Skip to main content

Genetic Programming Representations for Multi-dimensional Feature Learning in Biomedical Classification

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

We present a new classification method that uses genetic programming (GP) to evolve feature transformations for a deterministic, distanced-based classifier. This method, called M4GP, differs from common approaches to classifier representation in GP in that it does not enforce arbitrary decision boundaries and it allows individuals to produce multiple outputs via a stack-based GP system. In comparison to typical methods of classification, M4GP can be advantageous in its ability to produce readable models. We conduct a comprehensive study of M4GP, first in comparison to other GP classifiers, and then in comparison to six common machine learning classifiers. We conduct full hyper-parameter optimization for all of the methods on a suite of 16 biomedical data sets, ranging in size and difficulty. The results indicate that M4GP outperforms other GP methods for classification. M4GP performs competitively with other machine learning methods in terms of the accuracy of the produced models for most problems. M4GP also exhibits the ability to detect epistatic interactions better than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Source code available from http://github.com/lacava/ellyn.

References

  1. Arnaldo, I., O’Reilly, U.-M., Veeramachaneni, K.: Building predictive models via feature synthesis, pp. 983–990. ACM Press (2015)

    Google Scholar 

  2. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006)

    Google Scholar 

  3. Choi, W.-J.: Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Inf. Sci. 212, 57–78 (2012)

    Article  Google Scholar 

  4. dos Santos, J.A., Ferreira, C.D.: A relevance feedback method based on genetic programming for classification of remote sensing images. Inf. Sci. 181(13), 2671–2684 (2011)

    Article  Google Scholar 

  5. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Trans. Appl. Rev. 40(2), 121–144 (2010)

    Google Scholar 

  6. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 181–192. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16493-4_19

    Chapter  Google Scholar 

  7. Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  9. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. PP(99), 1 (2014)

    Google Scholar 

  10. Icke, I., Bongard, J.C.: Improving genetic programming based symbolic regression using deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1763–1770. IEEE (2013)

    Google Scholar 

  11. Ingalalli, V., Silva, S., Castelli, M., Vanneschi, L.: A multi-dimensional genetic programming approach for multi-class classification problems. In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 48–60. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44303-3_5

    Google Scholar 

  12. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  13. Kishore, J.K.: Application of genetic programming for multicategory pattern classification. IEEE Trans. Evol. Comput. 4(3), 242–258 (2000)

    Article  Google Scholar 

  14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  15. Cava, L.: Inference of compact nonlinear dynamic models by epigenetic local search. Eng. Appl. Artif. Intell. 55, 292–306 (2016)

    Article  Google Scholar 

  16. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 741–748. ACM, New York (2016)

    Google Scholar 

  17. Li, T.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)

    Article  Google Scholar 

  18. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine (2013)

    Google Scholar 

  19. Liu, H.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

    Article  Google Scholar 

  20. Liu, L.: Evolutionary compact embedding for large-scale image classification. Inf. Sci. 316, 567–581 (2015)

    Article  Google Scholar 

  21. Loveard, T., Ciesielski, V.: Representing classification problems in genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 1070–1077. IEEE (2001)

    Google Scholar 

  22. McConaghy, T.: FFX fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX, pp. 235–260. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Melin, P.: A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  24. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56(1–3), 73–82 (2003)

    Article  Google Scholar 

  25. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)

    Article  Google Scholar 

  26. Moore, J.H., Greene, C.S., Hill, D.P.: Identification of novel genetic models of glaucoma using the emergent genetic programming-based artificial intelligence system. In: Riolo, R., Worzel, W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII, pp. 17–35. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  27. Muñoz, L., Silva, S., Trujillo, L.: M3GP Multiclass Classification with GP. In: Genetic Programming, pp. 78–91. Springer, Heidelberg (2015)

    Google Scholar 

  28. Murphy, K.P.: Machine learning: a probabilistic perspective. a probabilistic perspective. Adaptive computation. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  29. Nguyen, T.: Hidden Markov models for cancer classification using gene expression profiles. Inf. Sci. 316, 293–307 (2015)

    Article  Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Perkis, T.: Stack-based genetic programming. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 148–153. IEEE (1994)

    Google Scholar 

  32. Poli, R.: A field guide to genetic programming. Lulu Press, Raleigh (2008). [S.I.]. http://www.lulu.com

    Google Scholar 

  33. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  34. Silva, S., Muñoz, L., Trujillo, L., Ingalalli, V., Castelli, M., Vanneschi, L.: Multiclass classificatin through multidimensional clustering. In: Riolo, R., Worzel, W.P., Kotanchek, M., Kordon, A. (eds.) Genetic Programming Theory and Practice XIII, vol. 13. Springer, Ann Arbor (2015)

    Google Scholar 

  35. Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion, pp. 401–408 (2012)

    Google Scholar 

  36. Tibshirani, R.: Diagnosis of multiple cancer types by Shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99(10), 6567–6572 (2002)

    Article  Google Scholar 

  37. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore, J.H.: GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 5(1), 1 (2012)

    Article  Google Scholar 

  38. USGS. U.S. geological survey (USGS) earth resources observation systems (EROS) data center (EDC)

    Google Scholar 

  39. Vanneschi, L.: Classification of oncologic data with genetic programming. J. Artif. Evol. Appl. 1–13, 1–13 (2009)

    Google Scholar 

  40. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Warren Center for Network and Data Science, as well as NIH grants P30-ES013508, AI116794 and LM009012. S. Silva acknowledges project PERSEIDS (PTDC/EMS-SIS/0642/2014) and BioISI RD unit, UID/MULTI/04046/2013, funded by FCT/MCTES/PIDDAC, Portugal. This material is based upon work supported by the National Science Foundation under Grants Nos. 1617087, 1129139 and 1331283. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William La Cava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J. (2017). Genetic Programming Representations for Multi-dimensional Feature Learning in Biomedical Classification. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics