Skip to main content

On Effective and Inexpensive Local Search Techniques in Genetic Programming Regression

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Abstract

Local search methods can harmoniously work with global search methods such as Evolutionary Algorithms (EAs); however, particularly in Genetic Programming (GP), concerns remain about the additional cost of local search (LS). One successful such system is Chameleon, which tunes internal GP nodes and addresses cost concerns by employing a number of strategies to make its LS both effective and inexpensive. Expense is reduced by an innovative approach to parsimony pressure whereby smaller trees are rewarded with local search opportunities more often than bigger trees.

This paper investigates three new extensions to Chameleon’s original simple setup, seeking ways for an even more effective local search. These are: trying alternative, more cost-reflective parsimony measures such as visitation length instead of tree size; varying the reward function to more gently incentivize parsimony than that in the original setup; and having more tuning earlier in runs when smaller trees can be tuned more cheaply and effectively. These strategies were tested on a varied suite of 16 difficult artificial and real-world regression problems. All of these techniques improved performance.

We show that these strategies successfully combined to cumulatively improve average test RMSE by 31% over the original and already effective Chameleon tuning scheme. A minimum of 64 simulations were run on every problem/tuning setup combination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azad, R.M.A., Ryan, C.: Abstract functions and lifetime learning in genetic programming for symbolic regression. In: Genetic and Evolutionary Computation Conference (GECCO-2010), pp. 893–900. ACM (2010)

    Google Scholar 

  3. Atif, R.M., Azad, C.R.: A simple approach to lifetime learning in genetic programming based symbolic regression. Evolutionary Computation 22(2), 287–317 (2014)

    Article  Google Scholar 

  4. Bhardwaj, A., Tiwari, A.: A Novel Genetic Programming Based Classifier Design Using a New Constructive Crossover Operator with a Local Search Technique. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 86–95. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Clark-Carter, D.: Geometric mean. In: Encyclopedia of Statistics in Behavioral Science. Wiley (2005)

    Google Scholar 

  6. Frank, A., Asuncion, A., et al.: UCI machine learning repository (2010)

    Google Scholar 

  7. Fukunaga, A.S.: Evolving local search heuristics for SAT using genetic programming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Keijzer, M., Foster, J.: Crossover bias in genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 33–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Kommenda, M., Kronberger, G., et al.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1121–1128. ACM (2013)

    Google Scholar 

  10. Krawiec, K.: Genetic programming with local improvement for visual learning from examples. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 209–216. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Majeed, H., Ryan, C.: On the constructiveness of context-aware crossover. In: Genetic and Evolutionary Computation Conference (GECCO-2007), pp. 1659–1666. ACM (2007)

    Google Scholar 

  12. McDermott, J., White, D.R., et al.: Genetic programming needs better benchmarks. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 791–798. ACM (2012)

    Google Scholar 

  13. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history. In: Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 2, pp. 1112–1120 (1999)

    Google Scholar 

  14. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Handbook of metaheuristics, pp. 105–144. Springer (2003)

    Google Scholar 

  15. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  16. O’Reilly, U.-M., Oppacher, F.: A comparative analysis of genetic programming. In: Advances in Genetic Programming 2, ch. 2, pp. 23–44. MIT Press (1996)

    Google Scholar 

  17. Radcliffe, N.J., Surry, P.D.: Formal memetic algorithms. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 1–16. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  18. Scoble, A., Johnston, M., Zhang, M.: Local search in parallel linear genetic programming for multiclass classification. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 373–384. Springer, Heidelberg (2012)

    Google Scholar 

  19. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: Genetic Programming Theory and Practice II, pp. 283–299. Springer (2005)

    Google Scholar 

  20. Williams, C.B.: The use of logarithms in the interpretation of certain entomological problems. Annals of Applied Biology 24(2), 404–414 (1937)

    Article  Google Scholar 

  21. Zhang, M., Gao, X., Lou, W.: A new crossover operator in genetic programming for object classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(5), 1332–1343 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lane, F., Azad, R.M.A., Ryan, C. (2014). On Effective and Inexpensive Local Search Techniques in Genetic Programming Regression. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics