
Prefix Gene Expression Programming
Xin Li1, Chi Zhou2, Weimin Xiao2, Peter C. Nelson1

1Artificial Intelligence Laboratory
University of Illinois at Chicago

Chicago, IL 60607, USA
+01-312-4134075

{xli1,nelson}@cs.uic.edu

2Physical Realization Research Center
of Motorola Labs

Schaumburg, IL 60196, USA
+01-847-5761470

{Chi.Zhou, awx003}@motorola.com

ABSTRACT
Gene Expression Programming (GEP) is a powerful evolutionary
method derived from Genetic Programming (GP) for model
learning and knowledge discovery. However, when dealing with
complex problems, its genotype under Karva notation does not
allow hierarchical composition of the solution, which impairs the
efficiency of the algorithm. We propose a new representation
scheme based on prefix notation that overcomes the original
GEP’s drawbacks. The resulted algorithm is called Prefix GEP (P-
GEP). The major advantages with P-GEP include the natural
hierarchy in forming the solutions and more protective genetic
operations for substructure components. An artificial symbolic
regression problem and a set of benchmark classification
problems from UCI machine learning repository have been tested
to demonstrate the applicability of P-GEP. The results show that
P-GEP follows a faster fitness convergence curve and the rules
generated from P-GEP consistently achieve better average
classification accuracy compared with GEP.

Categories and Subject Descriptors
[Genetic Programming]: Novel representations, algorithm
design, and theory.

Keywords
Polish notation, Gene expression programming, genotype-
phenotype mapping mechanism, and schema theorem.

1. INTRODUCTION
First introduced by Candida Ferreira [1], Gene Expression
Programming (GEP) is improved from Genetic Programming
(GP) as a new technique for the creation of computer programs
denoting the learned models or discovered knowledge. In GEP,
computer programs are represented as linear character strings of
fixed-length (called chromosomes) which, in the subsequent
fitness evaluation, can be expressed as expression trees (ETs) of
different sizes and shapes. The separation of genotype and

phenotype has endowed GEP with more flexibility and power of
exploring the entire search space compared with traditional GP.
GEP methods have performed well for solving a large variety of
problems, including symbolic regression, optimization, time
series analysis, classification, logic synthesis and cellular
automata, etc. [2, 4, and 6].
However, the learning procedure of GEP can be improved upon
when dealing with complex problems with respect to both time
efficiency and solution quality. The biological evolutionary
process has revealed the principle of evolving from a self-
contained functional single cell to a well-developed entity with
numerous specialized components. We are naturally inspired to
assume that solutions to complex problems might be built up
incrementally from simpler elements. Although the phenotype of
expression trees in GEP has retained the structural representation
from GP, the linear representation of the genotype conforms to
Karva notation [1], under which the genotype-phenotype mapping
mechanism does not guarantee that the levels of functional
complexity in the phenotype are also directly reflected in the
genotype. Since it is the genotype that is subject to the different
genetic operations, it is difficult to follow the approach of
incrementally forming solutions with the original GEP. Moreover,
an evolved good functional structure is very likely destroyed in
the subsequent generations not only by mutations but also by
crossovers and rotations, which may require much additional
computation to recover before an optimal solution is found.
Therefore, a more structure friendly genotype is needed to assure
the direct linkage among the substructure pieces corresponding to
the sub-trees in the phenotype.
In this paper, we propose Prefix Gene Expression Programming
(P-GEP), which adopts a new genotype representation scheme
and consequently a new genotype-phenotype mapping mechanism
following the convention of prefix notation. As distinguished
from the Karva notation, P-GEP enjoys the natural
contiguousness of substructure components in its genotype
representation. This is a fundamental enhancement to the original
GEP and it specifically overcomes the aforementioned drawbacks
of GEP. We believe P-GEP benefits the evolution in terms of the
convergence of a good functional structure.
An artificially structured symbolic regression problem and a set of
benchmark classification problems from the UCI machine
learning repository [12] have been tested to demonstrate the
applicability of P-GEP. The results show that P-GEP follows a
faster fitness convergence curve and the rules generated from P-
GEP consistently achieve better average classification accuracy
than those of GEP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO)’05, June
25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

The next section of this paper gives an overview of related work.
Section 3 explains the P-GEP algorithm and its major
characteristics. The experiments and qualitative discussion of the
results are covered in section 4. Section 5 presents some
conclusions and ideas for future work.

2. RELATED WORK AND MOTIVATIONS
2.1 Brief Overview of Gene Expression
Programming
As is the case with GP, when using GEP to solve a problem,
generally five components, i.e., the function set, terminal set
(including problem-specific variable names and pre-selected
constants), fitness function, GEP control parameters, and stop
condition need to be specified. Some details are given as below:
(1) The GEP chromosomes, expression trees (ETs) and the
mapping mechanism.
Each chromosome in GEP is a character string of fixed-length,
which can be composed of any element (also called gene) from
the function set or the terminal set. Using the elements {+, -, *, /,
sqrt} as the function set and {a, b, c, d, 1} as the terminal set, the
following is an example GEP chromosome of length fifteen:

 sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d (2.1)
where “.” is used to separate individual genes; sqrt denotes the
square-root function; 1 is a numeric constant; and a, b, c, d are
variable (or attribute) names. The above is referred to as Karva
notation, or K-expression [1].
A K-expression can be mapped into an ET following a width-first
procedure. A branch of the ET stops growing when the last node
in this branch is a terminal. For example, the ET shown in Figure
1 corresponds to the sample chromosome (2.1), and can be
interpreted in a mathematical form as (2.2).
The conversion of an ET into a K-expression is also very
straightforward, and can be accomplished by recording the nodes
from left to right in each layer of the ET in a top-down fashion to
form the string.

Figure 1. Example of GEP Expression Tree.

dc
abca

−
∗+

1)((2.2)

It is important to notice that in GEP all of the chromosomes are of
a fixed length, but the size of expression trees can vary. This is
because that not every chromosome coincides with a valid K-
expression. Very frequently, a chromosome may have some
redundant elements which are useless for the chromosome-ET
mapping. For example, (2.3) is also a chromosome of length
fifteen, however only the underlined part of it forms a valid K-

expression which subsequently maps into the ET of size eleven
shown in Figure 2. In some other cases, a chromosome may not
be able to match any valid K-expression within its length due to
the lack of terminals at the end to finish the construction of the
ET. In order to guarantee that only legal expression trees are
generated, we have applied a validity test proposed by Zhou, et al.
[3, 5] to dynamically check if a chromosome is able to encode a
legal expression tree within the size limit (for details please refer
to [3]) in stead of the original head-tail method [2]. All of the
chromosomes randomly generated or reproduced by genetic
operators are subject to this test to prevent illegal expressions
from being introduced into the population.

 sqrt.*.+.*.a.*.sqrt.a.b.c.d.1.-.c./ (2.3)

Figure 2. Example of GEP Expression Tree with a size smaller
than the chromosome length.
(2) The description of the GEP Algorithm.
The GEP algorithm begins with the random generation of linear
fixed-length chromosomes for individuals of the initial
population. The chromosomes are represented as expression trees,
and the fitness of each individual is evaluated based on a pre-
defined fitness function. The individuals are then selected by
fitness to reproduce with modification. The individuals of this
new generation are, in their turn, subject to the same
developmental process, i.e., expression as chromosomes,
confrontation in the selection environment, and reproduction with
modification. This process is repeated for a pre-specified number
of generations or until a solution has been found. In GEP,
individuals are often selected and copied into the next generation
based on their fitness, as determined by roulette-wheel sampling
with elitism [7], which guarantees the survival and cloning of the
best individual to the next generation. Variation in the population
is introduced by applying one or more genetic operators to
selected chromosomes, including:
• Crossover, in which two parent chromosomes are randomly
chosen and paired to exchange some elements between them.
There are two kinds of crossover: one-point and two-point
crossover, working in the same fashion as in the canonical GAs
[3].
• Mutation, in which the symbols at any position in a chromosome
are subject to a random change according to a certain probability.
• Rotation, in which two subparts of the element sequence in a
chromosome are rotated with respect to a randomly chosen point.
Note that all of these operations upon the coding sequence of a
chromosome usually drastically reshape the corresponding ET.

