
Poznan University of Technology

Faculty of Computing Science

Institute of Computing Science

Doctoral dissertation

HEURISTIC ALGORITHMS FOR DISCOVERY OF SEARCH

OBJECTIVES IN TEST-BASED PROBLEMS

Paweª Liskowski

Supervisor

Krzysztof Krawiec, Ph. D., Dr. Habil., Professor

Pozna«, 2018

To my parents,

from whom it all began

Acknowledgments

The work described here was carried out between October 2013 and May 2018 in the Laboratory

of Intelligent Decision Support Systems at the Faculty of Computing at Poznan University of

Technology. I would like to thank all people who has supported me and who kept me going

throughout the e�ort of completing this thesis.

First and foremost, I would like to express my deep gratitude to my supervisor Krzysztof

Krawiec, who took me under his wings and introduced me to the thrilling world of machine

learning. I deeply thank him for the enormous e�ort he put in my guidance over the past years.

His enthusiasm, inspiration and encouragement were all invaluable to me. He has always been

there for me, and showed me a lot of heart on every occasion. Our collaboration has a�ected my

life in ways that I cannot begin to explain. For this, and so much more, I am forever grateful.

I am also thankful for the advice and support of my dear friend Wojciech Ja±kowski, who

has not only shown a large interest in my work, but also guided me at the very beginning of

my academic journey. His expertise, useful criticism and countless conversations have helped me

achieve many of my goals.

I would like to thank my friends and collaborators: Marcin Szubert, Tomasz Pawlak, Bartosz

Wieloch, Iwo Bª¡dek, Thomas Helmuth, William La Cava and Lee Spector for many insightful

discussions and great moments we shared together.

Furthermore, I would like to immensely thank my parents, Jolanta and Marian, my sister Daria,

and my wife Malwina whose unconditional support, love and understanding gave me strength and

motivation to pursue my goals.

Finally, I acknowledge the support of the Polish National Science Centre grant no. DEC-

2014/15/N/ST6/04572.

v

Abstract

A wide spectrum of optimization and machine learning problems approached in evolutionary com-

putation involve evaluation functions that reward candidate solutions by counting the number of

tests they pass. The common features of these problems, known in computational intelligence as

test-based problems, are that the number of tests may be large (or even in�nite), interactions with

them are largely independent, and each of them produces an outcome that may provide the agent

with useful feedback.

Conventionally, the discrepancy between the actual and the desired outcome of confronting so-

lutions with tests are aggregated into a scalar evaluation function. In this thesis, we demonstrate

that the habit of driving search using such function leads to evaluation bottleneck, i.e. information-

rich process of candidate solutions' evaluation is compressed into a scalar value, which necessarily

incurs information loss and so cripples the performance of evolutionary algorithms. We investigate

the possibility of broadening the bottleneck of scalar evaluation by making evolutionary search

algorithms better-informed about the outcomes of interactions between candidate solutions and

tests. To this end, we propose a family of methods aimed at automatic discovery of heuristic search

objectives that provide multi-criteria evaluation of candidate solutions. The key concept behind

the algorithms that implement discovery of search objectives is an interaction matrix, which holds

detailed account on interaction outcomes with individual tests. Crucially, the search objectives

re�ect only selected characteristics of candidate solutions. Rather than providing objective as-

sessment of candidate solution's quality, their role is to guide search by creating a useful gradient

towards better performing solutions.

We propose three di�erent algorithms that implement these ideas. The �rst of them, DOC,

automatically identi�es the groups of tests for which the candidate solutions behave similarly.

Each such group gives rise to a new search objective. The second method, DOF, learns the factors

that jointly model an interaction function and uses them as search objectives. Finally, we propose

SFIMX, a method dedicated primarily to reducing the computational complexity of evaluation in

test-based problems, which computes only a fraction of interactions between candidate solutions

and tests, and then predicts the outcomes of the remaining ones.

We gather these methods under the common conceptual framework of heuristic algorithms for

discovery of search objectives in test-based problems. When applied to several well-known test-

based problems, including the game of Othello, the Iterated Prisoner's Dilemma, Density Classi-

�cation Task, as well as a suite of program synthesis tasks, the proposed algorithms signi�cantly

outperform the conventional search algorithms driven by scalar evaluation.

The results obtained in this dissertation open the door to e�cient and generic countermeasures

to premature convergence for both coevolutionary and evolutionary algorithms applied to problems

featuring aggregating �tness functions.

vii

Preface

Some ideas, �gures and portions of text presented in this dissertation have appeared previously in

the following publications:

[1] Wojciech Ja±kowski, Paweª Liskowski, Marcin Szubert, and Krzysztof Krawiec. Improving

Coevolution by Random Sampling. In Proceedings of the 15th annual conference on Genetic

and Evolutionary Computation, pages 1141�1148. ACM, 2013.

[2] Paweª Liskowski and Krzysztof Krawiec. Discovery of Implicit Objectives by Compression of

Interaction Matrix in Test-based Problems. In Parallel Problem Solving from Nature�PPSN

XIII, pages 611�620. Springer International Publishing, 2014.

[3] Krzysztof Krawiec and Paweª Liskowski. Automatic Derivation of Search Objectives for

Test-based Genetic Programming. In Penousal Machado, Malcolm I. Heywood, James Mc-

Dermott, Mauro Castelli, Pablo Garcia-Sanchez, Paolo Burelli, Sebastian Risi, and Kevin

Sim, editors, 18th European Conference on Genetic Programming, volume 9025 of LNCS,

pages 53�65, Copenhagen, 2015. Springer.

[4] Paweª Liskowski, Krzysztof Krawiec, Thomas Helmuth, and Lee Spector. Comparison of

Semantic-aware Selection Methods in Genetic Programming. In Proceedings of the Compan-

ion Publication of the 2015 on Genetic and Evolutionary Computation Conference, GECCO

Companion '15, pages 1301�1307, New York, NY, USA, 2015. ACM.

[5] Wojciech Ja±kowski, Paweª Liskowski, Marcin Szubert, and Krzysztof Krawiec. Performance

Pro�le: A Multi-criteria Performance Evaluation Method for Test-based Problems. Interna-

tional Journal of Applied Mathematics and Computer Science, 26(1):215�229, 2016.

[6] Paweª Liskowski and Krzysztof Krawiec. Non-negative Matrix Factorization for Unsupervised

Derivation of Search Objectives in Genetic Programming. In Proceedings of the 2016 on

Genetic and Evolutionary Computation Conference, GECCO '16, pages 749�756, New York,

NY, USA, 2016. ACM.

[7] Paweª Liskowski and Krzysztof Krawiec. Online Discovery of Search Objectives for Test-

based Problems. Evolutionary Computation, 25(3):375�406, 2016.

[8] Paweª Liskowski and Krzysztof Krawiec. Surrogate Fitness Via Factorization of Interaction

Matrix (Best-paper Award winner). In Malcolm I. Heywood, James McDermott, Mauro

Castelli, and Ernesto Costa, editors, EuroGP 2016: Proceedings of the 19th European Con-

ference on Genetic Programming, volume 9594 of LNCS, pages 65�79, Porto, Portugal, 30

March�1 April 2016. Springer Verlag.

ix

[9] Paweª Liskowski and Wojciech Ja±kowski. Accelerating Coevolution with Adaptive Matrix

Factorization, (nominated to Best-paper Award). In Proceedings of the Genetic and Evolu-

tionary Computation Conference, GECCO '17, pages 457�464, New York, NY, USA, 2017.

ACM.

[10] Paweª Liskowski and Krzysztof Krawiec. Adaptive Test Selection for Factorization-based Sur-

rogate Fitness in Genetic Programming. Foundations of Computing and Decision Sciences,

42(4):339�358, 2017.

[11] Paweª Liskowski and Krzysztof Krawiec. Discovery of Search Objectives in Continuous

Domains. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

'17, pages 969�976, New York, NY, USA, 2017. ACM.

Contents

1 Introduction 1

1.1 Problem Setting and Motivation . 1

1.2 Aims and Scope . 3

1.3 Thesis Outline . 4

2 Evolutionary Computation 7

2.1 Evolutionary algorithms . 7

2.2 Evolutionary search . 10

2.3 Pareto optimality and multiple objectives . 12

2.4 Evaluation issues in EC . 13

3 Coevolutionary Algorithms 15

3.1 Origins . 15

3.2 Coevolution in Computing . 16

3.3 One- and multi-population coevolution . 17

3.4 Di�erences between coevolutionary and evolutionary approach 17

3.5 Interaction patterns . 18

3.6 Applications of coevolution . 19

3.7 Challenges in coevolutionary algorithms . 20

4 Genetic Programming 23

4.1 Introduction . 23

4.2 Representation . 25

4.3 Population initialization . 27

4.4 Evaluation and selection . 29

4.5 Mutation and crossover . 30

4.6 Applications of genetic programming . 32

4.7 Challenges in genetic programming . 34

5 Test-Based Problems 37

5.1 De�nition . 37

5.2 Extensions and related concepts . 39

5.3 Solution concepts . 40

5.4 Examples of test-based problems . 43

5.4.1 Othello . 43

5.4.2 Numbers Games . 44

5.4.3 Iterated Prisoner's Dillema . 44

5.4.4 Density Classi�cation Task . 45

xi

xii Contents

5.4.5 Symbolic regression . 46

5.5 Algorithms for test-based problems . 46

5.5.1 Competitive coevolution . 47

5.5.2 Test-based genetic programming . 48

5.6 Chapter summary . 48

6 The pitfalls of scalar evaluation 51

6.1 Evaluation bottleneck . 51

6.2 Compensation of interaction outcomes . 53

6.3 Loss of gradient . 54

6.4 Search bias . 55

6.5 Chapter summary . 58

7 Multi-Criteria Evaluation in Test-Based Problems 61

7.1 Motivation . 61

7.2 Test di�culty . 62

7.3 Performance pro�le . 63

7.4 Test sampling methods . 64

7.4.1 Random sampling . 64

7.4.2 Evolutionary sampling . 65

7.5 Experimental evaluation . 65

7.6 Experimental analysis of the Iterated Prisoner Dilemma 66

7.6.1 Experimental setup . 66

7.6.2 Results for expected utility . 68

7.6.3 Analysis with performance pro�les . 69

7.7 Experimental analysis of 1-ply Othello . 70

7.7.1 Experimental setup . 70

7.7.2 Results for expected utility . 71

7.7.3 Analysis with performance pro�les . 72

7.7.4 Round-robin tournament . 72

7.7.5 Performance pro�les explain round-robin tournament and expected utility . 73

7.7.6 Performance pro�les of selected Othello players 74

7.8 The bias of evolutionary sampling . 75

7.9 Chapter summary . 75

8 Automatic Discovery of Search Objectives 77

8.1 Motivation . 77

8.2 Interaction matrix . 78

8.3 Searching for structure in interaction matrices . 79

8.3.1 Implicit �tness sharing and related methods 79

8.3.2 Pareto-coevolution . 80

8.3.3 Coordinate systems . 81

8.3.4 Other approaches . 82

8.3.5 Summary . 83

8.4 Heuristic Discovery of Search Objectives . 83

8.4.1 Rationale . 83

8.4.2 Search Objectives . 84

xiii

8.4.3 Deriving Search Objectives . 87

8.4.4 Taxonomy . 89

8.4.5 Desired properties . 90

8.5 Selection under search objectives . 91

8.5.1 Aggregation . 92

8.5.2 Switching objectives . 92

8.5.3 Lexicographic ordering and lexicase selection 93

8.5.4 Multi-objective selection . 94

8.6 Related concepts . 95

8.7 Chapter summary . 98

9 Discovery of Search Objectives by Clustering 99

9.1 DOC . 99

9.2 Properties of DOC . 101

9.3 Preservation of dominance . 102

9.4 Experimental analysis in the domain of CoEAs . 103

9.4.1 Basic coevolutionary con�gurations . 103

9.4.2 Additional control con�gurations . 104

9.4.3 Extensions of DOC . 104

9.4.4 Test problems . 105

9.4.5 Performance . 107

9.4.6 Number of derived objectives . 108

9.4.7 Correlation of objectives . 109

9.4.8 Intra- and inter-cluster variance . 110

9.4.9 Visualization of the search objectives . 111

9.5 Experimental analysis in the domain of GP . 113

9.5.1 Methods . 114

9.5.2 Benchmark problems . 114

9.5.3 Results . 116

9.6 Discussion . 119

9.7 Computational overhead . 120

9.8 Chapter summary . 121

10 Discovery of Search Objectives by Factorization 123

10.1 Non-negative Matrix Factorization . 123

10.2 DOF . 126

10.3 Properties . 129

10.4 Analysis of dominance relation . 130

10.5 Experimental evaluation . 133

10.5.1 Methods and benchmarks . 133

10.5.2 Success rate . 134

10.5.3 Program size . 137

10.5.4 Behavioral diversity and search gradient . 139

10.5.5 Visualization of search objectives . 143

10.5.6 Computational overhead . 147

10.6 Discussion . 149

10.7 Chapter summary . 151

xiv Contents

11 Discovery of Search Objectives in Continuous Domains 153

11.1 Mapping continuous errors to interaction outcomes 153

11.2 Experiments . 155

11.2.1 Compared algorithms . 155

11.2.2 Benchmark problems . 156

11.2.3 Results . 157

11.3 Discussion . 160

11.4 Chapter summary . 161

12 Surrogate Fitness via Factorization of Interaction Matrix 163

12.1 Factorization of G with missing interaction outcomes 164

12.2 SFIMX . 165

12.3 Properties of SFIMX . 166

12.4 Experiment . 167

12.4.1 Compared algorithms . 168

12.4.2 Success rates . 168

12.4.3 Results for increased population size . 171

12.4.4 Results for increased runtime . 174

12.5 Adaptive test selection in SFIMX . 176

12.5.1 Methods . 176

12.5.2 Experimental setup . 177

12.5.3 Success rates . 178

12.5.4 Visualization of measures of test di�culty 180

12.5.5 Summary . 182

12.6 Automatic tunning of α in SFIMX . 183

12.6.1 ADASFIMX . 183

12.6.2 Position evaluation in Othello with n-tuple networks 184

12.6.3 Experimental setup . 186

12.6.4 Experimental veri�cation . 187

12.7 Chapter summary . 188

13 Conclusions 191

13.1 Summary . 191

13.2 Contributions . 192

13.3 Future work . 193

Bibliography 195

Chapter 1

Introduction

1.1 Problem Setting and Motivation

In his groundbreaking work, Alan Turing de�ned the notion of computation by an analogy to a

human mathematician who carefully performs elementary calculations, moving step-by-step to-

wards the exact solution [346]. Even though Turing's vision is now largely ful�lled, i.e., modern

computers excel at simple arithmetic and are easily programmable, it is tasks like recognizing ob-

jects in images, winning a game of Go, or automatic programming � problems where the rules are

not clear, some of the necessary information is missing, or �nding the right answer/solution would

require considering an exorbitant number of possibilities � that now pose the biggest challenges

in computer science. The algorithms the researchers have developed to solve many of the hardest

classes of problems have moved emphasis away from exact and robust computing. Instead, tackling

real-world tasks often involves heuristics and di�cult compromises (e.g. trading o� precision with

time), but most importantly, it entails intelligence.

Ever since the inception of programmable computers, humans wondered whether machines

might become intelligent, over a hundred years before one was actually built [224]. The dream of

creating machines that think dates back to at least the time of ancient Greece; intelligent constructs

appear in literature since then [266]. Nowadays, arti�cial intelligence (AI) is a thriving �eld with

great prospects, rich community of researchers and many practical applications. The undeniable

sign of the latter is that we already let intelligent software automate production, process speech

and images, or even detect faults in machinery and perform a medical diagnosis. Though it may

be hard to embrace, machines have already achieved better results than humans on some of these

tasks [326, 85, 343, 125, 215].

This thesis concerns problems which emerged in computational intelligence (CI) [105], a branch

of AI dedicated to problem-solving by means of bio-inspired algorithms. Though biological roots

are undoubtedly very important, neural, evolutionary and related approaches are only the tip of

the iceberg when it comes to what actually CI community works on. According to Wªodzisªaw

Duch �Computational intelligence is a branch of computer science studying problems for which

there are no e�ective computational algorithms.� [78]. Indeed, shifting the focus from algorithms

to problems is an important change of perspective, as the true challenge of AI proved to be solving

the tasks that are considered easy for humans, but hard to describe formally, i.e. problems that

humans solve intuitively, like understanding of speech or recognizing objects in a scene. In many

cases, the most convenient (and sometimes the only possible) way to express the intent when

approaching such tasks is to provide a set of examples that characterize the desired behavior, or

describe the properties of an ideal solution.

1

2 Introduction

Put another way, CI abounds in test-based problems, i.e. problems that feature tests (examples),

entities that embody pieces of knowledge about the problem and are considered to be actual

instances representing a given task. Training examples in machine learning, opponents in games,

and environments in reinforcement learning and robotics are all examples of tests. In these settings,

an agent interacts with tests and learns from the outcomes of those interactions: a machine learning

inducer builds or corrects a hypothesis, a game-playing algorithm adjusts its strategy, and a virtual

or physical robot updates its policy. The common features of these scenarios are that the number

of tests may be large (or even in�nite) and interactions with each of them are largely independent.

Test-based problems attracted much attention in coevolutionary algorithms, a branch of evo-

lutionary computation. Competitive coevolution devised there assumes iterative co-adaptation of

candidate solutions (entities intended to solve a given problem) with tests. In the simplest case,

the candidate solutions and tests dwell in separate populations, and the former are rewarded for

the number of passed tests, while the latter for the number of solutions they fail.

The conceptual framework of test-based problems comes in handy also in the more general

setting of an evolutionary algorithm, where the set of tests is �xed and given as a part of problem

formulation, like the training set of examples in machine learning. This is the default setting

for genetic programming that is also in the focus of this thesis, where candidate solutions are

symbolically represented executable structures like programs or expressions.

The challenge in designing e�ective algorithms for test-based problems lies, among others, in

obtaining accurate evaluation of candidate solutions. An objective assessment of solution's per-

formance is often computationally infeasible, precluding its application in practice. For instance,

arguably the most popular evaluation function for many test-based problems is the expected utility,

de�ned as the the average interaction outcome against all tests. Even for the apparently simple

problem of learning a strategy for the game of Tic-Tac-Toe, computing the expected utility requires

playing games against staggering 3.47× 10162 unique opponent strategies [145]. The conventional

approach to reduce the computational complexity of evaluation in test-based problems is to limit

the number of tests. In case of expected utility, this means computing a limited number of interac-

tions between solutions and tests. Crucially, outcomes of those interaction are typically aggregated

into a single scalar value, which is then used to drive a search algorithm.

An evaluation function that counts the number of passed tests, such as the expected utility,

usually forms an inherent part of the problem and makes it amenable to many conventional search

algorithms that expect a scalar objective. Though convenient and compact, aggregation of inter-

action outcomes inevitably leads to information loss, primarily due to compensation: two solutions

that pass k tests each are considered equally valuable, no matter which particular tests they pass.

Also, aggregation neglects the fact that some tests can be inherently more di�cult than others, not

to mention that it is sometimes the capability to solve a speci�c combination of tests (rather than

a number of tests) that matters the most for further progress. Algorithms that rely on aggregation

are oblivious to these aspects and thus prone to inferior performance.

In this thesis, we identify and address the evaluation bottleneck problem that arises when search

algorithms are driven using scalar evaluation [194]. As demonstrated above, candidate solutions are

often very complex entities (game-playing agents, computer programs, etc.), yet all that remains

from the process of their evaluation is merely a scalar value. The habit of using scalar evaluation

(though fully justi�ed in rare scenarios) appears to be deeply rooted within the CI community,

even though there are no principal reasons for an outcome of evaluation to be that succinct. This is

particularly true for test-based problems, where an act of evaluating a candidate solution involves

interaction with multiple tests and produces detailed information that can be potentially exploited

1.2. Aims and Scope 3

to bene�t the search. Our main motivation is therefore to widen the evaluation bottleneck by

providing search algorithms with richer information on solutions' characteristics.

1.2 Aims and Scope

Following the above discussion, in this thesis our main goal is to broaden the bottleneck of scalar

evaluation by making evolutionary search algorithms better-informed about per-test e�ects of

computation, i.e., outcomes of interactions between candidate solutions and tests. Let us emphasize

that the focus is here not on the search algorithm per se, but on the algorithms that elicit detailed

information on behavior of candidate solutions. Their role is to provide an interface between

evaluation function and the other components of search algorithm (e.g. selection operator) that

eases the communication and minimizes loss of information.

As argued in the previous section, evaluation in test-based problems has the potential of pro-

viding extensive information on behavior of candidate solutions. With this in mind, our secondary

objective is to harness this information for the purpose of providing a useful gradient for a search

process. To achieve this goal we propose a novel family of methods aimed at automatic discovery

of multi-aspect characterizations of candidate solutions, gathered under the common conceptual

umbrella of search objectives.

Moreover, in accordance with the prevailing trend in AI, we avoid explicit incorporation of

domain knowledge into discovery of search objectives. Rather than that, we design the process

to be automatic, largely data-driven and knowledge-free [234]. To this end, we employ learning

via unsupervised learning algorithms to capture the underlying patterns in behavior of candidate

solutions on tests.

The speci�c objectives of this thesis are as follows:

1. To investigate the phenomenon of evaluation bottleneck and possible ways of dealing with

its consequences in the context of algorithms solving test-based problems.

2. To propose a measure of test di�culty and devise the concept of performance pro�le, a multi-

criteria evaluation method that characterizes candidate solutions using a vector of outcomes

against tests of various di�culty.

3. To demonstrate the practical utility of performance pro�les for comparing candidate solutions

obtained with various learning algorithms for test-based problems.

4. To de�ne the concept of search objective, a formal object designed to encapsulate the problem

objectives and guide a search process by creating a useful gradient toward better quality

solutions.

5. To formalize the framework for automatic discovery of search objectives, which serves the

purpose of broadening the evaluation bottleneck and acquiring alternative (or additional)

behavioral information from candidate solutions and uni�es approaches operating on inter-

action matrices.

6. To develop algorithms for automatic discovery of search objectives that provide search al-

gorithms with richer information on solutions' behavior and demonstrate how such charac-

teristics can be embedded in a search algorithm to facilitate a better-informed and directed

search.

7. To experimentally verify the proposed algorithms on selected test-based problems and com-

pare them to the reference methods driven by scalar evaluation.

4 Introduction

1.3 Thesis Outline

This dissertation is organized as follows.

Chapter 2 provides a brief overview of the �eld of evolutionary computation. We introduce

the basic evolutionary algorithm and characterize its main components. Next, we discuss the key

principles of evolutionary search, with the focus on the role of �tness function. We summarize the

chapter by sketching the main problem we tackle in this thesis, i.e. the di�culty of choosing the

right evaluation function.

Chapter 3 presents the mathematical model of natural coevolution, with the emphasis on so-

called competitive coevolution. We delineate di�erent variants of the algorithm, including one- and

multi-population coevolution, and discuss the most important di�erences between coevolutionary

and evolutionary approach to problem-solving. Afterwards, we provide a brief literature review of

existing models of coevolution and their practical applications. Finally, we discuss coevolutionary

pathologies that hinder the overall progress of such methods.

Chapter 4 describes the framework for genetic programming, one of the earliest paradigms for

automatic programming and evolution of computer programs. We describe the canonical variant

of the algorithm and provide the overview of its key underlying components. We also discuss

the contemporary challenges in genetic programming and present some of its most impressive

human-competitive achievements.

Chapter 5 introduces the class of test-based problems that proves useful when modeling do-

mains with no intrinsic objective measure. We provide a formal de�nition of a test-based problem,

oriented at the concept of interaction between a candidate solution and a test. On this basis,

we describe how (co)evolutionary algorithms can be applied to such problems. This chapter also

presents some of the experimental domains used throughout this thesis to validate the methods

proposed in subsequent chapters.

Chapter 6 identi�es the pitfalls of scalar evaluation that originate in the aggregation of out-

comes of multiple interactions between a candidate solution and a set of tests. In particular, we

identify the problem of evaluation bottleneck and discuss its implications for search algorithms.

