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Abstract

The &as if ' view of economic rationality defends the pro"t maximization hypothesis by
pointing out that only those "rms who act as if they maximize pro"ts can survive in the
long run. Recently, the problem of arriving at a logically consistent de"nition of rational
behavior in games has shown that one must sometimes study explicitly the evolutionary
processes that form the basis of this view. The purpose of this paper is to investigate the
usefulness of genetic programming as a tool for generating hypotheses about rational
behavior in situations where explicit maximization is not well de"ned. We use an invest-
ment decision problem with Knightian uncertainty as a borderline test case, and show that
when the arti"cial agents receive the same information about the unknown probability
distributions, they develop behavior rules as if they were expected utility maximizers with
Bayesian learning rules. ( 1999 Elsevier Science B.V. All rights reserved.

JEL classixcation: B41; C63; D83
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1. Introduction

Let S be a set of decision situations, and A a set of possible actions that can be
taken in those situations. A behavior theory is a function

F : SPA (1)
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that associates an action to each possible situation. The set of situations may be,
e.g. a class of games, in which case each element of A is a strategy, or S may be
a class of investment problems under uncertainty, and the elements of
A amounts invested.

In economics, the standard approach to constructing behavior theories is to
impose axioms on the function F that describe intuitive notions of rationality,
and then characterize the set of behavior theories that satisfy the axioms.
Familiar examples are consumer theory, Bayesian decision theory and game
theory, and a common theme in all of them is some form of explicit or implicit
maximization hypothesis.

Recently, it has become clear that there are logical problems associated with
extending the notion of Bayesian rationality to games: For example, Aumann
and Brandenburger (1995) have shown that when a game has more than one
Nash equilibrium, there is no guarantee that rational agents will end up in
a Nash equilibrium at all. And if one considers games with an explicit time
structure, there are a number of impossibility results that deny the existence of
any logically consistent de"nition of rational play in such games, even for very
weak intuitive notions of individual rationality (Basu, 1990; Bicchieri, 1989;
Reny, 1992).

An alternative to the axiomatic approach was suggested by Alchian (1950),
Friedman (1953) and Koopmans (1957), based on the idea of economic survival
of the "ttest, with pro"t maximization as an outcome of competition rather than
a premise for it. Koopmans argued that

If [survival] is the basis for our belief in pro"t maximization, then we should
postulate that basis itself and not the pro"t maximization which it implies in
certain circumstances 2 Such a change in the basis of economic analysis
would2 prevent us, for purposes of explanatory theory, from getting bogged
down in those re"nements of pro"t maximization theory which endow the
decision makers with analytical and computational abilities and assume them
to have information-gathering opportunities such as are unlikely to exist or
be applied in current practice (Koopmans, 1957), (pp. 140}141).

A beautiful demonstration of the power of this approach has been given by
LataneH (1959), Breiman (1961) and Hakansson (1971): In a context of investment
and capital accumulation under systematic risk, they show that in the long run,
all capital will be held by those investors who act as if they maximize expected
logarithmic utility, period by period. This result is interesting because it makes
no assumptions about the preferences or motivation of individual agents, and
yet produces extremely sharp predictions about aggregate behavior. Recently,
Blume and Easley (1992) have generalized this approach and extended it to
include the learning aspect of Bayesian rationality as well: Suppose the investors
have subjective beliefs about the probability distributions that determine returns
on investment, and suppose they maximize expected logarithmic utility given
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those beliefs. Then in the long run, all capital will be held by those investors who
act as if they use a Bayesian learning rule to update their beliefs.

The recent in#ux of ideas from biology to economics has had a parallel in
computer science, where it has produced a number of techniques for modeling
arti"cially intelligent agents of bounded rationality. This toolbox is of great
potential value to economists, who are concerned with closely related modeling
problems. Two examples of successful applications, based on the pioneering
work of Holland (1975), are Axelrod's (1987) use of a genetic algorithm to
analyze evolution of strategies in the "nitely repeated prisoners' dilemma, and
Marimon et al. (1987) study of evolution of a general medium of exchange in
a population of agents modeled as classi"er systems.

A recent addition to this toolbox is genetic programming (GP) (Koza, 1992),
which can be thought of as a technique for programming computers by natural
selection. For our purpose, each program is a behavior rule F

i
as de"ned in

Eq. (1). The GP algorithm uses a large population of competing rules F
i
whose

behavior F
i
(s) is repeatedly computed for randomly selected situations s3S and

evaluated to obtain a ranking of the rules in terms of "tness. Low-performing
rules are replaced by genetic recombinations of high-performing ones, and the
process continues until the whole population converges on some common behav-
ior rule F, which is then proclaimed the outcome of the evolutionary process.

This author believes that GP will prove to be a useful tool for studying
evolution of play in games with more than one Nash equilibrium. In this setting,
there is a need for alternative hypotheses about rational behavior that can be
subjected to theoretical investigation, and GP is a modeling technique which is
capable of generating such hypotheses. However, because the issue of rationality
is still unsettled for games with multiple Nash equilibria, it will be of interest to
"rst investigate whether GP is able to generate rational behavior in situations
where we know what rationality means. In this paper, we make an attempt in
that direction by considering a borderline case, which shares with games the
feature of leaving the agents in confusion about the probabilities they are facing,
while still permitting us to recognize rational behavior when we see it. It is
a version of LataneH 's (1959) investment decision problem, extended, as in Blume
and Easley (1992), to allow for uncertainty about the relevant probability
distributions. In contrast to Blume and Easley, we consider a situation with
persistent Knightian (Knight, 1921) uncertainty, meaning that the agents have
no a priori beliefs about returns on investments, and no learning rule that could
be used to arrive at such beliefs. Our main result is that, despite all this bounded
rationality, surviving agents act as if they knew the true prior, as if they used
Bayes' rule to update it with respect to the available information on the current
investment alternatives, and as if they maximized expected logarithmic utility
given the posterior.

The remainder of the paper is organized as follows: In Sections 2 and 3, we
describe the investment model, and give an outline of genetic programming in
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that context. Section 4 describes a typical run from the experiments, and
Sections 5 and 6 presents the results of 20 independent runs, along with analyses
of the deviations from Bayesian rational behavior. Section 7 concludes.

2. The investment model

Consider an economy operating during time periods t"1, 2,2,R, with
a set I :"M1,2,mN of agents, and two commodities; labor and a perishable
consumer good. Depending on the course of events so far, an agent may own
a "rm, in which case he is a capitalist, or he may be an entrepreneur about to start
one, or he may neither, in which case he is a worker. All agents supply one unit of
labor in each period, and they prefer more goods to less.

Let C
t
denote the set of capitalist-"rms when period t begins. Each "rm then

owns a prepaid labor contract with one or more agents, and we denote by wi
t
the

total amount of labor at the disposal of "rm i. Each "rm produces goods by
employing a fraction xi

t
3[0, 1] of its labor force in a risky technology, which

yields either 0 or 2 units of goods per unit labor input, and using the remaining
part 1!xi

t
in a riskless technology, which always yields 1 unit of goods per unit

labor input. If we let p8
t
be a random variable which is #1 in the good state and

!1 in the bad state, we may express the uncertain output q8 i
t
of "rm i in period

t as

q8 i
t
"wi

t
(1#p8

t
xi
t
). (2)

If the output of some "rm is zero, it goes bankrupt and its owner becomes
a worker. A worker may then choose to spend the next period as an entrepre-
neur, in which case he makes a commitment now to start a new "rm next period
by working full time in it during that period. The non-bankrupt "rms trade their
supplies of goods against labor contracts with the non-entrepreneurs for the
next period, which then begins.

Let q
t
:"+

i|Ct
qi
t
denote the aggregate supply of goods. The aggregate supply

of labor is m!e
t
, where e

t
is the number of agents who decide in period t to be

entrepreneurs next period. Assuming perfect competition, the price of goods in
terms of labor is

n
t
:"(m!e

t
)/q

t
(3)

and the amount of labor at the disposal of "rm i in period t#1 is

wi
t`1

:"n
t
qi
t
. (4)

Letting B
t
denote the set of capitalist-"rms that go bankrupt in period t, and by

E
t
the set of entrepreneurs, the set of capitalist-"rms in period t#1 is given by

C
t`1

"C
t
CB

t
XE

t
.
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Moreover, using Eqs. (2)}(4), the amount of labor at the disposal of "rm i3C
t`1

in period t#1 can be written as

wi
t`1

"G
(m!e

t
)qi

t
/q

t
if i3C

t
CB

t
,

1 if i3E
t
.

(5)

This implies that +
i|Ct

wi
t
"m for all t, hence wi

t
/m is "rm i's share of the total

wealth in the economy at time t.
Let p

t
:"PrMp8

t
"1N denote the probability that the good state obtains in

period t. We assume that the success probabilities p
t
are generated by indepen-

dent draws from a uniform probability distribution on [0, 1]. The "rms, how-
ever, know neither the success probabilities nor the probability distribution
from which they are drawn. All they observe is a random number of draws from
the probability distribution p

t
, of which g

t
denotes the number of good outcomes

and b
t
denotes the number of bad ones.

The pair (g
t
, b

t
) is the information available to "rm i when it makes its

investment decision at time t. Note that all "rms face the same (unobservable)
success probabilities p

t
and the same information (g

t
, b

t
), hence the environment

is characterized by systematic risk and symmetric information.
If one were to solve the investment decision problem using Bayesian decision

theory, one would equip each "rm with a subjective prior probability distribu-
tion for the success probability p; a likelihood function for updating the prior
with respect to new information, and a utility function u

i
which is then maxi-

mized, given the available information. In general, the utility functions will
depend on in"nite sequences of payo!s, but in many cases of theoretical interest,
one makes simplifying assumptions about risk and time preferences which allow
one to reduce the intertemporal maximization problem to a sequence of myopic
ones, and obtain a straightforward characterization of the optimal investment
behavior rule: If we let p( i

t
:"Ei

t
[p8

t
D (g

t
, b

t
)] denote "rm i's point estimate of the

current success probability given its current prior and the available information
(g

t
, b

t
), then its optimal investment ratio xi

t
is obtained as a function of wi

t
, g

t
and

b
t
by solving

max
x
i
t

p( i
t
u
i
(wi

t
(1#xi

t
))#(1!p( i

t
) u

i
(wi

t
(1!xi

t
)). (6)

Here, however, we will not assume that the "rms solve maximization prob-
lems, only that they have some behavior rule F

i
:R3P[0, 1], where

xi
t
:"F

i
(wi

t
, g

t
, b

t
) is the investment ratio of "rm i at time t, if it has information

(g
t
, b

t
).

The mean behavior of the population will change over time as a result of
(i) changes in the behavior rules F

i
of individual "rms, and (ii) changes in

the wealth distribution. Changes in the wealth distribution are determined by
Eq. (5), while changes in individual behavior rules arise through bankruptcy
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Fig. 1. Alternative representations of behavior rules.

of existing "rms, startups of new "rms, and also reorganizations of existing
"rms. The development of individual behavior rules will be modeled as an
evolutionary process by means of a genetic programming algorithm that we
describe next.

3. The GP algorithm

There are many variants of GP algorithms, see Koza (1992) for an intro-
duction, and Kinnear (1994) for a recent overview. Here we shall use a
steady-state algorithm with tournament selection, which works along the
following lines:

1. Set t"0, and generate a population of m "rms, each one equipped with an
initial wealth of 1, and a randomly chosen behavior rule.

2. Set t :"t#1. Randomly select a success probability p
t

from the interval
[0, 1], and use it to randomly generate the information (g

t
, b

t
). Calculate the

investment ratio xi
t
"F

i
(wi

t
, g

t
, b

t
) of each "rm, and update their wealth using

Eq. (5).
3. Breed a number of new "rms by replacing the behavior rules of un"t "rms

with genetic recombinations of the behavior rules of "t "rms. Fitness is
de"ned as accumulated wealth, and the genetic recombinations consist of
a crossover operation involving two rules, and a mutation operation on one
rule.

4. Go to 2 unless t"t
.!9

.

A behavior rule plays two di!erent roles in the GP algorithm: On the one
hand, it is a function which determines the behavior and "tness of the individual
(the phenotype of the individual), and on the other, it has a tree structure which
describes its properties from the point of view of genetic recombination (the
genotype of the individual). Fig. 1 illustrates these two ways of looking at the
same thing for the rule (g!1)/(w ) b). The "gure also shows the rule expressed in
LISP pre"x notation, which captures the tree-structure of algebraic expressions
better than the usual in"x notation.
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In order to generate the behavior rules, evaluate them, and perform the
genetic recombinations, the algorithm uses a number of basic elements that we
describe next:

Terminal set: The terminal set consists of the observable variables and the
constants of the problem. In our case, there are three observable variables, wi, g
and b, and a set R of real constants.

