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Summary

Some researchers have investigated that the diversity loss will significantly decrease the performance of Prob-
abilistic Model Building Genetic Algorithm (PMBGA), especially under large search space, leading to the premature
convergence and local optimum. However, few work has been done on the diversity maintenance in the Probabilis-
tic Model Building Evolutionary Algorithms (PMBEAs) with more complex chromosome structures, such as tree
structure based Probabilistic Model Building Genetic Programming (PMBGP) and graph structure based Probabilis-
tic Model Building Genetic Network Programming (PMBGNP). For the PMBEAs with more complex chromosome
structures, the required sample size is usually much larger than that of binary structure based PMBGA. Therefore,
these algorithms usually become much more sensitive to the population diversity. In order to obtain enough popu-
lation diversity, the large population size is needed, which is not the best way. In this paper, the maintenance of the
population diversity is studied in PMBGNP, which is a kind of PMBEA, but has its unique characteristics because of
its directed graph structure.

This paper proposed a hybrid PMBGNP algorithm to maintain the population diversity to avoid the premature
convergence and local optimum, and presented a theoretical analysis of the diversity loss in PMBGA, PMBGP and
PMBGNP. Two techniques have been proposed for the diversity maintenance when the population size is set at not
large values, which are multiple probability vectors and genetic operators. The proposed algorithm is applied and
evaluated in a kind of autonomous robot, Khepera robot. The simulation study demonstrates that the proposed hybrid
PMBGNP is often able to achieve a better performance than the conventional algorithms.

1. Introduction

Probabilistic Model Building Evolutionary Algorithm

(PMBEA) is a new class of evolutionary algorithms, where

a probabilistic model is built based on the better individu-

als of the current population and used to generate the new

population. There is a wide range of such work in Ge-

netic Algorithm (GA), which is usually called PMBGA

[Baluja 94, Mühlenbein 96, Harik 98, Larran̂aga 02, Pe-

likan 02a], and work in Genetic Programming (GP), de-

noted as PMBGP [Salustowicz 97, Sastry 03, Yanai 03,

Shan 06, Hasegawa 08]. However, very few work has

been done on extending it to the graph-based evolution-

ary algorithms. In the previous research by the authors’,

a graph-based PMBEA named Probabilistic Model Build-

ing Genetic Network Programming (PMBGNP) [Li 09, Li

10a, Li 10b] has been proposed, where the directed graph

based structure of Genetic Network Programming [Kata-

giri 00, Hirasawa 01, Eguchi 06, Mabu 07] is used to rep-

resent its chromosome.

PMBGNP could inherit the advantages of GNP which

can deal with dynamic environments effectively and effi-

ciently due to the directed graph based network structures,

and the characteristics of PMBEA because of the prob-

abilistic modeling of promising solutions. PMBGNP al-

lows us to take into account the dependencies between the

internal network structures of GNP to prevent the break-

age of building blocks, therefore shows more suitability
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for the decomposable problems.

Most of the current PMBEAs suffer from the problem

that the diversity of the genetic information will be sig-

nificantly decreased in the generated population when the

population size is not large enough, leading to the local

convergence. The diversity loss in PMBGA has been proven

in [Shapiro 06]. Therefore, when PMBGA is used to solve

problems, its population size should be set at an enough

size in order to ensure the enough diversity for the global

optimum [Pelikan 02b]. Some studies also investigated

that applying mutation operator [Handa 07] or niching op-

erator [Sastry 05] to PMBGA could maintain the popula-

tion diversity.

On the other hand, for the PMBEAs with more complex

structure representations, the problem of the diversity loss

is much more essential than that of PMBGA, since the

required sample size in such PMBEAs is usually much

larger than that of PMBGA (see section 3). On the other

hand, in order to solve the problems consisting of large

search space, the required population size should be set at

huge values to ensure the enough diversity. Therefore, the

study on the diversity maintenance becomes much essen-

tial in the PMBEAs with more complex structure repre-

sentations.

In the research on PMBGP, Probabilistic Incremental

Program Evolution (PIPE) uses a mutation operator to ex-

plore the search space [Salustowicz 97], while Estima-

tion of Distribution Programming (EDP) adjusts the calcu-

lated probabilistic model by Laplace Correlation to avoid

the premature convergence [Yanai 03]. However, most of

these algorithms are testified in GP’s benchmark problems

with not so large search space, such as symbolic regression

problems and boolean function problems, and the impor-

tance of the diversity maintenance is not clarified clearly

in PMBGP. As a PMBEA with graph-based structure rep-

resentations, PMBGNP holds the same problem of the di-

versity loss as PMBGP, and even more serious. The reason

is that, the graph structure and population size of GNP are

usually set at small values to solve problems, which is one

of the advantages of GNP [Mabu 07], therefore the sample

space becomes much smaller than that of PMBGP, which

probably causes the diversity loss.

This paper focuses on studying the diversity mainte-

nance of PMBGNP to make it work in the problems with

larger search space than that of classical benchmark prob-

lems. This paper presents a short survey of the current

study of PMBEAs in terms of different kinds of chromo-

some representations, and theoretically analyzes the diver-

sity loss of different types of PMBEAs. Also, this pa-

per proposes two techniques to maintain the population

diversity of PMBGNP in terms of improving the explo-

ration ability, which are multiple probability vectors and

genetic operators. The proposed algorithm is denoted as

hybrid PMBGNP and is evaluated in a real world problem,

controlling a kind of autonomous robot, Khepera robot

[Michel 96, Cyberbotics]. The simulation study shows the

proposed algorithm could significantly maintain the diver-

sity of PMBGNP to solve the problems.

2. Literature review

2·1 PMBGA

The idea of probabilistic modeling building evolution-

ary algorithm (PMBEA) was first introduced in the field

of binary GA in [Baluja 94], and has attracted much at-

tention in the last decade. It consists of three types of al-

gorithms: no interactions, pairwise interactions and mul-

tivariate interactions [Pelikan 02b], to study the building

blocks of different complexity. The class of GA based

PMBEA is usually called as PMBGA [M̈uhlenbein 96,

Harik 98, Larrânaga 02, Pelikan 02a]. PMBGA identi-

fies and recombines important building blocks through es-

timating the distribution of promising individuals. Algo-

rithm 1 shows the basic pseudo-code of PMBGA, which

is the same as most PMBEAs.

PMBGA studies the GA’s binary string structure by cal-

cuating the frequencies of 0’s or 1’s in each gene loci.

Generally, marginal probability is used to represent the

probablistic model of PMBGA without interactions, while

the joint probability is used to represent the probabilis-

tic model of PMBGA with interactions. Numerous al-

gorithms have been proposed to draw the success of this

topic, in both theory and application.

Algorithm 1 Algorithm of PMBEAs
1: t← 0

randomly generate an initial populationS(t)

2: evaluate the fitness of the initial population

3: execute selection operator to select a set of promising

individualsB(t)

4: construct a probabilistic modelP t fromB(t)

5: generate a new populationS(t+1) using the proba-

bilistic modelP t

6: evaluate the fitness of the new populationS(t+1)

sett← t+1

7: if the termination criteria are not met, go to 3

2·2 PMBGP

Some research has introduced PMBEA into GP, which

uses tree structures to represent its chromosome. The first
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algorithm of PMBGP is PIPE [Salustowicz 97], where

a prototype tree is constructed and maintained to evolve

GP individuals. PIPE corresponds to the PMBGA with-

out interactions, such as PBIL [Baluja 94] and UMDA

[Mühlenbein 96]. EDP was proposed to extend PMBGP

to pairwise interactions, where Bayesian network is used

to identify the second order building blocks [Yanai 03].

eCGP [Sastry 03] and POLE [Hasegawa 08] extend PM-

BGP to multivariate interactions, therefore more complex

building blocks in GP could be identified and recombined.

Since PMBGP uses tree structures to represent its chro-

mosome, its probabilistic model is generally constructed

by calculating the frequencies of functions in each node,

which is different from that of PMBGA.

2·3 PMBGNP

In the previous research, the authors have first extended

the idea of PMBEA to a graph based evolutionary algo-

rithm - Genetic Network Programming (GNP) - and called

the proposed algorithm as PMBGNP [Li 09]. GNP [Kata-

giri 00, Hirasawa 01, Eguchi 06, Mabu 07] is an exten-

sion of GA [Holland 75, Goldberg 89] and GP [Koza 92,

Koza 94] in terms of using network structures to represent

its chromosome. Multiple nodes and their branches are

used to construct the directed graph structures to improve

the search efficiency and expression ability. Many stud-

ies have investigated that GNP can outperform the con-

ventional algorithms to solve the complex problems in dy-

namic environments, such as Multi-agent Systems [Mu-

rata 04, Eguchi 06, Mabu 07], Data Mining [Shimada 06],

Elevator System Control [Hirasawa 08] and Financial En-

gineering [Chen 09], etc. PMBGNP is evaluated by ap-

plying to a real world based data mining application and

the comparative analysis shows its superiority comparing

with the conventional GNP [Li 10a, Li 10b].

Although there is few work on studying the graph struc-

ture representation based PMBEA, the previous research

has shown the superiority of graph based evolutionary al-

gorithms for some problems in terms of stronger expres-

sion and evolution ability than that of conventional GP

[Teller 95, Miller 00, Hirasawa 01]. On the other hand,

GNP is mainly designed for solving some complex prob-

lems in dynamic environments, where the required search

space is generally large. Therefore, PMBGNP could be

considered having two characteristics, that is, the exten-

sion of PMBEA to graph structure based evolutionary al-

gorithms and applicability of PMBEA to dynamic envi-

ronments rather than static environments.

S

i
S iK iID it 1iC 1it 2iC 2it ... inC int

1t 2t

1t2t

it

Fig. 1 The directed graph structure.

§1 Directed graph structure

PMBGNP uses the directed graph structure of GNP to

represent its chromosome, which can be illustrated by the

phenotype and genotype expression. Phenotype shows the

directed graph structure, while genotype demonstrates the

encoding of GNP. As shown in Figure 1, leti represent a

node number of GNP.Ki defines the type of nodei such

as start node, judgment node and processing node.IDi

identifies the node function, such as judgment function

and processing function.Cin denotes the node which is

directly connected from thenth branch of nodei. ti and

tin are the delay time, which are the time required to ex-

ecute nodei and time to transit from nodei to nodeCin,

respectively.

Generally, one start node, a fixed number of judgment

nodes and processing nodes composes the structure of GNP.

The start node is only used to decide the first node to be

transited, while the judgment and processing nodes save

some functions corresponding to the concrete problem.

For agent control, each judgment node works as ”if-then”

type decision making functions to judge the environment

to make a decision, while processing nodes preserve the

action functions to determine the agent’s action. In this

structure, each judgment node consists of multiple branches

connecting to different nodes, where the next node to be

transited is determined by the judging result of the envi-

ronment. Processing node only has one branch, since the

processing functions only determine the agent’s actions.