Chapter 7 proposes performance pro�les, a means for many-aspect assessment of solutions

produced by algorithms applied to test-based problems. We devise two di�erent approaches to

building such pro�les and validate them experimentally in the game of Othello and the Iterated

Prisoner's Dilemma. We also demonstrate how a performance pro�le exposes di�erences in behavior

of candidate solutions that would pass unnoticed by a scalar evaluation.

Chapter 8 formalizes the framework for automatic discovery of search objectives in test-based

problems, intended to widen the evaluation bottleneck by providing search algorithms with richer

information on solutions' characteristics. We describe its conceptual underpinnings, including the

notions of interaction matrix and derived search objective. On this basis, we demonstrate how

the framework facilitates automatic design of heuristic evaluation functions and discuss several

possible ways in which they can be employed as alternative means of driving a search algorithm.

Chapter 9 proposes an algorithm for discovery of search objectives by heuristic clustering

of outcomes of interactions taking place between candidate solutions and tests. We demonstrate

that the method manages to produce a low number of objectives that approximately capture the

capabilities of evolving solutions. We analyze its properties, proving that the discovery process

preserves the dominance relation between candidate solutions in the space of search objectives.

When applied to several well-known test-based problems, the proposed approach signi�cantly

outperforms the conventional (co)evolutionary search algorithms driven by scalar evaluation.

1.3. Thesis Outline 5

Chapter 10 introduces an algorithm for discovery of search objectives by factorization. The

proposed approach relies on the machine learning technique of non-negative matrix factorization to

learn latent factors that characterize candidate solutions and tests. These factors are the primary

building blocks of search objectives derived by the method. We demonstrate that, when employed

to drive search, they foster diversi�cation of search directions, while maintaining a useful search

gradient for the entire evolution. The approach is validated experimentally on a range of program

synthesis tasks, where it proves to achieve higher success rates than discovery of search objectives

by clustering.

Chapter 11 extends the algorithms presented in the previous two chapters, that are originally

limited in being applicable only to problems with constrained interaction outcomes, to domains

where interaction outcomes are continuous. We perform an extended experimental evaluation of

the methods on a range of uni- and multivariate symbolic regression benchmarks. Additionally, we

hybridize our approach with lexicase selection and thoroughly evaluate the resulting con�gurations.

Chapter 12 uses the framework for discovery of search objectives to devise a surrogate �tness

technique aimed at reducing the overall computational cost of evaluation in test-based problems.

The proposed method calculates a partial interaction matrix between candidate solutions and tests,

and then employs non-negative matrix factorization to predict its missing entries. We �rst demon-

strate the e�ectiveness of the method in multiple scenarios and then develop several extensions

that further improve its performance, also rendering the method virtually parameter-free.

Chapter 13 summarizes the dissertation, reviews the main contributions and outlines the

promising directions for future work.

Chapter 2

Evolutionary Computation

Evolutionary computation (EC) is an area of research deeply embedded within computing science.

Contemporarily, most consider it is a sub�eld of arti�cial intelligence or, more speci�cally, compu-

tational intelligence [82]. Natural processes have always served as a source of inspiration for the

human kind, thus it is not surprising that the scientists pursued the idea of adopting biological

principles into computation. The use of Darwinian principles for automated problem solving dates

back to the 1950s. A few years later, in the early 1960s, three independent framings of these ideas

started to emerge, giving birth to the mainstream of evolutionary computation [99, 134, 296]. In

the last few decades, the continuous advancement of technology encouraged the application of EC

to virtually every area of problem solving. As impressive as it may seem, evolutionary computation

paradigm has proven to be an immensely powerful problem-solving strategy, demonstrating the

applicability of evolutionary principles. EC has been successfully used in a wide variety of �elds

to evolve solutions to di�cult problems such as cancer detection [97, 98], automatic evolution of

computer programs [176], modeling of adaptive systems by means of genetic programming [134],

complex engineering problems [296], or learning in games [310, 91, 93]. Most importantly, as larger

and more di�cult problems are considered, the solutions discovered by evolutionary methods are

often more e�cient and robust than those designed explicitly by humans.

2.1 Evolutionary algorithms

For the past few decades, many di�erent variants of EC paradigm have been proposed, including

Holland's genetic algorithms (GAs) [134], Rechenberg's and Schwefel's evolution strategies (ES)

for parameter optimization problems [296, 319] or Koza's genetic programming (GP) [176], to

name just the most popular ones. All these computational models are bio-inspired optimization

procedures that involve reproduction, random variation, and selection of contending individuals in

a population. Jointly, these features are essential for evolution, and once all of them are combined

together, whether in nature or in a arti�cial simulation, evolution is inevitable [10]. From yet

another perspective, they are also variants of metaheuristics, i.e., a general-purpose search strategy

that is applicable to a wide variety of search and learning tasks.

These and other �avors of EC rely heavily on a common prototype in the form of evolutionary

algorithm (EA). Evolutionary algorithms mimic the process of natural evolution, and in contrast to

the classic optimization techniques of gradient descent, dynamic programming, branch and bound

or local search, EAs are population-based. Instead of processing just a single search point at a

time, EAs maintain a population of individuals that allows them to sample and simultaneously

process many points in the space of potential solutions. By employing a number of individuals,

7

8 Evolutionary Computation

EAs perform an e�cient directed search and are less susceptible to stagnation at local optima.

Usually, initial population is �lled with random solutions (elements of the search space).

When talking about EAs, it is common to borrow some vocabulary from genetics. We refer

to candidate solutions in a population as individuals or genotypes (sometimes also chromosomes).

The interpretation of each genotype, i.e., its phenotype is typically problem-dependent and de�ned

externally. Each individual is made of constituents called genes (features). For instance in GAs,

genes are arranged in linear succession and every gene controls inheritance of certain characteristic.

In a given individual, a gene is in one of several states, called alleles (values). When run on

a population of genotypes, an evolutionary process corresponds to a search through a space of

potential solutions.

Central to all EAs is the idea of searching the problem space by changing an initially random

population of individuals in such a manner that the �tter (better) individuals have more chances

to survive and pass their genes (information) to subsequent generations. This survival of the �ttest

is used to re�ne a population of individuals by applying a selection procedure that favors better

individuals and causes them to reproduce more often. The quality of individuals is typically mea-

sured using an evaluation function called �tness. EAs are generally applied to solve optimization

problems (cf. Chapter 5), i.e., �nding a solution that maximizes or minimizes a given objective

function. In such a case, the evaluation function (�tness function) is often identical to the given

objective function. In most applications, evaluation is the only component that has to be specif-

ically tailored to the problem at hand, while the remaining components are usually generic and

elaborated in the theory and practice of EC (e.g., bit-string representation, two-point crossover,

tournament selection, etc.).

Another critical component of EAs are operators that are inspired by the natural phenomena of

mutation and recombination that provide for variation, one of the cornerstones of evolution. Their

purpose is to create the o�spring and introduce both diversity and novelty into a new population.

The main characteristic of a mutation operator is that it is being applied to a single individual

to produce a new individual. Most mutation operators are also designed in such a way that, for

some metric de�ned in the space of candidate solutions, they produce an o�spring that is relatively

close to the parent solution. In some cases, this closeness is controlled by the strength of mutation.

For instance, in the canonical Gaussian mutation, the parameter σ determines the magnitude of

normally distributed random noise applied to a single variable (gene) in the candidate solution

(genotype).

Recombination (or crossover) operators create new individuals by combining parts from two

(or occasionally more) parents, so that the o�spring inherits some of their traits. For instance

in tree-based GP (cf. Section 4.2), a crossover operator swaps two randomly selected subtrees in

parents' trees.

A typical EA work�ow engages both mutation and recombination, because they complement

each other. Apart from generating new points in a search space, mutation also maintains so-

called `gene pool' � the set of unique alleles available to recombination in the population. Most

recombination operators produce new individuals by exchanging parts of genotypes of parents'

solutions. If the population is not diverse enough, the opportunity for recombination operators to

perform useful search diminishes rapidly.

All of the introduced above components of an EA are usually implemented as stochastic algo-

rithms. For instance, during selection the �tter individuals are more likely to be selected than the

less �t ones, but even the worst individuals in the population may become parents to the solutions

in the next generation. For recombination, parts of the genotype that are exchanged between the

2.1. Evolutionary algorithms 9

InitializationInitialization PopulationPopulation

EvaluationEvaluation

SelectionSelection

EvaluationEvaluation
FunctionFunction

VariationVariation

TerminationTermination

Figure 2.1: General scheme of an evolutionary algorithm presented as a �ow-chart.

parents are chosen randomly. Similarly for mutation, the choice regarding which pieces to mutate

and which new genes to replace them with is random.

Evolutionary algorithms mimic the process of natural evolution that can be viewed as the result

of interplay between the process of creation of new individuals, their evaluation and selection. This

neo-Darwinian model of evolution is re�ected by the structure of a typical generational EA as il-

lustrated in Fig. 2.1. The initial population of individuals is created in a randomized way and then

evaluated using a �tness function. Afterwards, the algorithm proceeds iteratively in generations

until the termination condition is met. In each generation a new population is formed by selecting

the �ttest individuals to drive the search process towards better solutions. Some members of the

new population are then chosen to act as parents for the new individuals and undergo transfor-

mations by means of genetic variation operators (typically mutation and crossover). Finally, the

newly-bred individuals are evaluated and the cycle repeats. Over time, the evolutionary loop leads

to an increased presence of highly-�t individuals in the population, while the non-deterministic

nature of variation operators ensures constant �ow of `fresh blood' in the form of novel o�spring.

The termination condition typically depends on the number of elapsed generations. However, it

may also depend on the quality of the best solution found so far, or any other criteria appropriate

for the problem at hand. When the termination condition is ful�lled, the evolution stops and the

�ttest individual is returned as the �nal solution.

It is rather easy to notice that the scheme of an evolutionary algorithm falls into the category

of generate-and-test algorithms. In each generation, variation operators generate new candidate

solutions, and a �tness function is used to test their quality. Generate-and-test approach is the

essential di�erence that distinguishes EAs from, among others, gradient-based algorithms, where

new search points are obtained from the current ones via directed updates dictated by a gradient.

As with any other technique, EAs come in many �avors and twists. The above overview gives

only a general idea of how a typical EA proceeds, without delving into details of how each phase can

be implemented. For instance, there are many selection methods, including tournament selection,

where a random sample of individuals compete for survival and reproduction, �tness proportional

selection [15], where the probability of selection is proportional to individual's �tness, or even

more elaborate multi-objective selection techniques such as NSGA-II [75]. Yet, these examples are

just the tip of the iceberg in a plethora of available methods, not just when it comes to selection.

Vast body of literature and past research is devoted to disseminating initialization, recombination

and evaluation techniques that are dedicated to particular problem classes and applications. The

extensive presentation of evolutionary algorithms can be found in the book of Eiben and Smith

[80], while their history and applications are surveyed by Bäck et al. [16].

10 Evolutionary Computation

2.2 Evolutionary search

Evolutionary computation draws inspiration from natural evolving systems to build problem-

solving algorithms. The range of problems amenable to solution via evolutionary methods includes

optimization, constraint satisfaction, as well as more general forms of adaptation, but virtually all

these are search problems. It is therefore reasonable to begin by introducing the basic terminology

of search and review the key ideas underpinning its analysis.

The goal of a search problem is usually to �nd one or more candidate solutions satisfying some

prede�ned properties. These properties are usually de�ned with respect to an objective function,

which generally takes the form

fo : S → R, (2.2.1)

where R is the set of real numbers. A search space is the domain of the function fo, or in other

words, a set of feasible points that might be considered during search. Depending on the problem

it might be �nite or in�nite, continuous or discrete. In the above case, the search space would

typically be S, or possibly some subset of S. To give a more concrete example, if the problem is

to synthesize a program that produces the value of the Boolean even parity given n independent

Boolean inputs, the search space could be chosen to be the set of expression built of Boolean

functions such as and, or, nand, nor accompanied by binary terminals 0 and 1 (cf. Section 4.2). In

any case, points in the search space S are typically referred to as solutions or candidate solutions.

In the special case of search problem being an optimization problem, which is most often the

case in EC, the goal is to �nd one or more points in the search space which maximize or minimize

fo. Naturally, since max fo = −min(−fo), both approaches are equivalent.

Let us now assume that our search problem is an optimization problem and, without loss of

generality, that the objective is to minimize fo. Then the global optima are precisely those points

in S for which fo is a minimum. More formally, we search for a solution such that

x∗ ∈ S ⇐⇒ fo(x
∗) = min

s∈S
fo(x),

or equivalently:

x∗ = arg min
x∈S

fo(x).

Of course, when fo is di�erentiable other techniques than EAs can be employed. In many

practical situations, the natural choice is the gradient descent method (also known as steepest

descent or Cauchy's method). Assuming that fo is a twice di�erentiable function, Newton-Raphson

based on the second order Taylor series expansion can also be used. For some problems, the solution

can be even obtained analytically by determining the zeros of the gradient and verifying positive

de�niteness of the Hessian matrix at candidate points. If fo is a convex function, i.e it has only

one (global) optimum, then the problem can be solved by convex optimization methods like for

instance subgradient projection [29].

However, deterministic optimization methods may only converge to a local optima in case of

multi-modal problems. Also, derivatives, gradients and other concepts mentioned above are not

available in discrete search spaces that are often of practical interest (and studied in this thesis).

Before discussing local optima, let us �rst introduce the notion of the neighborhood of point x.

Given a metric d in solultion space, d : S × S → R, the neighborhood of point x ∈ S is the set of

points within ε distance of x with respect to the metric d:

N(x, ε) = {y ∈ S|d(x, y) ≤ ε}.

2.2. Evolutionary search 11

(a) (b) (c)

Figure 2.2: A �tness landscape of two-dimensional objective function, which shows how �tness
depends on individual's phenotype. Subsequent �gures illustrate the progress made by EA on
this landscape with population of 100 individuals over the course of 10 generations. Black dots
correspond to individuals and show their distribution at the beginning (a), in the middle (b), and
at the end of evolutionary run (c).

Local optimum refers to a solution which is optimal within a neighboring set of candidate solutions.

More formally, a local optimum is a point for which, for small enough ε, no member of its ε-

neighborhood has a lower objective function value, so that:

L = {x ∈ S|∃ ε > 0 ∧ ∀ y ∈ N(x, ε) : f(x) ≤ f(y)}.

In order to gain a deeper understanding of search processes, it is sometimes convenient to

imagine fo as de�ning a �tness landscape [366], or the surface spanned over S, where a solution

corresponds to a point on the landscape, and the elevation of that point represents its objective

function value. In such a setting, traditional gradient descent methods can be likened to a ball

rolling down the surface from a randomly chosen point on the landscape. Although it possible

that the ball would keep rolling through small `bumps' in the error surface, it will most likely rest

somewhere along �at regions in the surface, or in one of local minima. Evolutionary search, on

the other hand, is in principle much more resistant to the problem of local optima, because (i) its

search trajectory is not directly bound to gradient and (ii) it maintains a population of individuals

that performs a parallel search.

To illustrate how a typical EA navigates the search space, let us consider an example, in which

a two-dimensional objective function happens to be this time maximized. Figure 2.2 illustrates

its �tness landscape and the distribution of individuals in the population at the beginning, in the

middle, and at the end of evolutionary search. Provided proper initialization, the population is

diversi�ed, with the individuals randomly scattered over the search space (Fig. 2.2a). After a few

generations of search, selective pressure pushes the individuals towards regions with higher �tness,

while variation operators provide means to explore the previously unvisited parts of the space.

In this particular run, most of the individuals concentrate around two hills that correspond to

local maxima, allowing the search to exploit the vicinity of good, though not the best, solutions

(Fig. 2.2b). As a result of exploration, however, some individuals happen to climb the highest

peak, making a signi�cant progress towards the optimum. These individuals are particularly likely

to be selected as parents for the next generation, and in combination with variation operators they

facilitate breeding even �tter individuals. This in�uences the �nal outcome of evolution, when the

search converges to the highest hill (global optimum), with some individuals populating its very

top (Fig. 2.2c).

12 Evolutionary Computation

f2

f1

Figure 2.3: The Pareto-optimal front represents the trade-o� between competing objectives, in this
case f1 and f2, both of which are to be minimized. The points on the front are associated with
non-dominated solutions and represent the best (lowest) values the can be achieved simultaneously
for f1 and f2. Red points which lie above the front correspond to solutions that are dominated by
other members of S.

Let us note, however, that there are certain caveats involving visualizing the distribution of

�tness as a kind of landscape. First of all, the structure of a landscape is contingent on variation

operators employed by a search algorithm. For the landscape to be relevant to a search algorithm,

these operators must be closely related to those used to induce the neighborhood structure that

de�nes the �tness landscape [275]. Also multimodality of a landscape is not a sole product of

an evaluation function; it results from the combination of variation operators and an evaluation

function that produces multiple basins of attraction present in the landscape. It may be also worth

noting that to determine the elevation of a point in the landscape, one needs to compute the value

of objective function, which may be computationally expensive.

Figure 2.2 illustrated that there are two important issues to consider during evolutionary search:

population diversity and selective pressure. These factors strongly in�uence one another as increas-

ing the selective pressure decreases the diversity of a population, and vice versa. In other words,

strong selective pressure works towards premature convergence of the search, while a weak se-

lective pressure often makes search ine�ective. Maintaining a balance between these two factors

corresponds to a trade-o� between exploration and exploitation. Guiding the search towards yet

unknown parts of the search space increases diversity and is associated with a high exploration

rate, while maintaining the search in the vicinity of known good solutions increases its exploitation,

but may prevent search from �nding even better solutions. Balancing these factors is essential for

an e�ective evolutionary search. As a matter of fact, both exploration and exploitation are fun-

damental concepts of any search algorithm [60]. It is often a good practice to start the evolution

with a high exploration rate and reduce it over time in favor of an increase in exploitation. EAs

are considered good at keeping the balance between those two aspects of search [243].

2.3 Pareto optimality and multiple objectives

In many problems of practical relevance, it becomes necessary to evaluate solutions using multiple

objectives. This will also become a necessity in the further parts of this thesis. Whenever there are

multiple objective functions, it becomes meaningful to talk about Pareto optimality. In such multi-

objective problems, there is typically no solution that is better than all others on all objectives, so

compromises must be made between the various objective functions [100, 76].

Suppose that the objective functions form the vector function

f = (f1, f2, . . . , fn) (2.3.1)

2.4. Evaluation issues in EC 13

where fi : S → R. Assume further that each function is to be minimized. A solution x ∈ S is now

said to dominate a solution y ∈ S if it is not worse with respect to any component objective than

y and is better with respect to at least one of them:

x � y ⇐⇒ ∀i : fi(x) ≤ fi(y) ∧ ∃j : fj(x) < fj(y). (2.3.2)

A solution is said to be Pareto-optimal in S if it is not dominated by any other solution in S.

Pareto-optimal set is the set of such non-dominated solutions, de�ned formally as

S∗ = {x ∈ S|@y ∈ S : y � x}. (2.3.3)

Pareto optimality comes in handy when one aims at �nding a set of candidate solutions that

possibly closely approximates the non-dominated solutions and exploits the trade-o� between the

objectives. A typical Pareto-optimal front is shown in Fig. 2.3. This concept will become indis-

pensable in later chapters, where we will argue for the bene�ts of multi-objective evaluation.

2.4 Evaluation issues in EC

The e�ectiveness of evolutionary search is also contingent on the choice of which points in the

search space to sample next. In EAs, this choice is typically determined by the combination

of individuals in the population, their evaluation function values, the representation used, and

the search operators employed. Of these elements, the process of evaluating individuals deserves

special attention. An objective function, typically given as a part of a problem formulation, often

embodies the requirements set before an ideal solution. It may be then directly used as means to

evaluate the `absolute' quality of a candidate solution, or measure its conformance with the desired

behavior as speci�ed by the problem. However, in certain scenarios an objective function may prove

too expensive to evaluate, or even impossible to compute in a �nite time. Imagine for instance

optimizing vehicle parts to meet crash test requirements. In such a case, computing the objective

function may involve crashing an actual car, or performing very expensive simulations. In the

context of learning game-playing strategies, an objective function could be de�ned as the expected

result over games with all possible strategies from the problem's search space. Unfortunately, even

for simple games the number of di�erent strategies is computationally intractable (cf. Chapter 5).

Consequently, it is a common practice to employ an evaluation function that is intended to guide

the search, as we did in this chapter. However, the objective function that often comes as a part

of problem formulation may not necessarily be the best tool for this purpose. It is important to

realize that it is not always obvious what the `right' evaluation function for a given problem is.

For instance, in the class of test-based problems the goal is usually to �nd a solution that solves

all tests (cf. Chapter 5). There will be usually many evaluation functions that are consistent with

this objective. The issue of choosing an evaluation function is important for this dissertation and

we will analyze it in greater detail in Chapter 6.

Chapter 3

Coevolutionary Algorithms

In this chapter, we focus on the natural phenomenon of coevolution and its arti�cial counterpart in

arti�cial intelligence. Over the past years, coevolutionary algorithms (CoEAs) have proved to be

e�ective problem solvers for many di�cult machine learning problems. We begin the chapter by

presenting origins and inspirations of coevolution in Section 3.1, while competitive and cooperative

coevolutionary models are introduced in Section 3.2. In Sections 3.3-3.5, we discuss several features

speci�c to CoEAs. In Section 3.6, we demonstrate some of the most impressive applications of

CoEAs, and close the chapter in Section 3.7 with the discussion of the current challenges faced by

practitioners when attempting to harness the potential of CoEAs for problem-solving purposes.

3.1 Origins

Similarly to traditional evolutionary algorithms, coevolutionary algorithms are inspired by a bio-

logical evolutionary process and focus on exploiting the phenomenon of an arms race observed in

natural environments. In nature, the �tness of an individual within a species results not only from

its competition with the other representatives of the same species, but also with other competing

species, and with the environment as a whole. Dynamically changing environment requires species

to adapt and struggle for both survival and reproduction. When combined, these principles for-

mulate the natural selection law described by Darwin [65]. Since natural selection rewards the

�ttest individuals, evolution of each species moves towards the development of features aimed at

outperforming the competition, cooperating with some other species to achieve the mutual goal,

or even both1. In this way, species exert selective pressure on each other, thus in�uencing mutual

evolutionary development. Ultimately, this allows certain species to evolve traits which give them

an edge over other coevolving organisms.

Let us brie�y illustrate the principle of competitive coevolution with populations of rabbits

and foxes. Faster and smarter rabbits are more likely to escape foxes and survive than slower and

dumber individuals, gradually making up more and more of the population. Obviously, the latter

individuals may also survive just because they are lucky or because they never encountered any

serious threats. Once the surviving population of rabbits starts breeding, we may expect some

slow rabbits mate with fast rabbits, fast with fast, and so on. On the top of that, we may witness

completely new traits evolve (such as better stealth skills, camou�age etc.), as once in a while

nature may mutate some of the rabbit genetic material. On average, the new population of rabbits

will be faster and smarter than their parents in the original population because more faster and

smarter rabbits survived the foxes. The population of foxes, on the other hand, undergoes a similar

1In Nature it is rather hard to tell where competition ends and cooperation starts.

15

16 Coevolutionary Algorithms

process to adapt to the new environment. Though they may temporarily fall behind, in order to

survive they develop over time new traits and skills to close the gap that separates them from their

prey. Otherwise, the rabbits could become too fast and smart for the foxes to catch any of them.

This principle forms the essence of competitive coevolution and heavily in�uenced development of

CoEAs.

3.2 Coevolution in Computing

In computing science, CoEAs have been introduced as an extension to evolutionary algorithms,

where evaluation of individuals is in�uenced by other evolving individuals [292, 72]. What most

coevolutionary methods have in common is the concept of an interaction between a pair of individ-

uals. The outcomes of those interactions reveal some information regarding coevolving individuals

and are essentially the only feedback that CoEAs receives from the external world. There is no

external �tness function in the common sense of this term; rather than that the results of several

interaction outcomes together determine an individual's �tness and drive a selection process. The

nature of those interactions might be either cooperative or competitive. Historically, this distinc-

tion has led to the development of two major variants of coevolution: cooperative coevolution and

competitive coevolution. In the former case, individuals work together to achieve a common goal.

