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ABSTRACT
A significant challenge in genetic programming is premature
convergence to local optima, which often prevents evolution
from solving problems. This paper introduces to genetic pro-
gramming a method that originated in neuroevolution (i.e.
the evolution of artificial neural networks) that circumvents
the problem of deceptive local optima. The main idea is
to search only for behavioral novelty instead of for higher
fitness values. Although such novelty search abandons fol-
lowing the gradient of the fitness function, if such gradi-
ents are deceptive they may actually occlude paths through
the search space towards the objective. Because there are
only so many ways to behave, the search for behavioral nov-
elty is often computationally feasible and differs significantly
from random search. Counterintuitively, in both a deceptive
maze navigation task and the artificial ant benchmark task,
genetic programming with novelty search, which ignores the
objective, outperforms traditional genetic programming that
directly searches for optimal behavior. Additionally, novelty
search evolves smaller program trees in every variation of the
test domains. Novelty search thus appears less susceptible
to bloat, another significant problem in genetic program-
ming. The conclusion is that novelty search is a viable new
tool for efficiently solving some deceptive problems in ge-
netic programming.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Genetic programming, Premature convergence, Program bloat,
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1. INTRODUCTION
A prominent problem in genetic programming (GP) is pre-

mature convergence to local optima [6, 12, 14, 22], wherein
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genetic diversity is extinguished before the objective is dis-
covered, leaving the search trapped in a dead end. Such
premature convergence is caused by individuals that appear
promising yet have only a weak relationship to the ultimate
objective of the search. Prior experiments in neuroevolution
(i.e. the evolution of artificial neural networks) have shown
that sometimes searching only for behavioral novelty can ef-
fectively circumvent such deception [13, 19, 21, 25]. The idea
in this paper is to introduce novelty search to GP as a new
tool for solving deceptive genetic programming problems.

Fitness functions that quantify and encourage progress to-
wards the goal of an evolutionary search are ubiquitous in
evolutionary computation (EC) and GP. Such fitness func-
tions are instances of objective functions, which estimate
the distance to an objective and are pervasive throughout
machine learning [18, pp. 97–100,188–190,194,236–238,255–
266,370–373]. However, by optimizing an objective function,
search can be deceived into converging to local optima from
which no local step in the search space can improve the value
of the objective function. The problem is that the objective
function does not necessarily reward the stepping stones in
the search space that ultimately lead to the objective.

In this way, guiding search by the compass of fitness may
often prune stepping stones from the search space; individ-
uals that are stepping stones but have low fitness may be
discarded in favor of high-fitness individuals that represent
local optima in the search space. The effect of such pruning
is to progressively close the search space by concentrating
on increasingly specific areas. In contrast, natural evolu-
tion, which has no final objective, is more open-ended and
maintains an increasing diversity of individuals [3, 27].

An important property of natural evolution is that it con-
tinually produces novel forms [3, 27]; throughout evolution,
an increasing variety of such novel forms have been main-
tained, which act as stepping stones to further novelty. Thus,
instead of funneling search towards local optima as in objective-
based search, natural evolution tends to diverge, continually
finding new organisms that live in different ways.

This perspective leads to the key idea: Instead of search-
ing directly for the objective, which through deception may
prevent the objective from actually being reached, searching
only for novelty may itself be a viable approach to search.
Thus this paper introduces to GP the novelty search algo-
rithm, which searches with no objective other than contin-
ually finding novel behaviors in the search space. Such an
algorithm is immune to deception because it searches for
nothing in particular, i.e. only what is different from what
has been seen before. Furthermore, because there are only



so many ways to behave, a search for novelty may discover
the solution to a problem without any direct selection pres-
sure towards that solution. Finally, novelty search avoids
premature convergence because it is a divergent algorithm;
the novelty of a behavior is inversely proportional to the
amount of individuals that display that behavior.

To demonstrate the effectiveness of novelty search, in this
paper it is compared to traditional objective-based search
and random search in a deceptive robot maze navigation
task [13, 19] and the artificial ant benchmark task [4, 9,
12, 20]. Counterintuitively, novelty search, which ignores
the objective, evolves successful maze navigators and food-
gathering ants more consistently.

Yet this paper goes beyond confirming that novelty search
works in GP as as in neuroevolution. Another important dis-
covery is that the solutions evolved by novelty search have
consistently smaller program trees. An examination of pro-
gram growth dynamics reveals that novelty search does not
seem to be susceptible to continuous program bloat in the
same way that fitness-based search is. This result is impor-
tant because bloat is a significant problem in GP [11, 23, 26].

The conclusion is that by abstracting the process through
which natural evolution discovers novelty, it is possible to
derive an open-ended search algorithm that solves some GP
problems more consistently and with more succinct program
trees than a method that directly searches for the objective.
Novelty search overcomes the problems of deception and lo-
cal optima inherent in objective optimization by ignoring the
objective, and may be a promising new tool for efficiently
solving deceptive GP problems.

2. BACKGROUND
This section reviews deception in GP, examines how the

search space can be made more open in a principled way,
and explains novelty search.

2.1 Deception in Genetic Programming
The original definition of deception by Goldberg [7] is

based on the building blocks hypothesis, in which small ge-
netic building blocks may be integrated by crossover to form
larger blocks [8]. In the original conception, a problem is
deceptive if lower-order building blocks, when combined, do
not lead to a global optima. The basic idea is that search
may be deceived if there is no path through the search space
from a seemingly-promising preliminary individual to an in-
dividual that solves the problem.

Deception is related to premature convergence, a challeng-
ing problem in GP [1, 2, 6, 12, 14, 15, 22]. GP and other
search methods are often seen as operating in two phases,
an exploration phase followed by an exploitation phase. In
the exploration phase, a diversity of potential solutions are
examined, while in the exploitation phase, diversity is sac-
rificed to allow more intensive search in promising areas of
the search space. Premature convergence results when none
of the exploited areas of the search space lead to a solution.

The relationship between premature convergence and de-
ception is that a deceptive fitness function will create many
local optima to which search may converge, making prema-
ture convergence more likely. The pathologies of deception
and premature convergence have been documented for GP
applied to various domains, such as the artificial ant prob-
lem [12], the MAX problem [6], RoboCup soccer [14], and
minimal sorting networks [22].

Because premature convergence is an acknowledged prob-
lem in GP, there exist a variety of methods to mitigate such
convergence [1, 2, 15, 22]. Researchers may combat prema-
ture convergence by adjusting the fitness function through
trial and error [14]; higher mutation rates may increase di-
versity [1], as may larger population sizes [15]. Other ap-
proaches actively encourage diversity by replacing the most
similar programs [15], maintaining a variety of genetic lin-
eages [2], or maintaining a variety of behaviors [28].

However, in all of these methods, the radical step of es-
chewing the fitness function is not taken. Yet the problem
is that the fitness function is the root cause of the decep-
tive local optima that act as attractors to objective-based
search; if the stepping stones needed to solve a problem do
not lie conveniently along the gradient of the fitness func-
tion, search may fail. Thus, given a sufficiently uninforma-
tive fitness function, these methods are still vulnerable to
early convergence because they still rely on the potentially
misleading compass of fitness.

The next section describes ways in which the search space
can be opened up to allow more points in the search space
to be reachable by the search algorithm.

2.2 Opening Up the Search Space
Most EC algorithms are convergent ; selection pressure in

such algorithms prunes an increasing amount of the search
space to focus resources on highly-specific high-fitness ar-
eas. That is, selection pressure restricts search by mandat-
ing that only high-fitness individuals and their high-fitness
offspring will be considered for future evolution [16]. Thus
search can fail when selection pressure prunes areas of the
search space that contain the stepping stones necessary to
reach the ultimate objective.

The problem is that the fitness function is only a heuristic
measure of progress to the goal; sometimes improving fitness
requires taking steps in the search space that at first appear
deleterious [24]. That is, sometimes relaxing the pressure to
perform is beneficial to search because it opens up the search
space (i.e. more points in the search space are reachable
by the algorithm), which may allow it to escape from local
optima. However, when such relaxation is maximized and
every point in the search space is equally viable, the result
is a random search: The search space is completely open
because every point is reachable, but the search is inefficient
and without principle. In other words, there is a trade-off
in objective-based search between exploration of the search
space and exploitation of promising areas.

However, in deceptive problems, the compass of fitness
fails to reward the stepping stones needed to ultimately solve
the problem. If these stepping stones lie far from the paths
through the search space defined by the gradients of the fit-
ness function, then it may take an unreasonably long time for
any amount of exploration to happen upon them by chance.
In these cases, the most logical step, although it may at first
appear radical, is to discard the flawed guidance of objective
fitness.

What is needed to replace objective fitness is a principled
way to guide search that respects the stepping stones by
opening up the search space. In this spirit, it is instructive
to consider natural evolution, the prototypical example of a
search process without a final objective.

In contrast to most EC models, natural evolution is di-
vergent, finding a seemingly boundless variety of living or-



ganisms; that is, evolution continually produces novel forms
[27]. While selection driven by a traditional fitness func-
tion closes the search space by always funneling search to-
wards the increasingly fewer individuals that have better fit-
ness, the way by which natural evolution discovers novelty
is open-ended; each novel organism is a potential jumping-
off point for discovering further novelty. In this way, the
search space is more open because there are more potential
stepping stones; each novel organism allows for new oppor-
tunities. These considerations led Lehman and Stanley [13]
to conclude that searching for novelty may itself be a pow-
erful search technique.

The next section explains such novelty search, which will
be combined with GP in the experiments in this paper.

2.3 The Search for Novelty
Recall that the problem identified with the objective func-

tion is that it does not necessarily reward the intermediate
stepping stones that lead to the objective. The more ambi-
tious the objective, the harder it is to identify a priori these
stepping stones.

The suggested approach is to identify behavioral novelty
as a proxy for stepping stones [13]. That is, instead of search-
ing for a final objective, the learning method is rewarded for
finding any instance whose functionality is significantly dif-
ferent from what has been discovered before. Thus, instead
of an objective function, search employs a novelty metric.
That way, no attempt is made to measure overall progress.
If natural evolution is abstracted as a process that passively
accumulates novel forms, novelty search is an explicit accel-
eration of such accumulation.

For example, in a maze navigation domain, initial at-
tempts might run into a wall and stop. In contrast to an
objective function, the novelty metric would reward sim-
ply running into a different wall regardless of whether it is
closer to the goal or not. In this kind of search, individu-
als are maintained that represent the most novel discoveries.
Further search then jumps off from these behaviors. After a
few ways to run into walls are discovered, the only way to
be rewarded is to find a behavior that does not hit a wall
right away. Eventually, to do something new, a navigator
will have to successfully navigate the maze even though it is
not an objective.

Novelty search succeeds where objective-based search fails
by rewarding the stepping stones. That is, anything that is
genuinely different is rewarded and promoted as a jumping-
off point for further evolution. While we cannot know which
stepping stones are the right ones, if we accept that the
primary pathology in objective-based search is that it can-
not detect the stepping stones at all, then that pathology is
remedied.

In fact, there have been several successful applications of
novelty search in neuroevolution [13, 19, 21]. Novelty search
was introduced in Lehman and Stanley [13] and applied to a
deceptive maze task in a continuous world with real-valued
sensors and effectors (in contrast to the discrete version of
the maze task introduced here); these results were repli-
cated in Mouret [19] and combined with a multi-objective
evolutionary algorithm. Two independent works have also
demonstrated that behavioral novelty is useful in evolving
adaptive neural networks (i.e. neural networks that learn
during an evaluation) [21, 25].

The next section introduces the novelty search algorithm

in the context of GP by replacing the objective function with
the novelty metric and formalizing the concept of novelty.

3. THE NOVELTY SEARCH ALGORITHM
FOR GP

Evolutionary algorithms such as GP in general are well-
suited to novelty search because the population that is cen-
tral to such algorithms naturally covers a range of behaviors.
In fact, tracking novelty requires little change to any evolu-
tionary algorithm aside from replacing the fitness function
with a novelty metric. In the past this idea was applied to
neuroevolution, which evolves the topologies and weights of
neural networks, suggesting that novelty search should also
work when evolving the structure of programs.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, novelty search rewards diverg-
ing from prior behaviors. Therefore, novelty needs to be
measured. It is important to note that this conception of
novelty is the same as it was in neuroevolution (i.e. reward-
ing novel behaviors, not novel genotypes [13]).

There are many potential ways to measure novelty by an-
alyzing and quantifying behaviors to characterize their dif-
ferences. Importantly, like the fitness function, this measure
must be fitted to the domain.

The novelty of a newly generated individual is computed
with respect to the behaviors (i.e. not the programs them-
selves) of an archive of past individuals and the current pop-
ulation. The archive is initially empty, and individuals’ be-
haviors are added to it probabilistically to penalize future
individuals that exhibit previously explored behaviors.

The novelty metric is designed to characterize how far
away the new individual is from the rest of the popula-
tion and its predecessors in behavior space, i.e. the space of
unique behaviors. A good metric should thus compute the
sparseness at any point in the behavior space. Areas with
denser clusters of visited points are less novel and therefore
rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. In-
tuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense
region if the average distance is small. The sparseness ρ at
point x is given by

ρ(x) =
1

k

kX
i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population
and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to
note that this novelty space cannot be explored purposefully,
that is, it is not known a priori how to enter areas of low
density just as it is not known a priori how to construct a
solution close to the objective. Thus, moving through the
space of novel behaviors requires exploration.



In previous work, individuals were added to the perma-
nent archive either deterministically if their novelty score
was sufficiently high or nondeterministically with a small
probability [13, 21]. However, adding a highly novel indi-
vidual to the archive has the disadvantage that it penalizes
an area of the behavior space that may merit further ex-
ploration. Thus, in the experiments in this paper, every
individual is eligible to be added to the archive with a fixed
probability. The effect of such probabilistic sampling is that
the permanent archive approximately characterizes the dis-
tribution of prior solutions in behavior space without push-
ing search away from newly discovered areas. The current
generation plus the archive give a comprehensive sample of
where the search has been and where it currently is; that
way, by attempting to maximize the novelty metric, the gra-
dient of search is simply towards what is new, with no other
explicit objective.

The novelty search approach in general allows any be-
havior characterization and any novelty metric. Although
generally applicable, novelty search is best suited to do-
mains with deceptive fitness landscapes, domain constraints
on possible behaviors, and intuitive behavioral characteri-
zation. Changing the way the behavior space is character-
ized and the way characterizations are compared will lead
to different search dynamics, similarly to how researchers
now change the objective function to improve the search.
The intent is not to imply that setting up novelty search
is easier than objective-based search. Rather, once novelty
search is set up, the hope is that it can find solutions be-
yond what even a sophisticated objective-based search can
currently discover. Thus, the effort is justified in its returns.

One might argue that this approach simply replaces one
objective function with another, because novelty is being
maximized just as fitness was. However, conceptually the
two are different; novelty creates a gradient of behavioral
difference, whereas fitness creates a gradient towards the ob-
jective. Maximizing fitness is done with the intent of bring-
ing the search towards the objective (i.e. a specific region of
the search space), while maximizing novelty is done with-
out any concept of where the search should terminate or
even what general direction it should take within the search
space. In other words, novelty search does not describe a
point or set of points (i.e. the objective) in the search space
towards which the search is aimed.

Once objective-based fitness is replaced with novelty, the
underlying GP algorithm operates as normal, selecting the
most novel individuals to reproduce. Over generations, the
population spreads out across the space of possible behav-
iors. In effect, because novelty search is a generic algorithm
that does not operate on the underlying representation, it is
easily applied to GP without significant modification.

4. EXPERIMENTS
Good domains for testing novelty search should have de-

ceptive fitness landscapes. In such domains, search algo-
rithms following the gradient of fitness may perform worse
than the search for novelty because novelty search cannot be
deceived; it ignores the objective entirely. Furthermore, to
examine whether the performance of novelty search in GP is
different from that of a random search, as was demonstrated
in prior neuroevolution experiments [13], these experiments
also test GP with an alternate reward scheme that assigns
a random fitness value to each individual.

(a) Medium Map (b) Hard Map

Figure 1: Maze Navigation Maps. In both maps, the

circle represents the starting position of the robot and

the grey square represents the goal that the robot at-

tempts to reach. Black squares are walls. Cul-de-sacs

and occlusions in both maps that prevent direct passage

to the goal create the potential for deception.