sqrt

*
+

*
d

c
a *

bsqrt

a

2.2 Motivations from Biological Evolution,
GAs and GP
Complex data mining tasks are characterized by large data sets,
high dimensional feature sets and non-linear forms of hidden
knowledge within the data. It is very appealing to solve these
problems with GEP since the nature of the algorithm fits the
challenges well. However, the margin for improving the algorithm
is also noticeable due to observations from the following aspects:
(1) Biological evolution
As perceived from the biological evolution in nature, a complex
creature is usually evolved from a simple but self-contained
functional single cell, and the subparts of this individual are later
further specialized or adapted as the response to changes in the
environment. This is virtually the modern evolution theory based
upon Darwin's theory of natural selection [8]. Since GEP mimics
the biological evolutionary process, an analogical hypothesis is
that solutions to complex problems can be built up from simpler
elements. To achieve this purpose, a structure-preserving
representation with respect to genetic operators is in need.
However, the Karva notation of original GEP has the weakness in
this aspect because the genes corresponding to the functionally
independent sub-trees in the expression tree are not mapped as
contiguous segments in the linear chromosome. As the
consequence, the solution structures are very fragile when subject
to genetic operations, not only by mutations (which are usually
intended for producing genetic diversity) but also by crossovers
and rotations (which are more generally intended for inheriting
the genetic traits from previous generations). The evolutionary
process does not well benefit from the explored individuals in
terms of reusing the evolved good substructure components in
other candidates to form the solution incrementally.
(2) Genetic algorithms (GAs)
The general philosophy of GEP can be traced back to GAs which
are also the ancestor of GP. More importantly, GEP shares the
linear genotype of fixed-length as in GAs. As one of the
foundations of GAs, the schemata theory was developed to
analyze how the GAs work [9]. Defined as some patterns of the
chromosomes, schemata are used to represent parts of the search
space. It was then proved that the evolution of GAs works by
continuing to explore the areas of the search space that are likely
to produce higher levels of fitness. Following this, when a GA
explores new candidate solutions, it should ideally keep the
search within the space confined by the fitter schemas. In other
words fitter schemata are those that should be transmitted
between generations. This subsequently derives the building
blocks hypothesis based on the schemata and introduces the
linkage (i.e., building block disruption) problem [11]. The
performance of GAs would presumably be improved if
functionally related bits are more likely stay together in the string
under crossover [3].
(3) Genetic Programming (GP)
GP gains its success by taking the tree representation to increase
the complexity of the structures undergoing adaptation [10]. At
the same time, since the genetic operations are defined upon the
sub-trees, the elementary solution structure components are not
easily destroyed and over time, this concentrates the search of the
solution space into the subspace of ever-decreasing
dimensionality and ever-increasing fitness. Meanwhile, GP has

tailored the schemata theorem for its tree structured individuals to
analyze the performance of the algorithm, where a schema is
defined as a set of specified sub-trees [10]. Therefore the overall
effect of fitness-proportionate reproduction and crossover is that
sub-trees from relatively high-fitness programs are used as
building blocks for constructing new individuals in an
approximately near-optimal way. These ideas have also been
extended into different versions of schema theorems for different
derivations of the GP algorithm [13, 14, and 15].
However, the tree representation scheme makes the algorithm
difficult to implement and easily trapped by the explosively
growing tree size during the evolution. It was also recognized that
due to the variable length of the GP representation, none of the
existing formulation of a GP schema theorem predicts with any
certainty that good schema will propagate during a GP run [16].
All of above has motivated us to develop a new genotype
representation for GEP to incorporate the complexity hierarchy of
solutions into its flexibility in evolution.

3. POLISH NOTATION BASED GENE
EXPRESSION PROGRAMMING
3.1 Genotype, Phenotype and Mapping
Mechanism of P-GEP
The major contributions of P-GEP are the adoption of a new
linear genotype representation in prefix notation and a resulted
different mapping mechanism between its genotype and
phenotype. To make it clear, we will use the example from
Section 2.1 to illustrate the concepts of genotype, phenotype and
the mapping mechanism under P-GEP as well as their differences
from GEP.
First of all, the phenotype of P-GEP is the same as in GEP,
namely, an expression tree. Secondly, in P-GEP, the genotype is
still a linear character string of fixed-length. However, the
mapping mechanism between genotype and phenotype conforms
to the convention of prefix notation expressions. Therefore, given
the same chromosome, the corresponding ET is formed following
the preorder instead of width-first fashion as in GEP. For the
chromosome of length fifteen in example (2.1), P-GEP will map it
into a dramatically different ET as shown in Figure 3. As the
result, the arithmetic expression translated from this ET also
represents a completely different functionality as shown in (3.1).

sqrt

*
+

* c
a *

bsqrt

a

1 -
c d

/

Figure 3. Example of P-GEP Expression Tree

)1)((

dc
cbaa

−
+

 (3.1)
On the other hand, the conversion from an ET to a chromosome is
also straightforward as reading the tree nodes in preorder. For the

expression tree as shown in Figure 1, the corresponding P-GEP
chromosome of length fifteen is:

 sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a (3.2)
As is the case in GEP, all of the chromosomes in P-GEP are of a
fixed length, but the size of expression trees can vary. It is still
possible that a chromosome may have some redundant elements
which are not useful for the chromosome-ET mapping, or a
chromosome does not map to a legal expression tree, so the
validity test applies here as well. For the evolutionary process of
the algorithm and the genetic operators, P-GEP follows the same
definitions as in GEP.

3.2 Major Characteristics of P-GEP
3.2.1 Substructure Preserving Characteristics
In P-GEP, the genotype has a much more direct correlation with
its phenotype with respect to the formation of the solution’s
functionality. Nodes from the same sub-tree of an expression tree
appear adjacent to each other on the matching character string,
and subroutines of the solution can therefore be easily recognized
as segments of the chromosome. This equivalently means that P-
GEP solution substructures have a tighter genetic linkage, which
results in less destructive crossover and rotation operations
compared with GEP. These substructure preserving characteristics
can be illustrated by examining the crossover and rotation
operators in P-GEP with the example chromosomes of (2.1) and
(3.2), which is listed in Table 1 (underscores are used to identify
the crossover and rotation points).

Table 1. Genetic Operators for the P-GEP algorithm

Initial
Chrom

sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d (1.1)

sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a (3.2)

O
ne

-p
oi

nt

cr
os

so
ve

r

Offspring
sqrt.*.+.*.a.b.c.*.sqrt./.1.-.c.d.a (3.3)

sqrt.*.+.a.*.*.sqrt.a.b.c./.1.-.c.d (3.4)

Initial
Chrom

Sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d (1.1)

sqrt.*.+.a.*.b.c.*.sqrt./.1.-.c.d.a (3.2)

T
w

o-
po

in
t

cr
os

so
ve

r

Offspring
sqrt.*.+.*.a.b.c.*.sqrt.c./.1.-.c.d (3.5)

sqrt.*.+.a.*.*.sqrt.a.b./.1.-.c.d.a (3.6)

Initial
Chrom sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d (1.1)

G
en

et
ic

 O
pe

ra
to

rs

R
ot

at
io

n

Offspring *.+.*.a.*.sqrt.a.b.c./.1.-.c.d.sqrt (3.7)

For the one-point crossover example, the resulting offspring (3.3)
can be mapped into the ET shown in Figure 4. Compared with the
ET shown in Figure 3, it is observed that crossover has also
reshaped the ET as is the case in GEP, however not that
drastically since we see the subroutine of 1/(c-d) remain intact in
both the initial chromosome and the offspring, except for its
relocation in the solution structure. Similar observations are
available for other offspring (3.4), (3.5), (3.6) and (3.7). Thus in
P-GEP, crossover and rotation operators can better serve the
purpose of passing genetic material from one generation to
another as intended. The sub-components of fittest individuals are
more likely preserved and transmitted than in GEP. This

potentially leads to a faster convergence of the solution structure
and finally an optimal solution for P-GEP. This is further
examined in section 4.2 with some in-depth discussion and
theoretical analysis.

Figure 4. Example of P-GEP Expression Tree produced by
one-point crossover.

