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Abstract

Background: Genetic studies are increasingly based on short noisy next generation scanners. Typically complete
DNA sequences are assembled by matching short NextGen sequences against reference genomes. Despite consid-
erable algorithmic gains since the turn of the millennium, matching both single ended and paired end strings to a
reference remains computationally demanding. Further tailoring Bioinformatics tools to each new task or scanner
remains highly skilled and labour intensive. With this in mind, we recently demonstrated a genetic programming
based automated technique which generated a version of the state-of-the-art alignment tool Bowtie2 which was
considerably faster on short sequences produced by a scanner at the Broad Institute and released as part of The
Thousand Genome Project.

Results: Bowtie2GP and the original Bowtie2 release were compared on bioplanet’s GCAT synthetic benchmarks.
Bowtie2GP enhancements were also applied to the latest Bowtie2 release (2.2.3, 29 May 2014) and retained both
the GP and the manually introduced improvements.

Conclusions: On both singled ended and paired-end synthetic next generation DNA sequence GCAT benchmarks
Bowtie2GP runs up to 45% faster than Bowtie2. The lost in accuracy can be as little as 0.2–0.5% but up to
2.5% for longer sequences.

Keywords
double-ended DNA sequence, high throughput Solexa 454 nextgen NGS sequence query, rapid fuzzy string
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Background
“Next generation sequencing (NGS) technology has become the de facto indispensable tool to study genomics
and epigenomics in recent years” [Shen et al., 2014]. Although NGS DNA scanners can generate in the region
of a billion DNA sequences per run, each sequence is only a few hundred base pairs (bp) long [Schuster,
2008]. Typically each sequence is aligned against an existing reference genome. While in many cases DNA
sequences match the reference exactly, since next generation scanners are inherently noisy, it is common
practise to scan the target sample three times. Consistent differences between NGS sequences and the
reference genome may indicate mutations in the sample. The 1000 Genomes Project used next generation
scanners to identify 15 million single base changes (SNPs) and more complex mutations [Durbin, et al., 2010;
Langdon, 2014].

Many genomes contain repeated DNA sequences [Shapiro and von Sternberg, 2005], thus a short DNA
sequence may match a reference genome more than once. To extend the usefulness of existing scanners, they
can be used to generate “paired-end” sequences, in which both ends of longer DNA strands are sequenced
in the normal way but the connecting part is not [Fullwood et al., 2009]. The length of the unsequenced
region is known only approximately. Typically it is in the region of 500 bp. If one end lies in a repeated
sequence, the other end can be used. However even if both ends lie in repeated sequences, typically knowing
approximately how far apart the two ends are is sufficient to remove the ambiguity of both ends matching
multiple times.

Matching (also known as mapping) biological sequences is essentially a computational task. Indeed it
remains the life blood of Bioinformatics. BLAST [Altschul et al., 1997] remains the gold standard computer
program for approximate biological string matching. However it is usually considered far too slow to use
with the huge volume of data generated by NextGen scanners. Bowtie [Langmead et al., 2009] was the
first fast program able to deal with NextGen DNA sequences and able to compress the human genome into
less than 4 GBytes. (Fitting into four gigabytes enabled Bowtie to run on typical desktop computers then
available.) However Bowtie is limited in the types of mutation it can deal with and so it was re-written to
give the more functional Bowtie2 [Langmead and Salzberg, 2012]. Perhaps surprisingly some of the best
programs are publicly funded open source and freely available rather than commercial. E.g. BWA [Li and
Durbin, 2010] and Bowtie2.

Introduction
Genetic programming (GP) [Koza, 1992; Poli et al., 2008] is one of a family of computer techniques [Holland,
1992; Goldberg, 1989; Bäck, 1996] which use Darwin’s theory of evolution of species by natural selection
[Darwin, 1859] by applying survival of the fitness to an artificial population inside the computer. Typically
the programmer provides an external fitness function which is used to determine the fitness of individuals in
the population and so who survives and has children. Children are created by applying operations analogous
to mutation and recombination to their parents. In the case of GP the population contains a species of
computer programs. Special mutation and recombination operations are used which ensure the children
are syntactically correct programs and their fitness is calculated by running them on input data from the
problem and assessing the quality of their answers.