An easily-visualized domain with the potential for decep-
tion is a two-dimensional maze navigation task. A reason-
able fitness function for such a domain is how close the maze
navigator is to the goal at the end of the evaluation. Thus,
dead ends or occlusions that are near to the goal are local
optima to which an objective-based algorithm may converge,
which makes a good model for deceptive problems in gen-
eral. This domain is similar to the maze problem described
in Soule [26], and was also tested successfully with novelty
search in neuroevolution [13].

Another deceptive domain is the artificial ant problem, in
which an ant attempts to navigate a trail while collecting
food. It is a common GP benchmark domain [4, 9, 12, 20],
and is so deceptive that GP often performs little better than
random search [12].

The experiments in this paper were conducted with a ver-
sion of the lilGP genetic programming distribution [30] ex-
tended with an implementation of novelty search that is gen-
erational as in Mouret [19], as opposed to the steady-state
implementation in Lehman and Stanley [13].

4.1 Maze Experiment
The maze domain works as follows. A robot controlled

by a genetic program must navigate from a starting point
to an end point within a fixed amount of time. The task is
complicated by occlusions and cul-de-sacs that prevent a di-
rect route and create local optima in the fitness landscape.
The robot can move forward, turn, and act conditionally
based on whether there is a wall directly in front of it or
not. A robot is successful in the task if it reaches the goal
location. This setup is similar to the original novelty search
neuroevolution experiment in Lehman and Stanley [13]. Ta-
ble 1 describes the parameters of the experiment.

Two maps are designed to compare the performance of
GP with fitness-based search and GP with novelty search.
The first (figure 1a) has an occlusion that blocks the most
direct path to the goal. To reach the goal, the robot must
learn a behavior unrelated to the locally optimal behavior of
simply crashing into the occlusion. The second maze (figure
1b) provides a more deceptive fitness landscape that requires
the search algorithm to explore areas of significantly lower
fitness before finding the global optimum (which is a network
that reaches the goal).

Fitness-based GP, which will be compared to novelty search,
requires a fitness function to reward maze-navigating robots.



Objective: Find a robot that navigates the maze
Terminal set: Left (turn left), Right (turn right), Move (move for-

ward one square)
Functions set: IfWallAhead (execute one of two child instructions

based on whether there is a wall directly ahead), Prog2
(sequentially execute the two child instructions)

Fitness cases: Medium Maze and Hard Maze
Wrapper: Program repeatedly executed for 100 time steps for

the medium maze or 400 time steps for the hard maze
Population Size: 1, 000
Termination: Maximum number of generations = 1, 000

Table 1: Parameters for the Maze Problem.

Because the objective is to reach the goal, the fitness f is
defined as the distance from the robot to the goal at the end
of an evaluation: f = bf − dg, where bf is the maximum
distance possible and dg is the distance from the robot to
the goal. Given a maze with no deceptive obstacles, this fit-
ness function defines a monotonic gradient for search. The
constant bf ensures all individuals will have positive fitness.

GP with novelty search, on the other hand, requires a nov-
elty metric to distinguish between maze-navigating robots.
Defining the novelty metric requires careful consideration
because it biases the search in a fundamentally different way
than the fitness function. The novelty metric determines
the behavior-space through which search will proceed. It
is important that the type of behaviors that one hopes to
distinguish are recognized by the metric.

Thus, for the maze domain, the behavior of a navigator is
defined as its ending position. The novelty metric is then the
Euclidean distance between the ending positions of two in-
dividuals. For example, two robots stuck in the same corner
appear similar, while one robot that simply sits at the start
position looks very different from one that reaches the goal,
though they are both equally viable to the novelty metric.

This novelty metric rewards the robot for ending in a place
where none have ended before; the method of traversal is
ignored. This measure reflects that what is important in
a maze is reaching a certain location (i.e. the goal) rather
than the method of locomotion. Thus, although the nov-
elty metric has no knowledge of the final goal, a solution
that reaches the goal will appear novel. Furthermore, the
comparison between fitness-based and novelty-based search
is fair because both scores are computed only based on the
distance of the final position of the robot from other points.

4.2 Artificial Ant Experiment
In the artificial ant problem, a simulated ant embedded in

a toroidal two-dimensional grid attempts to collect as much
food as possible [4, 9, 12, 20]. The food is laid out in a trail in
the grid, but there are gaps in the trail such that the agent
must infer the missing steps of the trail. The problem is
deceptive because policies with no principle can nonetheless
capture many units of food by chance although they are not
ultimately precursors to a policy able to capture all the food.
The ant is controlled by a genetic program that allows it to
turn, move, and conditionally act based upon whether food
is in front of it or not. The parameters of the artificial ant
experiment are described in table 2.

