Skip to main content

Automatic Design of Deep Neural Networks Applied to Image Segmentation Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Abstract

A U-Net is a convolutional neural network mainly used for image segmentation domains such as medical image analysis. As other deep neural networks, the U-Net architecture influences the efficiency and accuracy of the network. We propose the use of a grammar-based evolutionary algorithm for the automatic design of deep neural networks for image segmentation tasks. The approach used is called Dynamic Structured Grammatical Evolution (DSGE), which employs a grammar to define the building blocks that are used to compose the networks, as well as the rules that help build them. We perform a set of experiments on the BSDS500 and ISBI12 datasets, designing networks tuned to image segmentation and edge detection. Subsequently, by using image similarity metrics, the results of our best performing networks are compared with the original U-Net. The results show that the proposed approach is able to design a network that is less complex in the number of trainable parameters, while also achieving slightly better results than the U-Net with a more consistent training.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

  2. 2.

    http://brainiac2.mit.edu/isbi_challenge/.

References

  1. Al-Amri, S.S., Kalyankar, N., Khamitkar, S.: Image segmentation by using edge detection. Int. J. Comput. Sci. Eng. 2(3), 804–807 (2010)

    Google Scholar 

  2. Al-Zu’bi, S., Hawashin, B., Mughaid, A., Baker, T.: Efficient 3D medical image segmentation algorithm over a secured multimedia network. Multimedia Tools Appl. 1–19 (2020). https://doi.org/10.1007/s11042-020-09160-6

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  4. Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: Towards the evolution of multi-layered neural networks: a dynamic structured grammatical evolution approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 393–400. ACM (2017)

    Google Scholar 

  5. Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: DENSER: deep evolutionary network structured representation. Genet. Program. Evolvable Mach. 20(1), 5–35 (2019). https://doi.org/10.1007/s10710-018-9339-y

    Article  Google Scholar 

  6. Bertasius, G., Shi, J., Torresani, L.: DeepEdge: a multi-scale bifurcated deep network for top-down contour detection. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 4380–4389 (2015)

    Google Scholar 

  7. Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (CVPR 2015), pp. 504–512 (2015)

    Google Scholar 

  8. Bian, S., Xu, X., Jiang, W., Shi, Y., Sato, T.: BUNET: blind medical image segmentation based on secure UNET. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 612–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_59

    Chapter  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  10. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV 2013), pp. 1841–1848 (2013)

    Google Scholar 

  11. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  12. Hallman, S., Fowlkes, C.C.: Oriented edge forests for boundary detection. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 1732–1740 (2015)

    Google Scholar 

  13. Kivinen, J., Williams, C., Heess, N.: Visual boundary prediction: a deep neural prediction network and quality dissection. In: Artificial Intelligence and Statistics, pp. 512–521 (2014)

    Google Scholar 

  14. Kumar, A., Murthy, O.N., Ghosal, P., Mukherjee, A., Nandi, D., et al.: A dense U-Net architecture for multiple sclerosis lesion segmentation. In: Proceedings of the 2019 IEEE Region 10 Conference (TENCON 2019), pp. 662–667. IEEE (2019)

    Google Scholar 

  15. Lima, R.H.R., Pozo, A.T.R.: A study on auto-configuration of multi-objective particle swarm optimization algorithm. In: Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC 2017), pp. 718–725. IEEE (2017)

    Google Scholar 

  16. Lima, R.H.R., Pozo, A.T.R.: Evolving convolutional neural networks through grammatical evolution. In: Proceedings of the 2019 Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 179–180. ACM (2019)

    Google Scholar 

  17. Lima, R.H.R., Pozo, A.T.R., Mendiburu, A., Santana, R.: A Symmetric grammar approach for designing segmentation models. In: Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC 2020), pp. 1–8. IEEE (2020)

    Google Scholar 

  18. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 3000–3009 (2017)

    Google Scholar 

  19. Lourenço, N., Assunção, F., Pereira, F.B., Costa, E., Machado, P.: Structured grammatical evolution: a dynamic approach. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution. LNCS, pp. 137–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_6

    Chapter  Google Scholar 

  20. Lourenço, N., Pereira, F., Costa, E.: Evolving evolutionary algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO 2012), pp. 51–58. ACM (2012)

    Google Scholar 

  21. Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2016). https://doi.org/10.1007/s10710-015-9262-4

    Article  Google Scholar 

  22. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. Proc. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 26(5), 530–549 (2004)

    Google Scholar 

  23. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV 2016), pp. 565–571 (2016)

    Google Scholar 

  24. Mirunalini, P., Aravindan, C., Nambi, A.T., Poorvaja, S., Priya, V.P.: Segmentation of coronary arteries from CTA axial slices using deep learning techniques. In: Proceedings of the 2019 IEEE Region 10 Conference (TENCON 2019), pp. 2074–2080. IEEE (2019)

    Google Scholar 

  25. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  26. Prewitt, J.M.: Object enhancement and extraction. Picture Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  27. Roberts, L.G.: Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of Technology (1963)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  30. Sabarinathan, D., Beham, M.P., Roomi, S., et al.: Hyper vision net: kidney tumor segmentation using coordinate convolutional layer and attention unit. arXiv preprint arXiv:1908.03339 (2019)

  31. Sagar, A., Soundrapandiyan, R.: Semantic segmentation with multi scale spatial attention for self driving cars. arXiv preprint arXiv:2007.12685 (2020)

  32. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, New Jersey (2001)

    Google Scholar 

  33. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: DeepContour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 3982–3991 (2015)

    Google Scholar 

  34. Sobel, I.: Camera models and machine perception. Technical report, Computer Science Department, Technion (1972)

    Google Scholar 

  35. Sun, W., You, S., Walker, J., Li, K., Barnes, N.: Structural edge detection: a dataset and benchmark. In: Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA 2018), pp. 1–8. IEEE (2018)

    Google Scholar 

  36. Umbaugh, S.E.: Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIPtools. CRC Press, Boca Raton (2010)

    Google Scholar 

  37. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Brazilian Education Ministry – CAPES and Brazilian Research Council – CNPq.

A. Mendiburu and R. Santana acknowledge support by the Spanish Ministry of Science and Innovation (projects TIN2016-78365-R and PID2019-104966GB-l00), and the Basque Government (projects KK-2020/00049 and IT1244-19, and ELKARTEK program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, R., Pozo, A., Mendiburu, A., Santana, R. (2021). Automatic Design of Deep Neural Networks Applied to Image Segmentation Problems. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics