning classifier that makes
the final recognition decision.

This study falls into the latter category, and may be
summarized as evolutionary learning a cascade of compound
detectors based on simple, Haar-like image features. Each
detector is composed of a few genetic programming (GP,
[5]) expressions; each of them works by aggregating selected
image features and outputs a number that is appropriately
interpreted for the sake of detection. The only training
information it expects are the true locations of cars in
training images; no other common-sense or domain-related
knowledge is used. In particular, there is no prior pre-
selection of the most likely vehicle locations (roads, parking
lots, etc.) – any coordinates in the input image are considered
as potentially containing a car.

The next section reviews the related work. Its great part is
devoted to the canonical object detection algorithm by Viola
and Jones [12], which we consider as a blueprint for our
approach, presented in Section III. In Section IV we discuss
the results of experiment, concluding in Section V.

II. RELATED WORK

This paper is partially inspired by the seminal work of
Viola and Jones [12, VJ in following] on feature-based face
detection, which we will now present in short. Typically for
detection, one assumes there that a rectangular window of
attention (field of view) slides over the input image. For
each position of the window, the detector is queried and
returns a discrete response, positive or negative. Detector
responses for particular locations are clustered, leading to
final decisions of the system. In case of training images, these
decisions may be then confronted with the ground truth (the
actual locations of object to be detected), leading to typical
performance measures, like sensitivity and selectivity.

Viola & Jones use Haar wavelets (called Haar Basis
functions in [12]) to generate image features. Computing
each of them requires convolving a binary mask defined by a
specific Haar wavelet with the window image. Viola & Jones
decided to exhaustively generate all Haar features from the
input window. For typical window sizes used for detection,
this process results in tens of thousands of features, some of
them working as edge detectors, and some others having on-
center, off-surround characteristics. A clever computational
trick, the so-called integral image, allows calculating all such
features at low cost.

The features calculated from training images form the
training set for the cascade of compound AdaBoost clas-
sifiers, which operates as follows. The input window image



Input image Image rotation
(different α’s)

Feature
extraction

Cascade of
voting GP
classifiers

Detection
density map
(sum over α)

Vehicle
locations

Fig. 1. The overall processing stages of the proposed vehicle detection system.

enters the first classifier C1 of the cascade that can classify
it as negative (non-face), in which case processing ends. If
C1 classifies the image as positive (face), it is passed to the
next node of the cascade, C2. There, this scheme is repeated:
the image is either rejected as negative or passed to C3.
As a result of consecutive steps, the image can eventually
reach the last cascade node Cn. Only if Cn classifies the
image as positive, the overall decision of the entire cascade is
considered as positive. The essential feature of this approach
is that the subsequent classifiers make use of the decisions
made at the preceding nodes. In particular, Ci is trained only
on the examples that have been classified as positive by
C1, C2, . . . , Ci−1. Thus, the further stages of the cascade
have to learn how to reject the not-yet-rejected negative
examples while passing through the positive ones.

Within each cascade node, VJ employ the AdaBoost learn-
ing algorithm [2]. AdaBoost works by incrementally building
a pool of simple (weak) base classifiers and combining their
outputs by weighting so that their aggregated response is
as consistent as possible with the original assignment of
objects to decision classes. This learning process involves
also weighting of training examples. Detectors trained using
AdaBoost usually tend to perform very well, despite the
simplicity of base classifiers, which (in the basic variant of
the approach) are so-called decision stumps, i.e., degenerated
decision trees that contain only root node. In other words, a
base classifier makes decision by thresholding a value of a
single Haar feature.

Cascaded AdaBoost proves very effective in practice and
the VJ approach is currently widely cited. The algorithm
has been implemented in the popular open-source computer
vision library OpenCV [1]. Further extensions have been
proposed, e.g., Wu et al. successfully reduced method’s
appetite for processor power and memory during training
[13]. No wonder that also the EC community followed to
exploit these ideas. In [8], Lichodziejewski et al. used a
cascade of GP trees for data mining tasks. Howard et al. in
[3] employed a cascade of GP trees for detection of vehicles
in infrared imagery, using predefined, quite sophisticated
features of different nature (local edge density and texture
characteristics) and one GP tree per cascade node.

