
En Garde: Winning Coding Duels Through Genetic
Programming

Kiran Lakhotia
CREST, University College London

Abstract—In this paper we present a Genetic Programming
system to solve coding duels on the Pex4Fun website1. Users
create simple puzzle methods in a .NET supported programming
language, and other users have to ‘guess’ the puzzle implemen-
tation through trial and error. We have replaced the human user
who solves a puzzle (i.e. implements a program that matches
the implementation of the puzzle) with a Genetic Programming
system that tries to win such coding duels. During a proof
of concept experiment we found that our system can indeed
automatically generate code that matches the behaviour of a
secret puzzle method. It takes on average 76.57 fitness evaluations
to succeed.

I. INTRODUCTION

In this paper we propose to use a Genetic Programming
(GP) system to automatically generate C# code whose be-
haviour matches that of a secret implementation. In particular,
we try to automatically solve coding duels on the Pex4Fun
website [1]. Pex4Fun is a website provided by Microsoft Re-
search. One of its goals is to provide a game like environment
where users can learn or practice programming concepts. One
feature of the website is the ability of users to create coding
duels. First, a user (or teacher) creates a puzzle method and
submits it to the Pex4Fun website. Then, other users can try
and win the coding duel by providing an implementation of a
method that matches the behaviour of the puzzle method.

Ultimately our goal is to use GP to evolve code that
matches the behaviour of an existing software component by
using testing. We view testing as a means of checking that our
evolved implementation matches a subset of the behaviour of
a component whose functionality we would like to replicate.
An example application area where this might be of interest is
in porting existing software to new platforms [2]. However, in
this paper we only focus on using GP to try and win coding
duels on the Pex4Fun website.

To help a user solve puzzles, Pex4Fun uses the Pex testing
tool [3]. Pex is a dynamic symbolic execution tool for the .NET
runtime. It systematically explores a program (or function),
starting with a concrete execution. The path taken during
concrete execution is also executed symbolically in order to
obtain a path condition. A path condition describes constraints
any program input must satisfy in order to traverse a particular
program path. New inputs with which to execute the program
are obtained by inverting one of the constraints in a path
condition and asking a constraint solver to find a satisfying
assignment for the variables denoting program inputs. A full
description of Pex (and dynamic symbolic execution) is beyond

1http://www.pexforfun.com/

the scope of this paper and the interested reader is referred
to [3].

In the context of Pex4Fun, Pex is used to provide feedback
to a user trying to win a coding duel about when their imple-
mentation of a method agrees and disagrees with the puzzle
method. Consider a method implementation u(x), provided
by a user that accepts an integer x as input, and a secret
puzzle method p(x) that also takes an integer x as input.
Pex will explore a meta program m(x) whose semantics are
m(x) := assert(u(x) == p(x)) [1].

After each attempt at solving a puzzle the user is given
a list of input/output pairs for their program and the puzzle
method. Figure I shows an example puzzle from the Pex4Fun
website. Figure 2 shows two versions of a method submitted
by a user for the example in Figure I, along with the ‘feedback’
provided by Pex4Fun.

We propose to replace a human user trying to solve puzzles
with a GP system. The only information we provide to the GP
is the number of inputs for which the puzzle and GP generated
method produced the same output, and the number of inputs
for which the outputs differed. Unlike a human, the GP does
not know what the difference in output was, because, in our
current system, we do not analyse and include this information
in our fitness function.

II. PROPOSED GENETIC PROGRAMMING APPROACH

Genetic Programming [4] is a technique to automatically
generate programs, based on the use of an Evolutionary
Algorithm (EA) [5]. It follows the usual EA cycle of generating
a population of candidate solutions, evaluating the solutions
using a fitness function, and generating new solutions through
the use of genetic operators such as crossover and mutation.

Candidate solutions are represented in a tree form. A
program for example might be represented as an Abstract
Syntax Tree (AST). The genetic operators of an EA then
operate on this tree structure. Before explaining in detail how
the GP and its operators work, we first describe the technology
used to represent programs as trees.

