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ABSTRACT
Evolutionary computation is a promising technique for au-
tomating time-consuming and expensive software mainte-
nance tasks, including bug repair. The success of this ap-
proach, however, depends at least partially on the choice
of representation, fitness function, and operators. Previous
work on evolutionary software repair has employed different
approaches, but they have not yet been evaluated in depth.
This paper investigates representation and operator choices
for source-level evolutionary program repair in the GenProg
framework [17], focusing on: (1) representation of individ-
ual variants, (2) crossover design, (3) mutation operators,
and (4) search space definition. We evaluate empirically on
a dataset comprising 8 C programs totaling over 5.1 mil-
lion lines of code and containing 105 reproducible, human-
confirmed defects. Our results provide concrete suggestions
for operator and representation design choices for evolution-
ary program repair. When augmented to incorporate these
suggestions, GenProg repairs 5 additional bugs (60 vs. 55
out of 105), with a decrease in repair time of 17–43% for the
more difficult repair searches.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
F.2.2 [Artificial Intelligence]: Search

General Terms
Algorithms

Keywords
Representation, crossover, mutation, search-based software
engineering, software repair, genetic programming

1. INTRODUCTION
Software maintenance, including error repair, refactoring,

performance or optimization, entails considerable economic
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cost [8, 23]. Accordingly, there is significant interest in ap-
plying evolutionary computation (EC) to repair or otherwise
transform existing software. Unlike earlier work on Genetic
Programming (GP), such approaches focus on large corpora
of legacy software written in traditional languages [16, 28].
EC has also been applied recently to program-transformation
problems such as shader simplification [25], CUDA kernel
synthesis [14], and other languages including byte and as-
sembly codes [19, 22].

Success in these domains depends to some degree on choices
of representation, fitness functions, genetic operators, and
the effective search space. Fitness functions for software re-
pair have been studied using test cases [7, 28], formal spec-
ifications [27], or both [4, 9]. However, there has been little
work comparing representations, operators or the effective
search spaces in this domain.

Recent research has proposed a number of options. Rep-
resentation choices include: Abstract Syntax Trees (ASTs)
with a weighted list of statements to mutate [28] (referred
to in this paper as ast/wp); lists of edits to an initial
program [1, 16] (referred to as patch); or lists of byte-
code [20] or assembly statements [22]. Mutation opera-
tors range from highly specialized (e.g., changing relational
operators or variable names [1]); to pre-specified by the
GP engine based on language-specific primitives (e.g., [5]);
to grammar-based rewrite rules [15]; to generic insertions,
replacements, or deletions of statements in an AST [28].
Certain applications appear to demand a prominent treat-
ment of particular operators (e.g., a semantics-preserving
crossover operator for Java bytecode [20]). Popular crossover
choices include crossback [5, 28], one-point [1, 22], and varia-
tions of uniform crossover [16]. Parameter choices vary, and
tend to be selected heuristically or by deferring to previous
work. By and large, Arcuri et al.’s [5] summary is charac-
teristic: “In general, we set the parameters with values that
are common in literature . . . the ones reported are the best
we found.”

The goal of this paper is to conduct an in-depth study of
several critical representation, operator and other choices
used for evolutionary program repair at the source code
level. We use GenProg, a previously established evolution-
ary software repair framework [17], and a benchmark set
proposed in previous work [16] to conduct these controlled
comparative studies. We claim the following contributions:

• A direct comparison of two source-level representa-
tions and an analysis of which features contribute most
highly to success rate. We find that the patch repre-
sentation outperforms the ast/wp in terms of repair



success rate for all tested crossover operators. A se-
mantic check is critical to repair success in either rep-
resentation.

• An empirical evaluation of competing crossover oper-
ators. We find that one-point crossover provides the
best tradeoff between success rate and repair time, re-
quiring approximately 25% less time for successful re-
pairs and improving success rates by 4% compared to
a default baseline.

• An empirical study of the role of mutation operators in
successful repairs and the effect of varying the proba-
bilities with which different operators are applied. For
the most challenging repairs, an unequal operator se-
lection function improves success rate by 9% and de-
creases repair time by 40%.

