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ABSTRACT 
Gene Expression Programming (GEP) is a powerful evolutionary 
method derived from Genetic Programming (GP) for model 
learning and knowledge discovery. However, when dealing with 
complex problems, its genotype under Karva notation does not 
allow hierarchical composition of the solution, which impairs the 
efficiency of the algorithm. We propose a new representation 
scheme based on prefix notation that overcomes the original 
GEP’s drawbacks. The resulted algorithm is called Prefix GEP (P-
GEP). The major advantages with P-GEP include the natural 
hierarchy in forming the solutions and more protective genetic 
operations for substructure components. An artificial symbolic 
regression problem and a set of benchmark classification 
problems from UCI machine learning repository have been tested 
to demonstrate the applicability of P-GEP. The results show that 
P-GEP follows a faster fitness convergence curve and the rules 
generated from P-GEP consistently achieve better average 
classification accuracy compared with GEP. 

Categories and Subject Descriptors 
[Genetic Programming]: Novel representations, algorithm 
design, and theory. 

Keywords 
Polish notation, Gene expression programming, genotype-
phenotype mapping mechanism, and schema theorem. 

1. INTRODUCTION 
First introduced by Candida Ferreira [1], Gene Expression 
Programming (GEP) is improved from Genetic Programming 
(GP) as a new technique for the creation of computer programs 
denoting the learned models or discovered knowledge. In GEP, 
computer programs are represented as linear character strings of 
fixed-length (called chromosomes) which, in the subsequent 
fitness evaluation, can be expressed as expression trees (ETs) of 
different sizes and shapes. The separation of genotype and 

phenotype has endowed GEP with more flexibility and power of 
exploring the entire search space compared with traditional GP. 
GEP methods have performed well for solving a large variety of 
problems, including symbolic regression, optimization, time 
series analysis, classification, logic synthesis and cellular 
automata, etc. [2, 4, and 6].  
However, the learning procedure of GEP can be improved upon 
when dealing with complex problems with respect to both time 
efficiency and solution quality. The biological evolutionary 
process has revealed the principle of evolving from a self-
contained functional single cell to a well-developed entity with 
numerous specialized components. We are naturally inspired to 
assume that solutions to complex problems might be built up 
incrementally from simpler elements. Although the phenotype of 
expression trees in GEP has retained the structural representation 
from GP, the linear representation of the genotype conforms to 
Karva notation [1], under which the genotype-phenotype mapping 
mechanism does not guarantee that the levels of functional 
complexity in the phenotype are also directly reflected in the 
genotype. Since it is the genotype that is subject to the different 
genetic operations, it is difficult to follow the approach of 
incrementally forming solutions with the original GEP. Moreover, 
an evolved good functional structure is very likely destroyed in 
the subsequent generations not only by mutations but also by 
crossovers and rotations, which may require much additional 
computation to recover before an optimal solution is found. 
Therefore, a more structure friendly genotype is needed to assure 
the direct linkage among the substructure pieces corresponding to 
the sub-trees in the phenotype. 
In this paper, we propose Prefix Gene Expression Programming 
(P-GEP), which adopts a new genotype representation scheme 
and consequently a new genotype-phenotype mapping mechanism 
following the convention of prefix notation. As distinguished 
from the Karva notation, P-GEP enjoys the natural 
contiguousness of substructure components in its genotype 
representation. This is a fundamental enhancement to the original 
GEP and it specifically overcomes the aforementioned drawbacks 
of GEP. We believe P-GEP benefits the evolution in terms of the 
convergence of a good functional structure. 
An artificially structured symbolic regression problem and a set of 
benchmark classification problems from the UCI machine 
learning repository [12] have been tested to demonstrate the 
applicability of P-GEP. The results show that P-GEP follows a 
faster fitness convergence curve and the rules generated from P-
GEP consistently achieve better average classification accuracy 
than those of GEP. 
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The next section of this paper gives an overview of related work. 
Section 3 explains the P-GEP algorithm and its major 
characteristics. The experiments and qualitative discussion of the 
results are covered in section 4. Section 5 presents some 
conclusions and ideas for future work. 

2. RELATED WORK AND MOTIVATIONS 
2.1 Brief Overview of Gene Expression 
Programming 
As is the case with GP, when using GEP to solve a problem, 
generally five components, i.e., the function set, terminal set 
(including problem-specific variable names and pre-selected 
constants), fitness function, GEP control parameters, and stop 
condition need to be specified. Some details are given as below: 
(1) The GEP chromosomes, expression trees (ETs) and the 
mapping mechanism. 
Each chromosome in GEP is a character string of fixed-length, 
which can be composed of any element (also called gene) from 
the function set or the terminal set. Using the elements {+, -, *, /, 
sqrt} as the function set and {a, b, c, d, 1} as the terminal set, the 
following is an example GEP chromosome of length fifteen: 

       sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d                   (2.1) 
where “.” is used to separate individual genes; sqrt denotes the 
square-root function; 1 is a numeric constant; and a, b, c, d are 
variable (or attribute) names. The above is referred to as Karva 
notation, or K-expression [1]. 
A K-expression can be mapped into an ET following a width-first 
procedure. A branch of the ET stops growing when the last node 
in this branch is a terminal. For example, the ET shown in Figure 
1 corresponds to the sample chromosome (2.1), and can be 
interpreted in a mathematical form as (2.2).  
The conversion of an ET into a K-expression is also very 
straightforward, and can be accomplished by recording the nodes 
from left to right in each layer of the ET in a top-down fashion to 
form the string.                 
 
 
 
 
 
 
 

 
Figure 1. Example of GEP Expression Tree. 
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It is important to notice that in GEP all of the chromosomes are of 
a fixed length, but the size of expression trees can vary. This is 
because that not every chromosome coincides with a valid K-
expression. Very frequently, a chromosome may have some 
redundant elements which are useless for the chromosome-ET 
mapping. For example, (2.3) is also a chromosome of length 
fifteen, however only the underlined part of it forms a valid K-

expression which subsequently maps into the ET of size eleven 
shown in Figure 2. In some other cases, a chromosome may not 
be able to match any valid K-expression within its length due to 
the lack of terminals at the end to finish the construction of the 
ET. In order to guarantee that only legal expression trees are 
generated, we have applied a validity test proposed by Zhou, et al. 
[3, 5] to dynamically check if a chromosome is able to encode a 
legal expression tree within the size limit (for details please refer 
to [3]) in stead of the original head-tail method [2]. All of the 
chromosomes randomly generated or reproduced by genetic 
operators are subject to this test to prevent illegal expressions 
from being introduced into the population. 

     sqrt.*.+.*.a.*.sqrt.a.b.c.d.1.-.c./                   (2.3) 
 
 
 
 
 
 
 

Figure 2. Example of GEP Expression Tree with a size smaller 
than the chromosome length. 
(2) The description of the GEP Algorithm. 
The GEP algorithm begins with the random generation of linear 
fixed-length chromosomes for individuals of the initial 
population. The chromosomes are represented as expression trees, 
and the fitness of each individual is evaluated based on a pre-
defined fitness function. The individuals are then selected by 
fitness to reproduce with modification. The individuals of this 
new generation are, in their turn, subject to the same 
developmental process, i.e., expression as chromosomes, 
confrontation in the selection environment, and reproduction with 
modification. This process is repeated for a pre-specified number 
of generations or until a solution has been found. In GEP, 
individuals are often selected and copied into the next generation 
based on their fitness, as determined by roulette-wheel sampling 
with elitism [7], which guarantees the survival and cloning of the 
best individual to the next generation. Variation in the population 
is introduced by applying one or more genetic operators to 
selected chromosomes, including: 
• Crossover, in which two parent chromosomes are randomly 
chosen and paired to exchange some elements between them. 
There are two kinds of crossover: one-point and two-point 
crossover, working in the same fashion as in the canonical GAs 
[3].    
• Mutation, in which the symbols at any position in a chromosome 
are subject to a random change according to a certain probability.  
• Rotation, in which two subparts of the element sequence in a 
chromosome are rotated with respect to a randomly chosen point.  
Note that all of these operations upon the coding sequence of a 
chromosome usually drastically reshape the corresponding ET. 
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2.2 Motivations from Biological Evolution, 
GAs and GP 
Complex data mining tasks are characterized by large data sets, 
high dimensional feature sets and non-linear forms of hidden 
knowledge within the data. It is very appealing to solve these 
problems with GEP since the nature of the algorithm fits the 
challenges well. However, the margin for improving the algorithm 
is also noticeable due to observations from the following aspects: 
(1) Biological evolution 
As perceived from the biological evolution in nature, a complex 
creature is usually evolved from a simple but self-contained 
functional single cell, and the subparts of this individual are later 
further specialized or adapted as the response to changes in the 
environment. This is virtually the modern evolution theory based 
upon Darwin's theory of natural selection [8]. Since GEP mimics 
the biological evolutionary process, an analogical hypothesis is 
that solutions to complex problems can be built up from simpler 
elements. To achieve this purpose, a structure-preserving 
representation with respect to genetic operators is in need. 
However, the Karva notation of original GEP has the weakness in 
this aspect because the genes corresponding to the functionally 
independent sub-trees in the expression tree are not mapped as 
contiguous segments in the linear chromosome. As the 
consequence, the solution structures are very fragile when subject 
to genetic operations, not only by mutations (which are usually 
intended for producing genetic diversity) but also by crossovers 
and rotations (which are more generally intended for inheriting 
the genetic traits from previous generations). The evolutionary 
process does not well benefit from the explored individuals in 
terms of reusing the evolved good substructure components in 
other candidates to form the solution incrementally.      
(2) Genetic algorithms (GAs) 
The general philosophy of GEP can be traced back to GAs which 
are also the ancestor of GP. More importantly, GEP shares the 
linear genotype of fixed-length as in GAs. As one of the 
foundations of GAs, the schemata theory was developed to 
analyze how the GAs work [9]. Defined as some patterns of the 
chromosomes, schemata are used to represent parts of the search 
space. It was then proved that the evolution of GAs works by 
continuing to explore the areas of the search space that are likely 
to produce higher levels of fitness. Following this, when a GA 
explores new candidate solutions, it should ideally keep the 
search within the space confined by the fitter schemas.  In other 
words fitter schemata are those that should be transmitted 
between generations. This subsequently derives the building 
blocks hypothesis based on the schemata and introduces the 
linkage (i.e., building block disruption) problem [11]. The 
performance of GAs would presumably be improved if 
functionally related bits are more likely stay together in the string 
under crossover [3]. 
(3) Genetic Programming (GP) 
GP gains its success by taking the tree representation to increase 
the complexity of the structures undergoing adaptation [10]. At 
the same time, since the genetic operations are defined upon the 
sub-trees, the elementary solution structure components are not 
easily destroyed and over time, this concentrates the search of the 
solution space into the subspace of ever-decreasing 
dimensionality and ever-increasing fitness. Meanwhile, GP has 

tailored the schemata theorem for its tree structured individuals to 
analyze the performance of the algorithm, where a schema is 
defined as a set of specified sub-trees [10]. Therefore the overall 
effect of fitness-proportionate reproduction and crossover is that 
sub-trees from relatively high-fitness programs are used as 
building blocks for constructing new individuals in an 
approximately near-optimal way. These ideas have also been 
extended into different versions of schema theorems for different 
derivations of the GP algorithm [13, 14, and 15]. 
However, the tree representation scheme makes the algorithm 
difficult to implement and easily trapped by the explosively 
growing tree size during the evolution. It was also recognized that 
due to the variable length of the GP representation, none of the 
existing formulation of a GP schema theorem predicts with any 
certainty that good schema will propagate during a GP run [16]. 
All of above has motivated us to develop a new genotype 
representation for GEP to incorporate the complexity hierarchy of 
solutions into its flexibility in evolution. 

3. POLISH NOTATION BASED GENE 
EXPRESSION PROGRAMMING 
3.1 Genotype, Phenotype and Mapping 
Mechanism of P-GEP 
The major contributions of P-GEP are the adoption of a new 
linear genotype representation in prefix notation and a resulted 
different mapping mechanism between its genotype and 
phenotype. To make it clear, we will use the example from 
Section 2.1 to illustrate the concepts of genotype, phenotype and 
the mapping mechanism under P-GEP as well as their differences 
from GEP.  
First of all, the phenotype of P-GEP is the same as in GEP, 
namely, an expression tree.  Secondly, in P-GEP, the genotype is 
still a linear character string of fixed-length. However, the 
mapping mechanism between genotype and phenotype conforms 
to the convention of prefix notation expressions. Therefore, given 
the same chromosome, the corresponding ET is formed following 
the preorder instead of width-first fashion as in GEP. For the 
chromosome of length fifteen in example (2.1), P-GEP will map it 
into a dramatically different ET as shown in Figure 3. As the 
result, the arithmetic expression translated from this ET also 
represents a completely different functionality as shown in (3.1).  

sqrt

*
+

* c
a *

bsqrt

a

1 -
c d

/

 

Figure 3. Example of P-GEP Expression Tree 

                                   
)1)((

dc
cbaa

−
+

        (3.1) 
On the other hand, the conversion from an ET to a chromosome is 
also straightforward as reading the tree nodes in preorder. For the 



expression tree as shown in Figure 1, the corresponding P-GEP 
chromosome of length fifteen is: 

        sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a                   (3.2) 
As is the case in GEP, all of the chromosomes in P-GEP are of a 
fixed length, but the size of expression trees can vary. It is still 
possible that a chromosome may have some redundant elements 
which are not useful for the chromosome-ET mapping, or a 
chromosome does not map to a legal expression tree, so the 
validity test applies here as well. For the evolutionary process of 
the algorithm and the genetic operators, P-GEP follows the same 
definitions as in GEP. 

3.2 Major Characteristics of P-GEP 
3.2.1 Substructure Preserving Characteristics 
In P-GEP, the genotype has a much more direct correlation with 
its phenotype with respect to the formation of the solution’s 
functionality. Nodes from the same sub-tree of an expression tree 
appear adjacent to each other on the matching character string, 
and subroutines of the solution can therefore be easily recognized 
as segments of the chromosome. This equivalently means that P-
GEP solution substructures have a tighter genetic linkage, which 
results in less destructive crossover and rotation operations 
compared with GEP. These substructure preserving characteristics 
can be illustrated by examining the crossover and rotation 
operators in P-GEP with the example chromosomes of (2.1) and 
(3.2), which is listed in Table 1 (underscores are used to identify 
the crossover and rotation points). 

Table 1. Genetic Operators for the P-GEP algorithm 

Initial  
Chrom 

sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d  (1.1) 
 
sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a  (3.2) 
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cr
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Offspring 
sqrt.*.+.*.a.b.c.*.sqrt./.1.-.c.d.a  (3.3) 
 
sqrt.*.+.a.*.*.sqrt.a.b.c./.1.-.c.d  (3.4) 

Initial  
Chrom 

Sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d  (1.1) 
 
sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a  (3.2) 
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Offspring 
sqrt.*.+.*.a.b.c.*.sqrt.c./.1.-.c.d  (3.5) 
 
sqrt.*.+.a.*.*.sqrt.a.b./.1.-.c.d.a  (3.6) 

Initial  
Chrom  sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d  (1.1) 

G
en

et
ic

 O
pe

ra
to

rs
 

R
ot

at
io

n 

Offspring *.+.*.a.*.sqrt.a.b.c./.1.-.c.d.sqrt  (3.7) 

 
For the one-point crossover example, the resulting offspring (3.3) 
can be mapped into the ET shown in Figure 4. Compared with the 
ET shown in Figure 3, it is observed that crossover has also 
reshaped the ET as is the case in GEP, however not that 
drastically since we see the subroutine of 1/(c-d) remain intact in 
both the initial chromosome and the offspring, except for its 
relocation in the solution structure. Similar observations are 
available for other offspring (3.4), (3.5), (3.6) and (3.7). Thus in 
P-GEP, crossover and rotation operators can better serve the 
purpose of passing genetic material from one generation to 
another as intended. The sub-components of fittest individuals are 
more likely preserved and transmitted than in GEP. This 

potentially leads to a faster convergence of the solution structure 
and finally an optimal solution for P-GEP. This is further 
examined in section 4.2 with some in-depth discussion and 
theoretical analysis. 
  
 
 
 
 
 
 

Figure 4. Example of P-GEP Expression Tree produced by 
one-point crossover. 

3.2.1 Inherent Hierarchy in Forming the Solution 
The genotype based on prefix notation in P-GEP makes the 
structural hierarchy of the solution not only apparent in 
expression tree, but also inherent within the linear character 
strings. In both representations, the hierarchies are formed 
incrementally and a higher-level structure is built upon the lower 
ones naturally. This can be clearly illustrated with the example 
chromosome (2.1) and its corresponding P-GEP ET in Figure 3. 
Both are redrawn in Figure 5. In the ET representation, root nodes 
of each valid sub-tree are annotated with circled numbers marking 
their hierarchy (i.e., modularity levels) within the tree. A smaller 
number refers to a lower hierarchy and the hierarchy of a sub-tree 
is always higher than that of any one of its component sub-trees. 
These numbers also accompany the matching character segments 
(called substructures) in the linear string representation, which are 
identified with underlines.  
 
 
 
                  
 
 
 
 
 
 
 
 
 

Figure 5. Illustration of inherent hierarchy in genotype and 
phenotype of P-GEP. 
Figure 5 conveys another important feature of P-GEP: the 
genotype and phenotype encode the functional complexity in a 
similar way.  Once the root of the sub-tree is found, it is equally 
convenient to pick up the whole functional branch either in the ET 
representation or the linear chromosome representation. In other 
words, the linear chromosome is no less expressive than the ET in 
terms of the functionality of the solutions they both encode. This 
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is another significant advantage of P-GEP since now the tree 
representation is actually not necessary for implementing the 
genetic operations and fitness evaluations. Operating on the linear 
chromosome is much more efficient than working on the tree 
structures. However, we keep the ET representation for the clarity 
of the illustration on the solutions. 

4. EXPERIMENTS AND DISCUSSIONS 
4.1 Experiments and Results 
In order to justify the advantage of P-GEP as compared to GEP, 
we first experimented on the two algorithms with an artificially 
structured symbolic regression problem. Later a suite of 
classification tests were conducted on the four testing datasets that 
are cited from the UCI Machine Learning repository. 

(1) A simple symbolic regression problem. 

The simple symbolic regression problem used for the experiment 
is shown in (4.1). Since the final solution has inherently defined 
substructures and hierarchy, evolutionary processes with 
emphasis in preserving substructure components should enjoy 
some benefits under our assumption. A set of twenty-one fitness 
cases equally spaced along the x axis from -10 to 10 were chosen 
for the tests.  

                  (4.1) 
The general experiment setup is summarized as follows: the 
chromosome size is 128; the population size is 1000; the 
maximum number of generations is 500; the crossover probability 
is set as 0.7, and the mutation and rotation probability is set as 
0.02; the function and terminal sets are selected as {+, -, *, /} and 
{1, 2, 3, 5, 7} respectively. Each experiment has been run for ten 
times and the results were averaged.  
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The fitness convergence curves of P-GEP vs. GEP 
for the given symbolic regression problem. 
Since the ultimate goal for both techniques is to find the optimal 
solution effectively, we decided to examine the fitness 
convergence curves revealed by every evolutionary process. In 
our experiments for this symbolic regression problem, the fitness 
of a solution is defined as the residual, which is better when 
smaller. The best fitness value among all of the individuals was 
recorded at every generation for all of the ten runs, and the 
average is plotted against the generation in Figure 6 for both GEP 
and P-GEP.  

The curves show that generally in the very early generations, both 
evolutionary processes experience a quick reduction in their best 
residual values. However, GEP seems to have comparably much 
higher residual values than P-GEP for the same generation. This 
indicates that the substructure preserving characteristics of P-GEP 
actually do improve its problem solving ability in this 
intentionally structuralized problem. Since in quite a lot of 
situations, the problem solutions have underlying structures, P-
GEP is promising in fulfilling these tasks.  

(2) Classification tests. 

In our previous benchmark classification testing for GEP in 
comparison with traditional machine learning methods and 
canonical tree-based GP classifiers, GEP has already exhibited 
better performance in terms of the classification accuracy, 
compactness of evolved rules and running time (for details please 
refer to [3, 5]). Therefore, here we focus on testing the 
performance improvement of P-GEP over P-GEP in executing 
classification tasks.  
The datasets for classification tests are summarized in Table 2. 
The experiment setting was as follows: the chromosome size is 80 
for iris, 128 for abalone and 100 for the rest; the population size is 
1000; the maximum number of generations is 1000; the crossover 
probability is set as 0.8, and the mutation and rotation probability 
is set as 0.02; the functional and terminal sets are selected as {IF, 
+, -, *, /, sqrt} and {1, 2, 3, 5, 7} respectively. We have applied 
the five-fold cross validation method for the testing of iris, zoo 
and wine. For abalone, we followed the past usage of the data set 
to separate the first 3133 cases into the training set and the 
remaining 1044 into the testing set. Finally, each experiment has 
been repeated for five independent runs and the results were 
averaged. 

Table 2. Summary of the classification data for P-GEP vs. 
GEP 

Dataset Description 

Iris 4 numeric attributes; 150 cases; 3 classes with class 
distribution {50, 50, 50} 

Zoo 
15 boolean and 1 numeric attributes; 101 cases; 7 
classes with class distribution {41, 20, 5, 13, 4, 8, 
10} 

Wine 13 numeric attributes; 178 cases; 3 classes with class 
distribution {59, 71, 48} 

Abalone 1 nominal and 7 numeric attributes; 4177 cases; 3 
classes with class distribution {1407, 1323, 1447} 

 
Table 3 summarizes the experimental results, where average  
refers to the average of the averaged classification accuracy for 
each run of five-fold cross validation over the total five runs 
(except that for abalone, it directly shows the general average 
classification accuracy over the five runs) and best refers to the 
average of the classification accuracy over the five folds in the 
best run (except that for abalone, it directly shows the best testing 
classification accuracy out of the five runs). Each number (except 
the two in the entries of best for abalone) shown in the table is in 
terms of percentage and associated with its 95% confidence 
interval.  
As seen from Table 3, for the average values over the five runs, P-
GEP has consistently achieved a higher classification accuracy 
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value and a smaller confidence interval in all of the tests. We 
further performed the one-tailed t-tests with an unequal variance 
assumption and a 0.05 significance level. The results suggest 
there are statistically significant differences between the average 
classification accuracy values, and therefore P-GEP outperforms 
GEP for the selected classification problems in this sense. 
Regarding the best classification accuracy (averaged over five 
folds) out of the five runs, although for iris and abalone datasets 
P-GEP has yielded apparently better values, in general both 
methods are just comparable and the differences are not 
statistically significant under the t-tests. This is understandable as 
both P-GEP and GEP are very flexible by adopting the linear 
genotype representation, and therefore the algorithms could 
ultimately approximate equally good solutions. However, with the 
structure-preserving representation, P-GEP can quickly converge 
to a better solution than GEP given the same amount of resources. 

Table 3. Summary of the test results for P-GEP vs. GEP 

Average Best 
Dataset 

P-GEP GEP P-GEP GEP 

Iris 96.0±0.7 93.7±1.4 96.7±4.1 95.3±5.7 

Zoo 94.4±0.5 93.0±0.6 95.0±6.2 94.0±5.7 

Wine 92.2±2.6 89.8±2.8 95.5±4.5 93.3±3.7 

Abalone 56.7±3.4 50.1±4.1 59.9 53.6 

4.2 Theoretical Discussion 
The experimental results have shown that the performance of P-
GEP fits into our hypothesis about its characteristics presented in 
section 3. Since P-GEP combines the representation advantages of 
both GAs and GP, we are inspired to conduct a similar schema 
analysis on how P-GEP forms the solution incrementally by 
composing useful subcomponents together. Because each valid 
individual in the search space of P-GEP corresponds to an 
expression tree, the search space of P-GEP can be represented by 
all of the possible expression trees constructed with the pre-
selected functional and terminal sets within the specified 
chromosome length. It is then convenient to define schema in P-
GEP in terms of substructures, each of which is equivalently a 
complete sub-tree in the expression tree representation. The main 
activity of the search process of P-GEP is to find an optimal 
combination of these schemata. 
Currently we define a schema in P-GEP as a set of substructures. 
There are two more restrictions to this definition. The first 
restriction is that the substructures in a schema are intended as 
non-overlapping ones in the instance chromosome (however they 
can be identical ones as long as they reside in different positions 
within the chromosome) and as a result the sum of their lengths 
does not exceed the predetermined chromosome length. Secondly, 
each substructure is associated with its starting position in the 
chromosome, so the schema is position dependent. Note that 
under this definition, every individual in the P-GEP search space 
actually belongs to at least one schema among all the possible 
ones which is the one defined by the expression tree encoded by 
the individual itself. 
Following the terminologies used in the schema theorem of GAs, 
the defining length δ(H) of a schema H in P-GEP is the distance 
between the outmost elements of all the specified substructures in 

this schema, and the number of specified positions O(H) is the 
number of the positions in the chromosome that have specified 
elements by the schema, whose value is the sum of the lengths of 
the substructures in the schema. However, the order of the schema 
is defined as the maximum hierarchical level among all of the 
substructures included in the schema. We can illustrate these 
concepts with the example chromosome (2.1). Table 4 has 
included some of the possible schemata that chromosome (2.1) 
could be an instance of, along with their respective defining 
length and order.  It is not difficult to understand that a schema 
composed of lower-order defining substructures that are 
physically close to each other will have a smaller defining length. 
Besides the extreme cases of schemata composed of a single 
terminal, those defined by a single primitive substructure 
(composed of only one operator and the corresponding 
parameters) also tend to have the smallest defining length.  

Table 4. Illustration of schema, its defining length and order 

Schema δ(H) O(H) Order 

{-.c.d: 13} 2 3 1 

{*.sqrt.a.b: 6, d: 15} 9 5 2 

{a: 5; a: 8; b: 9;c: 10; c: 14} 9 5 0 

{*.+.*.a.*.sqrt.a.b.c./.1.-.c.d: 2} 13 14 5 
 
For a given problem, if the chromosome length is set as L, then 
the (L-1) interstitial positions are uniformly chosen at random for 
the crossover operation, out of which δ(H) will cause the 
disruption of schema H. Moreover, there’s a probability of pc that 
the chromosome is subject to crossover. In general the probability 
εc of the disruption of a schema H due to the crossover is 
approximately: 

                      (4.1) 
For the purpose of simplification, only one-point crossover is 
considered in (4.1). The result for two-point crossover could be 
similarly derived. 
Since the rotation operation will always yield changes in the 
starting positions of the substructures, the probability εr of the 
disruption of a schema H due to the rotation is approximately 
equivalent to pr which is the probability that a chromosome 
undergoes the rotation operation: 

                      (4.2) 
There is an additional note about rotation, i.e., although this 
operation is very destructive to the schemata under our definition, 
it is still likely to protect the substructures defining the schema as 
long as the rotation point is not chosen as a specified position of 
the schema. These substructures may be reorganized by the 
evolutionary process to discover new useful schemata, which is 
better than forming candidates all from primitive genes. 
At the same time, every position in the chromosome has a 
mutation probability of pm. Only when the positions specified by 
the schema are mutated, can the schema be destroyed. 
Consequently, the probability εm of the disruption of a schema H 
due to mutation is approximately: 
                          (4.3) 
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And the fitness-proportionate reproduction yields the estimation 
of the expected number m(H, t+1) of occurrences of every schema 
H at the generation t+1 as (4.4), where f(H, t) is the fitness of the 
schema H at generation t (defined as the average fitness of 
individuals belonging to the schema H); and        is the average 
fitness of the population at generation t. 

 
                 (4.4) 

(4.4) shows that under the fitness-proportionate reproduction and 
appropriate genetic operation probability settings with small 
values, the schemata that can receive an exponentially increasing 
number of trials (near optimal) are those which have a higher 
fitness value, a shorter defining length, and fewer defined 
positions. This implies that schemata defined by a single low-
order substructure are most likely the basic building blocks in the 
evolution of P-GEP. The exploration of the search process further 
examines the candidates containing these small functional 
components and tries to find an optimal combination of them to 
get the final solution.  
The above could not be achieved otherwise with Karva notation 
of GEP, which may probably account for the relatively worse 
performance of GEP in the conducted experiments. 

5. CONCLUSIONS AND FUTURE WORK 
This paper has presented Prefix Gene Expression Programming 
(P-GEP) which adopts a novel genotype representation derived 
from prefix notation expressions, in order to naturally encode the 
solution structures incrementally from simpler elements within 
the linear chromosomes with respect to the genetic operations. 
The positive experimental results and the follow-up theoretical 
discussion have shown that P-GEP is a fundamental enhancement 
to the original GEP algorithm. The genetic operations such as 
crossover and rotation become more protective for substructures, 
which leads to a better evolutionary process. Structural 
components in the linear chromosome representation correspond 
to contiguous segments of the character strings, which has the 
potential of identifying useful structural information emergent in 
the evolutionary process.  
P-GEP framework has opened a new entry to define an effective 
evolutionary process based on the solution structure information. 
Future research on P-GEP will mainly focus on the following: (1) 
to propose a framework to reuse the building blocks as emergent 
substructures in the P-GEP process, (2) besides the substructure 
components, to define the solution structure based on P-GEP’s 
genotype, and (3) to design a method to evaluate a solution 
structure and further combine this structure fitness information 
into the selection procedure of P-GEP, so that emergent good 
solution structures will be promoted. And the augmented method 
will be tested with real large benchmark datasets.  
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