A. Microsoft CodeDom

We use Microsoft’s CodeDom2 infrastructure to represent
candidate C# programs. CodeDom is a namespace provided by
Microsoft to enable dynamic source code generation and com-
pilation. The namespace defines types, e.g. CodeStatement,
CodeExpression, that can be used to represent the logical

2http://msdn.microsoft.com/en-us/library/650ax5cx.aspx

using System;
public class Program {

// Can you fill the puzzle method to match the secret arithmetic operation?
public static int Puzzle(int x) {

return 0;
}

}

Fig. 1. Coding duel challenge used for the proof of concept experiment. This code represents the template for the puzzle method a user (and our GP) has to
solve.

User attempt 1 at solving puzzle:

using System;
public class Program {

// Can you fill the puzzle method to match the secret arithmetic operation?
public static int Puzzle(int x) {

return x - 1;
}

}

User attempt 2 at solving puzzle:

using System;
public class Program {

// Can you fill the puzzle method to match the secret arithmetic operation?
public static int Puzzle(int x) {

if(x <= 0) return 0;
else return x;

}
}

Fig. 2. Example implementations for the puzzle method from Figure I along with the feedback provided by Pex.

structure of a program, independent of a specific programming
language. A CodeDom representation can then be omitted as
source code for different (.NET supported) languages such as
C#, and compiled to an executable or system library (i.e., dll).

To date, the CodeDom namespace does not include func-
tionality for parsing existing source code into a CodeDom
representation. For the purpose of this paper however it was
necessary to be able to parse C# code into a CodeDom
structure in order to provide an initial skeleton framework for
the GP to work with. The structure of this skeleton framework
depends on the information included with a puzzle. In some
cases this merely represents a function signature (e.g., similar
to the example shown in Figure I). However some puzzle
creators also include ‘hints’ in a puzzle. These could be in
the form of comments, or, more importantly include a partial
implementation of the puzzle method. If the GP did not
have the facility to include such information in its program
representations, then it would unnecessarily expand the search
space for the GP, thus making it harder to find a solution.

In order to parse C# code into a CodeDom structure
we adapted parts of the ILSpy3 library. Specifically, we
used ICSharpCode.Decompiler.Ast.AstBuilder to
parse existing C# code into an AST, and then used the
ICSharpCode.NRefactory library to convert the AST
into a CodeDom representation.

B. Genetic Programming System

Our GP system is currently only able to generate condi-
tional (i.e., if) and assignment statements. An if statement
takes the following form: if(e1 op e2), where e1, e2 are
of type CodeExpression (e.g., constants, variable ref-
erences, binary operators, . . .) and op ∈ {>,>=, <,<=
,==, ! =,&&, ||}. An assignment statement takes the form
v = e1 opA e2, where v is a local variable and e1, e2
are of type CodeExpression. The arithmetic operator for
assignment statements opA ∈ {+,−, ∗, /}, can denote addi-
tion, subtraction, multiplication and division operations. Note

3http://www.ilspy.net/

that an assignment can only be made to local variables, not
method parameters. This restriction on assignments stems from
a requirement for the coding duels imposed by the creators of
Pex4Fun4.

To enable modification of parameter values passed into the
puzzle method, while satisfying the requirements of Pex4Fun,
the GP creates a local variable for each formal parameter of
a puzzle method, and assigns the local variable the value of
the corresponding formal parameter. Currently this operation
is only supported for value types (e.g., int, bool etc.) and
the GP cannot clone Array or other objects.

The starting point for the GP is the (C#) code fragment
a user sees on the Pex4Fun website. This code fragment is
then converted into a CodeDom representation and the GP
creates a set of local variables, one for each formal parameter
as described above. Next, a population of candidate solutions
is generated by extending the starting CodeDom tree with
randomly generated sub-trees. A sub-tree denotes statements
to be added to the method body of the puzzle.

The GP uses two genetic operators for reproduction: a
crossover and a mutation operator. The crossover works at
the statement level; once two CodeDom trees are selected
for reproduction, all (top level) statements (of the puzzle
method) from each tree are converted to a list. The operator
then proceeds with a standard one point crossover operation,
swapping statements between the two lists. Since the two
lists of statements can be of different length, the crossover
point is chosen to lie within the range of the shorter of
the two lists. Note that the last statement in a list cannot
be chosen as a crossover point to ensure the GP does not
accidentally remove the last return statement of a method.
The current implementation of the crossover operator means
only top level statements are swapped between trees; for
example, the operator cannot swap the true or false blocks
of an if statement, only the entire if statement.