• An evaluation and analysis of the assumption made in
earlier work [7, 28] that genetic modifications should
focus on statements executed exclusively by buggy in-
puts (fault localization). A more balanced weighting
scheme increases the number of bugs repaired, im-
proves success rate per trial, and decreases repair time
by 50–75% on the most challenging repair searches.

We conclude with several concrete recommendations for
operator and design choices for EC-based program repair.
Overall, we find that these choices individually matter, espe-
cially for the more difficult repair scenarios in terms of both
repair success and time. These otherwise disjoint features
combine synergistically: we show that an EC that incorpo-
rates our recommendations can automatically repair more
bugs (60 vs. 55 out of 105), with a decrease of 17–43% in
repair time for the more difficult repair searches as compared
to previous work.

2. RELATED WORK
This study builds on earlier work [17], which uses GP

to repair extant software. Arcuri [5] also proposed a GP
for co-evolving defect repairs and unit test cases, relying
on formal specifications. In his representation, the oper-
ators and representation are defined by a pre-existing GP
engine based on toy language primitives. Recently, Debroy
and Wong independently validated that mutations targeted
to statements that are likely faulty can repair bugs suc-
cessfully [7]. Their work uses an out-of-the-box fault local-
izer [12] to weight statements for possible mutation, but does
not compare different mutation operators, representations,
or weighting schemes. As mentioned earlier, EC has been
extended to new languages [19, 1, 22] and domains [25, 14].
White et al. used GP to improve non-functional program
properties, such as execution time [29].

Much of this previous work focuses on adapting EC to
new domains, with operators and representation choices re-
ceiving attention only as necessary. For example, Orlov and
Sipper outline a semantics-preserving crossover operator for
Java bytecode [19]; Ackling et al. propose a patch-based
representation to encode Python rewrite rules [1]; Le Goues
et al. briefly examined two representation choices [16], and
Forrest et al. quantified operator effectiveness, and com-
pared crossback to traditional crossover [10]. However, a
dedicated analysis of competing operators and representa-
tions choices for this domain has not yet been undertaken.

Recent work described a large benchmark set of real-world
bugs [16], which formed the basis of a systematic software

engineering-focused study of EC-based program repair. That
work used one set of parameters and operators to facilitate
an unbiased study but also considered a second represen-
tation and set of operators for the sake of scalability and
efficiency. The second approach’s greater performance was
left unexplained, raising a set of questions, which we study
in detail in the following sections. We adopt the bench-
marks and default parameter set from this earlier work, but
focus directly on fundamental representation, operator and
related search space choices, measuring how they relate to
success rate and repair time.

The field of Search-Based Software Engineering (SBSE) [11]
uses evolutionary and related methods for software testing,
e.g., to develop test suites [26, 18]. SBSE also uses evolu-
tionary methods to improve software project management
and effort estimation [6], find safety violations [3], and in
some cases re-factor or re-engineer large software bases [24].
SBSE focuses primarily on improvements to fitness functions
instead of on representation and operator choices.

3. TECHNICAL APPROACH
We investigate operators and representation choices for

evolutionary repair of bugs in C programs using the GenProg
tool, as outlined in Le Goues et al. [17]. In this approach, GP
begins with a working program that has an identified bug,
and searches for a program that avoids the bug while retain-
ing required behavior. Example bugs include: crashing on
a malformed input, looping forever, or producing the wrong
result. The input to GenProg is a C program, a negative test
on which the program behaves incorrectly, and a set of re-
gression (positive) test cases encoding required functionality.
Each individual in the GP is a program that can be eval-
uated by its performance on the positive and negative test
cases. We use tournament selection and compute individual
fitness as the weighted sum of the positive and negative test
cases that the variant passes. Mutation and crossover can
be restricted to certain segments of the program, for exam-
ple using fault localization methods in software engineering
(e.g., [12]). GenProg terminates after a fixed number of iter-
ations, or when it finds a program that passes all test cases,
known as an initial repair. Delta-debugging [30] is applied
post-facto to minimize differences between the repaired ver-
sion of the program and the original. This results in the final
repair. The minimization can be applied either to the mu-
tation operations that produced the final variant or to the
source code of the variants themselves [28] using tree-based
structural differencing [2].