3.2.1 Inherent Hierarchy in Forming the Solution
The genotype based on prefix notation in P-GEP makes the
structural hierarchy of the solution not only apparent in
expression tree, but also inherent within the linear character
strings. In both representations, the hierarchies are formed
incrementally and a higher-level structure is built upon the lower
ones naturally. This can be clearly illustrated with the example
chromosome (2.1) and its corresponding P-GEP ET in Figure 3.
Both are redrawn in Figure 5. In the ET representation, root nodes
of each valid sub-tree are annotated with circled numbers marking
their hierarchy (i.e., modularity levels) within the tree. A smaller
number refers to a lower hierarchy and the hierarchy of a sub-tree
is always higher than that of any one of its component sub-trees.
These numbers also accompany the matching character segments
(called substructures) in the linear string representation, which are
identified with underlines.

Figure 5. Illustration of inherent hierarchy in genotype and
phenotype of P-GEP.
Figure 5 conveys another important feature of P-GEP: the
genotype and phenotype encode the functional complexity in a
similar way. Once the root of the sub-tree is found, it is equally
convenient to pick up the whole functional branch either in the ET
representation or the linear chromosome representation. In other
words, the linear chromosome is no less expressive than the ET in
terms of the functionality of the solutions they both encode. This

sqrt

*
+

* c
a b

*
sqrt

/

1 -
c d

a

c d

sqrt

*
+

* c
a *

/

1 -

bsqrt

a

6

5
4

1

3

2

2

1

sqrt. *. +. *. a. *. sqrt. a. b. c. /. 1. -. c. d
6

5
4

3
2 2

1 1

is another significant advantage of P-GEP since now the tree
representation is actually not necessary for implementing the
genetic operations and fitness evaluations. Operating on the linear
chromosome is much more efficient than working on the tree
structures. However, we keep the ET representation for the clarity
of the illustration on the solutions.

4. EXPERIMENTS AND DISCUSSIONS
4.1 Experiments and Results
In order to justify the advantage of P-GEP as compared to GEP,
we first experimented on the two algorithms with an artificially
structured symbolic regression problem. Later a suite of
classification tests were conducted on the four testing datasets that
are cited from the UCI Machine Learning repository.

(1) A simple symbolic regression problem.

The simple symbolic regression problem used for the experiment
is shown in (4.1). Since the final solution has inherently defined
substructures and hierarchy, evolutionary processes with
emphasis in preserving substructure components should enjoy
some benefits under our assumption. A set of twenty-one fitness
cases equally spaced along the x axis from -10 to 10 were chosen
for the tests.

 (4.1)
The general experiment setup is summarized as follows: the
chromosome size is 128; the population size is 1000; the
maximum number of generations is 500; the crossover probability
is set as 0.7, and the mutation and rotation probability is set as
0.02; the function and terminal sets are selected as {+, -, *, /} and
{1, 2, 3, 5, 7} respectively. Each experiment has been run for ten
times and the results were averaged.

Figure 6. The fitness convergence curves of P-GEP vs. GEP
for the given symbolic regression problem.
Since the ultimate goal for both techniques is to find the optimal
solution effectively, we decided to examine the fitness
convergence curves revealed by every evolutionary process. In
our experiments for this symbolic regression problem, the fitness
of a solution is defined as the residual, which is better when
smaller. The best fitness value among all of the individuals was
recorded at every generation for all of the ten runs, and the
average is plotted against the generation in Figure 6 for both GEP
and P-GEP.

The curves show that generally in the very early generations, both
evolutionary processes experience a quick reduction in their best
residual values. However, GEP seems to have comparably much
higher residual values than P-GEP for the same generation. This
indicates that the substructure preserving characteristics of P-GEP
actually do improve its problem solving ability in this
intentionally structuralized problem. Since in quite a lot of
situations, the problem solutions have underlying structures, P-
GEP is promising in fulfilling these tasks.

(2) Classification tests.