The mutation operator implements three operations: adding
a randomly generated statement, removing a statement and
mutating an expression. The add operation simply generates
a random assignment or if statement. The remove oper-
ation visits every statement in a CodeDom tree (including
nested statements) and randomly picks a statement to remove
from the tree. The mutate expression operation visits all
CodeExpression nodes in a CodeDom tree and picks a
random expression to mutate. Valid mutations are changing a
binary operator to one of {>,>=, <,<=,==, ! =,&&, ||},
changing a variable reference (either to another variable, or,
replacing it with a constant value), or mutating an existing
constant value by replacing it with a newly generated random
value.

III. PROOF OF CONCEPT EXPERIMENT

In order to investigate if the proposed GP system is in
principal able to solve coding duels on the Pex4Fun website,
we carried out a proof of concept experiment. We selected
an existing coding duel from the Pex4Fun website (shown

4See the ‘Coding Duels Requirements’ section in the documentation for
Pex4Fun

TABLE I. THE GP CONFIGURATION USED FOR THE PROOF OF
CONCEPT EXPERIMENT.

Population size 10
Maximum generations 200
Parent selection strategy Roulette wheel

selection pressure: 2.0
number of parents to select: 5

Mutation probability 0.6
Probability of generating an assignment statement 0.7
Probability of assigning null to objects 0.8
Probability of using constant value in expression 0.2
Min/max ranges for random constant values [-10, 10]
Probability of generating new statement 0.25
Probability of negating the value of a variable 0.4

in Figure I5). Note that we do not know who created and
submitted this coding duel to Pex4Fun.

We then configured the GP to use the settings shown in
Table I. The choice of parameters with which to run the
GP was arbitrary. However, we performed some preliminary
experiments that indicated they represent a good configuration
out of all the possible settings we tried.

When creating the initial population, the GP generates
random statements that are appended to the puzzle method
body. The Probability of generating new statement parameter
controls when the GP stops adding statements. The purpose of
this parameter is to control the size of the generated CodeDom
trees.

If a random statement is created, the GP favours assign-
ment statements (70%) over conditional statements. When an
assignment statement is created, the GP chooses to create a
new expression on the right hand side of the assignment 60%
of the times, and negates the value of a variable 40% of
the time. The parameter Probability of using constant value
in expression controls whether to reference a variable in an
expression, or, whether to create a constant value. In case the
GP uses a constant value, it generates random values in the
range [−10, 10].

We use an elitist steady-state GP; in every generation exist-
ing members of a population are replaced by fitter offspring.
The size of the population remains constant and is limited
to 10 candidate solutions. The GP is allowed to run for a
maximum of 200 generations. If the GP is not able to solve the
coding puzzle within this limit, the GP terminates. We monitor
the Pex4Fun website to check whether the coding puzzle has
been solved or not. If the GP finds a solution, then the website
displays a winners medal.

To select parents for reproduction we use a roulette wheel
strategy. This selection operator selects 5 candidate solutions
for reproduction. From these we generate 5 offspring via
repeated application of the crossover operator. Every offspring
has a 60% chance of being mutated. During mutation, the GP
adds a new random statement with 40% probability, removes a
randomly selected statement with 20% probability and mutates
a randomly selected expression with 40% probability.

In order to interact with the Pex4Fun website we use
Selenium6. Initially, Selenium is used to load the website with

5Perma-link: http://www.pexforfun.com/default.aspx? lan-
guage=CSharp&sample=ChallengeArithmetic1

6http://seleniumhq.org/

TABLE II. RESULTS OF THE PROOF OF CONCEPT EXPERIMENT.

Number of trials 30
Number of successes 30
Number of failures 0
Average number of fitness evaluations 76.57
Average number of compilation failures 17.6

// --
// <autogenerated>
// This code was generated by a tool.
// Mono Runtime Version: 4.0.30319.1
// Changes to this file may cause incorrect
// behavior and will be lost if the code is
// regenerated.
// </autogenerated>
// --
public class Program {

public static int Puzzle(int x) {
int local_x = x;
local_x = (-1 * local_x);
return local_x;

}
}

Fig. 3. Example implementation generated by our GP system that matches
the behaviour of the puzzle we tried to solve.

the perma-link for a puzzle and grab the source code for the
puzzle outline from the website. This string is then converted
into a CodeDom representation using our extensions of the
ILSpy library.

During every fitness evaluation, the GP serializes the
CodeDom representation of the candidate solution to C# code
and attempts to compile the generated source code. If the
compilation fails, we assign a penalty score (i.e. a fitness value
of 0) to the candidate solution. Otherwise we use Selenium to
update the code field on the Pex4Fun website and start the
Pex exploration (by simulating a user clicking the ‘Ask Pex’
button). This will return a results table like the ones shown
in Figure 2. For each test input the table displays the output
produced by the GP solution and the secret puzzle, and if the
outputs are equal or differ.

The fitness function used during the proof of concept study
is simply the ratio of matching input/output values for a GP
generated solution and the secret puzzle implementation.

Table II shows the results of the proof of concept experi-
ment. We ran the GP 30 times, using different random number
seeds, on the selected coding duel. The GP was able to win the
coding duel in all of the 30 trials. Figure 3 shows one of the
solutions generated by the GP. On average it took 76.57 fitness
evaluations (i.e. about 13 generations) to find the solution.
During the search, an average of 17.6 programs generated by
the GP did not compile (and thus received a fitness score of
0).

IV. CONCLUSIONS AND FUTURE WORK

In this paper we proposed to use Genetic Programming
to automatically generated code that matches the behaviour
of a secret implementation. The general principle is to try
and replicate the code of a black-box component by simply
observing input/output relationships. We used the Pex4Fun

website as a means to try out our approach. The website
enables users to create and participate in coding duels.

A coding duel consists of a user creating a simple method
(puzzle) and other users having to ‘guess’ the semantics of
the puzzle method. In order to help a user solve a puzzle they
can use the testing tool Pex to generate inputs to both, their
‘guess’ and the puzzle. Pex will then show the differences in
input/output pairs between the two implementations.

We carried out a proof of concept experiment of our
proposed Genetic Programming system on one of the coding
duels that exist on the Pex4Fun website. Our system was able
to generate code that matches the behaviour of the selected
puzzle in all of the trials we performed.

The next step is to try our approach on more puzzles and
see whether we can win more coding duels. We expect to have
to tune the settings shown in Table I in order to find a good
general performance of our GP. We are also working on adding
the capability to generate loops to our GP, in case this feature
is required by some of the puzzles.

We also plan to experiment with different fitness functions.
In particular we are working on including the difference in
output between a puzzle and GP solution in the fitness com-
putation. In addition we are considering to generate very large
programs to start with. We expect larger trees to generate more
input/output pairs, and thus provide more information about
the difference in behaviour of a puzzle method and candidate
solution. These measures are designed to increase the amount
of information available to the GP, and we anticipate that this
will have a positive impact on the effectiveness of our system.

ACKNOWLEDGEMENT

We would like to thank Prof. Mark Harman and Dr.
William Langdon from CREST, University College London
for their discussions and feedback on the proposed idea. Kiran
Lakhotia is funded through the EU project FITTEST (ICT-
2009.1.2 no 257574).

REFERENCES

[1] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop, “Pex4fun: Teaching
and learning computer science via social gaming,” in CSEE&T, 2012,
pp. 90–91.

[2] W. Langdon and M. Harman, “Evolving a cuda kernel from an nvidia
template,” in Evolutionary Computation (CEC), 2010 IEEE Congress on,
july 2010, pp. 1 –8.

[3] N. Tillmann and J. De Halleux, “Pex: white box test generation for .net,”
in Proceedings of the 2nd international conference on Tests and proofs,
ser. TAP’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 134–153.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792786.1792798

[4] W. B. Langdon, A Field Guide to Genetic Programing. Lulu Press,
2008.

[5] J. H. Holland, Adaption in Natural and Artificial Systems. University
of Michigan Press, 1975.