III. THE METHOD

The outline of our vehicle detection method is presented
in Fig. 1. After preliminary image preprocessing (Image
rotation, described later) we extract image features and
fed them into the cascade of voting GP-based classifiers.
The responses of particular classifiers are aggregated over
input image rotated by different angles α and form quasi-

continuous detection density map (DDM), which values
reflect the likelihood of vehicle presence. DDM pixels are
subsequently discretized into final decision for each pixel.

In the following subsections, we focus on feature extrac-
tion and classifiers. The details on image rotation will be
provided in the experimental section.

A. Elementary Features

We use quad trees to define multiscale features that on one
hand are visually similar to Haar wavelets and, on the other
hand, are easier to generate and index in a systematic way.
Given the 32 × 32 pixel input window, we stack a uniform
quad tree over it so that the tree nodes correspond one-
to-one to rectangular image regions (referred to as tiles in
following). The nodes at consecutive depths correspond to
16× 16, 8× 8, 4× 4, and 2× 2 tiles; there are, respectively,
4, 16, 64, and 256 of them, giving the total of 340 quad tree
nodes.

Every quad tree feature is uniquely identified by quad key
– a variable-length sequence of quaternary digits. Each digit
encodes the choice of one of four tiles within specific quad
tree level: 0, 1, 2, 3 for upper left, upper right, lower left,
and lower right tile, respectively. For instance, quad key 304

encodes the upper left 8×8 tile within the lower-right 16×16
tile.

Feature value is simply the average (absolute) brightness
of tile pixels. To measure the relative brightness differences,
we enable pairing of elementary features as described in
Section III-B. This gives the total of 340 × 340 = 115, 600
features, a number comparable to that of VJ approach. Note
however that our features are qualitatively different from
Haar wavelets: a paired feature can refer to two non-adjacent
tiles, which cannot be expressed using Haar wavelets.

Because our features are based on rectangular image
regions, we can still use the integral image to compute them
effectively, as it was the case with Haar wavelets used in
VJ approach [12]. Given an image A with brightness values
axy , its integral image B is defined as bxy =

∑
i≤x, j≤y aij

– the value stored in B at position (x, y) is the integral of
brightness over the rectangle that spans the beginning of the
coordinate system and the (x, y) coordinates. Given B, a
total brightness of any rectangle in A, like those rectangles
defined by our quad tree features, can be calculated by
fetching just four values from B and adding and subtracting
them appropriately. As the integral image can be easily
calculated incrementally in one pass over the entire image,
this technique brings in essential speedup an makes the
process of feature extraction almost instantaneous.



Image
features GP tree Voting Reject? GP tree Voting Reject? Positive

decision

GP tree GP tree

GP tree GP tree

... GP tree

Negative
decision

... Negative
decision

Y

N

Y

N

Fig. 2. The cascade of voting committees of GP classifiers. Each cascade node is a set of GP trees that make independent decisions that are subsequently
aggregated via voting. In both training and testing, only the examples classified as positive by a cascade node reach the subsequent node. An example has
to pass through all cascade nodes to become ultimately classified as positive.

B. Cascades of GP Base Classifiers

The essential feature of cascade architecture is sequential
processing: a compound classifier in particular node learns
only from examples classified as positive by its predecessors,
and its training and decision making is otherwise completely
independent from the other nodes. This inclined us to de-
vote a separate Genetic Programming (GP) training process
(evolutionary run) to each of n cascade nodes. In a node, we
implement an individual as a vector of k GP trees, each of
them serving as a base classifier. The final result of learning
is the cascade assembled from the n best-of-run individuals
of consecutive runs (see Fig. 2).

As in our former work in evolutionary image analysis and
evolutionary feature synthesis [7], [6], we evolve both the
choice of elementary features as well as their aggregation:
a base classifier fetches the values of elementary features
using leaves (terminal nodes), processes them by means
of elementary functions, and returns the overall output at
the root node of the tree. We employ strongly typed GP
[10] with three data types: constants (C), variables (feature
values, V) and image-dependent values (N ). N is a set type
and embraces type V . Trees are initialized by means of
standard ramped-half-and-half method using the provided
set of functions and terminals (leaves). The function set
embraces arithmetics (N × (N ∪ C) → N : +, −, ×, /)
and tanh() function (N → N ) to provide simple form
of nonlinearity. The terminals include ephemeral random
constants (ERCs, type C) and inputs (feature values, type V).
ERCs return floating-point constants drawn randomly from
interval [−3, 3].