As stated by Potter [293], the cooperative evaluation of each individual in a population is done by

concatenating the current individual with the best individuals from the other populations. Coop-

erative coevolution is one of the few variants of EC that o�ers some means to decompose a complex

problem P into sub-problems {p1, p2, . . . , pn} . Thus, such algorithms have been extensively stud-

ied in the context of coevolving teams of agents performing a single task, and are well-suited for

compositional problems [293, 359], where the quality of a solution depends on an interaction among

its sub-components. The cooperative coevolution framework has been successfully applied to ma-

chine learning benchmarks such as keepaway soccer [356], as well as to real world problems like for

instance pedestrian detection systems [42], or large-scale function optimization [367]. The reader

interested in more details regarding cooperative coevolutionary algorithms is referred to the works

of Potter and De Jong [293], Husband and Mill [138], Krawiec and Bhanu [184].

In case of the competitive form of coevolution, interactions usually take the form of an encounter

between two or more competing individuals, and consequently, a gain for one means a loss for the

others. Such scenario often imposes a kind of asymmetry on the task setting, giving rise to a

di�erent roles played by the individuals participating in an interaction. For this reason these

individuals are often refereed to as candidate solutions and tests. Depending on the context,

a candidate solution might be a program, a machine learning hypothesis or, in case of game-

playing agents, a strategy. Accordingly, a test may take the form of an environmental challenge,

a training example, or in case of games, an opponent strategy. A single interaction between a

candidate solution and a test produces a scalar outcome that re�ects the capability of the former

to pass the latter. In the simplest case, an outcome can be binary or three-state (when ties

are accepted); in continuous variant, it re�ects the `degree of passing' the test. The essence

of competitive coevolution is that the interactions outcomes drive a search process in the space

of candidate solutions and the space of tests, leading to the continuous arms race taking place

between competing individuals [258]. Thus, a competitive coevolution is particularly useful when

an evaluation function is unknown or di�cult to de�ne, perfectly �tting interactive domains and

test-based problems (cf. Section 5.5.1). In this thesis, we focus exclusively on the competitive

form of coevolution.

3.3. One- and multi-population coevolution 17

Algorithm 1 General scheme of a single-population coevolutionary algorithm.

1: S ← Initialize Population
2: T ← Select Tests(S)
3: Evaluate Population(S, T)
4: while ¬Termination Condition() do
5: S ← Select Parents(S)
6: S ← Recombine And Mutate(P)
7: T ← Select Tests(S)
8: Evaluate Population(S)

9: return Fittest Individual(S)

3.3 One- and multi-population coevolution

A scheme of a simplest coevolutionary algorithm employing a single population of individuals is

shown in Algorithm 1. In such a single-population coevolution, individuals serve two roles: they are

used as candidate solutions to a problem, and during �tness evaluation their purpose is to provide

information regarding other coevolving individuals. Applicability of such a setup is, however,

limited to symmetrical domains in which the roles taken by individuals during interactions are

interchangeable. Canonical examples of such domains are classic two-player board games like

chess, backgammon or Othello (cf. Section 5.4).

In situations where individuals cannot take the role of a candidate solution and a test, it is

possible to resort to a two-population coevolution. The idea is to maintain simultaneously two

populations of individuals � a population of candidate solutions (learners) and a population

of tests (teachers). In contrast to a single-population variant, here the interactions take place

only between individuals that belong to di�erent populations. For instance, in the context of

game-playing each population provides the opponents used by the other population to evaluate

its members. Two-population coevolution is especially e�ective as a self-adaptive mechanism to

increase a problem di�culty as members of the population become more adapt at solving a given

problem [292].

Multi-population approach is particularly popular in the cooperative variant of coevolution.

Recall from the previous section that the idea behind cooperative coevolution is to decompose a

complex problem into several subproblems. Hence, each of the populations in multi-population

cooperative coevolution is searching for an optimal subsolution, i.e. a subpart of the complete

solution. Though the vast majority of experiments with multi-population coevolution concerns

collaborative approaches, there are some attempts of employing multi-population coevolution in

the competitive framework, see e.g. [344].

3.4 Di�erences between coevolutionary and evolutionary approach

Since CoEAs are derived from EAs [96], they share the core mechanics and underlying features,

including selection and variation operators (cf. Section 2.1). The fundamental di�erence between

coevolutionary and evolutionary approaches lies in the evaluation phase and concerns �tness as-

sessment. EAs designed to solve optimization problems have direct access to a static objective

function (2.2.1) that assigns a real value to each individual in S. As a result, given any two in-

dividuals si, sj ∈ S it is easy to compare f(si) with f(sj) and objectively assess which is more

�t (better). By contrast, CoEAs do not use any direct metric of an individual's quality, but

instead rely on a subjective evaluation function [353] that re�ects a relative performance of indi-

viduals with respect to other coevolving individuals. In the most common scenario, coevolving

18 Coevolutionary Algorithms

(b)(a)

Figure 3.1: A round robin interaction scheme in single-population (a), and two-population coevo-
lution (b). An individual marked in gray interacts with every member of the same population, or
the members of the other population.

individuals engage in interactions, and outcomes of those interactions are typically aggregated to

a single scalar value that drives a selection process. As a result, �tness assigned to an individual

is context-sensitive and subject to the state of constantly changing population. In particular, the

�tness ranking of individuals can change depending on presence or absence of other individuals in

the population, which is not possible in an ordinary EA. Also, an increase in the subjective �t-

ness does not necessarily imply an increase in the objective quality of individuals. In general, the

relation between the subjective and objective �tness of an individual can be extremely complex.

Guaranteeing objective progress is thus one of the main challenges in CoEAs (cf. Section 3.7).

Although the �tness landscape for an individual changes dynamically as a function of the

population, CoEAs are designed to adaptively focus on the relevant areas of a search space. This

property is particularly useful when a problem space is very large or even in�nite. Most importantly

though, it makes CoEAs particularly well-suited to so-called interactive domains in which there

is no intrinsic objective function given, or such a function is costly to compute. For more details

regarding interactive domains, we refer the reader to the work of Popovici et al. [292]. In Chapter 5,

we explore test-based problems, which are closely related to interactive domains. CoEAs naturally

�t this class of problems as further discussed in Section 5.5.1.

3.5 Interaction patterns

Regardless of whether interactions occur on the level of a single or multiple populations, CoEAs

employ an interaction scheme that determines which individuals are confronted with each other

during �tness evaluation. Of several methods designed for this purpose, probably the most fre-

quently used in practice is a round-robin tournament (a.k.a complete mixing [232]). In this scheme

each member of population simply interacts with every other individual as illustrated in Fig. 3.1.

In the single-population coevolution (Fig. 3.1a) all other members of the population participate in

interactions resulting in m(m−1)/2 interactions per generation, where m is the population size. In

the two-population variant (Fig. 3.1b), on the other hand, all members of the opposite population

are employed as interaction partners. In such a case, the number of interactions to be made in each

generation depends entirely on the number of individuals in the opposite population. Not surpris-

ingly, the round-robin tournament has the disadvantage of being computationally expensive. To

reduce the overall evaluation cost, one may resort to other interaction schemes such as k-random

opponents method [297], where an individual interacts with k opponents drawn at random from

the current population (nk interactions). Angeline and Pollack proposed the single-elimination

tournament [7], which requires m− 1 interactions, but only the tournament winner has its �tness

3.6. Applications of coevolution 19

computed precisely. Fitnessless coevolution [147] uses the outcomes of interactions to directly drive

the tournament selection. This method involves (k− 1)m interactions, where k is the tournament

size. A detailed review of other methods for selecting interactions can be found in [7, 268, 327]. Let

us also note that in Section 12.6, we propose a novel, matrix factorization-based interaction scheme

that signi�cantly accelerates the round-robin tournament selection, while maintaining roughly the

same level of evaluation accuracy.

Individuals in CoEAs typically engage in multiple interactions giving rise to multiple outcomes

of those interactions. In such a case, its important to determine how these outcomes should be

aggregated to give individual's �tness. The simplest and probably the most commonly used in

practice approach is to compute a sum or average of the individual outcomes, and then assign

it as �tness. Other, slightly more complex approach known as competitive �tness sharing takes

into account outcomes of other individuals to weight the interactions and provide more robust

evaluation [303, 304]. Arguably, the biggest advantage of such scalar approaches is that they

are convenient to use and compatible with the traditional parent-selection techniques. Let us

however point out that aggregation of interaction outcomes incurs inevitable information loss and

any performance measure based on aggregation is prone to compensation � two individuals may

obtain the same �tness even though they solve entirely di�erent subsets of tests. We elaborate

more on this and related issues in Chapter 6.

3.6 Applications of coevolution

Historically, one of the �rst works introducing the idea of coevolution into the �eld of AI were

Samuel's experiments with self-learning methods on the problem of learning game strategy for the

game of checkers in 1959 [310]. However, it was not until early 1990s that CoEAs became im-

mensely popular, contributing to rapid developments in this area. The seminal work of Hillis [132]

demonstrated a highly e�ective approach to evolution of sorting networks by using an opposing

population of unsorted data sets (number arrays) to test a network's sorting capability. In this

case, individuals in both populations engage in a predator-prey type relationship, where candidate

solutions representing potential sorting networks are assigned a �tness score based on how well

they sort the number arrays in the other population, and the individuals in the second population

are rewarded each time an opponent sorting network is unable to sort the related data set. The

goal of the algorithm is to produce the smallest network possible that correctly sorts any given

data set. Other in�uential works from this period include Axelrod's research on evolution of co-

operation in Iterated Prisoner's Dilemma [12], and Sim's work on coevolution of virtual creatures

that compete in physically simulated three-dimensional worlds [327].

Games have always been a particularly popular test-bed for arti�cial and computational in-

telligence and, not surprisingly, some of the most popular applications of competitive coevolution

involve learning game-playing strategies. In CoEAs, individuals typically serve two roles: they are

used as candidate solutions to the problem, while simultaneously they provide evaluation infor-

mation about other coevolving individuals. The problem of �nding a good game-playing strategy

�ts this scenario perfectly since strategies can be tested by playing against other strategies. One

of the most successful application of CoEAs in such a setting is Blondie24, a master-level checker

player coevolved by Chellapilla and Fogel without using a priori domain knowledge [46, 47, 93].

Evaluation function in Blondie24 employs alpha-beta search algorithm, and a feed-forward neural

network for a board evaluation. Individuals in CoEA encode weights for a 5-layer networks, and

are evaluated by playing games against each other. Fairly straightforward CoEA employed in this

experiment produced a world-class checker player that is competitive with the best human and AI

20 Coevolutionary Algorithms

players. Following this successful application of coevolution to checkers, a similar approach was

used to coevolve a chess player, Blondie25, that is competitive with some of the strongest chess

programs [94, 95]. Coevolutionary algorithms have also been applied with great success to Othello

[149, 49, 237, 341]. For example, Moriarty and Miikkulainen designed coevolutionary approach

to discover appropriate playing strategies against particular types of opponents [253]. More re-

cently, Ja±kowski and Szubert employed Covariance Matrix Adaptation Strategy in competitive

coevolutionary setup and found out that the proposed approach scales better and �nds superior

game-playing strategies when compared to plain (co)evolution strategies [146]. Some research also

shows the potential of applying coevolution to small-board version of Go [225, 307, 193], albeit the

obtained strategies failed to achieve a master level of play. There are also some notable applications

of CoEAs to non-deterministic games such as Texas holdem poker [256] or backgammon [286].

Apart from games, competitive coevolution has been successfully applied to a variety of machine

learning problems and has played a vital role in evolving complex agent behaviors. For instance,

Paredis improved coevolutionary learning of neural network classi�ers with life-time �tness eval-

uation [271], and subsequently used a similar approach to solve constraint satisfaction problems

[270, 272]. Angeline and Pollack demonstrated that competitive �tness functions dependent on

the constituents of the population may provide a more robust training environment and foster

evolution of better solutions than a regular �tness function [7]. There are also numerous successful

application of CoEAs to complex compositional problems, where evaluation involves aggregation

or composition of certain components from the optimized system. Famous example of such an

application is Husbands and Millis' work on job-shop scheduling [138], where individuals encode

plans for managing jobs involving the processing of a particular item produced by the shop, and

separate populations are used to optimize these plans for each item. Other interesting applications

of CoEAs include density classi�cation task in cellular automata [157, 260, 273], design of Boolean

networks [329], and protein sequence classi�cation [261].

3.7 Challenges in coevolutionary algorithms

Despite many successes in solving complex problems, CoEAs are known to su�er from so-called

coevolutionary pathologies � a well-established issue in their design. Coevolutionary pathologies

are undesired phenomena, unique to coevolutionary systems, that hinder progress of the search

towards a desired goal state or high-quality solutions. Common variants of those pathological

behaviors include:

• Disengagement [43, 44] occurs when a coevolutionary system decouples, i.e., one population

begins to easily outperform another to the extent that its no longer possible to discriminate

individuals according to their relative �tness. As a result, any feedback between the coevolv-

ing populations is eliminated, leading to loss of selection gradient and causing populations

to drift [353].

• Forgetting [90, 89] entails the process of losing certain traits (measurable aspects of an indi-

vidual) acquired during coevolutionary search and subsequently discarded, only to discover

that at some point later they are needed in order to obtain a gain in �tness. Some traits

may also disappear from a population for instance due to a drift or narrow selective pressure.

The issue of forgetting becomes particularly severe when a solution to a problem involves

retaining potentially informative, though inferior in quality individuals.

• Overspecialization [353] also known as focusing is closely related to the more general problem

of over�tting in machine learning and occurs when individuals become too focused on solving

3.7. Challenges in coevolutionary algorithms 21

only some parts of the problem while ignoring the others. It is particularly likely to manifest

itself when individuals start to excessively exploit weaknesses of their opponents, thereby

evolving in an unexpected (and often unwanted) way. Overspecialization often results in

brittle solutions that fail to generalize [61, 37].

• Cycling [55, 324, 37] stems from the relative nature of �tness assessment and can be ob-

served when recurring changes trap a coevolutionary system in some part of a search space.

Lack of evolutionary `momentum' or inherent intransitivity of a problem domain may also

signi�cantly contribute to forcing an algorithm into a repetitive cycle.

• Mediocre stable states [5, 285] are related to collusion [37] and can be observed when compet-

ing populations arrive at a sub-optimal equilibrium rather than being engaged in a progressive

arms race. This problem is analogous to the problem of convergence to a local optima in

regular EAs. It may also happen than coevolving populations improve their �tness, however

they do not improve in absolute terms; this phenomenon is often referred to as the Red Queen

e�ect [273].

Coevolutionary pathologies constitute a major challenge in the design of e�ective CoEAs. Over the

last decade, much of the research e�ort has been devoted to understanding their nature and origin

[157, 287]. Crucially, it has been shown that coevolutionary pathologies are deeply associated

with the use of a relative �tness measure during evaluation and selection, and the aggregation

of interaction outcomes commonly performed by CoEAs to guide the search process has been

identi�ed as one of their primary sources [288, 86]. In Chapter 6, we discuss issues related to such

scalar evaluation functions and identify the evaluation bottleneck whose consequences signi�cantly

contribute to the presence of the above pathologies.

Chapter 4

Genetic Programming

The idea of evolving computer programs dates back as far as the early 1950s when pioneer Alan

Turing envisioned machine intelligence in his early works. In 1958, Friedberg attempted to solve

simple problems by teaching computer to write short programs that were able to manipulate 64-bit

data vectors [104]. In the 1960s and 1970s much of the work by Lawrence J. Fogel and John Holland,

who are considered one of the earliest practitioners of the genetic programming (GP) methodology,

was inspired by the idea of evolving executable structures [134]. Although their work is sometimes

considered as inception of program evolution, it is John R. Koza who is widely recognized as the

father of modern, tree-based genetic programming. In the 1990s, he pioneered the application of

GP in various optimization and search problems and demonstrated how such problems could be

solved by genetically breeding populations of computer programs [171, 174, 178, 172].

In the following, we introduce a canonical variant of GP, as originally designed by Koza. Next,

we thoroughly discuss the key underlying components of a GP algorithm including representa-

tion (Section 4.2) and initialization of the population (Section 4.3), the evaluation and selection

of candidate programs (Section 4.4), and the genetic operators of crossover and mutation (Sec-

tion 4.5). After these introductory sections, we discuss contemporary challenges in GP research

(Section 4.7) and demonstrate some of the most impressive human-competitive results obtained

by GP (Section 4.6).

4.1 Introduction

GP is a variant of evolutionary computation designed to automatically solve an entire class of

problems without requiring a user to provide the form or structure of the solution in advance.

This is the key conceptual di�erence between GP and other metaheuristics that tend to oper-

ate on a �xed representation of candidate solutions. By contrast, GP searches the space of data

structures commonly interpreted as computer programs (programs for short). The programs may

encode arbitrary procedures as well as complete algorithms for various tasks including classi�ca-

tion, regression, feature engineering etc. The concept of a program delivers therefore an unmatched

level of �exibility in expressing solutions to virtually any problem, regardless of whether it involves

learning, optimization, or some other task. GP o�ers also an e�ective way to search the space of

programs by relying on an evolutionary algorithm that borrows its mechanics from biological evo-

lution. To a great extent, GP's success is therefore attributed to the combination of its expressive

representation and reliance on a powerful paradigm of evolutionary computation.

In general terms, GP is often characterized as a stochastic generate-and-test approach to in-

ductive program synthesis [176]. Program synthesis refers to automating the process of generating

23

24 Genetic Programming

computer programs, and describes automatic programming systems that o�er the possibility of

generating programs directly from a speci�cation given in various forms. A speci�cation may take

various forms, including formal clauses; in GP however, it is typically assumed to be pairs of input

and associated output. GP approaches program synthesis as an optimization problem and employs

evolutionary search to iteratively improve candidate programs.

GP belongs to a large family of evolutionary algorithms, and as such its overall work�ow is

quite similar to that of a regular EA (Fig. 2.1). There are, however, subtle di�erences on which

we elaborate in the following. GP maintains a population P of candidate programs, typically

represented as trees (cf. section 4.2). P is initialized with randomly generated candidate programs

at the very beginning of an evolutionary run. In each iteration, the quality (�tness) of each

program in the population is determined by an evaluation function. Unless evaluation reveals an

ideal program, the search continues and GP produces a new generation of programs using the

bio-inspired operations of selection, crossover, and mutation. The cycle repeats until the ideal

program is found, or any other termination condition is met.

GP has several properties that make it a unique problem solving technique. First of all,

candidate solutions are generated from a prede�ned set of elementary instructions that perform

some form of computation when interpreted. These instructions are usually problem-speci�c, and

may be equally well associated with certain actions, such as moving an arm of a robot, rather

than operating on some variables or registers. What truly matters though, is that the outcomes

of these instructions are usually propagated forward (i.e., outcomes of the computation conducted

in some program fragment are used by other fragments of the same program), so that subsequent

instructions may treat them as input. Instructions therefore have a direct impact on each other.

What follows from this observation is that GP is also quite unique when it comes to evaluation

of candidate programs. Programs in GP have to be executed in order to compute their output.

Execution involves processing a series of instructions and, besides a �nal output returned by a

program, it leads to a series of intermediate states of program execution that result from processing

certain parts of the program. This observation gave birth to, among others, a new paradigm of

behavioral program synthesis [183]. These and other details of representation and evaluation are

further discussed in sections 4.2 and 4.4.

Over the years, GP has been extended in many ways, for instance by multi-objective evaluation

and selection, maintaining internal archives of well-performing programs, or employing various ad-

vanced search operators. More recently, semantic genetic programming has become a particularly

active area of research [242, 19, 348, 190, 277, 252]. Semantics of a program p is a vector of the

outputs produced by p for the examples in the training set. Such a characterization of program's

behavior opens the door to de�ning semantic-aware population initialization, selection and search

operators. The reader interested in these and other extensions of GP is referred to the introductory

textbooks on GP [18, 284, 181] and the online bibliography of GP papers [199].

Let us brie�y note at this point that GP is not the only paradigm of program synthesis.

The other two main paradigms are deductive program synthesis [235] and inductive programming

[322]. Deductive program synthesis relies on a theorem-proving approach that combines techniques

of uni�cation, mathematical induction, and transformation rules. The key assumption is that

speci�cation of a programming task is complete and given as a relation between the input and

output of the desired program. Much of deductive synthesis' appeal comes from deriving programs

that are correct by construction [170]. Unfortunately, its usefulness in practice is severely limited

by the power of automated proof systems.

In contrast to deductive program synthesis, in inductive programming a task speci�cation is

not required to be complete and may be given as a list of tests consisting of exemplary inputs to a

4.2. Representation 25

X X X XY 52

+

�

⇥⇥⇥

⇥

output

input

terminals

nonterminals

Figure 4.1: Program tree representation in GP. Arbitrary programs are represented by abstract
syntax trees, here the tree corresponds to the program x2+2xy−5x. The terminal and nonterminal
nodes are marked in white and gray, respectively.

program and corresponding desired outputs. A method performing inductive synthesis is expected

to derive a program that passes not only the given list of tests, but also generalizes to unseen

inputs, i.e., returns a correct output for any input not covered by the speci�cation. Inductive

logic programming [322, 323] is the main representative of inductive programming. Inductive

logic programming is strictly logic-oriented and operates by induce �rst-order Horn clauses from

a set examples. In this sense, it closely resembles the paradigm of learning from examples, and

shares its underpinnings with supervised machine learning [248]. Inductive logic programming

approaches program synthesis using generalized rule-learning and is concerned mostly with logic-

based programming languages such as Prolog. In the following, we limit our attention to GP as

our main paradigm of program synthesis. A reader interested in more details regarding deductive

program synthesis and inductive programming is referred to the works of Shapiro [322, 323], Plotkin

[283] and Manna [235].

4.2 Representation

Evolving executable structures such as computer programs makes the choice of representation par-

ticularly important for the ultimate success of a system. In principle, evolving programs could be

represented as lines of code in a conventional programming language, however textual representa-

tions are cumbersome to handle and would inevitably result in GP producing many syntactically

incorrect candidate programs due to stochastic nature of variation operators. For this reason,

Cramer [59] proposed to use a parse tree representation which guarantees that only syntactically

correct programs are created. The use of parse also allows one to abstract from many language-

speci�c aspects of language syntax, originally introduced to increase human readability. Last but

not least, the parse tree representation is more suitable for manipulation by genetic search opera-

tors. More importantly, by ensuring syntactic correctness of generated programs, the search space

of candidate programs is signi�cantly smaller.

In the parse tree representation originally proposed by Cramer, a subtree never returns a value

to the calling statement, but instead designates a command to be executed. Koza [176], on the

other hand, proposed to represent programs as abstract syntax trees (AST), where the expression

computed by a subtree is returned to the calling node in a tree. This seemingly minor extension

reinforced a syntax tree as an independent computational unit by providing a direct mechanism for

26 Genetic Programming

left

forward do

if-food-ahead

if-food-ahead

do

rightforward

if foodAhead then
forward();

else
left();
if foodAhead then

forward();
right();

else
left();

left

(a) (b)

Figure 4.2: Exemplary program tree for Arti�cial Ant problem (a), and it's implementation in
pseudo-code (b).

communication between the nodes in a tree. The popularity of GP as a machine learning system

that evolves tree structures is largely due to the immense in�uence of Koza. It thus not surprising

that most of the work in the �eld is with various tree-based systems, and ASTs became the most

common representation in GP.

In GP trees, function calls appear as nodes in a tree, and the call arguments are given by its

descendant nodes (children). Consider for instance the tree in Fig. 4.1, containing the mathe-

matical expression x2 + 2xy − 5x. This is the syntax tree of a simple program which calculates

this expression. Variables and constants are leaves in the tree and are often referred to as termi-

nals. Variables provide a program arguments (inputs), while constants remain the same in every

execution.

Crucially, programs in GP do not have to represent algebraic or logical expressions: they can

actually do things rather than simply perform computation and return values. An example is the

tree depicted in Fig. 4.2a, which represents a program that controls an agent, an arti�cial `ant'

that moves on a discrete two-dimensional grid covered with food. The operator if-food-ahead takes

two other operators as inputs and executes one of them if there is food ahead, and the other if

there is not. The left and right operators turn the ant ninety degrees in the respective direction,

and the forward operator moves it one step ahead, simultaneously consuming any food the ant

comes across. There is also the do operator that executes its children nodes sequentially, one

after another. The objective is to evolve an ant controller that collects as many food pieces as

possible. This is the arti�cial ant problem, also known as Santa Fe Ant Trail, originally developed

by Je�erson [57], and later popularized by Koza [176]. In Fig. 4.2b, we also illustrate a pseudo-code

implementation of the tree in Fig. 4.2a.

Functions and terminals together form the primitive set which is used to build candidate

programs in GP. The elements of a primitive set are also sometimes referred to as instructions. An

important property of a primitive set is that each instruction should be able to handle all values

it might receive as input. More formally, a primitive set is said to have the closure property if all

instructions are type-consistent and safe to evaluate [176, 284]. This consistency is crucial for a GP

system because evolutionary search operators often exchange arbitrary nodes in a tree. It is thus

essential that any randomly created subtree can substitute any node in a tree. Type consistency

is always satis�ed when a domain and codomain of instructions are of the same type. This is the

case, for instance, when evolving arithmetic or Boolean expressions.

4.3. Population initialization 27

Type requirements can sometimes be weakened by providing an automatic conversion mecha-

nism between them. Alternatively, type consistency might be forced by type-aware operators that

do by construction cannot violate the constraints imposed by an instruction set. This approach is

implemented in, e.g., strongly-typed GP that directly enforces data type constraints [250].

Evaluation safety is the second component of the closure property, intended to address the

problem of functions failing at run time. The most popular example of an instruction that is not

safe to evaluate is the division operator that fails in case of division by zero. To circumvent this, it

is common to employ protected variants of instructions. For instance, protected division behaves

just like a regular division except for zero-denominator inputs. In that case, the instruction returns

a constant, typically assumed to be 1 [176, 284, 336].

For a GP system to work e�ectively, a primitive set of consideration should also be su�cient

for a given problem. A primitive set Φ can be described as su�cient only if it is possible to express

a solution to the problem using the functions and terminals in Φ. This requirement is sometimes

di�cult to meet in practice, because we typically lack necessary knowledge regarding the structure

and/or components that comprise an ideal program. An example of a su�cient primitive set in the

Boolean domain is Φ = {AND, OR, NOT,x1, x2, . . . , xN}, since any Boolean function of the variables

x1, x2, . . . , xN can be expressed using the elements of Φ. An example of a primitive set that is

insu�cient for synthesis of transcendental functions is Φ = {+,−,×, /, 0, 1}. For instance, sin(x)

is transcendental and cannot be expressed as a rational function comprising any �nite compositions

of the instructions in Φ. Nevertheless, GP operating on an insu�cient primitive set is still capable

of developing programs that approximate the desired output, and in many cases the found solution

is good enough to meet user's demands.

Past GP research has demonstrated that programs may be represented in ways other than trees.

Several alternative program representations have been introduced, including linear GP in which

programs are sequences of instructions [31], PushGP where programs are represented as nested lists

of instructions that operate on stacks [334], and Cartesian GP which encodes programs as graphs

of instructions with edges that determine the data �ow [246]. Vast body of research has already

established the e�ciency of systems that employ these alternative representations. However, in

this thesis we limit our attention to the most popular tree-based GP. It is nevertheless worth

emphasizing that the algorithms proposed in Chapters 9 and 10 are not restricted by the choice

of representation.

4.3 Population initialization

Similarly to other evolutionary algorithms, in GP the initial population is created in a randomized

way. Individuals, represented as expression trees (Section 4.2), are generated from a given set

of instructions which appear as nodes in a tree. Over the years, many di�erent initialization

techniques have been proposed; in the following, we focus on the two most popular ones, known as

Grow and Full [176]. Before we introduce these methods in greater detail, let us �rst remind that

by the height of a tree we understand the depth of its deepest leaf, i.e., the length of the longest

path starting from the tree's root node to a leaf. The depth of a node is de�ned as the number

of edges from the node to the tree's root node, and the size of a tree is interpreted as the total

number of nodes in this tree.

Equipped with the above de�nitions, we may now proceed to characterization of Grow and

Full which share the same signature and expect the maximum tree height h, the set of terminals

Φt, and the set of all functions Φf to be passed as arguments. In the Full method, nodes are

selected randomly only from Φf until a node is at the maximum depth. Once the maximum depth

28 Genetic Programming

Algorithm 2 Full initialization method for
a program tree.

Require: h ∈ N+, Φf ⊂ Φ, Φt ⊂ Φ

1: function Full(h,Φf ,Φt)
2: if h = 1 then
3: return PickRandom(Φt)

4: t← PickRandom(Φf)
5: for i = 1 . . .Arity(t) do
6: ti ← Full(h− 1,Φf ,Φt)

7: return t

Algorithm 3 Grow initialization method
for a program tree.

Require: h ∈ N+, Φf ⊂ Φ, Φt ⊂ Φ

1: function Grow(h,Φf ,Φt)
2: if h = 1 then
3: return PickRandom(Φf ∪ Φt)

4: t← PickRandom(Φf)
5: for i = 1 . . .Arity(t) do
6: ti ← Grow(h− 1,Φf ,Φt)

7: return t

is reached, only the terminals from Φt can be chosen. In consequence, the generated trees have all

leaves at the same depth, and every branch reaches the maximum depth (see Algorithm 2).

Even though the causes all leaves to be at the same depth, it does not necessarily lead to all

trees in the initial population having same size. As the instructions in Φf may vary in the number

of arguments they accept, the trees may di�er in their �nal size and/or shape. Unfortunately the

syntactic diversity of programs generated using the full algorithm is often rather limited.

The Grow algorithm, builds trees in the depth-�rst manner by selecting nodes in each step

from Φf and Φt. Once a branch contains a terminal node, that branch is considered complete,

even if the maximum depth has not been reached yet (see Algorithm 3). Because the choice of

whether to pick a node from Φf or Φt is random, the trees initialized using the Grow algorithm

are likely to be irregular in shape.

The trees produced by both algorithms never exceed the maximum tree height. Nevertheless,

using them to obtain trees with certain desired properties, e.g., size, can be tricky. For instance, the

grow method is highly sensitive to the size of Φf and Φt. If there are signi�cantly more terminals

than functions, the grow method will most likely generate very short (shallow) trees regardless of

the depth limit. If, on the other hand, the number of functions is notably greater than the number

of terminals, then Grow behaves similarly to Full.

Numerous past research has shown the signi�cance of diversity in the initial population for

an e�ective GP search. In some applications building full trees may be more desirable than in

others, but typically neither Full nor Grow have the capacity to provide satisfactory variety of

candidate programs, often producing a fairly biased distribution of trees. For this reason, Koza

[176] proposed a combination of these two called ramped half-and-half, intended to enhance the

diversity in the initial population by constructing half the trees using Full and the other half using

Grow. The procedure is repeated for a range of depth limits, hence the term `ramped'. Suppose

the population size is set to 80 and the ramp is set from 2 to 5. The procedure runs in such a case

for depth limits 2, 3, 4, and 5, and for each limit, half of the trees (10) is initialized with Grow

and the other half with the Full method.

Over the past decade, many di�erent initialization techniques have been proposed, but none

gained the same level of popularity as those proposed originally by Koza. In [230], Panait and Luke

surveyed and compared several other tree generation algorithms. Of these, PTC2 [229] stands out

as designed to enable greater level of �exibility by allowing the user to request trees of speci�c size.

In short, PTC2 picks a random un�lled child node location, �lls it with a nonterminal, and repeats

this until the number of nonterminals plus the number of un�lled node positions is greater than

or equal to the requested tree size. Then the remaining node positions are �lled with terminals.

4.4. Evaluation and selection 29

There is also a great variety of initialization techniques in semantic GP, where program se-

mantics are explicitly taken into account when conducting an evolutionary search. For instance,

Pawlak and Krawiec [276] proposed semantic geometric initialization, and showed that it leads to

superior performance of GP search, i.e., better best-of-run �tness and higher probability of �nding

the optimal program. More details regarding these and other methods in semantic GP can be

found in [275].

4.4 Evaluation and selection

The objective of a GP system is to synthesize a program that meets a speci�cation provided as a

set of tests T . Each test is a pair (in, out) ∈ T , where in ∈ I is the input fed into a program, and

out ∈ O is the corresponding desired output. When posed in this way, a program synthesis can

be considered as a machine learning task de�ned within the paradigm of learning from examples.

The set of tests T plays then the role of a training set where each test corresponds to a training

instance. As in most supervised learning tasks, the set of tests T is typically only a sample from

a potentially in�nite universe of tests and cannot be assumed to enumerate all possible program

inputs and outputs.

A solution to a program synthesis task is a program p that behaves exactly as required by the

tests, i.e., for every test (in, out) ∈ T , it returns the desired output: p(in) = out. To conduct

a search for the ideal program, GP rephrases program synthesis as an optimization problem in

which the objective is to minimize (or maximize) a given �tness function f that expresses the

degree to which a candidate program attains the search goal. More speci�cally, �tness function

in GP measures how well programs in the population predict the outputs from the inputs, or, in

other words, how well they conform with the desired behavior speci�ed by examples in the training

set. Assuming, without a loss of generality, that f is minimized, solving a program synthesis task

with GP boils down to �nding a program:

p∗ = arg min
p∈P

f(p). (4.4.1)

The purpose of a �tness function is thus to give a feedback to the learning algorithm regarding the

quality of candidate programs that can be directly translated into the odds of becoming a parent

and contributing o�spring to the next generation. On the top of that, a �tness function is also

expected to help navigate the search space by indicating which regions of the space contain the

better (more �t) programs. Co-domain of a �tness function is typically de�ned on a scale that is

ordinal or real-valued, i.e. f : P → R. In the following chapters, we will often refer to f as an

evaluation function.

In order to compute �tness, programs in GP have to be executed. In tree-based GP, programs

such as the one in Fig. 4.1 execute by �rst reading the input variables, and then repeatedly

evaluating intermediate nodes of the tree. Each node reads the outputs of its children nodes and

computes its own output. Once all nodes of the tree have been evaluated, the execution terminates

and the root node returns the program's output. The discrepancy between the desired value and

the value computed at tree's root, aggregated over the set of training examples by means of, e.g.,

sum of absolute errors, determines program's �tness.

For conformance with its `mother �eld' of evolutionary computation, it is rather common in

GP to characterize programs with scalar �tness. In contrast to, e.g. black-box optimization,

where little more than candidate solution's �tness is available, �tness in GP stems from program's

interaction with multiple tests. Crucially, the outcomes of those interactions are easily available,

30 Genetic Programming

at no extra cost, to a search algorithm. This observation will become relevant later when de�ning

interaction matrices (Section 8.2).

Formally, the �tness f(p) of a program p assessed on a set of m tests T of the form (in, out) is

usually de�ned as the number of failed tests:

fd(p) =
∑

(in,out)∈T
[p(in) 6= out], (4.4.2)

where p(in) is the output produce by p for in, and [·] is the Iverson bracket. In the above de�nition,
fd counts the number of failed tests by p but it could equally well count the number of passed

tests, in which case it would be maximized. In such a case fd(p) is said to measure a success rate

or the number of hits. The exact conformance with the behavior speci�ed by the set of tests T

is not always critical for the success of a GP system. In continuous domains, where the canonical

example is symbolic regression (see also 5.4.5), f will usually compute some form of error, e.g. the

mean absolute deviation:

fc(p) =
1

m

∑

(in,out)∈T
|p(in)− out|. (4.4.3)

When compared to fd (4.4.2), fc relaxes the notion of passing a test and allows programs to be

`approximately correct' with respect to a particular test.

The �tness function may be summarized as de�ning the criterion for ranking candidate pro-

grams and for selecting them for inclusion in the next population. The programs in the current

population are evaluated relative to a given measure of �tness, with the most �t programs selected

probabilistically as seeds for producing the next generation. Selection procedures are typically

probabilistic so that inferior programs in terms of �tness still stand a chance of being selected. As

a result, the �ttest program in the population is not always guaranteed to be selected, and sim-

ilarly, the worst will not necessarily be excluded. Better programs will typically contribute more

o�spring that inferior programs. In �tness proportionate selection [15], also known as roulette

wheel selection, the probability that a candidate program will be selected is proportional to its

own �tness and inversely proportional to the �tness of the other programs in the current pop-

ulation. Other methods for using �tness to select individuals have been proposed as well. For

instance, tournament selection randomly samples k individuals with replacement from the current

population into a tournament and selects the one with the best �tness as a parent. Selection

pressure in tournament selection can be easily tuned by tweaking the tournament size; the larger

the tournament size, the higher the selection pressure.

The selected programs are used as the basis for creating new programs by applying genetic

operations of mutation and crossover which we de�ne in detail in the next section.

4.5 Mutation and crossover

GP generates successor programs by repeatedly mutating and recombining parts of the best cur-

rently known programs. At each step of the algorithm, a population is updated by replacing a

fraction of the population by the o�spring of the most �t current programs. In this sense GP

closely follows into the footsteps of traditional EAs. However, it quickly departs from the well-

established path when it comes to their implementation. In the most popular variant of crossover

in GP, known as tree-swapping crossover, the o�spring is created by replacing the subtree rooted

at the crossover point in a parent tree p1 with the subtree rooted at the crossover point in a parent

tree p2, where the crossover points are randomly chosen nodes. Figure 4.3 illustrates a typical

crossover operation. It is also possible to create a variant of crossover that instead returns two

o�spring, but this is not commonly used in practice.

4.5. Mutation and crossover 31

X

1

+

X

+

Y

⇥

�

Y

1

+

4

4

�

parent p1

parent p2

crossover
point

o↵spring

Y

p

sin

Figure 4.3: Tree-swapping crossover applied to two parent program trees (left). Crossover points
(nodes shown in dark gray) are chosen at random. The subtrees rooted at these crossover points
are then exchanged to create a child tree (right).

X Y

+

⇥ 1

X Y

+

Y

⇥ �

4
+

Y

�

4

X Y

+

⇥ 1

parent tree

random tree

mutation point

Figure 4.4: Subtree mutation applied to a parent program tree. Mutation point (dark gray node) is
chosen at random. The subtree rooted at the mutation point is replaced by a randomly generated
subtree.

The probability of selecting crossover points is often not uniform. To illustrate why, imagine

a perfect binary tree of height h. The probability of choosing a leaf node as the crossover point

in such a tree is 2h

2h+1−1
, which quickly converges to 0.5 with h. Similarly, in most trees generated

from a typical GP primitive set, the number of leaf nodes will be roughly equivalent to the number

of nonleaf nodes. If the crossover points were chosen uniformly, nearly half of the points would be

leaves, limiting so the e�ect of crossover to simply swapping two leaves. Consequently the uniform

selection of crossover points leads to crossover operations frequently exchanging only very small

subtrees. It is therefore a widely accepted practice to choose nonleaf nodes 90% of the time and

leaves 10% of the time [176].

32 Genetic Programming

Mutation in GP operates on a single individual, and its most commonly used variant is known

as subtree mutation. Subtree mutation randomly chooses a mutation point in a tree and replaces

the existing subtree at that point with a new randomly generated subtree, as illustrated in Fig. 4.4.

The new subtree is created in the same way, and subject to the same limitations (on depth and/or

size) as the trees in the initial population. One may for instance resort to Grow, or Ramped Half-

And-Half procedures to generate a subtree. Subtree mutation introduces novelty into a population

(in the sense of introducing a completely new piece of code that may be absent there) and is

sometimes used to counter premature convergence and the lack of diversity in later generations

of an evolutionary run. Due to its similarity to tree-swapping crossover, subtree mutation is

sometimes implemented as a crossover between the parent tree and a randomly generated tree.

This method is also known as headless chicken crossover [6].

Another form of mutation in GP is point mutation, which can be likened to the bit-�ip mu-

tation commonly used in genetic algorithms [115]. Point mutation simply replaces the primitive

implemented by a node with a randomly selected primitive of the same arity. If there are no suit-

able primitives in the primitive set, the mutation has no e�ect. In contrast to subtree mutation

which modi�es exactly one subtree, point mutation is typically applied on a per-node basis, i.e.,

each node in a tree is altered as previously described with a certain (low) probability. This way,

multiple nodes can be mutated within the same application of point mutation.

In contrast to traditional EAs, where o�spring are typically obtained via a composition of

operators, GP uses the available operators independently, one at a time. One may of course apply

mutation directly after crossover, however this is rarely used in practice because tree-swapping

crossover highly resembles mutation in its e�ect. . The choice of which operator to use is controlled

by operator rates. For instance, the crossover rate in GP is typically around 90%, while the

mutation rate is considerably smaller, and usually does not exceed 10%.

Occasionally, the reproduction operator is also used alongside with crossover and mutation.

Reproduction inserts a copy of the selected parent tree directly into the next population. It is

arguably the simplest possible breeding operator and its sole purpose is to secure the survival

of the already good programs. Notice also that even when reproduction is not explicitly used,

unaltered programs may be copied to a new population whenever an operator produces a program

that does not satisfy the required constraints e.g. on the maximal allowed tree depth. Also, a

modi�cation of a program may be ine�ective (syntactically or, even more often, semantically).

4.6 Applications of genetic programming

By combining principles of biological evolution with the expressive power of computer programs,

GP forms a powerful paradigm of computational intelligence. Already shortly after its inception,

Koza summarized the use of GP in several complex tasks such as designing electronic �lter circuits

and classifying segments of protein molecules [180, 177, 179]. Since then GP algorithms have been

successfully applied to a variety of learning tasks and to many optimization problems. Among these

are hundreds of tasks of great scienti�c and practical nature. The most spectacular of them, where

GP attained human-competitive1 performance, are featured at the annual Humies competition

which is held at the Genetic and Evolutionary Computation Conference (GECCO) since 2004.

An excellent example of awarded research is work by Lohn, Hornby and Linden [221], who used

GP to automatically design an antenna for NASA's Space Technology 5 spacecraft. The evolved

1An automatically obtained solution is considered human-competitive if it is at least as good as a solu-
tion designed by human. The detailed criterion for human-competitiveness is available at http://www.human-
competitive.org

4.6. Applications of genetic programming 33

antenna not only met demanding speci�cation requirements, most notably the combination of

wide bandwidth and wide beamwidth for a circularly-polarized wave , but also outperformed the

antenna designed by human engineers. The former scored 93% e�ciency (compared to 38% of the

human-designed antenna) in a series of tests conducted in an anechoic chamber.

Another notable application of GP is the work by Spector [332], who presented examples of GP-

based synthesis of quantum computer programs. The speci�c problems considered in this research

concern the communication capacity of certain quantum gates. In these problems, the task is to

transfer information from one set of qubits to another, without any direct connection between

the two sets of qubits, apart from a single instance of the gate under investigation. Spector

also demonstrated how genetic programming with PushGP can be applied to evolve quantum

algorithms dedicated to the group of problems which involve veri�cation of certain properties of

Boolean quantum gates. Examples of such problems include Grover's database search problem and

the Deutsch-Jozsa problem. Fitness of candidate programs was assessed with quantum computer

simulations performed via QGAME � Quantum Gate And Measurement Emulator.

In [335] Spector et al. also described how GP can be applied to a problem in pure mathematics,

in the study of �nite algebras. The results demonstrate human-competitive results in the discovery

of particular algebraic terms, including discriminator, Pixley, majority and Mal'cev terms. GP was

shown to exceed the performance of every prior method in �nding these terms, both in terms of

time and size, by several orders of magnitude.

Unsurprisingly, GP is also used to aid software engineers in writing code. For example, GP has

been shown to generate an optimized garbage collector for the C programming language [300] and

to evolve new hashing algorithms [20, 84, 161]. Orlov and Sipper [263] introduced a system for

evolving Java byte code, where the initial population is seeded [200] with human-written programs

already compiled into byte code. The great advantage of the system is that the newly generated

programs can be run immediately, without compilation, thanks to Java virtual machine and just

in time (JIT) compilers. GP has also been successfully used to evolve small programs from scratch

that accomplish real tasks. For instance, White, Arcuri and Clark [355] demonstrated how to

evolve pseudo random number generators.

GP has had some great successes when applied to enhance existing software written by humans.

One of the best known applications in this area is automatic bug �xing [8]. In the Humies-winning

work by Forrest and Weimer [101, 354], GP is combined with program analysis methods to repair

bugs in o�-the-shelf C programs. The proposed approach does not require formal speci�cations,

program annotations or any special coding practices. Instead, GP is employed to search for

program variant that avoids the faulty behavior and retains required functionality. This approach

was later extended to be e�ective on programs with several millions of lines of code [205], while

Schulte showed that defects can even be �xed at the level of the assembler code [318]. These

results sparked interest in automatic bug-�xing, leading to many contributions in this area [30, 2],

including even a hybrid approach of GP with a coevolutionary algorithm [360]. Langdon et al.

developed a successful GP framework for manipulating source code written in C++ and applied

it to, among others, MiniSAT, a popular Boolean satis�ability (SAT) problem solver [281, 282],

and computer vision algorithms written for the CUDA architecture [201, 202]. In both cases, they

reported a signi�cant speedup in terms of runtime with respect to the original code.

Games have always served as a valuable test-bed for AI methods. Koza was among the �rst who

used GP to evolve strategies for simple two-player games [175]. Since then, GP has been proved

e�ective for learning game playing strategies by successfully tackling various more complex games

and game-oriented challenges. One formidable example of the latter is BrilliANT [148], the winner

of Ant Wars competition organized as a part of GECCO'2007. BrilliANT was evolved using a

34 Genetic Programming

combination of GP with competitive coevolution. Another notable example is evolution of FreeCell

solvers using policy-based GP [81]. FreeCell is a highly challenging game for humans, widely

recognized as one of the most di�cult domains for classical planning. The developed algorithm

turned out to scale well and perform better than any other method designed by humans, and the

evolved strategy outperformed all humans at a major FreeCell website2. Using similar techniques,

Hauptman et al. [124] achieved human-competitive level of play in the Rush Hour puzzle. Some

e�orts have been made to apply GP to video games. In [106], J.J. Merelo and his co-workers

proposed a framework to evolve complete strategies for StarCraft which are competitive with

human-designed bots. The same authors also introduced evolutionary approach to deck building

game Hearthstone that involves de�ning a personalized deck of cards before the actual game [107].

Other interesting examples of GP applied to games include Sipper's work on backgammon [14]

and chess [123], Luke's work on evolving soccer softball team [233, 228].

There are also numerous successful applications of GP in biology and medicine. For instance,

GP has been shown to be a powerful tool in genome analysis. In [158], Kamath et al. describe

an evolutionary-based system that proved e�ective at identifying meaningful features for splice

sites in DNA sequences. These features are too complex for humans to design manually, but they

are necessary to obtain high accuracy and precision in splice site identi�cation and annotation.

Another interesting research was conducted by Widera et al. [357] who evolved energy functions

for the protein structure prediction. The best evolved function was obtained by combining energy

terms designed by human experts, and outperformed the energy functions optimized by the Nelder-

Mead algorithm. In medical imaging, Krawiec and Pawlak applied GP to the problem of detection

of blood vessels in ophthalmology [189]. The obtained results suggest that a properly con�gured

GP algorithm can be a viable alternative in similar medical and non-medical detection tasks.

The above examples clearly illustrate that GP reaches well beyond automatic programming

and program synthesis. The vastness of GP literature is also illustrated by the number of entries

in the genetic programming bibliography, which has already surpassed 11,000 mark [199].

4.7 Challenges in genetic programming

As illustrated in this chapter, GP builds upon genetic algorithms in order to enable evolution of

computer programs. It has been demonstrated to produce human-competitive results in many

applications such as simulated robot control or recognizing objects in visual scenes. Nevertheless,

despite numerous successes, synthesis of fully-�edged programs by means of GP remains a challeng-

ing task. The most obvious reason is the huge size of the program space that grows exponentially

with the length of considered programs (or the number of tree nodes in the tree-based GP; see

Section 6.1 for a more concrete example of this issue). Furthermore, the relationship between

program code (syntax) and its e�ects (semantics) is extremely complex: a minute modi�cation

of a program can drastically change its behavior, i.e., the output it produces. It is also likely,

however, that a large modi�cation leaves program's behavior intact, because the same behavior

can be implemented by many programs � as a matter of fact, there are usually in�nitely many

programs that behave in exactly the same way. In consequence, so-called �tness landscape [165],

i.e., the �tness function plotted against the search space, is very rugged in GP, features many local

optima as well as plateaus (see also Section 2.2).

Another non-trivial challenge in GP stems from the fact that the conventional �tness functions

(Eqs. 4.4.2 and 4.4.3) are characterized by low �tness-distance correlation [345]. In this context,

2http://www.freecell.net

4.7. Challenges in genetic programming 35

distance is typically understood as the number of search steps required to reach the optimal solution

to a problem at hand. Evaluation function in GP does not correlate well with the measures of

syntactic similarity between programs. This applies to generic distance measures [262], as well

as to operator-based distance measures, like for instance crossover-based distance [117]. For this

and other reasons on which we elaborate in Chapter 6, the conventional �tness functions in GP

are not necessarily good tools to guide the search process towards the most promising parts of

the search space. This issue is prevalent in almost all bio-inspired metaheuristic algorithms that

employ aggregative �tness function as yardstick of candidate solution's quality, and is of central

interest to this thesis.

The most commonly used search operators in GP include mutation and crossover that perturb a

candidate program by randomly modifying its components (Section 4.5). Despite their conceptual

appeal, these operators perform a blind syntactic search that is neither very e�cient in terms

of convergence to an optimal solution, nor scales well with a problem size. However, it is the

meaning of a program i.e., program semantics, that determines its quality, and that meaning,

is largely neglected in conventional GP. This issue has been identi�ed and characterized from

di�erent perspectives by referring to concepts like locality [275], meant as the degree of distortion

introduced by the genotype-phenotype mapping. Put in these terms, genotypes (program code)

map into phenotypes (program behavior) at low locality, so that even a small change of code can

translate into a huge di�erence in its behavior.

Programming task speci�cation is usually incomplete, i.e., the set of tests does not contain all

correct input-output pairs. Nevertheless, GP is expected to generalize beyond the set of training

examples (and in this sense perform induction). Successful generalization typically goes hand in

hand with avoidance over�tting. Nevertheless, achieving good generalization is not simple, in

particular when the set of tests is small. As a result, GP algorithms �nd it hard to scale well

with task di�culty and instance size. For example, one of many common benchmarks in GP is

parity task [238], where each test is a list of bits of �xed length accompanied by the parity bit. A

program solving this task for lists of length 5 can be relatively easily synthesized with a baseline,

unsophisticated variant of GP. However, synthesizing a program that realizes this functionality for

lists of length 7 is already much harder [277], and for 10 or more bits becomes extremely di�cult.

Chapter 5

Test-Based Problems

Many problems addressed by evolutionary computation require candidate solutions to be evaluated

multiple times to accurately estimate their performance. This may be necessitated by the presence

of noise in the evaluation process or randomness in the underlying simulation environment [154].

Apart from that, in some problems, the quality of a candidate solution can be determined only by

evaluating it against a number of tests. A common example of such test-based problems [70, 144]

are games, where the set of tests are opponents.

In this chapter, we formalize the class of test-based problems that proves particularly useful

when modeling domains with no intrinsic objective measure giving a value to candidate solutions.

We �rst detail the key elements of this de�nition in Section 5.1, with particular focus on the concept

of interaction between a candidate solution and a test. Afterwards, in Section 5.4 we discuss several

examples of such test-based problems, and �nally in Section 5.5 we concern ourselves with issues

speci�c to approaching these problems with coevolutionary algorithms and genetic programming.

5.1 De�nition

The task of optimization entails making decisions which are optimal with respect to some objective

function. The objective function measures the quality of candidate solutions and embodies the

aspiration to make the best possible decisions. Optimization problems are often divided into

two categories depending whether decision variables are discrete or continuous. In combinatorial

optimization the set of feasible solutions is discrete, and decision variables can take values from

bounded, discrete sets of elements. The situation is quite di�erent in continuous optimization

where the goal is to �nd the optimal setting of continuous decision variables.

The common ground of combinatorial and continuous optimization involves searching for a

solution that maximizes (or minimizes) a given objective function. However, there exists a class

of optimization problems for which the objective function is so complex that evaluating it be-

comes computationally intractable. For example, consider searching for the optimal game-playing

strategy in the game of Go, an ancient Eastern board game that has puzzled AI researches for

decades. Although quite recently, in a major breakthrough for AI, the computer program AlphaGo

has beaten a top human player in a �ve-game match [325], Go is still considered one of the most

di�cult problems in AI. If one aims at maximizing the odds of winning against any opponent, the

objective function in Go could be de�ned as the expected outcome of games with all possible op-

ponent strategies. In such a scenario, evaluating a given candidate solution would involve playing

games with all possible Go strategies, which is computationally infeasible even for much simpler

37

38 Test-Based Problems

games than Go. For instance, the number of unique game strategies in the apparently trivial game

of Tic-Tac-Toe played on the tiny 3× 3 board is the staggering 3.47× 10162 [145].

As illustrated by the above example, in some of the most challenging problems in AI, obtaining

the exact value of objective function is computationally intractable. This may stem from many

causes, however in this thesis, we are interested in those illustrated above with the presence of

innumerable opponents, i.e pertaining to test-based problems [35, 67, 289, 144], where the perfor-

mance of a candidate solution is determined by the outcomes of multiple interactions with tests.

An interaction between a candidate solution and a test produces a scalar outcome that re�ects the

capability of the former to pass the latter. Typically, the set of tests is large, making it infeasible

to evaluate candidate solutions on all of them. In the literature, test-based problems are also re-

ferred to with terms like interactive domain [292], adversarial problem [164], or competitive �tness

environment [7, 228].

In this thesis, we will use the following formal de�nition of a test-based problem:

De�nition 5.1. A test-based problem is a tuple (S, T , g), where:

• S is a set of candidate solutions (solutions or individuals for short),

• T is a set of tests with which the candidate solutions interact,

• g : S × T → O is an interaction function, where O is a totally ordered set, and

• a solution concept that determines the goal of search.

Therefore, in contrast to traditional optimization problems, test-based problems lack an objective

evaluation function. As a substitute, the outcomes of interactions between the elements of S and

T have to be used to either promote or demote certain candidate solutions. The nature of those

interactions may be rather simple, such as comparing the moves of two players in the rock-paper-

scissors game, or more complex, as in the case of simulating and dispatching rules for scheduling

in job shops given several �oor plans (in which the �oor plan forms a test). Whenever possible,

we abstract away from such details and concern ourselves only with the outcomes of interactions.

In the following chapters, we assume that S and T are �nite, and that the interaction between

a candidate solution and a test is deterministic. Let us also note that when T = {t1}, any test-

based problem is reduced to an optimization problem with the objective function f(s, t1) = g(s, t1).

When S = T , we talk about symmetrical test-based problems, where the role of candidate solutions

and tests are played by the same entities. Problems that are not symmetrical are typically called

asymmetric test-based problems [261, 292].

The de�nition of test-based problems can be conveniently used, for instance, to phrase the

problem of �nding the best strategy in the game of chess for the player who plays blacks. In such

a case, S includes all possible black player strategies, the T consists of all white player strategies,

and the interaction function g corresponds to playing an actual game of chess between a black

and white strategy. To identify that best strategy, one may seek for a solution that maximizes

the expected result of interaction with a randomly selected test, so-called expected utility solution

concept, which we discuss in greater detail in the following section.

As the above examples suggest, test-based problems are typically associated with applications

in games. Indeed, a game-playing agent must be usually tested against many opponents in order to

assess its quality, and the number of such opponents is often very large [292]. The class of test-based

problems is however much wider. Programs evolved in genetic programming are usually applied

to multiple �tness cases (see also Section 5.5.2). When evolving controllers that, e.g., maintain

the balance of an inverted pendulum or streer a mobile robot, it is common to perform multiple

5.2. Extensions and related concepts 39

simulations that vary in initial conditions or other parameters (see [284] for review). Also, whenever

the evaluation of candidate solutions is stochastic or involves noise, their robustness needs to be

assessed in multiple scenarios that vary in the realization of the underlying random variable(s).

For example, a physics simulator used to assess the performance of a robot (candidate solution)

in an environment (test) may use randomness to emulate the e�ects of friction. Clearly, the class

of test-based problems embraces a vast range of problems.

5.2 Extensions and related concepts

While De�nition 5.1 is su�ciently general for the purpose of this thesis, we �nd it necessary to

discuss possible directions in which it can be further extended.

Test-based problems are in fact a special case of co-search problems in which there are just

two domain roles: candidate solutions and tests. In general, co-search problems many involve n

domain roles and n sets of entities Xi that play these roles. The interaction function is then of

the form g : X1 ×X2 × · · · ×Xn → O, where O is a partially ordered set. For a large majority of

co-search problems that have been studied in practice, the outcome set O is a subset of R, and thus
completely ordered; however, that requirement is not strictly necessary. The common ground of

co-search and test-based problems is the notion of solution concept that indicates which locations

in the search space, if any, constitute solutions to these problems. We elaborate more on solution

concepts in the next section.

Co-search problems in which entities from domain roles are combined together to build can-

didate solutions are known as compositional problems. Problems that belong to this category do

not feature any tests to provide information about the solutions. Instead, to build a candidate

solution one must use components from each entity set Xi corresponding to each domain role. As

an analogy, think of a football team which is not complete unless there is a goalkeeper, a defender,

a mid�elder, etc.

A co-search problem can be further generalized to a co-optimization problem. In place of a

solution concept, a co-optimization problem speci�es an (in general partial) order on the candidate

solutions and de�nes the search goal as �nding a maximal element of the order. Note that a co-

optimization problem can be easily converted into a co-search problem by de�ning the solution

concept to be the set of maximal elements according to that order. In that sense, co-optimization

generalizes co-search, and is arguably a more re�ned notion. For more details regarding co-search

and co-optimization problems, a reader is referred to the works of Popovici and de Jong [292, 291,

290].

Notice also that particular elements of De�nition 5.1 resonate with the concepts in game theory

[110]. For instance, interaction function g can be interpreted as a payo� matrix, where S and T
correspond to sets of game strategies, while the entry corresponding to a row s and a column t is

g(s, t). We may also translate the interaction outcomes in test-based problems into payo�s granted

to candidate solutions and tests, since the former are expected to perform, while the latter should

be informative, i.e., provide information regarding capabilities of candidate solutions. Examples

of domains of this sort are common in game theory [114, 88], where payo�s are assigned di�erently

depending on which role an entity plays. Games considered in game theory typically assume

numerical payo�s, and for instance, in zero-sum games we have that g(s, t) = −g(t, s), where

g(s, t) is interpreted as the outcome s receives for its interaction with t, while g(t, s) denotes the

outcomes assigned to t from its interaction with s.

40 Test-Based Problems

5.3 Solution concepts

The above generalizations of a test-based problem illustrate the vast range of problems that can

be de�ned over interactive domains. On its own, however, an interactive domain provides merely

a way to perform an interaction between two or more entities. Outcomes of these interactions are

not enough in the context of problem-solving. Only when coupled with an explicit yardstick that

decides which entities in the domain are better than others, an interactive domain becomes either

a co-search or co-optimization problem.

In general, solving a test-based problem consists in �nding a candidate solution with certain

properties captured by a solution concept [89], which articulates the goal of search. A solution

concept is a formalism that originates in game theory [264] and speci�es which elements of a search

space are solutions to a problem. A solution may be a single candidate solution or comprise a

subset of them; in either case, a solution concept de�nes the properties such a formal object must

meet. Much of the theoretical work has analyzed algorithms designed for test-based problems in

terms of solution concepts they implement [89, 87, 289], showing the importance of understanding

and correctly choosing the right solution concept for the problem at hand.

A solution concept is sometimes de�ned as a subset of a set of potential solutions that are

built from a set of candidate solutions. The notion of potential solutions adds another layer

of abstraction which is particularly useful in problems (e.g. compositional problems mentioned

earlier) where no single candidate solutions is a well-formed, feasible solution. For instance, in

multi-objective optimization one could be interested in �nding the entire non-dominated front of

candidate solutions (or �nd a good approximation of it). A potential solution becomes then a

subset of S, and the set of all potential solutions is a power set of S. Another example is evolution

of complex objects such as teams of cooperating agents, where a potential solution is composed of

agents who collaborate as a team.

For the purpose of this thesis it is su�cient to assume that individual candidate solutions are

potential solutions. We are interested exclusively in domains where a single candidate solution that

solves the problem may exist. It is sometimes useful to think of a solution concept as partitioning

of the candidate solutions in S into actual solutions and non-solutions. We denote the actual

solutions as a subset S+ ⊂ S.
Let us also point out that a solution concept does not provide any means to compare candidate

solutions. Given only a solution concept it is thus not possible to determine if a candidate solution

s1 is preferred over a candidate solution s2. For this reason, it is common to resort to a preference

relation � de�ned on S such that if s1, s2 ∈ S, s1 � s2 is interpreted as s1 ∈ S is not worse than

s2 ∈ S. An obvious choice for a preference relation is to de�ne it as s1 � s2 ⇐⇒ Q(s1) ≤ Q(s2),

where Q is the quality function that measures, for instance, the average score received over all

possible tests. In this case, the preference relation determines the total ordering of solutions. The

most popular solution concepts used in the literature include Best Worst Case, Maximization of

Expected Utility, and Pareto optimal set [89, 71, 292]. In the following, we brie�y characterize

these solution concepts and describe the classes of problems for which they are useful.

Best Worst Case

In this solution concept we search for a solution that performs best on the hardest test, i.e, the one

that maximizes the minimum possible outcome over interactions with all tests. For this reason,

it is particularly useful in domains where the performance in the worst possible scenario is of the

highest importance. More formally, let q(s) = mint∈T g(s, t), then:

5.3. Solution concepts 41

S+ = arg max
s∈S

q(s).

Notice that the hardest test is determined for each s independently. Given q(s), we can easily

provide a preference relation that generalizes such Best Worst Case problems to co-optimization

problems:

s1 � s2 ⇐⇒ q(s1) ≤ q(s2),

where s1, s2 ∈ S. In the literature, Best Worst Case is also known as maximin. A very similar

solution concept, Worst Best Case, or minimax, could be de�ned analogously.

Pareto Optimal Set

Pareto Optimal Set solution concept phrases a test-based problem as a multi-objective optimization

problem, where every test in T is viewed as a separate objective to be optimized. The goal then

becomes to �nd the Pareto front among the candidate solutions. Therefore a potential solution is

a subset of S, and the set of potential solutions is a power set of S. Let us de�ne a non-dominated

front of candidate solutions as (recall that we assume g to be maximized)

F = {s1 ∈ S | ∀s2∈S [∀t∈T [g(s1, t) ≤ g(s2, t)] =⇒ ∀t∈T [g(s1, t) = g(s2, t)]]} .

According to Pareto Optimal Set solution concept, the solution is

S+ = {F}

The preference relation between two Pareto-fronts F1 and F2 may be built based on the notion

of Pareto dominance:

F1 � F2 ⇐⇒ ∀s1∈F1
∀s2∈F2

[∀t∈T [g(s1, t) ≤ g(s2, t) ∧ ∃t∈T : g(s1, t) < g(s2, t)]] ,

where F1,F2 ∈ 2S .

A major practical limitation of Pareto Optimal Set solution concept is that it may not su�-

ciently narrow down the set of possible solutions, as many of them tend to be incomparable when

the set of tests T is large.

Pareto Optimal Equivalence Set

Pareto non-dominated front may contain candidate solutions that are indistinguishable according

to their interaction outcomes. In other words, two candidate solutions s1 and s2 belong to the

same equivalence class if they receive the same outcomes on all tests in T . The equivalence relation
in question can be de�ned formally as

s1 ∼ s2 ⇐⇒ [(∀t∈T g(s1, t) ≤ g(s2, t)) ∧ (∀t∈T g(s2, t) ≤ g(s1, t))] .

It is further reasonable to assume that, in order to cover the Pareto front, it is su�cient to

have a representative of each equivalence class. This observation gave rise to Pareto Optimal

Equivalence Set solution concept in which S+ contains at least one candidate solution from each

equivalence class of the Pareto Optimal Set. In another variant of this solutions concept known as

Pareto Optimal Minimal Equivalence Set, S+ contains exactly one candidate solution from each

equivalence class of the Pareto Optimal Set.

42 Test-Based Problems

Simultaneous Maximization of All Outcomes

In this solution concept, we seek a candidate solution that maximizes its performance on all tests

simultaneously. Let us denote a subset of such candidate solutions as

H = {s1 ∈ S | ∀s2∈S∀t∈T [g(s1, t) ≤ g(s2, t) =⇒ g(s1, t) = g(s2, t)]} .

Notice strong formal similarity of this solution concept to Pareto optimal set. In fact, it is easy to

show that H ⊂ F using the rule of distribution of universal quanti�ers over implication:

∀x (ϕ(x) =⇒ ψ(x)) =⇒ (∀xϕ(x) =⇒ ∀xψ(x)) .

The set of actual solutions becomes S+ = H.
Unfortunately, this solution concept has a limited application scope, as for many problems there

does not exist a single potential solution that simultaneously maximizes the interaction outcome

against all possible tests.

Maximization of Expected Utility

Maximization of Expected Utility (MEU) solution concept speci�es as solutions those elements of

S that maximize the expected score against a randomly selected opponent. Thus

S+ = arg max
s∈S

E
t

[g(s, t)] ,

where E is the expectation operator and t is a randomly drawn test from T . For �nite T s, MEU may

be viewed as maximizing the sum of outcome values over all tests. As opposed to other solution

concepts, MEU features a natural continuous quality function: candidate solution's expected utility,

i.e., the average outcome against all tests

QT (s) = E
t∈T

[g(s, t)] . (5.3.1)

A solution in the sense of MEU is an s ∈ S such that maximizes QT (s) in S. Expected utility can

also be conveniently used to de�ne the preference relation in the form:

s1 � s2 ⇐⇒ E
t

[g(s, t)] ≤ E
t

[g(s, t)] ,

where s1, s2 ∈ S and t ∈ T . Notice that the above preference relation induces a total order on

solutions in S. In co-optimization, MEU is sometimes referred to as generalization performance

[52, 50].

Finding a solution that maximizes QT is challenging in many test-based problems, because the

number of tests in T is usually large or in�nite. This can be mitigated by estimating utility by

confronting the solution with a sample of tests T ⊂ T of a computationally manageable size. This

leads to an approximate quality function:

Q̂T (s) =
1

|T |
∑

t∈T
g(s, t), (5.3.2)

which is commonly used as a �tness function in evolutionary computation, i.e., fT (s) = Q̂T (s).

Notice that fT is an unbiased estimator of QT when T is an uniform sample of T . In the following

we refer to it as to `scalar evaluation'.

Even though MEU has been proven to be globally non-monotonic [89] and QT tends to be

sensitive to the distribution of tests' characteristics (behaviors, phenotypes) [151], it is very common

5.4. Examples of test-based problems 43

(a) Othello initial board state. Black to
move.

(b) Board state after black's move. White
to move.

Figure 5.1: Othello boards with legal moves marked as shaded locations.

in the literature. In particular, it is often presented as the concept implemented by competitive

coevolution, where tests evolve to challenge the candidate solutions and thus force them to improve

in quality. It is also popular in real-world studies on, e.g., games (even when not explicitly referred

to), because average performance against opponents is often the characteristic sought for in practice

(all the above reservations notwithstanding). For these reasons, we treat MEU as our solution

concept of choice in all future considerations.

5.4 Examples of test-based problems

Test-based framework introduced in the previous section allows modeling a wide spectrum of

practical problems, including those which are traditionally approached as optimization problems.

In this section, we introduce several examples of test-based problems. These problems are also a

part of our experimental test-bed used throughout this thesis.

5.4.1 Othello

Othello is a perfect-information, zero-sum, two-player strategy game played on an 8 × 8 board.

There are 64 identical pieces which are white on one side and black on the other. The game begins

with each player having two pieces placed diagonally in the center of the board (Fig. 5.1a). The

black player moves �rst, placing a piece on one of four shaded locations, which may lead to the

board state in Fig. 5.1b. A move is legal if the newly placed piece is adjacent to opponent's

piece and causes one or more of the opponent's pieces to become enclosed from both sides on a

horizontal, vertical or diagonal line. The enclosed pieces are then �ipped. Players alternate placing

pieces on the board. The game ends when neither player has a legal move, and the player with

more pieces on the board wins. If both players have the same number of pieces, the game ends in

a draw.

Despite simple rules, the game of Othello is far from trivial [219]. The number of legal positions

is approximately 1028 and the game tree has roughly 1050 nodes [4], which precludes any exhaustive

search method. Othello is also characterized by a high temporal volatility: a relatively high number

of pieces can be �ipped in a single move, dramatically changing the board situation. These features

and the fact that the game has not yet been solved makes Othello an interesting test-bed for

computational intelligence methods.

44 Test-Based Problems

When framed as a test-based problem, S is the set of all black player strategies, while T consists

of all white player strategies. The interaction function g involves playing an Othello game between

s ∈ S and t ∈ T , and its co-domain O is the ordered set {lose < draw < win}. It is convenient to
assign numerical scores to particular outcomes of a game, i.e.:

g(s, t) =





1 if s wins a game,

0.5 if there is a draw,

0 if s loses a game.

One may also look for the best strategy for the game regardless of the color played; in such a

case a single interaction could involve a double game, where both agents play one game as black

and one game as white player. In each game, one point is to be divided between players: the

winner gets 1 point and the loser 0 points, or they get 0.5 point each in the case of draw.

5.4.2 Numbers Games

compare-on-all and compare-on-one are variants of the Numbers Game [353] proposed in

[70]. Candidate solutions and tests are points in an l-dimensional space represented as real-number

vectors of length l.

In compare-on-all (coa), a candidate solution s and a test t are compared on all dimensions.

The interaction function rewards s if it weakly dominates t, i.e., if and only if all numbers in s are

greater or equal to the corresponding numbers in t:

g(s, t) =





1 if ∀i=1,...,l : si ≥ ti
0 otherwise

,

where xi denotes the ith dimension in individual x.

In compare-on-one (coo), s and t are compared only on the dimension that stores the largest

number in t, i.e., j = arg max i=1,...,lti. The interaction function rewards s for achieving at least

as high value in that dimension:

g(s, t) =





1 if s ≥ tj ,
0 otherwise.

Straightforward formulation notwithstanding, both problems are well-known coevolutionary

benchmarks [68, 320, 35, 71] and enable objective and precise measurement of search progress.

compare-on-one is more challenging in being designed to induce overspecialization [353], a co-

evolutionary pathology in which candidate solutions and tests focus only on some objectives while

ignoring the remaining ones. To make progress on this problem, a coevolutionary algorithm has

to maintain the tests that support all underlying objectives from the very beginning of the run.

5.4.3 Iterated Prisoner's Dillema

Iterated Prisoner's Dilemma (IPD) is an abstract two-player game involving a series of interactions,

each of which is a Prisoner's Dilemma (PD) game. IPD is primarily used to study cooperation

in social, economic and biological interactions. It is considered nontrivial in being a non-zero sum

game and in its iterative character, making it an attractive playground for competitive environ-

ments [53].

In a PD, a player can make one of two choices: cooperate or defect. If both players cooperate,

they receive a payo� R, whereas if they both defect, they get a smaller payo� P . Defecting

5.4. Examples of test-based problems 45

0 1

0 11 1 1 0 01

0p + 1

p

l

2r + 1

1

1000

001

010

111

...
0

1
10 0 . . . 0

1

0

(c)(a) (b)

80 1 2

Figure 5.2: An example of state transition in CA: the rule (a) encoded as a bit string (b) is applied
to CA window by window at step p in order to obtain CA at step p+ 1 (c).

against a cooperator gives a payo� M which is higher than R, and the cooperator in such a case

receives the lowest possible payo� m. In sum, the PD payo� matrix must satisfy two conditions:

M > R > P > m and 2R > m+M [294].

Following other studies [103, 63, 51, 121], in the experimental part of this thesis we consider

IPD extended to multiple choices (moves or levels of cooperation) and employ the memory-one

form of IPD in which players remember their moves from the previous PD iteration only, and we

represent strategies as look-up tables [13]. A c-choice IPD strategy is an c × c matrix M , where

mij speci�es player's move to be made given his previous move i and the opponent's previous

move j. The other element of player's strategy is the initial move m00, so in total a strategy is

represented by c2 + 1 numbers in the range [0, c− 1].

A single IPD game between a candidate solution s and a test t involves a series of PD episodes.