The artificial ant experiment in this paper follows the for-
mulation in Koza [9] and is attempted on both the Sante Fe

and Los Altos trails. The Santa Fe trail is shorter, while the
Los Altos trail is longer and harder to follow. In both maps,
a successful individual is one that collects all of the food.

Fitness-based GP requires a fitness function to reward
ants. Because the objective is to collect all of the food in
the trail, the fitness function is the amount of food that the
ant collects, which is customary on this problem [9].

GP with novelty search requires a novelty metric to dis-
tinguish between ant behaviors so that novelty can be quan-
tified. A simple way to characterize behavior in this domain
is to sample how much food has been collected by the ant
at several evenly-spaced times during an evaluation. This
measure frames behavior in terms of collecting food, which
is the action of interest; a novel individual must do some-
thing different with respect to collecting food.

Sampling this value over time allows search to differentiate
behaviors that ultimately collect the same amount of food by
different means. It is important to note that characterizing
behavior as the amount of food collected does not mean
that novelty search will necessarily seek higher values of food
collected, but rather different temporal sequences of food
collected during an evaluation. The novelty metric is the
same as in the maze domain (i.e. the Euclidean distance
between two behavioral characterization vectors).

4.3 Experimental Parameters
All experiments were run with a modified version of the

lilGP package with the standard settings according to Koza
[10], including tournament selection and half and half ini-
tialization. The number of generations was significantly ex-
tended from the formulation in Koza [9] from 50 to 1, 000 so
that long-term program growth patterns could be observed.
The population size in all experiments was 1, 000.

Because GP with novelty search differs from traditional
GP only in substituting a novelty metric for a fitness func-
tion, they both share the same parameters from Koza [9] ex-
cept that novelty search is given a smaller tournament size
(two), which reduces selection pressure so that what is novel
does not drastically change from generation to generation.
It is important to note that when traditional fitness-based
GP was given a smaller tournament size in preliminary ex-
periments, overall performance was worse and the dynamics
of program growth were unaffected.

The number of neighbors checked in novelty search, k, was
set to 25, and is robust to moderate variation. An individ-
ual has a 0.05% chance to be added to the archive, which
means a new archive point is added every two generations
on average.



Objective: Find an ant that follows food trails
Terminal set: Left (turn left), Right (turn right), Move (move for-

ward one square)
Functions set: IfFoodAhead (execute one of two child instructions

based on if there is food directly ahead), Prog2 (se-
quentially execute the two children instructions)

Fitness cases: Santa Fe Trail and Los Altos Trail
Wrapper: Program repeatedly executed for 400 time steps for

Santa Fe Trail or 3, 000 time steps for Los Altos Trail
Population Size: 1, 000
Termination: Maximum number of generations = 1, 000

Table 2: Parameters for the Artificial Ant Problem.
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Figure 2: Performance Comparison. For each varia-

tion of the test domains, the proportion of the 200 runs

that are successful are shown for fitness-based GP, GP

with novelty search, and random-fitness GP. The main

result is that GP with novelty search evolves solutions

significantly more consistently than either fitness-based

GP or random-fitness GP (p < 0.01; Fisher’s exact test).

In the artificial ant problem, the amount of food the ant
collected was sampled eight times during an evaluation to
construct the behavioral characterization vector, which proved
robust to moderate variation during initial experiments.

5. RESULTS
200 trials were run for each variation of the maze and ar-

tificial ant problems with both fitness-based GP, GP with
novelty search, and random-fitness GP. As illustrated by
figure 2, in each task novelty search solves the task signifi-
cantly more often than fitness-based GP and random-fitness
GP (p < 0.01; Fisher’s exact test).

Interestingly, an analysis of evolved solutions shows that
for each of the domains, novelty search tends to evolve smaller
program trees than fitness-based search, as shown in figure
3. Note that only the first successful individual from each
run that solves the problem is included in these averages.
The differences are significant for each domain (p < 0.01;
Student’s t-test).