Function set: These are the primitive functions of the problem, for which we
take the four arithmetic operations M#,!, *, /N.

Fitness cases: The family of all investment decision problems S constitutes the
set of "tness cases for the problem. Each such problem is a vector (wi, g, b; p),
where wi is a non-negative real number, g and b are non-negative integers, and
where p3[0, 1] is an unobservable success probability.

Fitness dexnition: In our context, the "tness of an individual "rm is simply its
accumulated wealth wi

t
.

Interpreter: This is a function I which operates on the response values of any
behavior rule F

i
in any situation s3S to yield an output I(F

i
(s), s). This quantity

is the experimenter's interpretation of the action taken by behavior rule F
i
in

situation s. In our context, we use the interpreter to constrain the actions to lie in
the interval [0, 1] by de"ning I as I(x, s) :"max[0,min[1,x]].

Using these elements, one can de"ne the following operations:
Rule initialization: The initial population of "rms is generated by constructing

m behavior rules at random. To construct the behavior rule of an individual
"rm, one starts with a randomly selected function and recursively builds a tree
where the root of each subtree is a randomly selected function, and each leaf is
a randomly selected terminal.

Mutation: To mutate a rule, one selects one of its subtrees at random and replaces
it by a new subtree that is constructed from scratch in the manner just described.

Crossover: To cross two rules, one selects a random subtree in each of them
and replaces the subtree of the "rst rule by the subtree of the second one. This
operation guarantees that the o!spring is a syntactically valid tree.

Breeding: To breed a new "rm from the existing population of "rms, one
proceeds as follows:

f Randomly select three "rms from the population and rank them in descend-
ing order according to their "tness.

f If "rm 1 is not bankrupt, then replace the rule of "rm 3 by a genetic
recombination of the rules of "rms 1 and 2. With high probability the
recombination is a crossover of the rules of "rms 1 and 2, and with low
probability, it is a mutation of the rule of "rm 1. If "rm 1 is bankrupt, we
replace the behavior rule of "rm 3 by a new rule created from scratch.

f If "rm 3 is bankrupt, the newly bred version of "rm 3 is a startup, in which case
it receives an initial wealth of 1. Otherwise, it is a reorganization, in which case
its initial wealth is left unchanged.
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Table 1
Main parameters of GP algorithm

Parameter Value

PopulationSize 2000
NumberOfPeriods 100,000
FunctionSet (#,*,!, /)
TerminalSet (w, g, b,R)
RequiredTerminals (g, b)
MaxNewRuleDepth 5
MaxRuleLength 100
BreedingRate 4
MutationProbability 0.1
CrossoverProbability 0.9

Table 1 lists the main parameters of the GP algorithm. We use a Population-
Size of 2000 with NumberOfPeriods set to 100,000. As mentioned earlier, each
behavior rule is an arithmetic expression composed of functions from the
FunctionSet (#, *,!, /) of arithmetic operations, and of variables and constants
from the TerminalSet (w, g,b,R), where R is the set Mi/100.0 D i3M0,2,100NN of real
constants.

When a new behavior rule is generated from scratch, we repeatedly generate
new candidates until we have found one in which the RequiredTerminals g and
b are both present. This restriction is used in order to improve the genetic
properties of the initial population somewhat, but is not imposed on behavior
rules that are generated by crossover and mutation. For each candidate, we use
uniform probability distributions to "rst select between the function set and the
terminal set; second between the elements of each set, and third between each
constant, if a random constant in R was selected in step two.

The parameter MaxNewRuleDepth restricts the depth of new expression
trees generated from scratch to be at most 5, with equal probabilities of
generating rules of depths 2, 3, 4 and 5. MaxRuleLength restricts total number of
functions and terminals in any expression tree to be no greater than 100. In each
period, we use a BreedingRate of 4 to generate 4 new behavior rules by genetic
recombination: With MutationProbability 0.1, we do a mutation, and with
CrossoverProbability 0.9, we do a crossover.

To select nodes in an expression tree for crossover or mutation, we use
a probability distribution where the probability of selecting a particular node is
proportional to the number of functions and terminals in the subtree starting at
the given node.