Therefore, the agent will be controlled by transiting the

nodes until the task is solved. Generally, when solving

problems, the number of judgment and processing nodes,

the number of branches in judgment nodes and the time

delays are predefined.
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Fig. 2 The probabilistic model construction in PMBGNP.

§ 2 Probabilistic model construction

The flowchart of PMBGNP is the same as most PM-

BEAs as shown in Algorithm 1. The model construction

of PMBGNP is inspired by PMBEA with no interactions.

However, due to the graph structure of GNP, the connec-

tion probabilities between different nodes are considered

to construct the probabilistic model in PMBGNP. There-

fore, it could be classified as a kind of PMBEAs with pair-

wise interactions as shown in Figure 2. In thetth gener-

ation,P t denotes the probabilistic model, andP t(i,k, j)

represents the connection probability from thekth branch

of nodei to nodej.

These connection probabilities are calculated by con-

sidering the connection information and transition infor-

mation between different nodes. The reason why we con-

sider these two factors is as follows. In GNP, the directed

graph structure is based on the connections of different

nodes by branches. Therefore, the connection information

is the most important information which deserves the cal-

culation of probabilities. On the other hand, in GNP, usu-

ally all the nodes are not used in the transition to solve the

problems in one individual. The node transition is made

by selecting the necessary nodes. In an example shown in

Figure 3, the nodes are transited like1→ 2→ 5→ 6→ 9

to solve the problems, which means the information on the

connections of the transited nodes is useful for solving the

problems.
Therefore, the connection probabilities of thetth gener-

ation is calculated as follows.

P t(i,k, j) =

∑
n∈N

[δtn(i,k, j)+ ησt
n(i,k, j)]∑

ĵ∈A(i,k)

∑
n∈N

[δtn(i,k, ĵ)+ ησt
n(i,k, ĵ)]

, (1)

where,

N : set of suffixes of promising individuals.

A(i,k): set of suffixes of connected nodes from thekth

branch of nodei.

S

Fig. 3 An example of node transition.

δtn(i,k, j): value defined by

δtn(i,k, j) =


1 if the kth branch of nodei of

individualn is connected to

nodej in tth generation,

0 otherwise.

σt
n(i,k, j): value defined by

σt
n(i,k, j) = ℓ if the transaction from thekth branch of

nodei to nodej of individualn occursℓ

times in thetth generation.

η: coefficient.

Besides, the following exponential smoothing method is

considered to update the current probabilistic model con-

sidering the previous generation’s connection probabili-

ties.

P (i,k, j)← (1−α)P (i,k, j)+αP t(i,k, j). (2)

Here, coefficientα ∈ (0,1) can be considered as a smooth-

ing rate.

When sampling the model, the probability distribution

P (ind) of an individual is given by

P (ind) =
∏

i∈NGNP

∏
k∈A(i)

P [i,k, ind(i,k)], (3)

where,

NGNP : set of suffixes of nodes in GNP individual.

A(i): set of suffixes of branches of nodei.

ind(i,k): the node which is connected from thekth branch

of nodei in individual ind.

P [i,k, ind(i,k)]: probability that thekth branch of nodei

is connected to nodeind(i,k).

3. Diversity loss

The diversity loss of PMBGA has been clarified by Shapiro

in [Shapiro 06] using the trace of empirical co-variance

matrix. However, there is few work on analyzing this is-

sue in PMBGP. This section discuss the significance of the

diversity loss in PMBGP and PMBGNP, and the authors

argue that the diversity loss in PMBGP and PMBGNP is

more essential than that of PMBGA with binary structures,
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since the search space in each chromosome of GP or GNP

is larger than that of GA.

Suppose that the set of suffixes of genes in each PM-

BGA individual isNGA, while the set of suffixes of nodes

in each PMBGP individual is alsoNGP
∗1. In GNP, the

number of nodes and the number of branches are gener-

ally predefined and fixed. Suppose that the set of suffixes

of nodes in each PMBGNP individual isNGNP and the

set of suffixes of branches in each PMBGNP individual is

Nbra. The size of the search space of these three algo-

rithms can be calculated by

Ψ(GA) = 2|NGA|, (4)

Ψ(GP ) = ϕ|NGP |, (5)

Ψ(GNP ) = (|NGNP | − 1)|Nbra|. (6)

Here,ϕ represents the number of functions in each node

of GP∗2. There is no self-loop in GNP network structure,

since it will cause the infinite loops of GNP programs.

Therefore, for each branch of the node in GNP, the candi-

date nodes to be connected are all the nodes except itself,

where |NGNP | − 1 in Eq. (6) represents the number of

candidate nodes to be connected. If variables in the search

space are treated equally, the probability for each individ-

ual to be sampled can be calculated by

PGA(ind) =
1

2|NGA| , (7)

PGP (ind) =
1

ϕ|NGP | , (8)

PGNP (ind) =
1

(|NGNP | − 1)|Nbra|
. (9)

The diversity lossDGA, DGP andDGNP of PMBGA,

PMBGP and PMBGNP could be calculated, respectively

as follows.

[Theorem 1] If the number of individuals in a popula-

tion isN , the diversity lossDGA of PMBGA could be rep-

resented by the probability that an individual is not sam-

pled in the search space, which is

DGA = [1−PGA(ind)]
N . (10)

⟨⟨Proof⟩⟩ When generating one individual, the proba-

bility that individualind is not sampled to the population

equals to1−PGA(ind). Therefore, when generatingN

individuals, the probability that individualind is not sam-

pled to the population equals to[1−PGA(ind)]
N . Then,

the diversity loss of an individual in GA can be obtained

by Eq. (10). �
∗1 Generally, in order to avoid the bloating of GP, the structure of GP

is designed with some constraints, such as the maximum number of
nodes or the maximum tree depth. Here, the maximum number of
nodes is selected as the constraint.

∗2 Although GP consists of function nodes and terminal nodes, this
paper treats them equally.

[Theorem 2] If the number of individuals in a popula-

tion isN , the diversity lossDGP of PMBGP could be rep-

resented by the probability that an individual is not sam-

pled in the search space, which is

DGP = [1−PGP (ind)]
N . (11)

[Theorem 3] If the number of individuals in a popu-

lation isN , the diversity lossDGNP of PMBGNP could

be represented by the probability that an individual is not

sampled in the search space, which is

DGNP = [1−PGNP (ind)]
N . (12)

The proof ofTheorem 2 andTheorem 3 is similar to

Theorem 1, therefore it would not be shown in this paper.

FromTheorem 1, Theorem 2andTheorem 3, we could

find that, the smallerP (ind) ∈ {PGA(ind),PGP (ind),

PGNP (ind)} is, the more serious the diversity loss is.

Moreover, there is an inverse relationship betweenP (ind)

and the size of the search spaceΨ ∈ {Ψ(GA),Ψ(GP ),

Ψ(GNP )}. Therefore, when the search space becomes

larger, the diversity loss is more serious. From Eq. (4)-(6),

we can find generally the search space of GP and GNP is

much larger than that of GA, sinceϕ and|NGNP | is much

larger than 2.

On the other hand, we could find when the population

sizeN is small, the diversity lossD ∈ {DGA,DGP ,DGNP }
will approach near to 1, which means the diversity loss is

very serious. Therefore, in the previous research of PM-

BEAs, the population sizeN is generally set at large val-

ues to obtain the enough population diversity. However,

when solving the problems consisting of very large search

space, the required population size should be set at huge

values, which is almost impossible. GNP is generally de-

signed to solve the complex problems in dynamic environ-

ments. Therefore, maintaining the population diversity is

much essential in PMBGNP.

4. The proposed method

This section focuses on proposing an extension of PM-

BGNP to maintain its population diversity and to escape

from the local optimum of final solutions. Two novel tech-

niques, which are multiple probability vectors and genetic

operators, have been proposed to maintain the population

diversity of PMBGNP in terms of improving the explo-

ration ability. Since the proposed algorithm is inspired by

genetic operators of the conventional evolutionary algo-

rithms, the proposed algorithm is named hybrid PMBGNP

(hPMBGNP).
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The motivation that makes hPMBGNP innovative is that:

firstly, it evolves multiple populations by constructing mul-

tiple probability vectors. Secondly, it also applies genetic

operators like crossover and mutation to the multiple prob-

ability vectors, where the exploration of the search space

and population diversity could be improved. One should

note that the proposed crossover and mutation are applied

to change the probability vectors, not the individual struc-

ture which is used in conventional evolutionary algorithms.

In hPMBGNP, there are several populations, i.e.,|R|.
Each population consists of a number of individuals, i.e.,

M . All the individuals will be initialized by random and

evaluated by a predefined fitness function. With their fit-

ness values, the set of promising individuals would be se-

lected. For each population, hPMBGNP constructs a prob-

abilistic model as described in section 2. The probabilistic

models are represented by connection probability vectors,

therefore, hPMBGNP consists of|R| probability vectors,

whoserth one is denoted asPr (r ∈ R). Genetic operators

such as crossover and mutation are applied to probability

vectorsPr to produce new probability vectorsP
′

r .

The new|R| populations will be generated by sampling

the probability vectorsP
′

r . In conventional GNP, crossover

and mutation are directly used to generate the new popu-

lation, as a result, the strongly related sub-structures of

GNP sometimes will be broken down to produce uninter-

esting individuals, while the probability model is carried

out by learning the structure of promising individuals to

guide the evolution of hPMBGNP. Therefore, hPMBGNP

inherits the characteristics of PMBEAs that the building

blocks could be recognized and represented implicitly in

the probabilistic model, then the generated population be-

comes capable of avoiding the breakage of building blocks.

On the other hand, crossover and mutation are applied to

the constructed model, which means maintaining the pop-

ulation diversity leads to that PMBGNP can handle the

problems consisting of the large search space. The details

of the probabilistic model construction and genetic opera-

tors in hPMBGNP will be introduced next.

4·1 Probabilistic model construction

The probabilistic model of populationr ∈ R is repre-

sented as probability vectorPr. P t
r denotes the probability

vectorPr in the tth generation, andP t
r (i,k, j) represents

the connection probability from thekth branch of node

i to nodej. The mathematical formulas to calculate the

probability vectors in hPMBGNP are the same as the ones

used in PMBGNP in section 2. The different point is that

in hPMBGNP, the probabilistic model consists of multi-

ple probability vectors, while PMBGNP consists of a sin-

gle probability vector. Therefore, the probabilistic model

could be denoted as follows.

P = {Pr|r ∈ R}.

Pr = {Pr(i,k, j)|i ∈NGNP ;k ∈ A(i);j ∈ A(i,k)}.

4·2 Genetic operators

Crossover and mutation are designed to produce the new

probabilistic modelP
′
. The role of genetic operators of

the probabilistic model is to explore the probability vec-

tors. In each generation, the constructed multiple proba-

bility vectorPr is replaced with the new one generated by

crossover and mutation. Tournament selection is used in

hPMBGNP to select probability vectors for crossover and

mutation. Crossover and mutation operators are carried

out subject to the following condition.∑
j∈A(i,k)

Pr(i,k, j) = 1 (13)

for all i ∈NGNP and allk ∈ A(i).

§ 1 Crossover
Crossover is executed between two probability vectors

and produces two new probability vectors. Crossover op-

erator exchanges all the probabilities of the selected branches

as shown in Algorithm 2. Figure 4 shows an example on

how crossover works in hPMBGNP.

Algorithm 2 Crossover of hPMBGNP
1: m,n ∈ R

Select two probability vectorsPm andPn from P .

2: Each branch(i,k) is selected as a crossover branch

with the probability ofpc.

3: Two probability vectors exchange the probabilities of

the corresponding crossover branches, i.e.,Pm(i,k, j)

andPn(i,k, j) are exchanged.

§ 2 Mutation
Mutation is executed in one probability vector to pro-

duce a new one. The probabilities of the selected muta-

tion branches are changed randomly by mutation operator,

where it should satisfy the condition in Eq. (13). The mu-

tation in hPMBGNP is designed as shown in Algorithm 3.

4·3 Diversity maintenance of hPMBGNP

In conventional PMBEAs, once the probability∗3 in the

probabilistic model is equal to zero, the corresponding

∗3 In PMBGA with no interactions, the probability is represented
by Pgene(0) or Pgene(1), and that of PMBGP is represented by
Pnode(function). In PMBGNP,P (i,k, j) represents the proba-
bility.
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Fig. 4 Two probability vectorsPm andPn are selected by tourna-
ment selection. In this example, branch(i,k) is selected as a
crossover branch and their probabilities ofPm andPn are ex-
changed with each other to generate the new probability vectors
P ′
m andP ′

n.

Algorithm 3 Mutation of hPMBGNP
1: Select one probability vectorPr from P .

2: Each branch(i,k) is selected as a mutation branch

with the probability ofpm.

3: For each nodej ∈ A(i,k), randomly generate a posi-

tive valuem(j).

4: Generate new probability vectorP
′

r using the follow-

ing Equation.

P
′

r(i,k, j) =
m(j)∑

ĵ∈A(i,k)

m(ĵ)

variable will never be sampled in the future generations.

This subsection discuss the diversity maintenance of the

proposed algorithm comparing with the standard PMBGNP.

Although crossover cannot preserve the population di-

versity, but it could explore the search space in another

way. For example, even though a probability in proba-

bility vector Pr is equal to zero, it could be changed to

a positive value by exchanging with another probability

vector by crossover, which could explore the search space

to avoid the local optimum.

Here, we discuss the diversity maintenance by the mu-

tation in the proposed algorithm.

[Definition 1] o(z) represents the number of probabil-

ities equal to zero in branchz.

[Definition 2] S is the set of suffixes of branches that

are not selected as mutation branch. It is very easy to know

that|S| = |Nbra|(1− pm).

[Theorem 4] For therth population, the diversity main-

tenance rate is defined by Eq. (14) and Eq. (15).

M(r) =
DM(r)

(|NGNP | − 1)|Nbra|
, (14)

where,

DM(r) = (|NGNP | − 1)|Nbra|pm
∏
z∈S

[|NGNP | − 1− o(z)]

−
∏

z∈Nbra

[|NGNP | − 1− o(z)]. (15)

⟨⟨Proof⟩⟩ As described previously, when the probabil-

ities in the probabilistic model are equal to zero, the cor-

responding variables will never be sampled in the future

generations. For branchz, the number of probabilities that

is not equal to zero is[|NGNP | − 1− o(z)]. Therefore, the

size of the search space of the standard PMBGNP is∏
z∈Nbra

[|NGNP | − 1− o(z)]. (16)

When mutation is applied to the proposed algorithm,
|Nbra|pm branches will be selected as mutation branches.
For all mutation branches, their probabilities are always
positive values by Algorithm 3. On the other hand, for the
branches in setS, their probabilities are still possible to be
zero like standard PMBGNP. Therefore, the search space
could be calculated by

(|NGNP | − 1)|Nbra|pm
∏
z∈S

[|NGNP | − 1− o(z)]. (17)

It is easy to know the size of the search space is in-

creased when mutation is done by comparing Eq. (16)

and Eq. (17), andDM(r) denotes the increased size of

the search space as shown in Eq. (15). The total search

space of PMBGNP can expressed by Eq. (6), therefore the

diversity maintenance rate can be calculated by Eq. (14).

�
It is easy to analyze thatDM(r) of Eq. (15) is larger

than zero, which means the mutation could maintain the

population diversity of PMBGNP. Moreover, when the value

of o(z) becomes large,DM(r) will also become large

when mutation rate is high, therefore the mutation could

ensure better diversity maintenance when the population

diversity is significantly lost.

5. Simulations

The proposed algorithm is evaluated by controlling the

movement of Khepera robot and a comparative study among

standard GNP, PMBGNP and hPMBGNP is carried out in

this section.

5·1 Settings of the simulations

§1 Settings of the robot
Khepera robot is a small (5.5cm) differential wheeled

mobile robot, which includes 8 infrared sensors allowing

it to detect the proximity of objects in front of it, behind it,

and to the right and left sides of it by reflexion. Each sen-

sor returns a value ranging from 0 to 1023∗4. Two motors

∗4 0 means that no object is perceived, while 1023 means that an
object is very close to the sensor, almost touching the sensor.
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Start

Fig. 5 Simulation environment.

corresponding to the left wheel and right wheel can take

speed values ranging from -10 to +10. The robot move-

ments are controlled by the speed of the two wheels.

§ 2 Wall following problem
The proposed algorithm is evaluated by solving the wall

following problem of Khepera Robot [Mabu 06]. Figure 5

shows the environment used in this simulation. The size

of the simulated environment is 1 m× 1 m, where there

are obstacles (walls) in it. The task ends when the time

step reaches predefined steps (1000 in this paper). The

wall following behavior of the robot generated by GNP

is evolved by evolution. Reward and fitness are designed

based on [Nordin 98]. The aim of the fitness evaluation is

to evolve the robot for moving along the wall as fast as and

as straight as possible. Therefore, the reward and fitness is

calculated as the following.

Reward =
vR + vL

20
(1−

√
|vR − vL|

20
)C, (18)

Fitness =

(
1000∑

step=1

Reward)

1000
, (19)

where,

vR, vL: the speed of right and left wheels,

C =


1 all the sensor values are less

than 1000, and at least one of

them is more than 100,

0 otherwise.
§ 3 Settings of network structures

The node functions used for the Khepera robot are shown

in Table 1. Each judgment node simulates the correspond-

ing infrared sensor of the Khepera robot, and returns a

value probing the position of the robot. In this paper, the

number of branches of judgment nodes is set at 2, which

means each judgment node returns a value ranging from 0

to 1023, and comparing the returned value with its thresh-

old value (1000 is used in this paper) the judgment node

determines which branch should be selected, as a result,

which node to visit next. Each processing node determines

the speed of the left or right wheel. The time delay of judg-

ment nodes is set at 1 time unit, that of node transition is

set at 0 time unit and that of processing node is set at 5

time units. The robot will take one step of action when 10

or more time units are used. For example, after executing

four judgments and one processing, if another one pro-

cessing is executed, the total time units become 14, which

lead to the end of one time step. On the other hand, the

simulation ends when the end condition is satisfied, that

is, the time step exceeds 1000, which means the task will

end when the robot moves 1000 time steps.

§ 4 Parameter settings
The parameter settings are shown in Table 2. In order to

study the proposed algorithm, the number of populations

|R| is set at six, not single one as the standard PMBGNP,

and the total number of individuals is set at a small value

to evaluate the motivation of this work. The crossover

and mutation probabilities in GNP and hPMBGNP are

set appropriately through the simulations, i.e.,pc = 0.1

andpm = 0.01 are used for both GNP and hPMBGNP in

this paper. Each probability vector is constructed for its

corresponding population, therefore total six probability

vectors exist in hPMBGNP. Two of them are evolved by

crossover and the rest four are evolved by mutation.

The number of judgment nodes is set at 40, which means

each judgment function has 5 corresponding judgment nodes.

Meanwhile, 20 processing nodes exist in an individual,

which means each processing function has 2 correspond-

ing processing nodes. The total number of branches|Nbra|
in an individual is|Nbra| = 40× 2+ 20 = 100, therefore

the size of the search space of PMBGNP in the simulations

is calculated by

Ψ(GNP ) = (|NGNP | − 1)|Nbra| = 59100. (20)

In each generation, GNP directly preserves the best in-

dividual to the next generation, and the remaining indi-

viduals are generated by crossover and mutation (120 by

crossover and 179 by mutation). For PMBGNP, 299 indi-

viduals are generated by sampling the probabilistic model,

and combined with the elite individual to form the next

new population. In the proposed algorithm, the process

of evolving each population is the same as PMBGNP and

finally 294 new individuals and 6 elite individuals corre-

sponding to 6 populations are combined to form the new

population.

5·2 Simulation results

§ 1 Simulation 1
In simulation 1, the start position of the robot is fixed at

the left side of the environment every generation, as shown
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Table 1 Node functions used for Khepera robot.
Node Function

J1, J2, ...,J8 Judge the value of the sensor 1, 2, ..., 8

P1(−10),P1(−5),P1(0),P1(5),P1(10) Determine the speed of the right wheel to -10, -5, 0, 5 or 10

P2(−10),P2(−5),P2(0),P2(5),P2(10) Determine the speed of the left wheel to -10, -5, 0, 5 or 10

Table 2 Parameter settings.

Parameter GNP PMBGNP hPMBGNP

Number of populations|R| 1 1 6

Number of individuals per populationM – – 50

Total number of individualsN 300 300 300

– Crossover 120 – –

– Mutation 179 – –

– Elite 1 1 6

Number of probability vectors – 1 6

– Crossover – – 2

– Mutation – – 4

Number of promising individuals – 150 25

Crossover probabilitypc 0.1 – 0.1

Mutation probabilitypm 0.01 – 0.01

Number of judgment nodes 40 (5 for each judgment function)

Number of processing nodes 20 (2 for each processing function)

η, α – 0.01, 0.1
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Fig. 6 Simulation results of GNP, PMBGNP and hPMBGNP
in Simulation 1.

in Figure 5. Figure 6 shows the average fitness curves of

the best individuals in each generation over 30 indepen-

dent simulations.

In an early generations, PMBGNP and hPMBGNP show

better fitness than GNP because the probabilistic models

have higher evolution ability to find better solutions. How-

ever, when the generation goes on, PMBGNP suffer seri-

ous diversity loss due to the sample size is much smaller

than the required one. Moreover, since PMBGNP does not

have any mechanism to preserve the diversity, therefore it

quickly converges to a local optimum.

GNP shows better fitness values than PMBGNP, because

even if poor individuals are generated in an initial genera-

tion, crossover and mutation can explore the search space

in each generation, which avoids the premature conver-

gence.

The proposed hPMBGNP shows the best fitness among

the three algorithms. Comparing with PMBGNP, the sim-

Start

Fig. 7 The successful track of robot by hPMBGNP.

Table 3 Result of t-test between GNP and hPMBGNP in Simulation 1.

GNP hPMBGNP

Mean 0.63 0.72

Standard deviation 0.088 0.058

T-test (p value) 0.0074 –

ulation result confirms that the proposed algorithm can

maintain the population diversity that avoids the local con-

vergence. On the other hand, the result shows that hPM-

BGNP has faster convergence than GNP in an early gen-

erations, and achieves better fitness value than GNP in the

last generation.

Figure 7 shows a successful track of the best solution

controlled by hPMBGNP. The figure shows that the pro-

posed algorithm can solve the wall following problem well.

The robot can move straight along the wall and avoid the

obstacles. In some trials, GNP can also obtain good tracks.

But in other trials, good results cannot be obtained, thus

GNP achieves lower average fitness value than hPMBGNP.

On the other hand, PMBGNP cannot solve the problem

due to the premature convergence.

Table 3 shows the results of t-test (one side) of the mean

fitness values between GNP and hPMBGNP. The p value

shows that there is a significant difference between GNP

and hPMBGNP.

§2 Simulation 2

In this simulation, the start position is randomly changed

every generation, thus if there is no wall around the robot,

it must search for the walls and move along them. The

motivation of simulation 2 is to study if the evolution pro-

cess can learn and evolve building blocks of GNP indi-

viduals which can adapt to more general situations, when

the start position is randomly set every generation. There-
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Fig. 8 Simulation results of GNP, PMBGNP and hPMBGNP
in Simulation 2.

Table 4 Result of t-test between GNP and hPMBGNP in Simulation 2.

GNP hPMBGNP

Mean 0.55 0.63

Standard deviation 0.127 0.102

T-test (p value) 0.0011 –

fore, when the evolution process starts, the identification

and recombination ability of building blocks among GNP,

PMBGNP and hPMBGNP were compared.

Figure 8 shows the average fitness curves of the best

individuals in each generation over 30 independent sim-

ulations. hPMBGNP also shows the best fitness values

among the three algorithms, which means that, even if

the simulation situation changes, the adaptable building

blocks can be identified by the proposed algorithm and ef-

ficient recombination of building blocks make it possible

to achieve better performances.

Table 4 shows the results of t-test (one side) of the mean

fitness values between GNP and hPMBGNP in simulation

2, where there is a significant difference between GNP and

hPMBGNP.

§ 3 Generalization ability

To testify the generalization ability of the proposed al-

gorithm, the robot is evaluated in an testing environment

as shown in Figure 9. The best solutions∗5 of GNP and

hPMBGNP obtained from simulation 2 are used to con-

trol the robot. The average fitness values of each algorithm

are calculated based on 1000 independent trials, in which

the start position of the robot is set randomly. Table 5

shows the performance of GNP and hPMBGNP in the test-

ing environment. The average fitness value and standard

deviation∗6 in Table 5 show that the proposed algorithm

∗5 30 independent runs of simulation 2 can obtain 30 best solutions.
∗6 For each best solution, the average fitness value and standard de-

viation can be calculated from 1000 independent trials. The final
average fitness value and standard deviation can be obtained from
the 30 average fitness values and standard deviations.

Fig. 9 Testing environment.

achieves the best average fitness value, and the t-test re-

sult shows that there are significant differences between

GNP and hPMBGNP.

Table 5 Result of t-test between GNP and hPMBGNP in the testing
environment.

GNP hPMBGNP

Mean 0.36 0.45

Standard deviation 0.115 0.080

T-test (p value) 2.83× 10−5 –

5·3 Effect of multiple probability vectors

In this subsection, the number of populations|R| and

the number of individuals in each populationM are set at

various values to study the effects of multiple probability

vectors. Most simulation settings are the same as Table 2,

while different settings of|R| andM are used.

The total number of individualsN equals to 300. Since

there are so many combinations of|R| andM , we simply

define that each population has the same number of indi-

viduals, which meansM = N
|R| . Therefore, we tested four

simulations, where the settings of|R| are like |R| = 4,

|R| = 5, |R| = 6 and |R| = 7∗7. Table 6 shows the de-

tailed parameter settings of the 4 simulations. Figure 10

shows the effects of different|R| on the best fitness curves.

For each simulation, at least 2 populations are needed

for crossover, and mutation is applied to the left popula-

tions. Since crossover has little exploration ability, a small

number of populations|R| will cause small mutation ef-

fects, which can not guarantee enough exploration ability

to obtain the best performance. Therefore, in the case of

|R| = 4, the simulation achieves the worst performance.

On the other hand, too large|R| will make too small pop-

ulation sizeM , which cannot guarantee enough sample

size to estimate an accurate probabilistic model. We can

find from Figure 10 that|R| = 6 is an appropriate value

among the four simulations.

∗7 In the simulation of|R| = 7, 6 populations consist of 43 individ-
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Table 6 Parameter settings of 4 simulations.

Simulation |R| = 4 |R| = 5 |R| = 6 |R| = 7

Number of individuals per populationM 75 60 50 42, 43

Total number of individualsN 300

Number of probability vectors 4 5 6 7

– Crossover 2 2 2 2

– Mutation 2 3 4 5

Number of promising individuals 35 30 25 20
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5·4 Diversity maintenance comparison between PM-

BGNP and hPMBGNP

To evaluate the diversity maintenance, we compare the

change ofo(z) in PMBGNP and hPMBGNP, whereo(z)

represents the number of probabilities equal to zero in

branchz as defined in[Definition 1] .

In PMBGNP, once the probability in the probabilistic

model is equal to zero, the corresponding variable will

never be sampled in the future generations, while hPM-

BGNP can explore its search space by mutation to over-

come this problem. We consider all the probabilities in the

probabilistic models, where the following value are used.

[Definition 3] SUM(o) represents the total number of

probabilities equal to zero in the probabilistic model, and

we can easily know

SUM(o) =
∑

z∈Nbra

o(z). (21)

The valueSUM(o) can also represent the convergence

of the probabilistic model.

However, one should note that exponential smoothing

method in Eq. (2) causes the probabilities never equal to

zero theoretically, once they are not equal to zero in the

first generation. The probabilities tend to decrease with

respect to the smoothing rateα, if they are smaller than

the other probabilities of the same branch. Therefore, in

order to calculate the value ofSUM(o) to compare the

uals and 1 population consists of 42 individuals.
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diversity maintenance between PMBGNP and hPMBGNP,

the following assumption is used.

[Assumption 1] In the probabilistic model, a probabil-

ity P (i,k, j) is regarded as zero, if it satisfies

P (i,k, j) < 1.0× 10−6. (22)

Although the probabilities smaller than1.0× 10−6 are

not actually equal to zero, these probabilities are too small

to be sampled. Therefore,[Assumption 1] is not con-

trary to the probabilistic model, but makes it possible for

SUM(o) to converge.

We use simulation 1 to compare the diversity mainte-

nance between PMBGNP and hPMBGNP. We can find

from Table 2 there are|NGNP | − 1 = 59 probabilities in

each branch, and each individual consists of|Nbra| = 100

branches. Therefore, the total number of probabilities in

the probabilistic modelNprob can be calculated by

Nprob = |Nbra| × (|NGNP | − 1)

= 100× 59 = 5900. (23)

Therefore, the probabilistic model of PMBGNP consists

of Nprob = 5900 probabilities. On the other hand, since

hPMBGNP consists of|R| = 6 probabilistic models, we

can obtain total6×Nprob probabilities. In order to make

a fair comparison, after counting the number of probabil-

ities equal to zeroSUM(o) for each algorithm, we com-

pareSUMPMBGNP(o) with
SUMhPMBGNP(o)

6 in the

simulations.

Figure 11 shows the comparison of the diversity be-

tween PMBGNP and hPMBGNP. In the figure, the y-axis

of PMBGNP is calculated bySUMPMBGNP(o), while

that of hPMBGNP is by
SUMhPMBGNP(o)

6 . From this

simulation, we can find that the probabilistic model of

PMBGNP converges during the evolution process.
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[Theorem 5] A probabilistic model of PMBGNP con-

verges, if it satisfies

SUM(o) =Nprob− |Nbra|. (24)

⟨⟨Proof⟩⟩ If the probabilistic model of PMBGNP con-

verges, the probabilistic model will always produce the

same individual, which means every branch is sampled

to connect to a specific node with probability 1. In this

case, if branchz is sampled to connect to a specific node

with probability 1, it means that the number of probabili-

ties equal to zero in branchz is

o(z) = (|NGNP | − 1)− 1 = |NGNP | − 2. (25)

Then, the total number of probabilities equal to zero in the
probabilistic model is

SUM(o) = |Nbra| × o(z) = |Nbra| × (|NGNP | − 2)

= |Nbra| × (|NGNP | − 1)− |Nbra|. (26)

By applying Eq. (23) to Eq. (26),[Theorem 5] is

proven.

�
Based on[Theorem 5], we can easily find the proba-

bilistic model of PMBGNP has converged in this simula-

tion, since

SUMPMBGNP(o) =Nprob− |Nbra|

= 5900− 100 = 5800. (27)

On the other, mutation can avoid the convergence of

the probabilistic model of hPMBGNP. From Figure 11,

we can find
SUMhPMBGNP(o)

6 is fluctuated around 5300,

and never converge. Therefore, hPMBGNP can maintain

the diversity to find the optimal solution gradually.

6. Conclusions and future work

This paper theoretically analyzed the significance of the

diversity loss in general PMBEAs, including PMBGA, PM-

BGP and PMBGNP. The analysis shows that this issue is

especially serious in PMBEAs with more complex struc-

tures, such as PMBGP and PMBGNP. Based on the anal-

ysis, this paper proposed a hybrid PMBGNP to maintain

the population diversity of PMBGNP. The proposed algo-

rithm is an extension of PMBGNP which is a graph struc-

ture based PMBEA proposed recently. In the proposed al-

gorithm, two techniques, named multiple probability vec-

tors and genetic operators, have been proposed to maintain

the population diversity and to make PMBGNP capable

of handling the problems with large search space. This

paper theoretically analyzed the diversity maintenance of

the proposed algorithm by applying it to control the move-

ment of Khepera robot. The experimental results show the

superiority of the proposed algorithm, comparing with the

conventional GNP and standard PMBGNP.

There are mainly two advantages of the proposed al-

gorithm. Firstly, comparing with the conventional GNP,

the proposed algorithm inherits the characteristics of PM-

BEAs avoiding the frequent breakage of building blocks to

achieve better performances. On the other hand, compar-

ing with the standard PMBGNP, the proposed algorithm

can maintain the population diversity to avoid the prema-

ture convergence of local optima.

PMBGNP has much potential to be expanded. The pre-

vious research of GNP has showed its superiority to han-

dle the dynamic environments, comparing with the classi-

cal evolutionary algorithms, such as GP and EP. It is possi-

ble that PMBGNP would inherit such advantages that out-

performs the algorithms of PMBGP. In the future, we will

emphasize the research of PMBGNP by comparing with

the classical algorithms of PMBGP. On the other hand,

the current PMBGNP is only designed based on the pair-

wise interactions, therefore, PMBGNP with multivariate

interactions will be studied in the future.
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