To avoid defining a separate terminal for each of 340

features, we implemented the input variables as parametric
terminals q(k) and d(k, l), where k and l are quad keys (see
Section III-A). The former one returns the value of quad
tree feature #k, i.e., the mean brightness of the image tile
identified by quad key k. The latter one is equivalent to
q(k) − q(l), and has been introduced to ease the evolution
of differential features that mimic Haar wavelets. Figure 3
presents an exemplary GP tree and the definitions of features
it fetches from the input image using its terminal nodes.

Technically, parametric input nodes are similar to
ephemeral random constants (ERCs, [5]), the only difference
being that the value of the constant (quad key), rather than
being directly returned, is used to ‘address’ a specific tile in
the quad tree and fetch its mean brightness level. For this
reason, our input nodes undergo mutation in the same way
as ERCs, i.e., by perturbing the value stored by the node.

C. Aggregation schemes

A GP tree in our setting corresponds to a base classifier in
VJ and returns a continuous value reflecting its confidence
in car presence at particular location. These output values
have to be aggregated to form the ultimate decision made
by particular cascade node. We considered a couple of
aggregation schemes, including sum and majority voting, and
used them in preliminary experiments. The one that worked
the best was majority voting. In this scheme, only the sign
of tree output matters: output greater than or equal to 0 is
interpreted as positive decision, otherwise the decision is
negative. The positive and negative decisions are counted
and the overall decision is made on the basis of majority
rule.



+

Avg

d(2, 100) −0.21

*

d(032, 021) d(21, 1)

d(2, 100) d(032, 021) d(21, 1)

Fig. 3. An exemplary GP tree (left) and the image features fetched by its terminal nodes (right). Each feature is a difference of total brightness in two
rectangular regions addressed by quad-tree codes. For clarity, only three uppermost levels are illustrated by the grid, so that it corresponds to the entire
32×32 input window and a single grid cell corresponds to a square of 4×4 pixels.

D. Method summary

The essential features of our approach are following:

1) The training process has access to a very large collec-
tion of features. There is no preliminary feature selec-
tion that could potentially harm the training process by
accidentally getting rid of useful features.

2) The features used by a particular trained GP trees are
dynamically adjusted by the evolutionary process. In
particular, encoding image features as parameterized
terminal nodes that identify the features by quad codes,
makes the mutation process more natural: a small
mutation of quad code is likely to lead to a similar
feature.

3) The evolutionary training process is aimed at evolving
a committee of relatively simple GP trees that perform
well as a team, rather than trying to elaborate one
sophisticated GP tree.

4) The step-wise (cascaded) reasoning allows us to cope
with the extremely imbalanced characteristics of the
task: ‘easy’ negative examples are likely to be rejected
at early processing stages (cascade nodes).

Though the overall working principle is similar here to the
VJ method, there are several substantial differences. Let us
outline the most important of them:

1) We use systematically generated quad-tree-based fea-
tures rather than Haar features.

2) We allow more sophisticated base classifiers, defining
them as GP expressions that can aggregate many fea-
tures and allow non-linear mapping from the feature
space into decision space.

3) There is no explicit weighting of base classifiers.
Rather than that, we use simple non-parametric ag-
gregation schemes to merge the decisions of base
classifiers into the overall decision made by cascade
node.

4) AdaBoost performs an incremental greedy local search
in the space of base classifiers, always choosing as
next the locally best base classifier given the subset of
already selected classifiers. We perform evolutionary
search, in which any component of solution may be
revised at any step of search.