This general outline highlights four key areas of algorithm
design that are the foci of this paper: representation (Sec-
tion 3.1), crossover (Section 3.2), mutation and selection
(Section 3.3), and search space (Section 3.4). The rest of
this section outlines these areas in more detail. Section 4
gives empirical results.

3.1 Representation
We restrict our attention to source-level GP representa-

tions in GenProg, and investigate the two best-established
options.

The Abstract Syntax Tree/Weighted Path (ast/wp) rep-
resentation (e.g., [28]) defines a program variant as a pair
consisting of its AST (with each statement uniquely num-
bered) and a weighted path through it, typically defined
by the statements executed by the failing test case. The



weighted path is defined for the original program and re-
mains unchanged during the search, even if introduced vari-
ations change control flow. Fitness is evaluated by pretty-
printing the AST to produce source code, which is then com-
piled and run on the test cases.

The patch representation defines an individual as a se-
quence of edits to the original program source. Ackling
et al. [1] intoduced this method, storing the edit list as a
bitvector where each bit indexes an array of possible mu-
tations to the underlying code. An alternative approach
represents each patch as a variable-length sequence of edits
to the statements of the original program’s AST [16]. We
study the latter representation for several reasons: (1) it
admits a wider range of mutations, (2) it does not require
pre-enumeration of all possible mutations (improving scal-
ability), and (3) it is directly comparable to related work,
especially the ast/wp representation in the context of the
GenProg implementation. To evaluate fitness, each edit in
the list is applied to the original program, the resulting AST
is printed as source code, and that code is compiled and run
on the test cases.

3.2 Crossover
Program source representations support several crossover

operators, only some of which we study here. For exam-
ple, earlier work proposed a crossback operator [5, 28], but
subsequent work found it equivalent to traditional one-point
crossover [10].

In the ast/wp representation, one-point crossover applies
to the Weighted Path. Given two parents p and q, a point
along the weighted path is selected at random, and all state-
ments after that point are swapped between the parents to
produce two offspring. Only statements along the weighted
path are affected.

The patch subset operator is a variant of uniform crossover
for the patch representation [16]. This operator takes as
input two parents p and q. The first (resp. second) offspring
is created by appending p to q (resp. q to p) and then
removing each element randomly with 50% probability. This
operator allows edits to similar ranges of the program to be
combined into one individual (e.g., parent p inserts B after A
and parent q inserts C after A). This contrasts with ast/wp
one-point crossover, where each offspring can receive only
one edit to statement A.

One-point crossover on the patch representation [21] se-
lects crossover points pn and qm in parents p and q. The
first half of p is appended to the second half of q, and vice
versa, to create two offspring.

3.3 Mutation
In both representations, mutation is restricted to AST

nodes corresponding to C statements. A destination state-
ment d is chosen from the set of permitted statements ac-
cording to a probability distribution (see Section 3.4). One
of the available mutation operators is then selected (with
equal probability in previous work). The available muta-
tion operators are delete, insert, and swap operators. In
some recent papers, replace is substituted for swap be-
cause swap was found to be up to an order of magnitude
less successful than the others [10, Tab. 2]. If insert or
swap/replace are selected, a second statement s is also se-
lected randomly. Statement d is then either swapped with s,
replaced with s, or replaced with a new statement consist-

ing of d followed by an inserted s. These changes are either
applied directly to the AST (in the ast/wp representation)
or appended to a list of edits (in the patch representation).

3.4 Search space
The search space of possible programs in a given represen-

tation is infinite, but existing techniques restrict the search
to a smaller space that is likely to contain a repair. We
propose a parameterization of these restrictions along three
dimensions:

• Fault space. The search space is reduced by restricting
mutations to program locations associated with incorrect
behavior. These locations (i.e., program statements) can
be weighted to influence their probability of being mu-
tated, such as by Tarantula [12], suspiciousness values [7],
or using heuristics. As an example, one heuristic weights
statements visited only by the negative test cases 10 times
more highly than those visited by both the negative and
positive test cases [28]. The fault space size (defined as
the sum of all weights) appears related to the repair suc-
cess [10].