In our previous benchmark classification testing for GEP in
comparison with traditional machine learning methods and
canonical tree-based GP classifiers, GEP has already exhibited
better performance in terms of the classification accuracy,
compactness of evolved rules and running time (for details please
refer to [3, 5]). Therefore, here we focus on testing the
performance improvement of P-GEP over P-GEP in executing
classification tasks.
The datasets for classification tests are summarized in Table 2.
The experiment setting was as follows: the chromosome size is 80
for iris, 128 for abalone and 100 for the rest; the population size is
1000; the maximum number of generations is 1000; the crossover
probability is set as 0.8, and the mutation and rotation probability
is set as 0.02; the functional and terminal sets are selected as {IF,
+, -, *, /, sqrt} and {1, 2, 3, 5, 7} respectively. We have applied
the five-fold cross validation method for the testing of iris, zoo
and wine. For abalone, we followed the past usage of the data set
to separate the first 3133 cases into the training set and the
remaining 1044 into the testing set. Finally, each experiment has
been repeated for five independent runs and the results were
averaged.

Table 2. Summary of the classification data for P-GEP vs.
GEP

Dataset Description

Iris 4 numeric attributes; 150 cases; 3 classes with class
distribution {50, 50, 50}

Zoo
15 boolean and 1 numeric attributes; 101 cases; 7
classes with class distribution {41, 20, 5, 13, 4, 8,
10}

Wine 13 numeric attributes; 178 cases; 3 classes with class
distribution {59, 71, 48}

Abalone 1 nominal and 7 numeric attributes; 4177 cases; 3
classes with class distribution {1407, 1323, 1447}

Table 3 summarizes the experimental results, where average
refers to the average of the averaged classification accuracy for
each run of five-fold cross validation over the total five runs
(except that for abalone, it directly shows the general average
classification accuracy over the five runs) and best refers to the
average of the classification accuracy over the five folds in the
best run (except that for abalone, it directly shows the best testing
classification accuracy out of the five runs). Each number (except
the two in the entries of best for abalone) shown in the table is in
terms of percentage and associated with its 95% confidence
interval.
As seen from Table 3, for the average values over the five runs, P-
GEP has consistently achieved a higher classification accuracy

)1()1(*2)1(*3 23 +++++= xxxy

0

200

400

600

800

1000

1200

1 46 91 136 181 226 271 316 361 406 451 496
generation

be
st

 fi
tn

es
s/

re
si

du
al

P-GEP
GEP

value and a smaller confidence interval in all of the tests. We
further performed the one-tailed t-tests with an unequal variance
assumption and a 0.05 significance level. The results suggest
there are statistically significant differences between the average
classification accuracy values, and therefore P-GEP outperforms
GEP for the selected classification problems in this sense.
Regarding the best classification accuracy (averaged over five
folds) out of the five runs, although for iris and abalone datasets
P-GEP has yielded apparently better values, in general both
methods are just comparable and the differences are not
statistically significant under the t-tests. This is understandable as
both P-GEP and GEP are very flexible by adopting the linear
genotype representation, and therefore the algorithms could
ultimately approximate equally good solutions. However, with the
structure-preserving representation, P-GEP can quickly converge
to a better solution than GEP given the same amount of resources.

Table 3. Summary of the test results for P-GEP vs. GEP

Average Best
Dataset

P-GEP GEP P-GEP GEP

Iris 96.0±0.7 93.7±1.4 96.7±4.1 95.3±5.7

Zoo 94.4±0.5 93.0±0.6 95.0±6.2 94.0±5.7

Wine 92.2±2.6 89.8±2.8 95.5±4.5 93.3±3.7

Abalone 56.7±3.4 50.1±4.1 59.9 53.6

4.2 Theoretical Discussion
The experimental results have shown that the performance of P-
GEP fits into our hypothesis about its characteristics presented in
section 3. Since P-GEP combines the representation advantages of
both GAs and GP, we are inspired to conduct a similar schema
analysis on how P-GEP forms the solution incrementally by
composing useful subcomponents together. Because each valid
individual in the search space of P-GEP corresponds to an
expression tree, the search space of P-GEP can be represented by
all of the possible expression trees constructed with the pre-
selected functional and terminal sets within the specified
chromosome length. It is then convenient to define schema in P-
GEP in terms of substructures, each of which is equivalently a
complete sub-tree in the expression tree representation. The main
activity of the search process of P-GEP is to find an optimal
combination of these schemata.
Currently we define a schema in P-GEP as a set of substructures.
There are two more restrictions to this definition. The first
restriction is that the substructures in a schema are intended as
non-overlapping ones in the instance chromosome (however they
can be identical ones as long as they reside in different positions
within the chromosome) and as a result the sum of their lengths
does not exceed the predetermined chromosome length. Secondly,
each substructure is associated with its starting position in the
chromosome, so the schema is position dependent. Note that
under this definition, every individual in the P-GEP search space
actually belongs to at least one schema among all the possible
ones which is the one defined by the expression tree encoded by
the individual itself.
Following the terminologies used in the schema theorem of GAs,
the defining length δ(H) of a schema H in P-GEP is the distance
between the outmost elements of all the specified substructures in

this schema, and the number of specified positions O(H) is the
number of the positions in the chromosome that have specified
elements by the schema, whose value is the sum of the lengths of
the substructures in the schema. However, the order of the schema
is defined as the maximum hierarchical level among all of the
substructures included in the schema. We can illustrate these
concepts with the example chromosome (2.1). Table 4 has
included some of the possible schemata that chromosome (2.1)
could be an instance of, along with their respective defining
length and order. It is not difficult to understand that a schema
composed of lower-order defining substructures that are
physically close to each other will have a smaller defining length.
Besides the extreme cases of schemata composed of a single
terminal, those defined by a single primitive substructure
(composed of only one operator and the corresponding
parameters) also tend to have the smallest defining length.

Table 4. Illustration of schema, its defining length and order

Schema δ(H) O(H) Order

{-.c.d: 13} 2 3 1

{*.sqrt.a.b: 6, d: 15} 9 5 2

{a: 5; a: 8; b: 9;c: 10; c: 14} 9 5 0

{*.+.*.a.*.sqrt.a.b.c./.1.-.c.d: 2} 13 14 5

For a given problem, if the chromosome length is set as L, then
the (L-1) interstitial positions are uniformly chosen at random for
the crossover operation, out of which δ(H) will cause the
disruption of schema H. Moreover, there’s a probability of pc that
the chromosome is subject to crossover. In general the probability
εc of the disruption of a schema H due to the crossover is
approximately:

 (4.1)
For the purpose of simplification, only one-point crossover is
considered in (4.1). The result for two-point crossover could be
similarly derived.
Since the rotation operation will always yield changes in the
starting positions of the substructures, the probability εr of the
disruption of a schema H due to the rotation is approximately
equivalent to pr which is the probability that a chromosome
undergoes the rotation operation:

 (4.2)
There is an additional note about rotation, i.e., although this
operation is very destructive to the schemata under our definition,
it is still likely to protect the substructures defining the schema as
long as the rotation point is not chosen as a specified position of
the schema. These substructures may be reorganized by the
evolutionary process to discover new useful schemata, which is
better than forming candidates all from primitive genes.
At the same time, every position in the chromosome has a
mutation probability of pm. Only when the positions specified by
the schema are mutated, can the schema be destroyed.
Consequently, the probability εm of the disruption of a schema H
due to mutation is approximately:
 (4.3)

1
)(

−
=

L
Hpcc

δε

)()1(1)(HOpp m
HO

mm ≈−−=ε

rr p=ε

And the fitness-proportionate reproduction yields the estimation
of the expected number m(H, t+1) of occurrences of every schema
H at the generation t+1 as (4.4), where f(H, t) is the fitness of the
schema H at generation t (defined as the average fitness of
individuals belonging to the schema H); and is the average
fitness of the population at generation t.

 (4.4)

(4.4) shows that under the fitness-proportionate reproduction and
appropriate genetic operation probability settings with small
values, the schemata that can receive an exponentially increasing
number of trials (near optimal) are those which have a higher
fitness value, a shorter defining length, and fewer defined
positions. This implies that schemata defined by a single low-
order substructure are most likely the basic building blocks in the
evolution of P-GEP. The exploration of the search process further
examines the candidates containing these small functional
components and tries to find an optimal combination of them to
get the final solution.
The above could not be achieved otherwise with Karva notation
of GEP, which may probably account for the relatively worse
performance of GEP in the conducted experiments.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented Prefix Gene Expression Programming
(P-GEP) which adopts a novel genotype representation derived
from prefix notation expressions, in order to naturally encode the
solution structures incrementally from simpler elements within
the linear chromosomes with respect to the genetic operations.
The positive experimental results and the follow-up theoretical
discussion have shown that P-GEP is a fundamental enhancement
to the original GEP algorithm. The genetic operations such as
crossover and rotation become more protective for substructures,
which leads to a better evolutionary process. Structural
components in the linear chromosome representation correspond
to contiguous segments of the character strings, which has the
potential of identifying useful structural information emergent in
the evolutionary process.
P-GEP framework has opened a new entry to define an effective
evolutionary process based on the solution structure information.
Future research on P-GEP will mainly focus on the following: (1)
to propose a framework to reuse the building blocks as emergent
substructures in the P-GEP process, (2) besides the substructure
components, to define the solution structure based on P-GEP’s
genotype, and (3) to design a method to evaluate a solution
structure and further combine this structure fitness information
into the selection procedure of P-GEP, so that emergent good
solution structures will be promoted. And the augmented method
will be tested with real large benchmark datasets.

6. ACKNOWLEDGMENTS
We highly appreciate the Physical Realization Research Center of
Motorola Labs for providing funding for this research work.

7. REFERENCES
[1] Ferreira, C. Gene Expression Programming: a New Adaptive

Algorithm for Solving Problems. Complex Systems, 13, 2
(2001), 87-129.

[2] Ferreira, C. Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence. Angra do Heroismo,
Portugal, 2002.

[3] Mitchell, M. An Introduction to Genetic Algorithms
(Complex Adaptive Systems). MIT Press, 1996.

[4] Zhou, C., Xiao, W., Nelson, P. C. and Tirpak, T. M.
Evolving Accurate and Compact Classification Rules with
Gene Expression Programming. IEEE Transactions on
Evolutionary Computation, 7, 6 (2003), 519-531.

[5] Zhou, C. Gene Expression Programming and Rule Induction
for Domain Knowledge Discovery and Management.
Doctoral dissertation, Department of Computer Science,
University of Illinois at Chicago, Chicago, IL, 2003.

[6] Xie, Z., Li, X., Eugenio, B. D., Xiao, W., Tirpak, T. M. and
Nelson, P. C. Using Gene Expression Programming to
Construct Sentence Ranking Functions for Text
Summarization. Proceedings of the 20th International
Conference on Computational Linguistics (COLING-2004).
Geneva, Switzerland, 2004.

[7] Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Pub. Co., 1989.

[8] Weismann, A. The Evolution Theory (Vol. 1). AMS Press,
New York, NY, 1983.

[9] Holland, H. J. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan, 1975.

[10] Koza, J. Genetic Programming: On the Programming of
Computers by Natural Selection. MIT Press, Cambridge,
MA, 1992.

[11] Harik, R. G. and Goldberg, E. D. Learning linkage. In
Belew, R. and Vose, M., editors, Foundations of Genetic
Algorithms IV (247-262). Morgan Kaufmann, San Mateo,
California, 1996.

[12] Blake, L. C. and Merz, J. C. UCI Repository of machine
learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science, 1998.

[13] Whigham, A. P. A schema theorem for context-free
grammars. Proceedings of IEEE Conference on Evolutionary
Computation, 1(1995), 178-181. Perth, Australia.

[14] Langdon, B. W. and Poli, R. (1997). An analysis of the
MAX problem in genetic programming. Proceedings of the
Second Annual Conference of Genetic Programming (GP
’97). Morgan Kaufmann, San Francisco, CA, 1997, 222-230.

[15] Rosca, P. J. Analysis of complexity drift in genetic
programming. Proceedings of the Second Annual Conference
of Genetic Programming (GP ’97). Morgan Kaufmann, San
Francisco, CA, 1997, 286-294.

[16] Banzhaf, W., Nordin, P., Keller R. E. and Francome F. D.
Genetic Programming: An Introduction on the Automatic
Evolution of Computer Programs and Its Applications.
Morgan Kaufmann, San Francisco, CA, 1998.

)1)(1)(1)(,(
)(

),()1,(mrctHm
tf

tHftHm εεε −−−≥+

)(tf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