In each PD episode, s makes a move i, t makes a move j, and that brings them the payo�s

2.5 − 0.5i + 2j and 2.5 − 0.5j + 2i, respectively. The outcome of an IPD game is determined by

comparing the total payo�s ps and pt accumulated over PD episodes:

g(s, t) =





1 if
∑
ps >

∑
pt,

0.5 if
∑
ps =

∑
pt,

0 otherwise.

5.4.4 Density Classi�cation Task

In the Density Classi�cation Task (DCT), the objective is to �nd a one-dimensional binary cellular

automaton (CA) that performs majority voting. A cellular automaton is a discrete model studied

among others in computability theory, mathematics and theoretical biology [362, 163, 361]. In

DCT, candidate solutions are rules that govern the state transitions of CAs, while tests are bit

vectors of length l that determine the initial con�gurations (IC) of the automata. The next state

of the ith bit is determined by applying the rule to the window that comprises the current bits at

positions i − r through i + r. A rule is represented as a lookup table. A window of size 2r + 1

implies 22r+1 possible combinations of bits in a window and the same number of entries in the

lookup table. Therefore, the search space comprises 222r+1

rules and there are 2l possible initial

conditions.

The objective is to construct a rule s that causes the CA to converge, within a prescribed

number of iterations, to the state of all ones if the percentage (density) of ones in an IC t is greater

than or equal to 0.5. Otherwise, the rule should cause the CA to converge to the state of all zeros.

An interaction between s and t starts with the CA in the initial state determined by t and consists

in iteratively applying s to all elements of the current con�guration (cf. Fig 5.2c).

46 Test-Based Problems

5.4.5 Symbolic regression

In symbolic regression [239] the goal is to �nd a mathematical expression that best �ts a given

training set. The candidate expressions are created from a prede�ned set of instructions (building

blocks) that typically includes arithmetic operators, elementary functions, constants and input

variables (cf. Section 4.2). In contrast to conventional regressions techniques (e.g. linear regres-

sion) that search only the space of parameters for a speci�c model, symbolic regression learns the

form (formula) of the model from data and optimizes its parameters at the same time. When

cast as a test-based problem, the set of candidate solutions S consists of all expressions formed

by combining the available instructions, while the set of tests T comprises all points from a train-

ing set, each of them holding the values of input variables and the corresponding desired output.

A natural choice for an interaction function in such a setting is, e.g., the absolute error �tness

function (Eq. 4.4.3).

To give a more concrete example, let us consider a symbolic regression problem in which the

goal is to create an expression that outputs values returned by the quartic univariate polynomial

fq(x) = x4 + x3 + x2 + x in the range from �1 to 1. Candidate solutions are built from the

basic arithmetic functions such as +,−,×, /, exp, log, sin, cos as well as one input variable x, while

uniformly sampled points x in the range [−1, 1], paired with fq(x), are used as the set of tests T .
The search for an ideal expression (candidate solution) might be performed by means of genetic

programming (Chapter 4).

5.5 Algorithms for test-based problems

As we have shown, there is a wide spectrum of problems that can be modeled as a test-based

problem. To solve a test-based problem, we seek for an element from solution space S that

conforms a given solution concept. However, we have not yet discussed how to �nd such a solution.

As argued in Section 5.1, test-based problems typically lack an objective function that could

guide a search algorithm towards good solutions. In absence of an explicit yardstick to evaluate

candidate solutions (cf. Section 5.1), an evaluation function can only be expressed in terms of

interactions between a candidate and some tests. The outcomes of these interactions are then

typically aggregated into a single scalar value that forms its evaluation.

However, in nontrivial test-based problems, the set of tests is typically large or in�nite, which

precludes evaluating candidate solutions on all of them. Thus, to de�ne a computationally tractable

�tness function, one has to limit the number of tests used for �tness evaluation. This issue can

be handled by letting tests coevolve with candidate solutions as in the coevolutionary framework

(Section 5.5.1). Another possibility is to sample a subset of tests T from T for evaluation purposes.

A sample T could be drawn once at the beginning of a run, and then remain �xed, or T could

be sampled multiple times, for instance in every generation of an evolutionary run as in [53, 149].

The former case resembles typical GP setup (Section 5.5.2), while the latter has been shown to

improve generalization in coevolutionary learning [149].

In the subsequent section, we demonstrate that coevolutionary algorithms are particularly well

suited to solve test-based problems. Next, we introduce the test-based perspective on the task of

program synthesis (cf. Section 4.1), and illustrate how genetic programming can be employed to

solve such problems.

5.5. Algorithms for test-based problems 47

5.5.1 Competitive coevolution

Competitive CoEAs, presented in detail in Chapter 3, are particularly well suited methods for test-

based problems because they do not rely an objective performance measure to evaluate candidate

solutions, but instead explore outcomes of interactions with other individuals to guide the search.

Moreover, CoEAs typically feature two populations1 that may be identi�ed with the roles of

candidate solutions and tests. By this token, they naturally subscribe to the framework of test-

based problems.

A typical CoEA maintains a population of candidate solutions S ⊂ S and a separate population
of tests T ⊂ T . In every generation, each candidate solution s ∈ S interacts with every test t ∈ T ,
producing an interaction outcome g(s, t). The outcomes of these interactions are then used to

assign �tness to individuals in S and T . In general, candidate solutions are evaluated for their

performance, while tests are rewarded for informing about the capabilities of evolving solutions,

such as the number of distinctions they make [36]. In this context, solutions act as learners while

the population of tests plays the role of a teacher [23, 83, 157] who, ideally, should pose tests

that are neither too hard nor too easy, i.e., feature the level of di�culty that provides a tractable

learning gradient [352] for the learners. According to Juillé [156], it is desirable to expose the

learners to tests that are �just a little more di�cult than those they already know how to solve�.

Since coevolutionary algorithms attempt to select the tests in an adaptive, dynamic manner, they

can in principle avoid potential biases resulting from the use of a �xed sample of tests (whether

drawn at random or selected manually).

A critical advantage of CoEAs stems from their generality. In contrast to many specialized

methods which are dedicated only to certain sub-classes of test-based problems (e.g., Monte Carlo

tree search for games), CoEAs can be in principle applied to any test-based problem, provided

they are properly con�gured. The con�guration process entails de�ning the interaction function

and adapting evolutionary search operators to the representation used by candidate solutions and

tests.

Interestingly, there is a clear analogy between coevolution and the concept of shaping that orig-

inated in research on animal training and behavioral psychology [330]. Shaping typically consists

in exposing the learner to a series of training episodes, starting from simpler tasks, and progres-

sively increasing their di�culty. The population of tests in coevolutionary algorithms naturally

matches the role of human experimenter, who is responsible for providing training tasks in con-

ventional shaping. An interaction corresponds to a learning episode in shaping, and its outcome

characterizes both the learner's capability to solve a test as well as the test's suitability for that

particular learner. This feedback can be used by the learner to improve its performance, and by

the experimenter to adjust the di�culty of the subsequent tests. This analogy to shaping (similar

to staged/incremental learning [255]) has been noticed since the early works on coevolution [23],

and is periodically revived in the more contemporary studies [79, 339].

Despite the risk of falling victim to so-called coevolutionary pathologies (Section 3.7), CoEAs

proved e�ective at solving many nontrivial instances of test-based problems, including learning

game strategies [47] and evolving controllers [337]. See also Section 3.6 for a review of applications

of CoEAs.

1Though for symmetrical test-based problems, one-population coevolution is equally popular.

48 Test-Based Problems

5.5.2 Test-based genetic programming

In competitive coevolution, the working population of tests changes with time. However, the

conceptual framework of test-based problems comes in handy also in the more general setting

of an evolutionary algorithm, where the set of tests T is �xed and given as a part of problem

formulation, like the training set of examples in machine learning. This is the default setting for

genetic programming, where candidate solutions are symbolically represented executable structures

like programs or expressions.

Recall from Chapter 4 that the task of automated program synthesis by means of genetic

programming can be conveniently phrased as an optimization problem in which the search objective

is to �nd a candidate program that minimizes the objective function f (Eq. 4.4.1).

An ideal program is typically speci�ed by a set of tests T . Each such test is a pair (x, y) ∈ T ,
where x is the input fed into a program, and y is the desired outcome of applying it to x.

While the given set of tests speci�es the behavior of an ideal program, �tness function is the

only yardstick of candidate program's conformance with the desired behavior. In essence, �tness

functions in GP such as (4.4.2) and (4.4.3) apply a candidate program to a given input and

measure how much the actual output diverges from the desired output. The outcomes resulting

from repeating this elementary interaction for every program and tests are aggregated into a single

value that is intended to re�ect program's quality.

In this light, it is easy to notice that a program synthesis task can be formulated as a test-based

problem, in which candidate solutions are programs, tests are pairs of a program inputs and the

associated desired (expected) output, and passing a test requires a program to produce the desired

output for a given input (or an output that is su�ciently close to it). In general, we will assume

that an interaction between a program p and a test t produces a scalar outcome g(p, t) that re�ects

the capability of the former to pass the latter.

A GP algorithm solving a test-based problem of program synthesis maintains a population of

programs P ⊂ P. In every generation, each program p ∈ P interacts with every test (x, y) ∈ T , in
which p is applied to x and returns an output denoted as p(x). If p(x) = y, p is said to solve the

test and g(p(x), y) = 1. If, on the other hand, p(x) 6= y, we set g(p(x), y) = 0 and say that p fails

(x, y). This de�nition of an interaction outcome is particularly useful in domains where programs

return discrete values; in continuous domains, absolute or square error may be more appropriate.

Given this test-based framework, the conventional GP �tness that rewards a program for the

number of failed tests (Eq. 4.4.2) can be written as

f(p) = |{t ∈ T : g(p, t) = 0}|. (5.5.1)

Notice that such formulation corresponds exactly to the solution concept of maximization of ex-

pected utility, i.e., the average score on all tests.

5.6 Chapter summary

In test-based problems, candidate solutions interact with multiple tests. Depending on problem

domain, tests may take on the form of, e.g., opponent strategies (when evolving a game-playing

strategy), simulation environments (when evolving a robot controller), or program inputs and

associated desired outputs (when synthesizing programs in genetic programming).

One promise of CoEAs is that they are capable of evolving complex entities given only informa-

tion on how these entities interact with each other. When applied to test-based problems, CoEAs

can autonomously induce a useful search gradient by selecting the tests in an adaptive manner

5.6. Chapter summary 49

to pose the right challenge for candidate solutions. As suggested by multiple empirical studies

[339, 151, 157, 70], the fact that a set of tests is dynamically provided by the second population

of individuals that coevolve along the candidate solutions in the �rst population, allows CoEAs to

�nd good solutions faster and often more reliably, compared to approaches where, if feasible, all

tests are used, or otherwise are drawn at random.

The framework of test-based problems allows us to elegantly embrace not only the domains

with very large of even in�nite numbers of tests, but also domains where evaluating the quality

of a candidate solution requires performing interactions with a static or entire set of tests. For

instance, in program synthesis with GP, the speci�cation of an ideal program typically contains a

su�ciently small number of examples to treat them all as tests. The set of tests remains constant

during evolution, despite not enumerating all possible input/output pairs to evaluate a candidate

program. Nevertheless, as demonstrated in Section 5.5.2, its convenient to express such a problem

as a test-based problem, which consist in �nding a candidate solution that performs well across

the given set of tests. Such a formulation has its own merits � when it is possible to evaluate a

candidate solution on all elements of T , the problem may be expressed as a traditional optimization

problem, where the exact objective performance of a solution can be calculated as an outcome of

its interactions with all tests.

The most important property that makes a problem test-based is therefore not necessarily a

large set of tests, or a lack of objective evaluation function, but rather the presence of an interaction

function that characterizes the outcomes of interactions between two or more entities.

The above considerations incline us also to informally distinguish test-based problems with

small and large number of tests. When the number of tests is small, judging the success of any

algorithm attempting to solve a given instance of a test-based problem is a fairly straightforward

task because objective performance can be easily obtained. There may be di�erent criteria of

success, such as �nding the highest quality candidate solution within a given time, or within a

certain budget of function evaluations. Depending on the nature of a problem, one may resort

to any search algorithm, including evolutionary as well as exact methods like, e.g., branch-and-

bound. There is typically no need to use coevolutionary algorithms, even though there are some

documented attempts of employing CoEAs in classical function optimization [311].

Conversely, when the number of tests is large, coevolutionary methods typically gain a sig-

ni�cant edge over traditional optimization algorithms by o�ering better performance due to the

phenomenon of arms race that takes place between competing individuals [7, 272]. The other key

factor that contributes to that is the inherently adaptive nature of competitive coevolution, which

constantly monitors the performance of candidate solutions and actively adjusts the set of tests to

provide a `just right' challenge for them. By selecting tests adaptively, coevolution o�ers also bet-

ter scalability since only some interactions are indeed performed. Note, however, that employing

other optimization methods is still possible by, e.g., sampling a subset of tests T ⊂ T [53, 149].

Finally, let us notice that test-based problems often pose di�culties not encountered in tradi-

tional optimization, such as maintaining search progress. While we already discussed several such

challenges in the context of CoEAs (cf. Section 3.7) and GP (cf. Section 4.7), here we would like

to stress that some issues concerning evaluation in test-based problems are pertinent to any evolu-

tionary search algorithm. In particular, regardless of whether a set of tests is static or dynamic, or

whether interactions occur between individuals in the same population or in di�erent populations,

decisions need to be made as to how the outcomes of those interactions should be translated into

individuals �tness. In the following chapter, we argue that the most widely used approach of ag-

gregating outcomes of interactions is not only harmful, but also contributes to several pathological

behaviors exhibited in evolutionary search.

Chapter 6

The pitfalls of scalar evaluation

The main motivation for this chapter is the observation that the habit of driving search using a

conventional, scalar evaluation function cripples the performance of evolutionary algorithms. In

the following, we identify and discuss the consequences of the conventional approach to evaluation

of candidate solutions in test-based problems. This chapter is based on the material published

previously in [214, 186, 211].

6.1 Evaluation bottleneck

As witnessed in previous chapters, many optimization and learning problems approached in evolu-

tionary computation involve evaluation functions that reward the candidate solutions by counting

the number of tests they pass. When evolving computer programs or controllers, passing a test

requires producing the desired output for a given input. When learning game strategies, tests are

embodied by opponents, and a candidate solution passes a test if it wins a game against it. In

these problems, known as test-based problems, candidate solutions need to interact with multiple

`environments' in order to be evaluated. In algorithms designed to solve such problems, search is

typically driven by an evaluation function that aggregates the outcomes of those interactions. To

illustrate this, let us repeat the formula (5.3.2) for the conventional evaluation function that is

consistent with the solution concept of maximization of expected utility:

fT (s) =
1

|T |
∑

t∈T
g(s, t). (6.1.1)

Clearly, evaluation of a candidate solution s boils down to counting the number of passed tests

in T . Similarly, conventional �tness evaluation in genetic programming consists in applying a

program to multiple tests and aggregating the observed di�erences between the actual and the

desired program output (Eq. 4.4.2 and 4.4.3).

An evaluation function that counts the number of passed tests usually forms an inherent part

of the problem and makes it amenable to many conventional search algorithms that expect a scalar

objective. It is arguably not only convenient as a succinct yardstick of candidate solution's quality,

but also consistent with the conventional way of posing problems in optimization and machine

learning.

On the other hand, scalar evaluation is very crude in its aggregate characterization of the in-

teraction outcomes. Even though some individuals in a population may fare better than others

on some tests but not on others (and vice versa), these individual di�erences are often not re-

�ected in the overall �tness, which informs on the average performance only. Candidate solutions

often encode complex entities such as computer programs or game-playing agents, however, scalar

51

52 The pitfalls of scalar evaluation

evaluation entails very little information regarding their characteristics. All that remains from a

nontrivial evaluation process is a single value that indicates the number of passed tests or the total

error on a set of tests. This problem is more common than it may appear, as aggregative objective

functions prevail in practice.

The main claim of this thesis is that the conventional scalar evaluation function imposes in-

evitable information loss, while a richer characterization of candidate solution performance might

help making search more e�ective, not least by providing natural means for di�erentiation in the

population.

Aggregation of test outcomes causes thus an unnatural evaluation bottleneck in the communi-

cation between an evaluation function and a search algorithm. There are domains where guiding

the search using only scalar evaluation is inevitable. Consider for instance black-box optimization

problems where the communication between an objective function being optimized and a search

algorithm is limited to exchanging information on a candidate solution's quality [155, 34]. In such

problems it is not possible to broaden the evaluation bottleneck by making a search algorithm

better informed about properties of candidate solutions. However, this is more exception than a

rule. In other domains, where details of evaluation are not hidden, it becomes natural to ask: do

we have to `compress' all the information about interactions outcomes into one scalar value? Why

not exploit it more carefully, for the sake of making search more e�cient? Wherever possible,

a search algorithm should be provided with richer information on solution characteristics and so

enable it to perform better. Several past studies followed that intuition (cf. Section 8.6), but

little has been done so far to propose a generic, principled approach to address this issue. This

observation is the cornerstone of heuristic search objectives proposed in Chapter 8.

Example 6.1. A classical case study often considered in GP consists in synthesizing a function

that solves a Boolean multiplexer problem. This task is conceptually based on the behavior

of an electronic multiplexer device that decodes a binary address and returns the value of the

corresponding data register. The input to a Boolean k-multiplexer function is a bit-string of length

n consisting of k address bits and 2k data bits (n = k+ 2k). Solving an n-bit multiplexer problem

consists in �nding a function Bn → B that returns the correct data bit for all 2n combinations of

inputs. An example of 7-bit multiplexer, together with a valid input vector and the corresponding

output, is shown in Fig. 6.1.

The class of multiplexer problems is perceived as an interesting and nontrivial benchmark for

machine learning; as stated by Koza [173]:

�Multiplexer functions have long been identi�ed by researchers as functions that often pose

di�culties for paradigms for machine learning, arti�cial intelligence, neural nets, and classi�er

systems.�

The reason behind the complexity of the multiplexer problem is the presence of epistasis in input

variables, i.e., the fairly complicated interaction pattern between the variables that determines the

output value of a multiplexer.

Let us now consider synthesis of an 11-bit Boolean multiplexer. This task can be approached

using GP with candidate solutions represented as expression trees (cf. Section 4.2) and instruc-

tion set Φ that comprises four binary instructions {AND, OR, NAND, NOR}. A minimal potential

solution to this problem is a tree with 11 leaves and 10 internal nodes. There are

C10 × 410 × 1111 = 16796× 1048576× 285311670611 ≈ 5.025× 1021

such trees, where Cn is the nth Catalan number de�ned as [1]:

Cn =
1

n+ 1

(
2n

n

)
.

6.2. Compensation of interaction outcomes 53

d0

d1

d2

d3

d4

d5

a0

a1

a2

d0

d1

d2

d3

d4

d5output

(b)(a)

1

0
1

d6 d6
d6

Figure 6.1: The Boolean 7-bit multiplexer; (a) model with three address bits and seven data bits,
(b) addressing data bit d6.

The objective evaluation function for this problem applies the candidate solution to all possible

input bit combinations and counts the number of correct output values. Notice that there are

211 = 2048 possible input combinations so that the objective function takes only 2049 distinct

values (0 to 2048 inclusive). The search algorithm therefore navigates the search space of staggering

5.025 × 1021 candidate solutions guided by merely 11 bits of information in each evaluation. Let

us recall that for the sake of clarity we consider here the Boolean domain, arguably the simplest

one. The problem, however, is more general and by all means not limited to Boolean domain. �

The above example clearly illustrates the existence of evaluation bottleneck: relying on any

search algorithm to e�ciently navigate such a vast search space using a scalar evaluation function

which provides low-information feedback is very optimistic. Even though 11-bit Boolean multi-

plexer problem is considered moderately di�cult and many GP algorithms converge to a correct

solution, there are many similar in complexity problems (e.g. 11-bit Parity) that hardly ever get

solved.

6.2 Compensation of interaction outcomes

The most severe implication of the evaluation bottleneck is compensation of interaction outcomes:

if two solutions pass the same number of tests, they are considered equally valuable, regardless

which particular tests they pass. Otherwise, one of the compared solutions is deemed better, but,

again, disregarding the behavior on particular tests. As a result, solutions can receive the same

�tness, even if the results of their interactions with the same tests are completely di�erent. This

may render them indiscernible in selection phase, leading to a loss of diversity and a premature

convergence.

Compensation could be avoided by comparing the candidate solutions using the dominance

relation:

s1 � s2 ⇐⇒ ∀ t ∈ T : g(s1, t) ≥ g(s2, t) ∧ ∃ t ∈ T : g(s1, t) > g(s2, t). (6.2.1)

The dominance relation compares the behavior of solutions on particular tests and is in this

sense more scrupulous than a scalar objective function. However, it is a partial relation and, in

consequence, fails to provide a useful search gradient whenever none of the compared solutions

passes a superset of tests solved by the other solution (cf. [182]). This is unfortunately common:

for two unrelated solutions, it is much more likely that they are mutually non-dominated than

that one of them dominates the other, and that likelihood grows with the number of tests in T .

54 The pitfalls of scalar evaluation

Scalar evaluation and dominance occupy thus two extremes in scrutinizing interaction out-

comes. On of the main motivations behind this thesis is to develop a compromise that inherits the

bene�ts of both approaches. In Chapter 9 and 10, we demonstrate how a useful multi-objective

characterization of candidate solutions can be obtained automatically, in a largely data-driven

manner.

An evaluation function that counts the passed tests is symmetric with respect to tests and

in this sense totally unbiased. Only the count of passed tests matters � which of them a given

candidate solution passes is irrelevant. In practice, however, tests in T usually di�er with respect

to their inherent di�culty, which is typically not known a priori. In particular, tests may vary

in objective di�culty, i.e., the probability of being passed by a randomly generated candidate

solution, but they often di�er also when it comes to subjective di�culty, meant as the probability

that a given search algorithm produces a solution that passes a test. In Section 7.2, we formalize

the concept of test di�culty, show that it can be easily estimated even if S is large or in�nite,

and demonstrate that the distribution of objective di�culty among tests is often highly non-

uniform. Coming across a problem instance with all tests equally di�cult is much less likely

than with di�culty varying across the tests. As a result, scalar evaluation functions may become

ine�ective in guiding a search algorithm towards good solutions because a candidate that solves k

easy tests and the one that solves k di�cult tests are considered equally valuable during selection.

Consequently, an evolutionary search process tends to focus on the easiest tests, often leading to

premature convergence and solutions that correspond to local minima in the search space.

The compensation of interaction outcomes a�ects the internal dynamics of algorithms that use

them to drive search, as well as the post-hoc comparison of solutions they produce. It is also

important to point out that compensation is not exclusive to domains with binary interaction

outcomes, where a test can be only passed or failed, but occurs also in the case of continuous

outcomes (cf. Chapter 11). Search algorithms that rely on scalar evaluation deliberately ignore

these aspects and are thus prone to inferior performance.

6.3 Loss of gradient

The aggregative evaluation function fT that counts the number of passed tests also falls victim to

a loss of gradient that occurs when candidate solutions solve the same number of tests. This is

particularly likely to happen when the number of tests is small because fT is inherently discrete,

and can assume only n+ 1 values for n tests. With such a limited range of values, evaluation leads

to coarse-grained �tness that often fails to di�erentiate solutions, and leaves a selection operator

blind to promising candidate solutions. In consequence, the search process becomes severely un-

derinformed about the characteristics of candidate solutions, and pays for it with unsatisfactory

performance, limited scalability and, in extreme cases, purely random search.

Unfortunately, seemingly obvious remedy such as increasing the number of tests (whenever

possible) is typically insu�cient because candidate solutions evolve with time, and once a search

process identi�es good and thus similarly �t solutions, ties become likely. Also, in the realm of

test-based problems, increasing the number of tests only tends to make evaluation more precise

and leads to better estimation of solution's generalization performance [53]. However, in presence

of a rugged �tness landscape, precision may be have little impact, and evaluation functions based

on varying in size subsets of tests may perform equally well (cf. Section 2.2).