• Mutation space. The search space is further constrained
by the set of mutations that are possible at each location
and their selection probability. Typically, mutations are
selected with equal random probability.

• Fix space. To review, earlier work on EC program re-
pair typically copies (inserts/replaces/swaps) or deletes
code, rather than generating truly random mutations. In
the case of a copy, unlike a simple delete, a statement
must be selected as the source to be copied. We refer to
this as fix localization. Candidate fixes are restricted to
those within the original program. A semantic check can
also be applied to the fix space [16]. This eliminates the
possibility of copying or moving statements that reference
variables that will be out-of-scope in the new location.
The semantic check is a special case of the operators pro-
posed by Orlov and Sipper for well-typed Java bytecode
mutation [19], applied to weakly typed C programs.

Thus, the search space is defined by the locations that
can be changed, the mutations that can be applied, and
the statements that can serve as sources of the repair. The
search is further constrained by probability distributions de-
fined over the space, e.g., the probability that a given lo-
cation is selected, a given mutation is applied, or a given
source statement is selected. These decisions constrain the
mutation operators regardless of the representation choice.

In ast/wp, the fault space is explicitly represented by the
weighted path, which defines the site of mutation operations
and the basic unit (gene) used in crossover. The patch
representation uses a similar weighting to guide selection of
possible edit sites, although the weights are stored explicitly
with the individual variant.

4. EXPERIMENTS
This section presents experimental results on four algo-

rithmic and parameter choices for EC-based program repair:

• Representation: Does ast/wp or patch give better
results in terms of finding repairs, and which represen-
tation features contribute most to success?

• Crossover: Which crossover operator is best for EC-
based program repair?



Program Fault LOC Tests

gcd infinite loop 22 6
uniq-utx segfault 1146 6
look-utx segfault 1169 6
look-svr infinite loop 1363 6
units-svr segfault 1504 6
deroff-utx segfault 2236 6
nullhttpd buffer exploit 5575 7
indent infinite loop 9906 6
flex segfault 18775 6
atris buffer exploit 21553 3

average 6325 5.8

Table 1: Benchmark C programs [28, Fig. 4], each
with one defect and several human- or fuzz- gener-
ated test cases. Col. 1 gives the name of the pro-
gram, Col. 2 the type of bug in the program, Col.
3 gives the size of the program in lines of code, and
Col. 4 gives the number of test cases.

Program Description kLOC Tests Bugs

fbc Basic comiler 97 773 3
gmp math library 145 146 2
gzip data compression 491 12 5
libtiff image manipulation 77 78 24
lighttpd web server 62 295 9
php web coding 1,046 8,471 44
python general coding 407 355 11
wireshark network analyzer 2,814 63 7

total 5,139 10,193 105

Table 2: 105 historical C defects [16, Tab. 1], with
test suites. Each benchmark contains at least 2
testable defects. Col. 1 gives the program name,
Col. 2 describes the program’s functionality, Col. 3
gives the program size (in lines of code × 1000), Col.
4 the number of test cases, and Col. 5 the number
of defects considered in the program.

• Operators: Which operators contribute the most to
repair success, and how should the operators be se-
lected?

• Search space: How should the representation weight
program statements to best define the search space?

4.1 Experimental Setup
This subsection describes two benchmark sets and estab-

lishes baseline parameters and operators for our experiments.
Table 1 shows the first set of ten benchmark programs,

taken from the work that introduced the ast/wp represen-
tation for program repair [28]. We include these benchmarks
because the ast/wp representation does not scale (i.e., we
cannot run it with our computational resources) to a num-
ber of the bugs from the larger benchmark set — the smaller
benchmarks thus allow direct comparisons between patch
and ast/wp. The second benchmark set, shown in Table 2
is an order-of-magnitude larger set of 105 real-world, human-
repaired defects in open-source C programs [16]. This bench-
mark set was systematically generated by looking at human-
repaired bugs associated with existing test suites in open-
source C programs, and is thus viewed as more indicative.

We prefer this benchmark set where possible because of its
size and diversity.

For the purposes of comparison, we define default pa-
rameters and operator choices. The mutation operators
are replace, delete, and insert. We evaluated a param-
eter set that used swap instead of replace; the results do
not vary significantly (data not shown). We included re-
place to maintain compatibility with published results on
the dataset [16]. The population size is 40. The GP is run
for a maximum of 10 generations or 12 wall-clock hours,1

whichever comes first. The tournament size is 2. The muta-
tion rate is 1 mutation per individual per generation. Each
individual variant undergoes crossover once per generation,
regardless of the crossover operator. When a mutation is ap-
plied, one of the mutation operators is selected with equal
random probability. The fault localization scheme assigns
a weight of 1.0 to statements executed by only the failing
test case and 0.1 to statements executed by both the failing
negative test case and passing positive test cases. The fix
localization scheme includes the semantic check described
earlier. Fitness is the weighted sum of all tests passed, where
the negative test cases are weighted twice as heavily as the
total contribution from positive test cases. Variants that
do not compile receive a fitness of 0.0. The fitness function
samples a random 10% of the positive tests for the larger
benchmarks: If a variant passes all tests in the sample as
well as all of the negative test cases, it is then tested against
the full suite.

On this “baseline” parameter set using the patch repre-
sentation, GenProg repairs 55/105 of the bugs from Table 2
and 10/10 bugs in Table 1.

The primary metrics in all experiments are success rate
(fractiohn of trials that produce a successful repair) and av-
erage number of fitness evaluations to find a repair, which
is a proxy for repair time. Results are averaged over a num-
ber of repair trials (a trial is one run of the GP) each with
different random seeds. Results on the smaller benchmarks
in Table 1 are computed over 100 trials per tested repair sce-
nario. The number of trials per bug for experiments using
the larger benchmarks in Table 2 ranges from 10 to 20. We
limited the number of trials to conserve resources, as we ran
these experiments in a commercial cloud environment. We
performed sufficient trials per experiment to report statisti-
cally significant results, and we report significance in terms
of α (probability of an outcome under the null hypothesis)
where applicable.

probability of the outcome under the null hypothesis)

4.2 Representation
In this subsection, we directly compare the patch and

ast/wp representations. We ran GenProg on each bench-
mark in Table 1, testing both representations with and with-
out the WP One-Point crossover operator (for direct com-
parison) and with and without the semantic check operator.
We implement the WP one-point crossover in the patch rep-
resentation by mapping the edits in the patch list to their
corresponding statements in what would be the Weighted
Path in the ast/wp representation (determined via the ex-
ecution of the test cases), choosing a point along that path,

1These experiments were run in the Amazon EC2 cloud com-
puting environment; wall-clock time is thus conservative to
compensate for slower virtualized machine I/O.



Semantic Success
Representation Crossover Check Ratio

ast/wp
Yes No 0.85
No Yes 0.94
Yes Yes 1.00

patch
Yes No 0.95
No Yes 1.01
Yes Yes 1.14

Table 3: Repair success ratios between ast/wp and
patch representation, with and without crossover
and semantic check. Success ratios are normal-
ized to the best performance of the ast/wp repre-
sentation (with crossover and the semantic check).
Higher is better. Experiments conducted on Table
1 benchmarks.

Crossover Operator Success Fitness Evals Req’d

No Crossover 54.4% 82.43
Patch Subset 61.1% 163.05
WP One-Point 63.7% 114.12
Patch One-Point 65.2% 118.20

Table 4: Success rates and effort to repair for differ-
ent crossover operators using the patch representa-
tion. Higher success rates are better; lower number
of fitness evaluations to find a repair are better.

and crossing over the edits that affect statements before and
after that point.