IV. THE EXPERIMENT

A. The Data

Our image database comprises 33 true-color satellite im-
ages of spatial resolution 0.2m/pixel, representing different
environments: urban, rural, parking lots, bridges, etc. The
bottom part of Fig. 5 presents a representative image from
that collection. We converted these images to grayscale and
manually marked contours/silhouettes of cars of different
types (sedans, station wagons, pickups, convertibles). Trucks
and other non-typical cars (e.g., articulated vehicles) are not
marked and considered as negative examples. The number
of positive examples varied from 4 to 378 per image. The
acquired contours constitute our ground truth and are sub-
sequently used to generate the training images, evolutionary
training (fitness function), and post-evolution testing.

Each training example is a 32×32 fragment of the original
satellite image, either containing a vehicle (positive example)
or not (negative example, ‘clutter’). Due to particular feature
definition used here, our detector assumes that the cars
are aligned vertically within the field of view. Because in
practice the orientation (azimuth) of the car may be arbitrary
(as opposed to face detection, where vertical orientation is
typically implicit), we rotate the positive examples so that
the long axis of the car is vertical (the front and the rear of
the car are not distinguished).

The 33 images have been divided into training part (24
images) and testing part (9 images). This has been done semi-
randomly, i.e., while trying to keep the training set represen-
tative in terms of environments. The training set contains 659
positive examples extracted from training images, and the
testing set includes 635 cars taken from the testing part. Let
us emphasize how very unbalanced are the decision classes
in this task: given that an average car is 9 pixels wide and
22 pixels long, the total area occupied by all cars in all 33
images accounts for less than 1.5 percent of total area of all
images, and a hypothetical ideal detector would give positive
response for less than 0.01 percent of all possible locations
of detection window.

B. The Training Process

The training process consists in a series of n = 5
evolutionary runs (see Section III-B), each dedicated to one
cascade node. Each individual comprises 5 GP trees that



TABLE I
STATISTICS OF CLASSIFICATION IN THE TRAINING PHASE. THE FIGURES

REFLECT THE OUTCOMES OF CLASSIFICATION ATTAINED BY
CONSECUTIVE NODES OF THE CASCADE.

Cascade node TP TN FP FN

1 374 11865 135 285
2 368 87 48 6
3 367 18 30 1
4 367 5 25 0
5 367 8 17 0

Total 367 11983 17 292

vote over the decision concerning each training example in
evaluation phase of the evolutionary run (cf. Fig. 2). When
crossing over individuals, we allow for exchange of genetic
material between any of their constituent trees.

Concerning GP-specifics, we use the Koza-I-style setup
[5] with some modifications. The most important settings
include: population of 1024 individuals initialized using the
standard ramped half-and-half method, tournament selection
with tournament of size 7, tree-swap crossover engaged
with probability 0.9, subtree-replacing mutation applied with
probability 0.1, no elitism. The tree depth limit has been
set to 10. Evolution lasts for 100 generations. We use the
function set defined in Section III-B. Other parameters of
evolution use the Koza-I [5] defaults as specified in ECJ [9],
the software package that served as basic framework for our
implementation.

Because of high imbalance of positive and negative
classes, rather than relying on accuracy of classification,
we use F-measure to estimate the fitness of an individual
(detector), i.e., the harmonic mean of precision p and recall
r (sensitivity)

fitness = Fmeasure =
2pr
p+ r

,

where

p =
TP

TP + FP
, r =

TP

TP + FN

Table I presents the statistics of classification collected
during the training process. We observe there how the
consecutive cascade nodes successfully filter out the false
positives, while the number of true positives is only slightly
affected and does not decrease after reaching the third node
of the cascade. Unfortunately, we witness here also the
weakness of the cascaded model of processing: the false
negative errors, once committed, cannot be corrected by
subsequent nodes. On the training data, this detector attains
precision p = 0.956, recall r = 0.557, and F-measure of
0.704.

C. Detection Results for Test Images

In the post-evolution test, an evolved detector is applied
to testing images. This process requires scanning the image
and analyzing detector’s responses at particular locations.
Because our Haar-like features are based lack rotational

.05 .1 .15 .2 .25

.1

.2

.3

.4

.5

.6

.7

.8

.9

False positive rate

Tr
ue

po
si

tiv
e

ra
te

Fig. 4. ROC curve for the evolved cascade of detectors.

invariance, for each test image I , we create its l = 8
versions Ii, i = 1, . . . , l − 1 rotated by 180i/l degrees
(i.e., 22.5 degrees for l = 8 used here). For each rotated
image Ii, the detector scans all locations and returns a binary
(positive/negative) response for each pixel. The coordinates
of positive responses are mapped back (by reverse rotation)
onto the coordinate system of the original image I . Based
on these co-registered coordinates of positive responses, we
build the detection density map (DDM).