The loss of gradient has also severe consequences for CoEAs. When one population of individ-

uals reaches a state where relative �tness diversity dramatically decreases, the other is left with

insu�cient information to learn from and, in consequence, is unable to progress in a meaningful

6.4. Search bias 55

way. If the populations remain in such a `decoupled' state, they typically become polarized in

terms of subjective �tness and are driven into arbitrary equilibria [358]. Also, for coevolution to

maintain its coadaptive search gradients, a feedback between the populations is essential. In a

competitive setting, a classic example of its lack is a game where a champion plays a novice. If

the outcome of a game between the two players is the only source of learning experience, it is

virtually impossible for a novice player to improve his play based on the experience gathered from

such games. The loss of gradient may also a�ect cooperative coevolutionary algorithms when one

or more populations has converged, preventing other populations from making further progress by

donating degenerate or faulty components during collaboration.

One may argue that this problem does not apply to continuous domains such as symbolic

regression, where the outcome of an interaction between a program and a test is a real value.

However, its important to realize that the mapping from the space of programs to the space of

their behaviors (genotype-phenotype mapping) in GP is many-to-one, meaning that there will be

many syntactically di�erent programs that implement the same target function. In the eyes of a

scalar evaluation function, such candidate programs are equally valuable and none of them can

be deemed better. For this reason, the problem of discreteness and gradient loss also pertains to

continuous interaction outcomes.

6.4 Search bias

The way in which a learning algorithm transforms one candidate solution into another is often

viewed as a search though the space of possible candidate solutions. Any stochastic search algo-

rithm (other than a purely random search) has a search bias that controls this transformation and

increases the probability of visiting some candidate solutions over the others. In terms of EAs, this

bias is represented by the mutation and crossover operators. For that instance, the search bias of

a genetic algorithm equipped with a single-bit mutation operator inclines it to visit the solutions

that are similar (in the sense of Hamming distance) to the solutions in the current population.

As a consequence of diverse test di�culty and search bias, a search algorithm driven by a scalar

evaluation measure tends to converge to candidate solutions that solve tests that are easier and

better `reachable'. In parallel search techniques like GP and CoEAs, the probable aftermath of

that is premature convergence, which we illustrate in this section. For this purpose, let us �rst

introduce the concept of an outcome vector that characterizes the behavior of a candidate solution:

o(s) = [g(s, t1), g(s, t2), . . . , g(s, t|T |)]. (6.4.1)

An outcome vector is thus a vector where ones and zeros correspond to passing or failing respective

tests. The conventional evaluation function fT that counts the number of passed tests can be thus

reformulated as

fv(s) =

|T |∑

i=1

oi(s), (6.4.2)

where oi(s) denotes the ith element of the outcome vector o(s). The above notion of an outcome

vector is also closely related to program's semantic in GP (cf. Section 4.1). In accordance with

studies on semantic GP [242, 252], by program semantics (semantics for short) we mean the vector

(tuple) of outputs returned by a given program p for a given set of tests (ini, outi) ∈ T , i.e.,

sem(p) = [p(in1), p(in2), . . . , p(in|T |)]. (6.4.3)

Semantic GP methods rely on s to, among others, diversify populations and design search opera-

tors.

56 The pitfalls of scalar evaluation

111111

101101011011 110110

010010001001 100100

000000

(a)(a) (b)(b) (c)(c)

000000

010010 100100001001

101101

111111

110110011011

000000

010010 100100001001

101101

111111

110110011011

Figure 6.2: The graphs enumerate all possible combinations of test outcomes for three exemplary
three-test problems. The edges mark the possible transitions that can be realized by a hypothetical
iterative search algorithm.

For a given set of tests T , the set of all possible outcome vectors can be conveniently visualized

as a graph with 2|T | nodes. Figure 6.2 presents three such graphs, which we will examine in

the examples that follow. Each node in the graph is associated with a certain combination of

interaction outcomes, and each candidate solution that interacts with the tests in T is assigned

to one node based on its outcome vector. Nevertheless, due to many-to-one genotype-phenotype

mapping, many of them are assigned to the same node. Also, because in a typical test-based

problem the variance of tests' di�culty in T is high [149, 151], some outcome vectors are more

likely than others to occur in an evolving population, so that the distribution of candidate solutions

over the graph is non-uniform.

The top node in the graph corresponds to the ideal solution that passes all the tests in T

and therefore achieves fv(s) = |T |, while the bottom node is identi�ed with the worst solution

with �tness fv(s) = 0. The intermediate nodes, on the other hand, represent the whole gamut of

possible behaviors (combinations of interaction outcomes) that solutions might exhibit, with nodes

on the same level having equal �tness according to fv.

The arcs in Fig. 6.2 illustrate the possible transitions between the outcome vectors that are

realizable by a search operator m : S → S. A search operator m might be able to enhance a

candidate solution with a capability to solve a new, previously unsolved test and thus moving it

one level up in the graph. For instance, an arc connecting the node 001 to the node 011 in Fig. 6.2a

indicates that there exists at least one pair of candidate solutions (s1, s2) such that m(s1) = s2

and g(s1, t1) = 0, g(s1, t2) = 0, g(s1, t3) = 1, g(s2, t1) = 0, g(s2, t2) = 1, and g(s2, t3) = 1. It

is also possible for an operator to alter multiple elements of an outcome vector and so move it

several levels up, down or sideways in the graph; however, for simplicity, the �gure does contain

such examples.

Which of the paths in such graphs will be traversed by an evolving population depends on the

interplay between a search operator and an evaluation function. The di�culty of a given problem

will in general depend on the probability of reaching the top node.

Example 6.2. Consider a hypothetical problem instance with a transition graph shown in

Fig. 6.2a. Assume a search algorithm equipped with a search operator m, which starts with

one or more candidate solutions in 000, i.e., such that fail all tests. It does not take long to realize

6.4. Search bias 57

that such a problem is easy to solve: the transitions are aligned along the gradient of the objective

function fv, so even the simplest hill-climbing algorithm will likely traverse the path from 000 to

111.

The problem in Fig. 6.2b is also solvable, as a path from 000 to 111 exists. Nevertheless, the

transition from 110 to 011 is not accompanied by an improvement (fv remains to be 2). Because the

scalar evaluation function imposes a vertically oriented gradient in the graph, a search algorithm

that accepts only moves that lead to strict improvements will get stuck in either 110 or 101 on

its way to 011. This is not much of a problem for stochastic, parallel search algorithms such as

EAs, which could still move from 01 to 10 by pure chance, or �nd another way to 11 that does not

involve 01.

Consider however the problem shown in Fig. 6.2c Once search reaches the combination 110 or

101, further progress can be made only by moving to the combination 001, which implies decreasing

fv from 2 to 1. Only search algorithms that accept such deterioration can escape this trap and so

avoid premature convergence. Such graphs are generally harder and more demanding to traverse

than those shown in Fig. 6.2a and Fig. 6.2b. �

The above example is simple for the sake of clarity. In practice, the transitions between com-

binations of test outcomes, rather than being possible or impossible, will be more or less likely.

Nevertheless, the problem will persist and manifest in the likelihood rather than the possibility

of reaching an optimum. The conclusion that follows is that scalar evaluation does not reveal

behavioral di�erences between candidate solutions. In particular, candidate solutions in the same

layer of a transition graph are treated equally even though their outcome vectors are signi�cantly

di�erent. Furthermore, in consequence of search bias and varying di�culty of tests, certain out-

come vectors are more likely to be attained than others, making some paths in transition graphs

more favorable. In a longer run, if solutions with easy-to-attain outcome vectors dominate the

population, the risk of premature convergence raises accordingly.

The presence or absence of various paths in the above graphs is also closely related to �tness

landscapes [366]. In particular, the case in Fig. 6.2a can be associated with unimodal �tness

landscape, the one in Fig. 6.2b with a plateau, and the one in Fig. 6.2c with a trap (deception).

This is however where the analogy ends. Fitness landscapes visualize a scalar objective function

and stretch over the space of solutions arranged with respect to the actions of search operators.

The nodes in our graphs correspond not to candidate solutions, but to the behavioral equivalence

classes determined by combinations of interaction outcomes.

In non-trivial problems, transition graphs will be not only large, but also very `tangled'. This

is because the mapping from the `genotype' of candidate solutions (the elements of S) to pheno-

type/behavior (the elements of {0, 1}|T |) can be particularly complex. A minute modi�cation of

the former may cause a dramatic change in the latter. On the other hand, even a major change in

genotype can be phenotypically neutral. The domains of game playing and program synthesis are

good examples here. In games, the complexity of the genotype-phenotype mapping stems from the

usually sequential nature of games, where rewards for players are known only after they have made

a series of moves. In program synthesis, this complexity results primarily from the interactions

between instructions within a program. In [136], a weighted graph similar to those in Fig. 6.2

was constructed, with nodes corresponding to combinations of outputs of GP programs, and the

weights of edges re�ecting the likelihood of moving from one behavior to another. The graph was

strongly asymmetric, with some transitions very common and some extremely unlikely (see Fig. 2

in [136]). As a consequence, some nodes were almost isolated from the remaining part of the graph,

which made them particularly di�cult to arrive at.

58 The pitfalls of scalar evaluation

Last but not least, there are some similarities between transition graphs and Markov Decision

Processes (MDPs) [295]. MDP is a mathematical framework for modeling decision making in

stochastic environment. At each time step, the process is in some state, and the agent chooses an

action that is available in this state. The process (environment) then responds by transitioning

into a new state, and giving the agent a reward. State transitions in MDPs satisfy so-called

Markov property, i.e. the e�ects of an action taken in a state depend only on that state and

not on the prior history. The goal of an agent is to maximize some function of the rewards. It

is rather easy to notice that nodes (outcome vectors) in a transition graph may correspond to

states in MDP. Arrows that re�ect the changes of outcome vectors resulting from modi�cation of

candidate solutions could be interpreted as actions taken by the agent in the environment. There

is however no direct counterpart of a reward function in a transition graph. The only feedback is

the information whether the ideal solution was found at the end of search.

6.5 Chapter summary

In this chapter, we introduced the problem of evaluation bottleneck and discussed its implica-

tions that originate in the aggregation of outcomes of multiple interactions between a candidate

solution and a set of tests. Evaluation functions that perform such an aggregation are common

in practice, particularly in the domain of test-based problems that embraces a wide spectrum of

optimization and machine learning problems. Arguably, they form a convenient and minimalistic

way of assessing candidate solution's quality, but they also come with a price: compensation of

interaction outcomes, loss of gradient, or discreteness are all inherent properties of an aggregative

evaluation function that have detrimental consequences on search performance, including crippled

generalization and limited scalability. Other, more subtle shortcomings of scalar evaluation, such

as unforeseeable search bias that favors only some paths when navigating a search space, come to

light once we scrutinize the interplay between the components of a search algorithm, and analyze

its dynamics as a whole.

Scalar evaluation obtained by an aggregative evaluation function prevents a detailed insight

into a candidate solution's characteristics and incurs inevitable information loss. Solutions that

solve equal number of entirely di�erent tests receive the same evaluation and are rendered indistin-

guishable. Also, such aggregation is negligent to the fact that some tests can be inherently more

di�cult than others, or more or less harder to reach for a given search algorithm. By agreeing to

aggregation of test outcomes into a single number, the conventional search algorithms are oblivious

to these aspects and have no insight into the actual, complex interactions taking place between

candidate solutions and tests. As a result, they are prone to premature convergence and inferior

performance.

It may be worth mentioning that evolutionary algorithms, by performing more or less global

parallel search, are in principle resistant to premature convergence, because their stochastic nature

allows them to visit (albeit only in the limit) all points in the reachable search space. However, from

practical point of view, such guarantees are of little use, given �nite resources and computational

time. Furthermore, EAs �nd it hard to scale well with task di�culty and the number of tests in T .

As larger problem instances are considered, EAs tend to lose e�ciency and become less e�ective

at obtaining robust solutions. It seems therefore reasonable to alleviate the bottleneck between

the evaluation function and the search algorithm by providing the latter with richer information

on solution characteristics and so enabling it to perform better. Doing so is our primary concern

in this thesis, and in the following chapters we propose practical methods to achieve this goal.

6.5. Chapter summary 59

Another interesting point that emerges from our considerations is that solving particular com-

bination of tests might be critical for a search algorithm to successfully tackle a test-based problem.

This observation arises from the analysis of transition graphs (cf. Section 6.4) in which certain

outcome vectors are more likely to be attained if candidate solutions already demonstrate some

desirable characteristics, meant here as the ability to pass speci�c combinations of tests. Such

capability to solve a subset of tests maybe linked to a skill that has to be mastered before other

tests can be successfully attained. We anticipate that nontrivial problems may require presence

of mutually-exclusive skills, i.e., such that it is di�cult to simultaneously make progress on all of

them. It maybe therefore important to allow multiple such skills coexist in the population. They

may also be a valuable source of knowledge about the problem structure. Indeed, some areas of the

search space are often related to subproblems of the original problem, and can be considered as an

analog to the concept of minimal coordinate systems [35], in which the axes can be interpreted as

the crucial set of skills needed for successfully operating in the given environment. These insights

gave rise to some of the proposed algorithms that are discussed in the subsequent chapters.

Chapter 7

Multi-Criteria Evaluation in Test-Based

Problems

In the previous chapter, we demonstrated that scalar evaluation a�ects not only the internal

dynamics of search algorithms, but also renders candidate solutions solving di�erent subsets of

tests indistinguishable. In the following, we address this problem in the latter context, proposing

a means for a many-aspect assessment of solutions produced by algorithms applied to test-based

problems. To this end, in Section 7.3 we introduce performance pro�le, a multi-criteria performance

evaluation method that characterizes performance using, rather than a scalar, a vector of results

against tests of various di�culty. Next, in Section 7.4 we introduce two methods of sampling

tests for performance pro�les, which allows us to obtain robust performance estimates on tests. In

Section 7.5, we demonstrate the versatility of performance pro�les by applying them to Othello

and a variant of the Iterated Prisoner's Dilemma. Last, we carry out a comparative analysis of

performance pro�les of a well-performing evolved Othello player and a set of players known from

past works. The observed di�erences, which would pass unnoticed or remain unexplained when

using scalar performance measures, provide new insights into the characteristics of the considered

algorithms. The approach presented in this chapter has been originally published in [149] and later

extended in [150, 151].

7.1 Motivation

The challenge in designing e�ective algorithms for test-based problems (cf. Chapter 5) consists in,

among others, obtaining accurate evaluation of solutions. An objective assessment of solution's

performance is often computationally too expensive to be useful in practice. For example, expected

utility (5.3.1), arguably the most popular performance measure in test-based problems, is the

expected score obtained against all tests. When put in game-theoretic terms, it can also be viewed

as the expected score of a game playing strategy against a random opponent strategy. However,

calculating the exact expected utility even for simple problems is computationally intractable

(cf. Section 5.1). Therefore, a common practice is to employ approximate methods of evaluating

solution performance, which rely on a limited number of interactions between solutions and tests.

The most frequently used evaluation measures are:

• an average score against a pool of �xed, manually-designed tests [226, 93],

• a round-robin tournament between the co-evolving entities [309, 341, 147], or

• an estimated expected utility (the average score obtained against a random sample of tests)

[53, 149].

61

62 Multi-Criteria Evaluation in Test-Based Problems

A common feature of all conventional evaluation functions, whether exact or approximate, is that

they aggregate the results of multiple interactions into a single scalar value. Though convenient

and compact, the performance value obtained in this manner tells very little about the di�erences

between solutions. As discussed in Section 6.2, aggregation of interaction outcomes leads to evalu-

ation bottleneck that severely hinders the progress of search algorithms. One of the consequences

of evaluation bottleneck is compensation that results in candidate solutions receiving the same

evaluation, even if the outcomes of their interactions with the same tests are completely di�erent.

By the same token, aggregative evaluation functions are also oblivious to varying test di�culty. To

alleviate this problem, in Section 7.3 we propose to `multi-objectivize' (term borrowed from [168])

the assessment of candidate solutions and present the underlying information in a structural way.

In the following, we de�ne di�culty of a test t ∈ T , the key concept of a performance pro�le.

7.2 Test di�culty

As already mentioned in Section 6.2, tests in T typically di�er in their di�culty. We say that

a test is di�cult if a candidate solution is expected to get a low outcome from an interaction with

it; and vice versa: it is easy if a candidate solution is expected to get a high outcome. In order

to formalize test di�culty, we extend the previous de�nition of interaction function (Def. 5.1) so

that it provides two separate outcomes

1. An interaction of a candidate solution s and a test t produces an outcome for s denoted

gs(t), as well as an outcome for t, denoted as gt(s),

2. The outcomes of interactions ful�ll that gt(s) + gs(t) = C for all s ∈ S and t ∈ T , where C
is a problem-speci�c constant.

Without loss of generality, we assume that C = 1 and 0 ≤ gt, gs, thus gt, gs ≤ 1. For example, if an

Othello player s wins against a player t, gs(t) = 1 and gt(s) = 0; when s loses against t, gs(t) = 0

and gt(s) = 1, and gs(t) = gt(s) = 0.5 in the case of draw.

De�nition 7.1. We de�ne the di�culty of a test as the following function DS : T → R:

DS(t) = E
s∈S

[gt(s)] = E
s∈S

[1− gs(t)] . (7.2.1)

Note that both the quality of a candidate solution QT (s) (Eq. 5.3.1) and the di�culty of a test

range in [0, 1].

By analogy to QT (s), computing DS(t) is infeasible when the number of candidate solutions

in S is large (which is common in practice), so we approximate it using a �nite sample:

D̂S(t) =
1

|S|
∑

s∈S
gt(s), (7.2.2)

where S ⊂ S is a (computationally manageable) subset of tests. When S is uniformly drawn at

random from S, D̂S is an unbiased estimator of DS .

Notice that for symmetric problems, where S = T , every candidate solution is a test, and vice

versa. In such domains, the higher the quality of a solution, the more di�cult it is as a test,

i.e., DS(t) = QT (s) for s = t. However, performance pro�les, introduced in the following section,

handle asymmetric problems as well.

7.3. Performance pro�le 63

ca
nd

id
at

e
so

lu
tio

n
qu

al
ity

test difficulty

performance
profile

0 1

1

0

Figure 7.1: An exemplary performance pro�le. The height of each bar (y-axis) represents the
quality of the candidate solution when interacting with tests of di�culty represented by the range
occupied by the bar on the x-axis.

7.3 Performance pro�le

The key idea of the proposed method is to characterize the performance of a candidate solution

as a function of test di�culty. We will call such a function a performance pro�le of a candidate

solution.

De�nition 7.2. The performance pro�le ps of a candidate solution s ∈ S is a function

ps(d) = QTd(s), for such d ∈ [0, 1] that Td 6= ∅, (7.3.1)

where Td ⊂ T is the set of all tests of di�culty d, i.e. Td = {t ∈ T : DS(t) = d} . Let us note that
ps(d) is unde�ned for such ds that there are no tests of di�culty d.

In general, ps may be uncomputable, because there may be in�nitely many di�culty values d

for which ps(d) is de�ned, and for each such d the set of tests Td can be in�nite or large. Thus, to

estimate ps, we discretize di�culty into disjoint intervals (bins) of equal width. For instance, for

100 bins of width 0.01 a pro�le becomes a vector of length up to 100.

De�nition 7.3. The discretized pro�le Ps is a function

Ps(B) = QTB (s), for B ∈ B, such that TB 6= ∅, (7.3.2)

where B is a bin, B is the set of bins, and TB ⊂ T is a set of tests t of di�culty D(t) ∈ B. Notice
that Ps is unde�ned for empty bins.

As in practice TB can be too large to compute QTB , we fall back to its approximation Q̂TB

(5.3.2), were TB is a (computationally manageable) sample of TB .
Figure 7.1 presents the performance pro�le of an imaginary candidate solution. Each bar

represents the performance for a separate bin. We expect typical performance pro�les to be

weakly decreasing functions of test di�culty, since usually it is easier to get higher payo� from

interactions with easier tests than from the more di�cult ones. However, there are no fundamental

reasons that would prevent a performance pro�le to take on an arbitrary shape.

Let us notice that each bin B gives rise to a separate performance criterion, and Ps(B) is the

quality of a candidate solution s on that criterion. In other words, a bin determines one dimension

of candidate solution characteristics. In this sense, performance pro�le can be considered as amulti-

criteria performance measure.

In a related work, [9] presented agent-case embedding, which could be also used for char-

acterizing and comparing the performance of solutions of a test-based problem. In contrast to

64 Multi-Criteria Evaluation in Test-Based Problems

nu
m

be
r o

f t
es

ts
 in

 a
 b

in

bins with tests of certain difficulty0 1

N = capacity

0

test generated by
a sampling method

Figure 7.2: A visual illustration of a random sampling method for generating tests for the bins.

performance pro�les, which provide a multi-objective solution evaluation on tests of increasing

di�culty, agent-case embeddings measure diversity of evolved phenotypes and visualize them in

Euclidean space.

7.4 Test sampling methods

The �delity of a discretized performance pro�le (Eq. 7.3.2) with respect to its exact counterpart

(Eq. 7.3.1) depends on the characteristics of the test samples supporting particular bins. Ideally,

every bin should contain the same number of tests, and the tests in each bin should be generated

independently.

We propose two methods for generating test samples for bins: random sampling and evolu-

tionary sampling. Both methods attempt to �ll every bin up to bin capacity N (|TB | = N for

B ∈ B). This can be computationally demanding, especially when both N and the number of bins

are high. Nevertheless, this is a one-o� process: once the bins have been �lled up, they can be

used ad in�nitum to assess the performance pro�les of arbitrary many candidate solutions.

7.4.1 Random sampling

In random sampling [149], we �ll the bins with tests via repetitive independent sampling. In each

iteration, we draw at random a test t from the set of all tests T , estimate its di�culty, and place

it in the appropriate bin if that bin's capacity has not yet been reached; otherwise, the test is

discarded. The di�culty of a test is estimated usingM candidate solutions drawn at random from

S, independently for every evaluated test (see Fig. 7.2).

The advantage of this method is that it guarantees the independence of tests, within every bin

as well as across bins. We thus call the bins generated in this way unbiased.

Unfortunately, random sampling does not scale well with bin capacityN and the number of bins.

Typically, some bins can be easily �lled up, but �lling up others becomes very time consuming.

For example, in Othello it is di�cult to draw very weak or very strong players at random (which

are, at the same time, very easy or very di�cult tests, respectively). We can expect to run into

a similar problem for most nontrivial symmetric test-based problems: a problem for which a very

good candidate solution can be easily generated at random is simple. This encouraged us to

design a more sophisticated evolutionary sampling technique that provides a more balanced bin

occupancy.

7.5. Experimental evaluation 65

Algorithm 4 Evolutionary sampling.

1: function EvolSampling(n_samplesfit, n_samplesdiff , N,B, popsize, genmax)
2: for B ∈ B do

3: TB ← ∅
4: S ← SampleSolutions(n_samplesdiff)
5: . for di�culty estimation
6: while not stopped do

7: F ← SampleSolutions(n_samplesfit) . for �tness function
8: P ← SampleTests(popsize) . initial population
9: for gen← 1, genmax do

10: P ← Evolve-Next-Generation(P, D̂F)
11: t← argmaxx∈P D̂F (x)

12: d← D̂S(t)
13: B ← B′ ∈ B : d ∈ B′
14: if |TB | < N then

15: TB ← TB ∪ {t}
16: break

17: return {TB}B∈B

7.4.2 Evolutionary sampling

In the face of challenges troubling the random sampling algorithm, we propose evolutionary sam-

pling. In this method, we run an evolutionary process that evolves a population of tests, where

test's �tness is de�ned as its di�culty, approximated using a small number of candidate solutions

(n_samplesfit = 200). In every generation, we pick the �ttest test and calculate a more accurate

estimate of its di�culty using a larger number of candidate solutions (e.g., n_samplesdiff = 1 000).

If this estimate matches a bin that has not yet reached its capacity, the test is placed in that bin and

the evolutionary process is stopped. The pseudocode of this procedure is shown in Algorithm 4.

The main advantage of evolutionary sampling is its capability to generate tests of extreme

values of di�culty, i.e., very di�cult and very easy ones. To provide for both, we run two types

of evolutionary processes. In the �rst type, �tness is de�ned as test di�culty, so evolution is

driven to produce tests of increasing di�culty in consecutive generations. In the second type,

�tness is the negated di�culty of a test, thus evolution tends to produce the easy tests (note that

the extremely easy tests may be as rare as the extremely di�cult ones). Compared to random

sampling, evolutionary sampling is more likely to �ll the extreme bins (the far-left and the far-right

ones) up to the desired capacity N . From practical perspective, having well-populated di�cult

bins is usually more important, as this part of performance pro�le provides information on how

a given candidate solution copes with the most challenging tests.