In the Gismo project instead of evolving complete programs, we used GP to evolve a population of
patches to Bowtie2. GP was used in combination with other search based software engineering techniques
[Harman, 2011] to automatically tailor Bowtie2, giving a version which runs considerably faster than the
original released code on “single ended” short (36 bp) DNA sequences produced by the Broad Institute’s
Illumina Genome Analyzer II Solexa scanner. The goal was to find matches in the human genome faster
without unduly sacrificing the quality of the matches. On out-of-sample Solexa sequences on average it
runs more than 70 times faster than the original release of Bowtie2 and finds very slightly better matches
[Langdon and Harman, ].

While we would normally advocate re-optimising the Bowtie2 C++ code for new circumstances, we show
the optimised version can also process DNA sequences from other sources.
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On paired-end data from the UCL Cancer Institute human blood studies we found Bowtie2GP not only
ran faster than Bowtie2 but was also more than four times faster than the Bioinformatics sequencing tool
(BWA [Li and Durbin, 2010]) currently used by the Cancer Institute, takes less memory and yet finds similar
matches in the human genome [Langdon, 2013].

Next we submitted 4 versions of Bowtie2 to the widely respected GCAT [Zook et al., 2014] synthetic
NextGen benchmarks (the original Bowtie2 and the current release and GP updated versions of both).
Unlike the real data supplied by the Cancer Institute, GCAT has the advantage that the sequences have
been prepared against a reference genome and so have both defined noise characteristics and known ground
truth. Since the correct mapping is known, GCAT can readily calculate the fraction which are correct.

Method
The DNA test sequences for eight GCAT benchmarks were down loaded via the GCAT web interface at
http://www.bioplanet.com/gcat/ in fastq format. The benchmarks cover sequences of lengths 100 base
pairs, 150bp, 250bp and 400bp, for both paired end and single ended small-indel tests. There are two files
for each of the paired end and one 1.fastq file for each single ended benchmarks. Making a total of 41 509 741
sequences, occupying 25 gigabytes.

As recommended by GCAT, pre-built Bowtie2 index files for the human genome (hg19, GRCh37 Genome
Reference Consortium Human Reference 37 (GCA 000001405.1)) were down loaded from ftp://ftp.ccb.jhu.edu
/pub/data/bowtie2 indexes/hg19.zip Decompressed the .bt2 files occupy 4GB in total.

As recommended by GCAT, samtools was used to convert Bowtie2 sam output to the bam format
used by GCAT. Pre built 64-bit executable programs for Linux samtools were obtained from SourceForge
(http://sourceforge.net/projects/samtools/files/samtools/1.0/).

We used four versions of Bowtie2; two from Ben Langmead and two after GP improvement. The original
release of Bowtie2 (version 2.0.0 beta, 16 Oct 2011) has been updated automatically by genetic program-
ming to give Bowtie2GP [Langdon and Harman, ]. (Bowtie2GP is available via http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/gp-code/bowtie2gp.) The seven changes made by genetic programming are given in [Lang-
don and Harman, , Fig. 15]. Bowtie2 has been changed by Langmead’s team many times since 2011. (GitHub
lists more than 700.) In particular, possibly unwittingly, they have applied the first three optimisations found
by GP to version 2.2.3 (30 May 2014). The sources of Bowtie2 2.2.3 were downloaded from SourceForge
http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.3/bowtie2-2.2.3-source.zip/download Firstly
Bowtie2 2.2.3 was built for 64-bit Linux. Then the remaining four GP changes were applied to the 2.2.3 source
code and Bowtie2GP 2.2.3 was built from them. (Bowtie2GP 2.2.3 can be obtained via anonymous FTP or
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/bowtie2gp/bowtie2-2.2.3gp-align-s In all four cases
the gcc 4.1.2 compiler optimisation etc. used to build the programs were those used by the build process
supplied with the corresponding Bowtie2 sources.

Command Lines
Essentially we used the same command line as GCAT itself used when they ran Bowtie2. E.g. bowtie2gp
--seed 133540 -I 450 -X 550 --sensitive -x hg19 -1 gcat set 037 1.fastq -2 gcat set 037 2.fastq

Bowtie2 uses pseudo random numbers internally. Where multiple runs are made to estimate variability up
to five different --seed values were used. With paired-end sequences the -I and -X parameters give the
range of separation allowed between the two ends. (As mentioned above, GCAT uses synthetic data, and
the actual separation is known to be 500, nevertheless, as recommend by GCAT, we used the same -I and
-X as had been used by GCAT when they ran Bowtie2 internally.) Again --sensitive was recommended
by GCAT. Although Bowtie2 supports multiple threads to take advantage of multicore architectures, to
allow ease of comparison only a single server CPU core was used. All runs were made on the same 32GB
eight 3.00GHz core server. Finally (not shown), also recommended by GCAT, we used the unix command
/usr/bin/time -v to gather performance information.

samtools view -b was used to convert Bowtie2’s output to bam format. Typically it takes samtools

about two minutes to convert Bowtie2’s output of 3GB to a compressed binary bam file of 700MB.
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Table 1: Speed and percentage speed up of each Bowtie2 variant on GCAT benchmarks. To normalise for
different sequence lengths, we report millions of DNA bases processed per CPU hour. (In paired end tests
both ends are counted.) Where available ± gives estimated standard deviation. The percentage of correctly
assigned sequences and the percentage mapped are both reported by GCAT.

Single ended
length number Bowtie2 2.0.0 Correct Mapped Bowtie2GP Correct Mapped speedup %
100 11945249 684 ± 6 89.23% 98.88% 782 ± 7 89.05% 98.25% 14
150 7963499 556 ± 2 93.58% 99.48% 696 ± 5 93.20% 98.58% 25
250 4778100 413 ± 9 97.14% 99.74% 509 ± 11 96.04% 98.33% 23
400 2986312 342 ± 19 98.77% 99.86% 371 ± 29 96.50% 97.69% 8

length number Bowtie2 2.2.3 Correct Mapped Bowtie2GP 2.2.3 Correct Mapped speedup %
100 11945249 486 ± 6 93.54% 98.81% 640 ± 16 92.98% 98.16% 32
150 7963499 481 ± 3 96.33% 99.48% 701 ± 3 95.46% 98.55% 46
250 4778100 462 ± 12 98.54% 99.82% 656 ± 23 97.05% 98.40% 42
400 2986312 425 ± 41 99.36% 99.94% 524 ± 65 96.87% 97.76% 23

Paired end
length number Bowtie2 2.0.0 Correct Mapped Bowtie2GP Correct Mapped speedup %
100 5972625 674 94.47% 99.41% 827 94.03% 98.70% 23
150 3981750 736 91.99% 98.82% 956 91.61% 97.62% 30
250 2389050 826 95.46% 98.96% 1041 94.38% 97.33% 26
400 1493156 658 97.79% 99.24% 822 95.65% 97.08% 25

length number Bowtie2 2.2.3 Correct Mapped Bowtie2GP 2.2.3 Correct Mapped speedup %
100 5972625 702 95.19% 98.91% 921 94.74% 98.20% 31
150 3981750 717 93.53% 98.93% 999 93.07% 97.66% 39
250 2389050 763 95.49% 98.61% 1044 94.21% 96.83% 37
400 1493156 461 98.29% 99.39% 616 95.97% 97.24% 34

Results and Discussion
In each GCAT benchmark Bowtie2GP gives a speed up at the expense of a small reduction in number of
correct alignments reported by GCAT, see Figures 1 and 2. Figures 1 and 2 report the percentage speed
up relative to the unmodified code. That is, both Bowtie2 2.0.0 beta and Bowtie2 2.2.3 are both plotted at
zero speed up.

Although we do not see the spectacular speedup given by Bowtie2GP on the task for which it was trained,
nevertheless it does performs well on both single ended and paired end DNA sequence data. It is fair to
say the original Bowtie2 was not optimised for this task, so the GP had an advantage of competing where
Bowtie2 would be expected to be poor.