DDM is a raster image, with all pixels initially zeroed.
We iterate over all positive detector responses and, assuming
that each of them increases the local likelihood of vehicle
presence, we increment the corresponding pixel in DDM
and its neighborhood pixels according to two-dimensional
Gaussian distribution with small standard deviation σ = 2.6
pixels. As a result, close positives tend to reinforce each
other. Next, we detect local maxima in DDM; if the DDM
value at given location (x, y) exceeds a predefined threshold
t, we issue positive decision for (x, y).

Figure 5 demonstrates the outcome of this process for
an exemplary image of dimensions 884 × 584 pixels. The
original input image, shown in the bottom part of the Figure,
has been subject to detection process that produced the DDM
shown in the top part. Darker pixels in DDM indicate more
evidence in favor of vehicle presence. One can observe how,
for the more evident car locations, the multiple Gaussians
aggregated in DDM reinforce each other.

If the detection at location (x, y) falls within the contour
of a car, we count it as true positive (TP ) and subsequent
hits within the same contour are ignored. Otherwise, we
register a false positive (FP ) error. The red crosses overlaid
on the input image in the lower part of Fig. 5 mark the
detections derived from the DDM using this procedure. It
can bee seen that the thresholding effectively removes many
‘weak’ detections.

The quantify the overall detection performance we assume,
for both true positives and false positives, that the ‘unit’ of
detection is an equivalent of car area (approximately 200
pixels): the true positive rate is defined as the number of



Fig. 5. Detection density map DDM (top) and the corresponding final detection result (bottom). For the DDM, the darker the pixel, the more evidence
has been collected for the presence of vehicle at a particular location. In the bottom image, red crosses indicate the positive decisions of the system.



Fig. 6. Exemplary false-positive detections.

true positives divided by the actual number of cars in an
image, while the false positive rate is the number of false
positive detections divided by the number of cars that could
be squeezed into the negative region (i.e., the number of non-
car image pixels divided by the average car area in pixels).

Figure 4 presents the ROC curve spanned on these ratios. It
has been obtained from the best evolved detector by varying
the DDM threshold t. The smaller t, the easier it is for the
evidence gathered in DDM to yield positive decision. The
area under the curve (AUC) amounts in this case to 0.8666.
Using ROC curve and tuning the value of t, one can realize
different trade-offs between recall and selectivity. E.g., for
t = 0.35, sensitivity amounts to 0.65 and false positive rate
to 0.07.

Figures 6 and 7 present exemplary errors committed by
our evolved cascade. While the reasons of false positives
are rather obscure and call for in-depth analysis of the
evolved programs, the causes for false negatives are more
clear. They can typically result from low contrast within the
input window, presence of other cars in immediate proximity,
occlusion by trees, or long shadow cast by the car.

In its current shape, the detection process is quite time-
consuming, which is mostly due to the fact that the image has
to be scanned multiple times for different rotation angles. To
partially remedy this problem and reduce the processing time,
we employed the following technical solution. After training
the complete cascade of voting committees of GP trees
we automatically convert them into an independent class of
the Java programming language. That class is subsequently
used for testing. Because it comprises mostly arithmetic
expressions and conditions that encode the particular GP
trees, it runs much faster than the internal representation of
GP trees used in the ECJ software package.

V. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated that genetic programming
combined with cascaded processing and using very simple
elementary features can attain decent performance on a chal-
lenging task of vehicle detection in satellite imagery. We dare
to claim that this result is notable, given the fact that image
resolution is low (average car dimensions are here 9 × 22
pixels) and the method operates completely autonomously
and without help of any extra domain knowledge.

Fig. 7. Exemplary false-negative errors.