The GP algorithm basically works by maintaining a diverse population and
subjecting it to selection pressure. The parameter values in Table 1 have
therefore been chosen to enhance diversity while still permitting us to detect any
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emergent structure with some degree of precision. Larger values for Population-
Size, MaxNewRuleDepth, MaxRuleLength and BreedingRate will increase the
diversity, and a substantial reduction in all these parameters might even
cause a failure of the algorithm to detect rules that can avoid bankruptcy.
On the other hand, a high BreedingRate will encourage growth of behavior
rules which temporarily do well due to sheer luck. We have therefore chosen
to use a low BreedingRate to keep this kind of noise at a minimum,
and to compensate for the resulting slow convergence by using a large
NumberOfPeriods.

The FunctionSet contains only primitive functions that turn out to be useful
for solving the problem at hand. In preliminary experiments, we did include
a number of other functions as well, which led to slower convergence without
changing the qualitative results. Inclusion of irrelevant variables in the Ter-
minalSet is known to have a similar e!ect (Koza, 1992). Our choice of a small
MutationProbability and a large CrossoverProbability follows standard prac-
tice, although recent research (Angeline, 1997) indicates that mutation may in
fact perform better than crossover for evolving expression trees of the type we
use here.

We conclude this section with a description of the mechanism used to
generate the "tness cases used by the GP algorithm. Recall that the "tness case
faced by "rm i at time t is a vector (wi

t
, g

t
, b

t
; p

t
), where p

t
is an unobservable

success probability and (g
t
, b

t
) is the observable information about p

t
, and where

wi
t
is the accumulated wealth of "rm i when period t begins.
In order to generate the "tness case at time t, we begin by drawing a success

probability p
t
from the uniform distribution on [0, 1]. Next, we draw a realiz-

ation n
t
of the random variable n8 :" Int(205/u8 )!5, where u8 is another random

variable which is uniformly distributed on the interval [1, 41], and Int(z) is the
nearest integer to z. Finally, we draw n

t
realizations from the probability

distribution p
t
on the set M1,!1N of good and bad outcomes, and denote by

g
t
and b

t
the number of good and bad outcomes, respectively.

The probability distribution for n8 has been chosen to focus on decision
situations where the agents know very little about the unknown success prob-
abilities. For example, there is some 50% probability that n8 44, and some 10%
probability that n8 "0, in which case the "rms receive no information about the
success probability p

t
.

4. A successful behavior rule

In this section, we discuss the results of a "rst experiment with the GP
algorithm on the investment problem described in Section 2. A typical example
of a long-lived and highly "t behavior rule from the experiment is depicted in
Fig. 2.
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Fig. 2. A long-lived and highly "t behavior rule.

1The long zero term in lines 2}10 is quite useful from the reproductive point of view, however: It
increases the probability that a mutation or crossover will leave line 1 intact and yield an o!spring
with the same behavior as the highly "t parent.

The behavior of this rule is completely determined by the "rst line of the
expression. The rest is identically zero, and hence junk from a behavioral point
of view.1 The whole expression therefore simpli"es to

g!b

g#b#1.95
.

Using the interpreter I( ) ) to restrict the response value of the behavior rule to
the relevant interval [0, 1], we obtain the rule F(w, g, b) de"ned by

F(w, g, b) :"maxG0,
g!b

g#b#1.95H . (7)

There are several interesting features to note about the behavior of this rule:
First, it never invests anything in the risky technology unless g'b, i.e. unless
there is reason to believe that the success probability p is greater than 1

2
, and

hence that the risky alternative yields a higher expected return than the riskless
one. Second, a "rm equipped with this behavior rule has zero probability of
going bankrupt, since it never invests all its wealth in the risky alternative. And
third, it invests the same fraction of its wealth in the risky alternative indepen-
dently of its wealth.

These features are all representative of risk averse expected utility maximizers,
and the third one strongly suggests constant relative risk aversion. It is therefore
natural to investigate whether the GP algorithm has rediscovered the theoret-
ical results of LataneH (1959), Breiman (1961) and Hakansson (1971), that long-
run survival in a situation with systematic risk implies maximization of expected
logarithmic utility, period by period.

In our model, one-period expected logarithmic utility is given by

p log(w(1#x))#(1!p) log(w(1!x)),
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cf. Eq. (6), and maximization with respect to x yields the behavior rule

FH(p) :"maxM0, (2p!1)N. (8)

However, since our arti"cial agents operate under Knightian uncertainty, they
do not know p, only the imperfect signal (g, b). The results of LataneH , Breiman
and Hakansson do not cover this case, but if the agents were clever enough, they
might eventually be able to "gure out that the success probabilities p

t
are drawn

from a uniform distribution and that p
t
therefore has a Beta distribution with

parameters n@"g#b#2 and r@"g#1. A Bayesian rational agent would
then conclude that

E[ p8 ]"
g#1

g#b#2
, (9)

and substitute E[p8 ] for p in the Bayesian rational behavior rule (8). This yields

FH(g, b)"maxG0,
g!b

g#b#2H, (10)

which is almost identical to the behavior rule (7) that was generated by the GP
algorithm.

A "rm equipped with this behavior rule will behave in a manner which is not
only consistent with expected utility maximization, it will also act as if it were
familiar with Bayesian statistics, despite the fact that it has no way of under-
standing the nature of the investment problem and no apparatus for estimating
the relevant parameters of the unknown probability distributions. We thus have
an example which shows that GP is capable of generating behavior rules that
are almost Bayesian rational.

5. Results from 20 GP-runs

In order to investigate the robustness of this result, we did 20 runs with the
GP algorithm, and collected data that describe the behavior of each population.
Since there is a steady in#ow of new "rms into the population with a variety of
behavior rules that for the most part survive for only a small number of periods,
we have included in our statistical measures only those who have survived for
500 periods or more. For every period t and run r, the mean behavior of the
population at information state (g, b) is de"ned as

F
rt
(g, b) :" +

i|Vrt

ai
rt
Fi
rt
(wi

rt
, g, b),

where for each time t and run r,<
rt

is the set of "rms that have survived for at
least 500 periods, Fi

rt
is the behavior rule of "rm i, wi

rt
is its wealth, and

ai
rt

:"wi
rt
/+

j|Vrt
wj
rt
.
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Fig. 3. Standard deviation from Bayesian rational behavior across all rounds over intervals of 500
periods.

We next de"ne the total mean square deviation from Bayesian rational
behavior in period t of run r as

TMS
rt

:" +
i|Vrt

ai
rt
[Fi

rt
(wi

rt
, g

rt
, b

rt
)!FH(g

rt
, b

rt
)]2,

where FH is the Bayesian rational behavior rule de"ned in Eq. (10), and (g
rt
, b

rt
) is

the information faced by "rm i about the unknown success probability p
rt
.

Fig. 3 depicts the development of the standard deviation from Bayesian
rational behavior, calculated for every 500 periods as the square root of the
mean of TMS

rt
, taken across the recent 500 periods and all 20 rounds.

The "gure shows that the deviation from Bayesian rational behavior is
reduced to its minimum during the "rst 30.000 periods. From then on, it
#uctuates within the range 0.02}0.04, with an occasional peak. These peaks
occur when some behavior rule with low-risk aversion hits a streak of good luck
and becomes the all-dominating "rm of its population for a limited number of
periods.

It turns out that on average across all rounds, only some 30% of the total
deviation from Bayesian rational behavior is due to deviation by the mean
behavior of the population. The remaining 70% is unsystematic variation due to
deviation by individual "rms from the mean behavior of the population. This is
illustrated in Fig. 4, which depicts the total deviation from Bayesian rational
behavior and its variance decomposition over the last 25.000 periods for each of
the 20 runs.

As can be seen from the "gure, the aggregate behavior across the last 25.000
information states deviates from the Bayesian rational behavior by less than
0.01 in most runs. Since for each information state, the rational behavior is a real
number in the interval [0, 1), we conclude that the aggregate behavior of the
population is almost Bayesian rational for most states.
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Fig. 4. Variance decomposition of the total deviation from Bayesian rational behavior for indi-
vidual runs over last 25.000 periods.

6. Uncertainty attitude

We next investigate whether there is any systematic variation in the mean
deviation from Bayesian rational behavior across di!erent information states.
Of particular interest is whether our arti"cial agents are uncertainty averse in the
sense of Ellsberg (1961). Roughly speaking, an agent is uncertainty averse if she
prefers known probability distributions to unknown ones, and there is a large
body of experimental evidence that human decision makers tend to display
this phenomenon (see Camerer and Weber, 1992 for a recent overview of the
literature).

However, since expected utility is linear in the probabilities, uncertainty
aversion is inconsistent with Bayesian rationality. In particular, a Bayesian
rational investor does not care whether the success probability p

t
is objectively

known or her subjective expectation of a random variable p8
t
(cf. Eqs. (9) and

(10)). In contrast, an uncertainty averse investor would prefer to invest less in the
risky alternative if she has less information about p8

t
(smaller n

t
), even if

E[p8
t
D g

t
, b

t
] is constant (Dow and Werlang, 1992).

In order to test the uncertainty attitude of the developed behavior rules, we
calculated for every 500th period t in every run r, the mean behavior of the
population at information state (g, b), for a set of information states such that
E[ p8 D (g, b)]"2

3
. As can be seen from Eq. (9), this is the case when g"2b#1,

which yields a Bayesian rational investment ratio of 1
3
. Fig. 5 shows the mean

behavior of the population for a set of such information states across all runs
over the last 25.000 periods, together with a 90% con"dence band. The con"dence
band is calculated for each (g, b) using the mean behavior of each run over the last
25.000 periods as one observation, which yields a total of 20 observations.
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Fig. 5. Mean behavior over last 25.000 periods with 90% con"dence band for information states
(g, b) such that FH(g, b)"1

3
.

The "gure shows that the "rms tend to be a little too bold when they only
have a small amount of information, and a bit too careful when they have more,
as compared to the Bayesian rational investment ratio, which is 1

3
for each

information state in Fig. 5. This is exactly the opposite of the uncertainty averse
behavior found by Ellsberg (1961). Thus while real people tend to prefer known
probability distributions to unknown ones, our arti"cial agents seem to have the
opposite preference. As can be seen from the "gure, this deviation from the
Bayesian rational behavior is not statistically signi"cant in the data set con-
sidered here. However, the phenomenon seems to be quite robust across many
di!erent data sets and with di!erent variants of the GP algorithm, and it is
therefore natural to look for possible explanations.

Some insight can be gained by studying how the "rms' uncertainty attitude
changes over time. To this end, we calculated their uncertainty attitude at
information state (g, b)"(1, 0), by comparing F(1, 0) to F(3, 1), where F is the
mean behavior of the population. If F(1, 0)!F(3, 1) is positive, zero or negative,
then F is said to be uncertainty prone, uncertainty neutral, and uncertainty averse,
respectively.

Fig. 6 depicts the development of F(1, 0)!F(3, 1), calculated across all 20
runs, and across 20 sets of periods of 5.000 periods each. The dotted lines
represent a 90% con"dence band calculated for each set of periods using the
mean behavior of each run across sets of 5.000 periods as one observation, which
yields a total of 20 observations.

The "gure shows that the "rms are extremely uncertainty prone during the
"rst 10.000 periods or so of each run. However, there is considerable variation
across runs until uncertainty neutral "rms begin to take over during the next
10.000 periods. During the last 75.000 periods, the initial uncertainty proneness
has largely disappeared. Most likely, however, the initial uncertainty proneness
is still represented in the genes of the behavior rules in later periods, even if it
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Fig. 6. Mean uncertainty attitude F(1, 0)!F(3, 1) across all runs for sets of 5.000 periods.

2The behavior rule with the large zero term in Fig. 2 illustrates how this might occur.

does not necessarily a!ect their actual behavior.2 As long as this genetic material
is present in the population, it will continue to produce some behavior rules
which may be responsible for the weak tendency to uncertainty proneness in
later periods.

Of course, this raises the question of why the "rms are so uncertainty prone in
the early periods. To see why, we listed for each run the most "t behavior rule in
periods M5500, 6000,2, 15,000N, and looked for common characteristics of these
200 rules. As it turned out, more than half of them had an arithmetic structure
identical to one of the following:

F
1
(g, b)"

g!b

g#g
, F

2
(g, b)"

g!b

g/k
, F

3
(g, b)"

g!b

g#k
,

where k is one of the constants in R, i.e. a real number between 0 and 1. In our
sample of 200 most "t rules, the constant k was typically in the neighborhood of
0.5 for rules of type F

2
, and close to 1 for rules of type F

3
. Note that all rules of

these types are uncertainty prone, in the sense de"ned earlier.
One reason why these three types of rules are so dominant initially, may be

that their ratio of e$ciency to complexity is very high: The numerator g!b is
a precise signal of when it is pro"table to invest in the risky alternative, and the
role of the denominator is to determine how much to invest. Since the whole
expression is so small, there is a fairly small number of such expressions, and
therefore they have a fairly high probability of being generated from scratch or
by genetic recombination.

Nevertheless, there are a number of other behavior rules with this structure,
and the question remains why none of them are represented in our sample of
most "t rules.
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With our sets of functions and terminals, there is a total of 34 distinct
behavior rules with a numerator of g!b and a denominator consisting of 3 or
fewer functions and terminals. Among those 34 rules, there are only four that
never face a risk of going bankrupt. One of these four rules always yields an
output of zero, and hence is completely useless, since it never invests anything in
the risky alternative, no matter how pro"table it is to do so. The remaining three
rules are exactly the ones that were represented by more than 50% in our sample
of most "t behavior rules.

We therefore conclude that the reason why these three rules tend to dominate
the populations early on, is a combination of simplicity, e$ciency and zero
bankruptcy risk, and that the uncertainty proneness which we observe in the
early periods is just a by-product of the evolutionary pressure which selects in
favor of behavior rules with these three features. However, the uncertainty
proneness does impose a cost in terms of lost pro"ts on the "rms that host these
rules, and in later periods they are replaced by "rms with more rational behavior
rules.

7. Concluding remarks

The purpose of this paper has been to investigate the usefulness of genetic
programming as a tool for generating hypotheses about rational behavior in
situations where the issue of rationality is not clear-cut. To this end, we have
tested it on the borderline case of Knightian uncertainty, where the agents do
not know the true probability distributions or how they are generated, but
where it is still possible to recognize rational behavior when one sees it.

We have shown that the algorithm systematically generates behavior which is
Bayesian rational, despite the fact that the arti"cial agents do not solve maximi-
zation problems and have no apparatus for estimating the relevant parameters
of the unknown probability distributions. Although GP does not produce
theorems, the approach has a number of interesting features that we would like
to summarize at this point.

Observe "rst that GP yields results at the same level of generality as a conven-
tional analysis based on pro"t or utility maximization. In both cases,
the outcome of the analysis is a function F which associates an action F(s)
to each possible decision situation s3S in which the decision maker might
"nd himself. In a conventional analysis, the function F would be derived from
the "rst-order conditions of one or more maximization problems, while in GP, it
is a result of evolution, but the structure of the results from the two approaches
is identical.

A key aspect of the approach is that individual agents are modeled as rigid
rule followers who do not change their behavior over time, except through
bankruptcy or reorganization. As in the evolutionary game theory of Maynard
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Smith (1982), all change in behavior takes place at the level of the population,
but GP di!ers from evolutionary game theory by not requiring the modeler to
specify all possible behavior rules explicitly ex ante. In GP, new behavior rules
emerge as a result of random recombinations of behavior rules that have been
successful in the past, somewhat like Schumpeter's (1942) view of innovation.

The third point we would like to mention is that the behavior rules produced
by GP are the result of learning by example, and generalization to an in"nite
space of decision situations from experience with a "nite number of situations.
Since the process of learning and knowledge generalization takes place at the
level of the population, GP di!ers from other models of knowledge generaliz-
ation, e.g. case based reasoning (Gilboa and Schmeidler, 1995), where the focus
is on the learning process of the individual agent.

So what are the features of GP that allow it to represent knowledge generaliz-
ation? Generally speaking, GP is a procedure for conducting a global search for
the best alternative in a function space, where a "nite number of points in the
domain are used to test the quality of the candidates, and where generalization
to the whole domain is achieved if the winning candidate is a continuous
function. The potential area of economic applications for GP algorithms is
therefore much wider than the one considered here. For example, a key element
in the problem of computing equilibria in models with many heterogeneous
agents (RmHos-Rull, 1997) is also to "nd a Bayesian rational behavior rule in
a space of functions on a domain which represents possible variations in
economic state and individual characteristics, and it might therefore be of
interest to try out the technique for that type of problem as well.

In this paper, our interest in Knightian uncertainty has been motivated by the
fact that this setting is similar to game-playing situations in that the agents do
not know what probability distributions they are up against, especially in games
with more than one Nash equilibrium. This is an area where the issue of
rationality is still open, and where there is a need for alternatives to the existing
models. It is therefore a natural topic for further research to study rational
behavior in games, using the same technique that was shown to generate
rational behavior under Knightian uncertainty.
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