The dynamics of program growth during evolution are
shown in figure 4. Interestingly, instead of growing larger
as in fitness-based GP, program length stagnates and some-
times even declines in runs of GP with novelty search.
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Figure 3: Bloat Comparison. For each variation of

the test domains, the average size (number of nodes)

of the first solutions in runs evolved by GP with nov-

elty search and fitness-based GP is compared (lower is

better). In every variation, novelty search evolves signif-

icantly smaller program trees (p < 0.01; Student’s t-test).

6. DISCUSSION
The failure of fitness-based GP on the harder maze might

lead one to conclude that the Koza-style GP algorithm is at
fault; however, the problem is solved consistently when all
is kept the same except that behavioral novelty is rewarded
instead of estimated progress to the objective. This result
reconfirms the conclusion of Lehman and Stanley [13]: The
problem is not in the search algorithm itself but in how the
search is guided.

Precisely because objective fitness is a heuristic, there is
no guarantee that following its gradient will lead to the ob-
jective. As John Stuart Mill once said, it is a logical fallacy
to assume a priori that the “conditions of a phenomenon
must, or at least probably will, resemble the phenomenon
itself.” [17, p. 470]; that is, the steps to the objective may
not always resemble the objective. Novelty search makes
no assumption about which behaviors will lead to the ob-
jective. In this way, search can progress through various
stepping stones that superficially appear unrelated to the
objective yet may be crucial in ultimately reaching it.

The claim is not that novelty search will always be bet-
ter than an objective-based search; if the gradients of the
objective function are not deceptive, then a search focused
on the objective will likely find a solution faster than a
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(a) Medium Maze

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  200  400  600  800  1000

A
ve

ra
ge

 P
ro

gr
am

 S
iz

e

Generations

GP with Novelty Search
Fitness-based GP

(b) Hard Maze
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(c) Santa Fe Trail
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(d) Los Altos Trail

Figure 4: Program Growth During Search. The average size (number of nodes) of a program tree in the population

is shown as evolution progresses for GP with novelty search and fitness-based GP on the medium (a) and hard (b)

mazes, and the Santa Fe (c) and Los Altos (d) ant trails, averaged over all 200 runs of each approach. The main result

is that populations do not continually bloat with novelty search.

broader search for novelty. However, as problems increase in
complexity and difficulty, it becomes increasingly difficult to
craft a sufficiently accurate heuristic that does not deceive
search by leading it to locally optimal dead ends [5, 29].

An interesting discovery in this investigation is that nov-
elty search evolves smaller solutions than fitness-based search
in every domain. Because bloat is a prominent problem
in GP [11, 23, 26], this result further recommends novelty
search for GP. Furthermore, the growth curves in figure 4
demonstrate that the reduced bloat in novelty search is not a
simple consequence of it solving the problems faster. Rather,
novelty search effectively contains bloat throughout the runs
in every domain. A potential hypothesis to explain this
phenomenon is that while static fitness functions promote
bloat to protect program trees from destructive crossover
[11], in novelty search this “protective” bloat would actually
be maladaptive. That is, bloat buffers against behavioral
change, while in the search for novelty, behavioral change is
rewarded. Tentative evidence for this hypothesis is found in
Schmidt and Lipson [23], where a coevolutionary GP algo-
rithm (which also changes what is rewarded as search pro-
gresses) also evolved smaller programs when compared to
GP with a static fitness function.

Though giving up the false comfort found in pursuing
the objective goes against common assumptions about what
makes search work, novelty search demonstrates that some-
times abandoning the objective can paradoxically lead to it.
The successful application of novelty search to GP, following

successes in neuroevolution [13, 19, 21], begins to establish
the generality of the search technique itself and to suggest
the limitations of the currently ubiquitous objective-based
paradigm.

7. CONCLUSIONS
This paper introduced novelty search, an established method

from neuroevolution, to genetic programming. Motivated by
the problem of deceptive gradients in objective-based search,
novelty search ignores the objective and instead searches
only for individuals with novel behaviors. Counterintuitively,
experiments in a deceptive maze navigation task and the ar-
tificial ant task showed that novelty search can significantly
outperform objective-based search and evolve smaller pro-
grams. Thus novelty search is a new tool for solving difficult
genetic programming problems.
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