Table 3 shows results, in terms of success rate ratio.2 Re-
sults are normalized to the ast/wp representation including
both crossover and the semantic check The semantic check
strongly influences the success rate of both representations.
Overall, patch outperforms ast/wp. We conclude that the
patch representation, in addition to its scalability advan-
tages for larger programs, provides a significant advantage
over the ast/wp representation for the purposes of source-
level evolutionary program repair.

4.3 Crossover
This subsection evaluates the role of crossover in the patch

representation. We compare Patch Subset, Patch One-
Point, WP One-Point (simulated in the patch representa-
tion as described in Section 4.2), and No Crossover repair
scenarios. To isolate the influence of crossover, we restricted
attention to programs with runs (using default parameters)
that produced minimized repairs consisting of multiple mu-
tations (suggesting that crossover might be important). We
then reran GenProg on each such program, testing the dif-
ferent crossover operators.

Table 4 reports results in terms of GP success rate (higher
is better) and repair effort (fitness evaluations; lower is bet-
ter). Patch One-Point crossover finds repairs more often
than all other options (α < 0.05), and the difference in repair
time between it and WP Patch is not statistically signif-
icant. By contrast, the Patch Subset operator leads to
significantly longer repair times (α < 0.05). Interestingly,
leaving out crossover reduces repair time (α < 0.05), but

2Average number of fitness evaluations to find a repair is
equivalent between representations on this benchmark set,
and therefore not shown.

Initial Repairs Final Repairs
Program Ins Del Rep Ins Del Rep

fbc 1.00 5.00 3.00 0.00 1.00 1.00
gmp 2.50 1.00 2.00 0.00 0.50 1.00
gzip 0.63 0.88 0.38 0.38 0.38 0.25
libtiff 0.54 0.97 0.76 0.25 0.39 0.47
lighttpd 0.61 1.22 1.14 0.04 0.31 0.65
php 0.26 0.46 0.48 0.18 0.39 0.45
python 0.33 0.70 0.17 0.00 0.80 0.20
wireshark 0.60 0.70 0.80 0.22 0.33 0.56

average 0.51 0.85 0.74 0.13 0.51 0.57

Table 5: GP operator frequency per repair on the
baseline parameter set. “Initial” reports the fre-
quency of insertions, deletions, and replacements in
initial repairs; “Final” reports the same information
for minimized repairs.

also significantly reduces the GP success rate (α < 0.01). A
possible explanation for these two results is that the bugs on
which repair takes longer are also less likely to be repaired
without crossover.

These results suggest that Patch One-Point crossover is
preferable because it affords the best compromise between
success rate and repair effort. It performs comparably to
WP One-Point crossover in terms of repair effort (and is
about 30% faster than the Patch Subset operator), but
it significantly outperforms the other operators in terms of
success rate by 2–10%.

4.4 Operators
This subsection quantifies the contribution of the differ-

ent mutation operators in successful repairs and empirically
evaluates the effect of an unequal operator selection proba-
bility function.

By default, GenProg selects between the three mutation
types with equal random probability. However, the opera-
tions do not appear equally often in successful runs on the
larger benchmark suite. Table 5 reports results, both for
initial and for minimized repairs. The operator distribution
for initial repairs on this benchmark set is closer to uniform
(insert : delete : replace :: 1 : 1.7 : 1.45) than was ob-
served in previous work [10]. We hypothesize that this is a
result of a larger and more indicative benchmark set. For
final repairs, however, the distribution appears much more
strongly skewed in favor of deletions and replacements (1
: 3.84 : 4.3). Note that although performance does not
change significantly when swap is used instead of replace,
replace appears to be more important to these repairs than
swap was in previous work.

These results suggest that the different mutation types
are not equally important to the repair search. To test this
hypothesis, we modified the operator selection probabilities
to match the observed distribution (using 10-fold cross val-
idation [13] to mitigate the threat of overfitting). We then
ran new repair trials on a subset of the benchmarks.