Though this result is inferior when compared to human
performance, one should keep in mind that humans uncon-
sciously rely on contextual information which immensely
helps detection. No human would consider a rooftop as a
reasonable place to look for vehicles. However, in absence
of such contextual information, human performance can
dramatically decrease. Figures 8 and 9 present respectively
the particularly confusing false positive detections and false
negative errors. Many of these mistakes are likely to be made
also by humans.

Aware of the potential advantages brought by extra knowl-
edge, designers of some vehicle detection algorithms take it
into account for the benefit of performance. For instance,
a neural network-based detection method described in [4]
attains sensitivity of 0.86 while maintaining very low number
of false positives (0.008 percent), but does so by constraining
the search to road networks only, which, by the way, are not
automatically detected but retrieved from GIS. Similarly, the
authors of [11] use a separate preprocessing stage that detects
streets based on 2.5D elevation data and report slightly worse
results (sensitivity around 0.75 at 0.05 false positive rate).
Our approach does not exploit such additional sources of
information.

While conducting experiments, we came up with several
ideas concerning the possible extensions and improvements
of this approach. Apart from the possibility of exploiting
other output aggregation schemes (see Section III-C), these
include: taking color information into account (many cars
have colors that are infrequent in nature), delegating separate
cascades for detection of bright and dark cars, and using mul-
tiobjective evolutionary search to avoid aggregating precision
and recall into one scalar fitness value (as it likely leads to
compensation). We plan to exploit some of these ideas in
future research.



Fig. 8. Particularly confusing false positive detections. Some of these
objects are likely to be erroneously classified as cars also by humans if
presented without a wider context.

Fig. 9. Particularly confusing false negative errors. Some of these objects
are likely to be erroneously classified as non-cars also by humans if
presented without a wider context.

ACKNOWLEDGMENT

We would like to thank W. Jaśkowski and B. Wieloch for
preparing the training data and labelling the images. This work
was supported in part by Ministry of Science and Higher
Education grant # N N519 3505 33 and 91-493/10-DS.

REFERENCES

[1] Open Source Computer Vision Library: Reference Manual, 2001.
[2] Y. Freund and R. E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. In P. M. B. Vitányi,
editor, EuroCOLT, volume 904 of Lecture Notes in Computer Science,
pages 23–37. Springer, 1995.

[3] D. Howard, S. C. Roberts, and C. Ryan. Pragmatic genetic pro-
gramming strategy for the problem of vehicle detection in airborne
reconnaissance. Pattern Recognition Letters, 27(11):1275–1288, Aug.
2006. Evolutionary Computer Vision and Image Understanding.

[4] X. Jin and C. H. Davis. Vehicle detection from high-resolution satellite
imagery using morphological shared-weight neural networks. Image
Vision Comput., 25(9):1422–1431, 2007.

[5] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[6] K. Krawiec. Generative learning of visual concepts using multiobjec-
tive genetic programming. Pattern Recognition Letters, 28:2385–2400,
December 2007. DOI: 10.1016/j.patrec.2007.08.001.

[7] K. Krawiec and B. Bhanu. Coevolutionary computation for synthesis
of recognition systems. In Proceedings of Computer Vision and Pattern
Recognition Conference, Workshop on Learning in Computer Vision
and Pattern Recognition CVPR, 2003.

[8] P. Lichodzijewski, N. Zincir-Heywood, and M. Heywood. Cascaded
GP models for data mining. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation, pages 2258–2264, Portland, Oregon,
20-23 June 2004. IEEE Press.

[9] S. Luke. ECJ evolutionary computation system, 2002.
(http://cs.gmu.edu/ eclab/projects/ecj/).

[10] D. J. Montana. Strongly typed genetic programming. BBN Technical
Report #7866, Bolt Beranek and Newman, Inc., 10 Moulton Street,
Cambridge, MA 02138, USA, 7 May 1993.

[11] J. Pers, editor. An Improved Car Detection using Street Layer
Extraction, Moravske Toplice, Slovenia, 2008.

[12] P. A. Viola and M. J. Jones. Fast and robust classification using
asymmetric adaboost and a detector cascade. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, NIPS, pages 1311–1318. MIT
Press, 2001.

[13] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg. Fast asymmetric
learning for cascade face detection. IEEE Trans. Pattern Anal. Mach.
Intell., 30(3):369–382, 2008.