“Double ended” sequences require Bowtie2 to combine the results of looking up two DNA sequences (one
from each end of the sequence). Naturally this combination code was not optimised when using the Broad
Institute’s “single ended” data. Nevertheless both versions of Bowtie2GP are able to find correct matches
and retains similar speed advantages over the released versions of Bowtie2.

All the GCAT benchmarks contain sequences much longer than the 36bp single ended sequences on which
Bowtie2GP was optimised, nevertheless both GP versions do well on the much longer sequences. Also the
speed up is similar to the 26% speed up found with real 36bp paired end sequences provided by the Cancer
Institute [Langdon, 2013], which gives some reassurance in the GCAT benchmarks. It might be expected,
performance would tail away as data are less like that generated by the Broad Institute’s scanner, however
speed up is fairly consistent.
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Figure 1: Speed up of genetic programming versions of Bowtie2 compared to hand produced code on single
ended small-indel GCAT benchmarks. The horizontal axis gives the fraction of sequences correctly mapped
(given by GCAT itself). The near vertical plots, for all but the longest DNA sequences, emphasises that the
speed up (vertical axis) comes at little reduction in quality.
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Figure 2: Speed up of genetic programming versions of Bowtie2 compared to hand produced code on paired
end small-indel GCAT benchmarks. As with Table 1 and Figure1, the percentage of correctly mapped
sequences is calculated by GCAT.
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With any benchmark we must be wary of over fitting. That is, getting good results on the benchmark
but failing to get comparable results on real sequences. However, on the GCAT benchmarks, after two and
half years of manual effort (which included rediscovering three lines of the seven line change found by genetic
programming) we see an improvement in accuracy between of 0% to more than 4% (see distances between +
and × on the x-axis in Figures 1 and 2). In contrast, after approximately one CPU day, genetic improvement
automatically found a version with an out of sample median speed up of 27%. On the GCAT benchmark
closest to the conditions it was optimised for (see 100bp in Figure 1) the reduction in accuracy is negligible.

Discussion
There are many Bioinformatics computer based sequencing tools. In January 2013, Wikipedia alone listed
more than 140. Each of these has been produced by hand, by some of the cleverest people on the planet
and yet each can be thought of as a single point in a Pareto trade-off space in which speed, accuracy,
memory requirements, etc., are balanced on different variants of the approximate string matching problem.
To be successful, each author must strive to find a point in the space which is not currently dominated
by an existing program. Further it should not be dominated by any future program by the time, perhaps
a few years a way, when the author’s program is complete. At present, when each author starts their
project, they are only guided by gut feeling and existing programs as to which points in this huge trade-off
space might be reached and yet having selected a destination, few (if any) projects can fundamentally re-
consider their destination if their target proves unreachable or is already occupied when they arrive. We have
demonstrated GP can automatically explore around current implementations, nevertheless we hope future
software designers, implementers and PhD students, will have tools which can explore potential trade-offs
before implementation starts [Harman et al., 2012]. Perhaps such automatically generated software might
be assembled from existing tools [Petke et al., 2014] and proved valuable, even where people choose not to
adopt machine generated software but instead use it as a guide as to what is feasible before the Human
starts coding.

Conclusions
Genetic programming acting on an important program of more than fifty thousand lines of C++ code found a
set of small changes which could considerably improve its performance on a task for which it was specialised.
After two and a half years of manual effort three of the seven lines in the set of GP changes have been
fortuitously manually incorporated into the latest release. Since GP acted on the source code, the remaining
four were easily re-applied to the latest man made release.

Both GP improved versions were tested on the GCAT [Zook et al., 2014] synthetic benchmarks. They
give an average speed up of 27%. This is the the same as the improvement we found on real short (36bp)
NextGen paired-end DNA sequences supplied by the Cancer Institute [Langdon, 2013]. As judged by GCAT,
for the shortest GCAT sequences we see no fall in quality, however both GP versions give approximately 2%
fewer correct matches for the longest (400bp) GCAT benchmarks.

In principle, given sufficient interest, it should be possible to use the GP framework to re-optimise
Bowtie2, or other sequence aligners, for tasks like those represented by GCAT.
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