Results are shown in Figure 1 (success rate) and Figure 2
(repair time). This setup did not lead to repairs to pre-
viously unrepaired bugs. However, both figures show that
results vary significantly by the difficulty of the search prob-
lem, as measured by success rate using the default param-
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Figure 1: GP success rate for two mutation operator
selection functions, binned by initial default success
rate. Higher is better. The “Equal” selection func-
tion chooses between possible mutation operators
with equal random probability. The “Observed” se-
lection function is weighted to match the observed
distribution of operators in automatic repairs.

eter set. On balance, the search benefits from tuning the
operator selection function. For bugs that GenProg repairs
easily on the default parameter set, modifying the operator
selection function does not significantly alter performance.
On the most difficult bugs, defined as those on which the
default parameter set is the least successful, tuned mutation
distribution increased success rate by 8.9% and decreased
repair time by 40%, respectively (α < 0.05 for both).

4.5 Search Space
This subsection studies the weighting scheme used to di-

rect mutation operators to particular areas of a program
under repair. It seems intuitive that statements executed
exclusively by the negative test cases are the most likely
source of error and therefore should be the target of genetic
modifications. The default parameter set weights such state-
ments ten times more highly than those executed by both
negative and positive test cases.

Table 6 classifies the statements modified in actual repairs
according to whether they are executed exclusively by the
negative test case or by both the positive and the negative
test cases.3 The data are extremely noisy. However, we
observe that the vast majority of repairs do not follow the
10:1 ratio of the default weighting scheme. Over all repairs,
the ratio of statements executed solely by the negative test
cases to those executed by both negative and positive test
cases averages to 1 : 1.85.

The results in Table 6 suggest that the 10:1 path weighting
scheme of previous work may not be optimal. To test this
hypothesis, we tried two additional weighting schemes on a
subset of the benchmarks: a Realistic weighting scheme ap-
proximating the observed average, and an Equal weighting
scheme, in which all statements along the negative path re-

3We report data for initial (unminimized) repairs; the dis-
tribution for minimized repairs is similar.
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Figure 2: Fitness evaluations to a repair for two mu-
tation operator selection functions, binned by suc-
cess rate with default parameters. Lower is better.
The “Equal” selection function chooses between pos-
sible mutation operators with equal random proba-
bility. The“Observed”selection function is weighted
to match the observed distribution of operators in
automatic repairs.

ceive weight 1.0 (to mitigate against overfitting, as the data
are extremely noisy, and to establish a baseline).

Figure 3 and Figure 4 show results in terms of success rate
and number of fitness evaluations needed to find a repair. As
with previous experiments, results are more striking for more
difficult repairs. Both new weighting schemes let the GP re-
pair a bug on which the default weighting scheme failed.
With the exception of searches on which the default weight-
ing scheme acheived 100% success, the alternative weighting
schemes significantly (α < 0.05 for both metrics) outperform
the default scheme: success rates increase, and repair times
decrease. The differences on the 100% bugs, while statis-
tically significant, are small in terms of both percentages
and wall-clock time. On the other hand, the new weighting
schemes require only 25% and 50% of the time taken by the
default weighting scheme on the more difficult repairs.

In practice, automatically-generated repairs do not mod-
ify the “exclusively negative” statements ten times more of-
ten than they do the “negative and positive” statements. On
our dataset, both alternative weighting schemes provide per-
formance comparable to the 10:1 default on the bugs where
the default succeeds easily, while outperforming it, in some
cases considerably, on more “difficult” bugs, to the point of
finding one additional repair.

4.6 Limitations
Our results provide concrete suggestions for operator and

representation choices for evolutionary program repair. How-
ever, several caveats apply. The benchmark programs, par-
ticularly those used to compare the patch and ast/wp rep-
resentations, may not be representative of the spectrum of
defective programs. We mitigate this threat by selecting
these programs from a variety of domains and to be explic-
itly comparable to previous work [10, 28]. The benchmark
set used for the majority of our experiments is large, gen-



Num
Program repairs Neg. Only Neg. or Pos.

fbc 1 50% 50%
gmp 2 14% 86%
gzip 8 36% 64%
libtiff 136 72% 28%
lighttpd 34 99% 1%
php 181 52% 48%
python 6 71% 29%
wireshark 9 100% 0%

Table 6: Location of successful repairs. “Num Repi-
ars” shows the number of unique repairs. “Neg.
Only” reports the average percentage of the state-
ments modified by a repair that are executed only
by the negative test case. “Neg. or Pos.” is similar,
but reports percentages for statements executed by
both positive and negative test cases.
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Figure 3: Repair effort (number of fitness evalua-
tions to first repair) for the “Default”, “Realistic”,
and “Equal” path weighting schemes, binned by suc-
cess on the default parameter set. Lower is better.

erated systematically, and taken from real-world bugs in C
programs, and thus is hopefully more indicative. This EC
technique by necessity is limited in terms of what kind of
bugs it can address; we do not claim that these results are
generalizable to all bugs in all programs. Different choices
may result in better performance on different bug classes.
Additionally, in the pursuit of a controlled study and in the
interest of brevity, we have made heuristic choices for a num-
ber of parameters, such as population size, tournament size,
and mutation rate. We expect that an EC-based program
repair approach is likely also sensitive to these parameter
choices, but leave a parameter sweep for future work.

To guard against the risks of inappropriate or unindicative
statistical results, we used nonparametric tests on smaller
datasets to mitigate the risk of data that are not normally
distributed. While our computational setup limits the num-
ber of trials we can run, we quantify α wherever applicable
to increase confidence that the results are significant. We use
cross- validation to mitigate the threat of overfitting where
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Figure 4: Repair success for the “Default”, “Real-
istic”, and “Equal” path weighting schemes, binned
by success on the default parameter set. Higher is
better for success rate. Both the Equal and Realis-
tic weighting schemes outperform Default in terms
of overall success rate (α < 0.05).

applicable and a uniform baseline for the search space exper-
iments, when the distribution is too noisy to be significant.

5. CONCLUSIONS
EC-based software transformation is a promising tech-

nique for a number of applications. Despite its recency,
several different representation and operator choices have
already arisen, and it is timely to evaluate them in depth as
the field matures. We focused on representation and opera-
tor choices at the source-code level and conclude with sev-
eral concrete suggestions for evolutionary program repair in
a framework like GenProg.

First, in addition to the scalability benefits afforded by
storing individual variants as small lists of edits instead of
entire program source trees, patch is more effective than
the ast/wp representation in terms of repair success. The
semantic check contributes importantly to repair success re-
gardless of representation.

Second, a one-point crossover operator over the patch rep-
resentation (Patch One-Point) offers the best tradeoff be-
tween repair success and time. It found repairs 28% faster
than the patch subset crossover operator with a 4% im-
provement in success rate. Omitting crossover also decreases
repair time, but it does so at the expense of success rate.

Third, delete is the most useful mutation operator of
those we tested, followed by replace or swap (which are
roughly equivalent), followed by insert. A biased mutation
selection technique improves both success rate and repair
time, particularly for more challenging repairs. On these
examples, a biased operator selection function improved suc-
cess rate from 25.0% to 33.9%, and decreases repair time by
40%.

Finally, the assumption that statements executed exclu-
sively by negative test cases should be weighted much more
heavily than those executed by both the positive and neg-



ative test cases is flawed: The actual distribution of modi-
fications in final repairs, by and large, does not agree with
this assumption. Changing this distribution improves both
success rates and repair time, particularly on the more chal-
lenging bugs; on such examples, time to repair improves by
up to 70%. Doing so also allows GenProg to repair bugs on
which the default setup fails.

Taken together, these results suggest that operator choice,
program representation, and probability distributions do in-
dividually matter, especially for difficult bugs. Although the
features that contribute to bug repair difficulty warrant fur-
ther study, the results in this paper suggest strongly that
there are clear distinctions, and the more difficult examples
are the most sensitive to such choices. In the end, these
apparently disjoint features combine synergistically. When
we modify our default parameter set with the recommenda-
tions outlined above and rerun the repair scenarios from [16],
GenProg automatically repairs 5 additional bugs (60 vs. 55),
and repair time decreases by 17–43% for the more difficult
search scenarios.
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