On the downside, evolutionary sampling is biased. Although each test is a result of an indepen-

dent evolutionary run, the underlying evolutionary processes may favor certain parts of the test

space. However, in Section 7.8 we show that, at least for Othello, the bias is in practice negligible.

7.5 Experimental evaluation

In Sections 7.6 and 7.7, we use performance pro�les to characterize and compare candidate so-

lutions produced by di�erent �avors of (co)evolutionary algorithms. All algorithms employ the

(µ+ λ) generational evolution strategy [22] independently to each maintained population. A pop-

ulation is initialized with µ randomly generated individuals (candidate solutions or tests). In

every generation, each of the µ �ttest individuals produces λ/µ o�spring via mutation (thus, all

populations consist of µ parents and λ o�spring of those parents). For all experiments, we set

66 Multi-Criteria Evaluation in Test-Based Problems

µ = 25 and λ = 25. In the following, we describe three one-population and two two-population

(co)evolutionary algorithms considered in this experiment:

• Evolutionary Learning with Random Sampling (evol-rs, Fig. 7.3a) is a variant of

evolutionary algorithm in which candidate solutions are evaluated against an external set of

random opponents T drawn at random from T once per generation. In order to maintain

the same number of interactions per generation as in the other methods described in the

following, we set |T | = µ+λ = 50. evol-rs was shown to surpass one-population coevolution

on generalization performance for 1-ply Othello and Iterated Prisoner's Dilemma [53].

• One-Population Coevolution (1-coev, Fig. 7.3a) is a one-population coevolutionary al-

gorithm. All candidate solutions in population interact with each other (in a round-robin

tournament). Formally then, the sample T is simply the current population.

• One-Population Coevolution with Random Sampling (1-coev-rs, Fig. 7.3a) is a hy-

brid of 1-coev and evol-rs that combines the competitive �tness with random sampling.

Technically, the sample T is �lled in half by candidate solutions drawn uniformly from the

current population, and in half by the tests drawn at random from T .

• Two-Population Coevolution (2-coev, Fig. 7.3b) is a two-population competitive co-

evolutionary algorithm, where individuals are bred in two separate populations, one for the

candidate solutions and one for the tests. The population of tests employs (µ + λ) evolu-

tionary strategy, where µ = 25 and λ = 25. The �tness of a candidate solution s is Q̂T (s)

with the sample T being the current population of tests. Conversely, the �tness of a test t is

D̂S(t) with S being the current population of candidate solutions.

• Two-Population Coevolution with Random Sampling (2-coev-rs), Fig. 7.3b) is 2-

coev hybridized with random sampling. The �tness of a candidate solution s is Q̂T (s) with

T �lled in half by the tests from the current population of tests, and in half by the tests

generated at random. Compared to 2-coev, the population of tests in this method is half

the size of the population of candidate solutions. The �tness of tests is assessed as in 2-coev.

Let us stress that the algorithms vary only in the way they assign �tness to individuals, which is

illustrated in Figs. 7.3a and 7.3b.

7.6 Experimental analysis of the Iterated Prisoner Dilemma

In this section, we apply the algorithms presented in Section 7.5 to the Iterated Prisoner's Dilemma

(Section 5.4.3) and compare the resulting strategies using the single-objective expected utility and

the performance pro�les.

7.6.1 Experimental setup

In the experiments, we focus on the IPD with n = 9 choices (levels of cooperation), which we found

to be much more demanding than the 3-choice IPD used in earlier coevolutionary investigations

by [53].

Di�erent strategy representations for coevolutionary learning of IPD such as �nite state ma-

chines [92], and neural networks [62] have been studied in the past. Following [53, 51], we adopt

here the arguably simplest one, the direct look-up table [13], and make the players remember

the moves from the previous iteration only (memory-one IPD). In that case, the n-choice IPD

strategy is an n × n matrix M , where mij for i, j = 1, 2, . . . , n speci�es the choice to be made

given the player's own previous move i and the opponent's previous move j. The other element

7.6. Experimental analysis of the Iterated Prisoner Dilemma 67

µ+ �
population

⇢ random

individuals

1-coev

evol-rs

1-coev-rs

(a)

µ+ �
1

�
population

⇢ random

individuals

µ+ �
2

�
population

2-coev

2-coev-rs

(b)

Figure 7.3: The visualization emphasizes di�erences in �tness assignment among methods consid-
ered in this chapter. An arrow means that a game is played between two players.

of the strategy is the initial move m00, which does not depend on the opponent's strategy. A

complete IPD strategy is thus determined by n2 + 1 = 82 parameters. The size of search space is

982 ≈ 1.77× 1078.

Although the IPD is primarily used to study cooperation [13], we consider it here, following

recent works by [50] and [53], as a competitive domain.

Each IPD game consists of 150 PD episodes. To assess the result of an interaction of two IPD

strategies we compute their cumulative payo� over the episodes. The highest cumulative score

indicates the winner, which is assigned the interaction payo� 1, while the loser gets 0. In the case

of draw, the interaction results in 0.5 points for both strategies.

As discussed in Section 7.5, all algorithms considered here maintain a population of 50 candidate

solutions which interact with the same number of tests. As a result, in each generation 50× 50 =

2,500 IPD games are played. Since each evolutionary run consists of 200 generations, it requires

the total e�ort of 500,000 games.

All methods start with an initial population �lled with candidate solutions (strategies) ran-

domly drawn from the space of direct look-up tables. The only search operator used by the

algorithms is a simple mutation which iterates over all elements of the look-up table and with

probability pmut = 0.2 replaces the original choice with one of the remaining n−1 choices, selected

at random. This operator has been found to provide su�cient variation of strategy behaviors for

an IPD game with multiple choices [51].

Some of our coevolutionary algorithms and performance assessment methods employ random

players. Every random player is obtained independently by �lling the look-up table with random

choices. In the following, by `random player/opponent' we mean a player obtained in this way.

Note that this de�nition of random player di�ers from the one that assumes selecting each action

by uniformly drawing it from a set of all available actions in a given position. It is, however,

coherent with the expected utility measure de�ned on the set of all tests (see Section 7.3). A

68 Multi-Criteria Evaluation in Test-Based Problems

Table 7.1: Expected utilities and 95% con�dence intervals of best-of-run individuals obtained by
�ve algorithms for the Iterated Prisoner's Dilemma.

Algorithm Expected utility

1-coev-rs 0.9832± 0.0035
evol-rs 0.9676± 0.0042
2-coev-rs 0.9561± 0.0085
1-coev 0.9263± 0.0126
2-coev 0.9091± 0.0131

random opponent is a test drawn a random from the set T . Having said that, the performances

of the random players obtained in both ways is similar.

We performed 120 runs for each method presented in Section 7.5. In the following, the best-

of-generation candidate solution is the individual with the highest �tness in the population of

candidate solutions at that generation (where �tness is subjective and speci�c for a given method;

see Section 7.5). By the best-of-run solution we mean the best-of-generation player of the last

generation. In the following, we analyze those players using expected utility (Section 7.6.2) and

performance pro�les (Section 7.6.3).

7.6.2 Results for expected utility

To estimate the expected utility of an individual (best-of-generation or best-of-run), we let it play

50,000 games against random players. With 1 point awarded for winning the game, 0 for losing,

and 0.5 for a draw, the expected utility of a player ranges in [0, 1]. In this section, the term

'performance' refers to this measure.

Table 7.1 presents the average performance of the best-of-run individuals for each algorithm

accompanied by 95% con�dence intervals.

To compare the algorithms, we performed statistical analysis with signi�cance level α = 0.01

using the nonparametric Kruskal-Wallis rank sum test, which revealed a statistically signi�cant

(χ2 = 116.7, p-value < 2.2 × 10−16) di�erence between the results obtained by particular algo-

rithms. A post-hoc analysis using the pairwise Wilcoxon rank sum test with Holm correction

indicated the following di�erences:

1-coev-rs > evol-rs = 2-coev-rs > 1-coev = 2-coev,

where `>' denotes signi�cant di�erence and `=' means no statistical di�erence.

Let us �rst discuss the results of `pure' methods that use homogeneous sets of opponents, i.e.,

evol-rs, 1-coev, and 2-coev. The observed relationship between these methods con�rms the

previous �ndings by [53] that evolutionary learning guided by �tness estimates based on random

sampling (evol-rs) achieves higher expected utility when compared to the simple coevolutionary

learning approach (1-coev). We also observe that two-population coevolution (2-coev) is not

bene�cial in terms of expected utility.

The methods that use a mixture of competitive �tness and random sampling (1-coev-rs, 2-

coev-rs) turn out to be able to evolve strategies with the highest expected utility. There is no

statistical di�erence between 2-coev-rs and evol-rs, but 1-coev-rs is clearly the best algorithm

for this problem, resulting in the highest median and the lowest variance.

Though the results demonstrate the positive e�ect of hybridizing di�erent �tness functions, the

measure of expected utility does not reveal any details about the strengths or weaknesses of the

evolved individuals. For instance, evol-rs and 2-coev-rs produce players of roughly the same

7.6. Experimental analysis of the Iterated Prisoner Dilemma 69

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce
EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

Figure 7.4: Performance pro�les for the Iterated Prisoner's Dilemma, for opponent's performance
ranging from 0 to 1. Each point (x, y) in a plot indicates the average performance y when playing
against the opponents of performance x. This and all subsequent graphs feature 95% con�dence
intervals, though for many bins they are very narrow.

expected performance, but do they di�er in capability of winning with the opponents of particular

strengths? In the following we demonstrate how this question can be conveniently answered using

performance pro�les.

7.6.3 Analysis with performance pro�les

In order to scrutinize the best-of-run individuals produced by each algorithm, we apply the perfor-

mance pro�les (cf. Section 7.3). We use evolutionary sampling (cf. Section 7.4) with (25 + 25)-ES

(n_samplesfit = 200) to generate 100 tests samples, each corresponding to a bin of width 0.01.

Each bin's sample is �lled up with N = 5,000 tests, where the di�culty of every test is estimated

on the basis of games with n_samplesdiff = 10,000 random players.

Figure 7.4 shows the performance pro�les averaged over the best-of-run individuals produced

by 120 runs of every algorithm. A point at coordinates (x, y) indicates the average performance y

when playing against the opponents of performance x. For instance, the performance of 2-coev

is about 0.9 for the opponents with performance of 0.5 (by which we mean the opponents with

performance in the range of [0.5, 0.51), since bin width is 0.01). Recall that the IPD is a symmetric

problem, thus player's di�culty (when it acts as a test) is equal to its quality (when it acts as a

candidate solution).

The decreasing trend in each pro�le con�rms the supposition that the stronger opponents are

harder to defeat than the weaker ones. The only exception of the decreasing trend is the bin

[0.98, 0.99) that is `easier' than bin [0.97, 0.98) for all algorithms. Despite some e�ort, we were

unable to explain this artifact.

Some methods clearly dominate others. The pro�le of 1-coev-rs dominates all other pro�les,

which explains its best result in terms of expected utility (cf. Table 7.1). Also, 1-coev dominates

2-coev. The statistical analysis conducted in Section 7.6.2 did not reveal them as signi�cantly

di�erent because di�cult tests are few and far between in the random sample used to estimate

the expected utility. On the contrary, the rightmost bins of performance pro�les host many such

70 Multi-Criteria Evaluation in Test-Based Problems

Table 7.2: Expected utilities and 95% con�dence intervals of best-of-run individuals obtained by
�ve algorithms for Othello.

Algorithm Exp.Utility

2-coev-rs 0.866± 0.0024
evol-rs 0.8624± 0.0023
1-coev-rs 0.8371± 0.0036
1-coev 0.7997± 0.0052
2-coev 0.7963± 0.0064

tests. We take this as evidence that 1-coev should be preferred to 2-coev for this problem, even

though they perform the same on average.

Other pro�les are mutually non-dominated � their plots cross each other. In this respect,

the most interesting is the evol-rs pro�le. Although Table 7.1 suggests no signi�cant di�erences

between 2-coev-rs and evol-rs, their pro�les reveal that 2-coev-rs copes with the strong

opponents much better, while evol-rs is more e�ective against the weaker ones. Such a pro�le

shape re�ects method's trade-o� in ability to cope with opponents of various strength. The single-

criteria performance measures, like expected utility, are not able to pinpoint such di�erences and

therefore are much less descriptive.

Moreover, the analysis with performance pro�les shows that for the strongest opponents (per-

formance > 0.9) evol-rs is worse not only than 1-coev, but even than 2-coev that ranks last

on expected utility. For the opponents of the last bin (di�culty 0.97), the expected interaction

outcome of evol-rs is worse by 0.17�0.26 than for the other algorithms.

7.7 Experimental analysis of 1-ply Othello

In this section, we apply the �ve considered algorithms to the game of Othello (Section 5.4.1) and

compare the resulting strategies using the single-objective expected utility, performance pro�les

and a round robin tournament.

7.7.1 Experimental setup

To maintain a similar learning environment to that used for the IPD, we retain most of the

evolutionary parameters such as the number of generations, population sizes and the total e�ort

per generation (cf. Section 7.6). In order to learn strategies that are able to play both sides, we

`symmetrize' the game by assuming that a single interaction is a double game, where each of the

interacting individuals plays one game as a black player and one game as a white player. With

a population of size 50, this leads to 2,500 interactions (double games) or 5,000 single games per

generation. In a single game, half a point is divided between the players: the winner receives 0.5

point and the loser 0 points, or they get 0.25 points each in case of a draw. Thus, the result of an

interaction is in the [0, 1] range, as it was for IPD.

We represent Othello strategies using position-weighted piece counter (WPC). WPC is a lin-

ear weighted board evaluation function which implements the state evaluator concept, i.e., it is

explicitly used to evaluate how desirable is a given board state. It assigns a weight wi to a board

location i and uses the scalar product to calculate the utility f of a board state b:

f (b) =

8×8∑

i=1

wibi,

7.7. Experimental analysis of 1-ply Othello 71

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce

EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

(a) Performance pro�les in 0.0�1.0 range of opponent
performance. Grayed region is zoomed on the right.

0.8 0.9
Opponent performance

0.2

0.3

0.4

0.5

0.6

0.7

Pl
ay

er
pe

rf
or

m
an

ce

EVOL-RS

2-COEV-RS

1-COEV-RS

1-COEV

2-COEV

(b) Performance pro�les zoomed to 0.8�0.96 range of
opponent performance.

Figure 7.5: Performance pro�les for Othello in 0.0�1.0 range of opponent performance. Each
point (x, y) in a plot indicates the average performance y when playing against the opponents of
performance x.

where bi is 0 in the case of an empty location, +1 if a black piece is present or −1 in the case of

a white piece. The players interpret f(b) conversely: the black player prefers the moves leading

to the states with a higher value, whereas the lower values are favored by the white player.

We employ WPC as a state evaluator in a 1-ply setup: given the current state of the board,

the player generates all legal moves and applies f to the resulting states. The state gauged as the

most desirable determines the move to be made. Ties are resolved at random.

The population is initialized with random players whose weights are uniformly drawn from the

range [−0.2, 0.2] [226]. The only search operator used by all algorithms is a mutation that perturbs

all the weights wi with an additive noise:

w
′

i = wi + 0.1 · U [−1, 1],

where U [−1, 1] is a real number drawn uniformly from [−1, 1]. Weights resulting from mutation are

clamped to the interval [−10, 10]. Consequently, the space of strategies is a [−10, 10]64 hypercube.

As in the case of IPD, we performed 120 runs for each algorithm.

7.7.2 Results for expected utility

We start the performance analysis of the best-of-run solutions by using the scalar measure of

expected utility, which we estimate via 25,000 double games (50,000 games in total) against the

random WPC players. Table 7.2 reports the results of this experiment.

We performed the same statistical analysis as for the IPD in Section 7.6.2 and obtained the

following partial ordering of algorithms:

2-coev-rs = evol-rs > 1-coev-rs > 1-coev = 2-coev,

where `>' denotes signi�cant di�erence and `=' means no statistical di�erence at signi�cance level

α = 0.01.

72 Multi-Criteria Evaluation in Test-Based Problems

What this result has in common with the IPD ranking is the superiority of the methods involving

random sampling. However, the relationships between them is not the same. In particular, 2-coev-

rs is now better than 1-coev-rs, which is, in turn, worse than evol-rs.

7.7.3 Analysis with performance pro�les

To generate the samples of tests for bins (each de�ned as [x, x+ 0.01) range of performance), we

used evolutionary sampling engaging a (25 + 25) evolutionary strategy with genmax = 10,000.

The �tness and di�culty of each individual has been approximated with double games against

n_samplesfit = 200 and n_samplesdiff = 1,000 random players, respectively In contrast to the

IPD, despite computing on 60 cores of modern CPUs for a few days, we were not able to �ll up all

the buckets to the assumed capacity of N = 1,000 opponents. The three �rst and the three last

bins (performance ranges of [0, 0.03) and [0.97, 1]) remained empty, and the bins [0.03, 0.04) and

[0.96, 0.97) were �lled only partially. In total, the 100 samples of tests contain 91,727 opponents

of performances ranging in [0.03, 0.97].

Figure 7.5 shows the average performance pro�les for the best-of-run Othello players evolved

by particular algorithms. In contrast to IPD, it is hard to observe any dominance between the

pro�les, except for 1-coev-rs, which dominates both 1-coev and 2-coev.

Noteworthy, in the large part of opponent di�culty range (performance of 0.0�0.6), the order of

pro�les is consistent with the ranking obtained with the single-criteria measure of expected utility.

However, the order changes dramatically for the strongest opponents. Strikingly, evol-rs and

2-coev-rs, the two best algorithms according to the statistical analysis based on expected utility,

become the two worst ones when confronted against the strongest opponents (see Fig. 7.5b). In

contrast, 1-coev and 2-coev, the two worst algorithms in terms of expected utility, are signif-

icantly better than both evol-rs and 2-coev-rs on the rightmost bins, showing performance

similar to 1-coev-rs.

Clearly, the performance pro�les reveal the strong points of 1-coev, 2-coev and 1-coev-

rs, which pass unnoticed for expected utility. However, attaining higher performance against the

stronger opponents is not su�cient to compensate the inferior position when it comes to mediocre

opponents, because the latter ones occur much more frequently in an unbiased sample used to

estimate the expected utility.

7.7.4 Round-robin tournament

Round-robin tournament (cf. Section 3.5) is a popular method that determines a ranking of

methods by playing matches between teams of players they produced [147, 309]. The important

conceptual di�erence with respect to other performance indicators considered in previous sections

is the direct confrontation between the solutions produced by particular algorithms (rather than

referring to an external sample of opponents). In this way, round-robin tournament provides a

di�erent means for performance assessment that can be used as an alternative to expected utility.

In our tournament, every team consists of 120 best-of-run players produced by a certain algo-

rithm. Thus, a single match involves 120 × 120 = 14, 400 double games. By `match score' and

`tournament score' we mean, respectively, team's average score obtained in a single match or in

the entire round-robin tournament.

Table 7.3 presents the results of the tournament for the Othello players produced by particular

algorithms. By bootstrapping the outcomes of double games, we calculated also the 95% con�dence

intervals of the scores. We present them for the total score in square brackets. For individual

7.7. Experimental analysis of 1-ply Othello 73

Table 7.3: The round-robin tournament scores for the �ve coevolutionary algorithms in Othello.
The total scores are followed by 95% con�dence intervals.

Match scores
Tourn. score [%]

Algorithm 1-coev-rs 2-coev-rs 1-coev 2-coev evol-rs

1-coev-rs − .522 .521 .526 .556 .531 [.528, .534]
2-coev-rs .478 − .509 .518 .536 .510 [.508, .513]
1-coev .479 .491 − .507 .513 .497 [.494, .500]
2-coev .474 .482 .493 − .5 .487 [.484, .490]
evol-rs .444 .464 .487 .5 − .474 [.471, .477]

matches between methods, the con�dence intervals were consistently very close to [x− 0.006; x+

0.006], so they have been omitted.

Evolutionary learning with random sampling loses to all other algorithms in head-to-head

matches and its aggregated overall score is signi�cantly lower (con�dence intervals do not overlap)

than 1-coev-rs, 2-coev-rs, and 1-coev and 2-coev. Adding the random sampling component

improves both one- and two-population coevolution (1-coev-rs vs. 1-coev and 2-coev-rs vs.

2-coev). Also, the one-population variants are consistently better than two-population ones (2-

coev vs. 1-coev and 2-coev-rs vs. 1-coev-rs). 1-coev-rs wins against all the other algorithms

and is clearly the best in terms of the round-robin score.

7.7.5 Performance pro�les explain round-robin tournament and expected

utility

Performance pro�les can explain the discrepancy between the rankings based on expected utility

and the round-robin tournament. Let us �rst notice that, contrary to the expected utility as-

sessments which involved random opponents, in the round-robin tournament each individual in

a team plays only with the players from the opponent teams, and those players (co)evolved to be

strong. According to Table 7.2, the performance of team members ranges between 0.79 and 0.87,

well above 0.5, the expected performance of a random player.

Let us analyze the pro�les in Fig. 7.5b in this range. The best two algorithms, with performance

between 0.79 to 0.87, are 1-coev-rs (unquestionably) and 2-coev-rs (better than the remaining

algorithms on most bins). The other three algorithms are signi�cantly worse but certain di�erences

between them are still observable. In particular, 1-coev and 2-coev start to surpass evol-rs

when test di�culty reaches ∼ 0.87. 1-coev is subtly, but consistently better than 2-coev in

this test di�culty interval. This order is consistent with the ranking obtained in the round robin

tournament.

Now let us use the performance pro�les to explain the order of algorithms induced by the

expected utility measure presented in Section 7.7.2. In that case, games are played against random

players, whose performance is 0.5 in average (a random player is equally likely to win and lose

a game against another random player). Moreover, random player's performance is most often

close to 0.5 (the standard deviation of random player's performance is 0.28, because well- and

bad-performing random players are a few and far in between. Thus, it is not surprising that in

Fig. 7.5, for opponents of di�culty 0.5, the order of algorithms is consistent with the ranking

obtained for expected utility in Section 7.7.2.

74 Multi-Criteria Evaluation in Test-Based Problems

0.0 0.2 0.4 0.6 0.8 1.0
Opponent performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pl
ay

er
pe

rf
or

m
an

ce
1-COEV-RS

SWH

IPREF1
TDL

CTDL

Figure 7.6: Performance pro�les of the �ve players: the handcrafted swh, and four obtained by
the following learning methods: coevolution with random sampling (1-coev-rs), coevolutionary
temporal di�erence learning (ctdl), temporal di�erence learning (tdl) or preference learning
(ipref1). Whiskers mark the 95% con�dence intervals.

7.7.6 Performance pro�les of selected Othello players

Up to this point, our analysis concerned the players produced by (co)evolutionary algorithms. De-

spite the di�erences we pointed out, all of the pro�les have a similar shape, with high performance

for weak opponents that monotonically decreases with the opponents getting stronger. It is thus

interesting to verify whether this tendency holds also for other Othello players.

In the following, we analyze the pro�les of four players obtained by di�erent methods:

1. Standard WPC Heuristic Player (swh), hand-crafted by [368], and often used as an opponent

in Othello research [226, 340, 237]. Its expected utility is 0.787± 0.002.

2. tdl player (0.873± 0.003) obtained by [150] using temporal di�erence learning.

3. ctdl player (0.906±0.001) trained by [338] using a hybridization of coevolution and temporal

di�erence learning [340, 338, 193].

4. ipref1 player (0.869±0.001) obtained by [306], the only player in this group that represents

its strategy using (a simple variant of) n-tuple networks instead of WPC.

Figure 7.6 presents how the pro�les of the above players compare to the average pro�le of 1-coev-

rs (performance 0.837± 0.004). Note that the con�dence intervals for swh and ipref1 are wider

because these pro�les are based on a single player, while the pro�les of 1-coev-rs, ctdl and tdl

are averaged over, respectively, 120 and 30 runs.

Interestingly, no pro�le strictly dominates all others. ctdl has the highest performance, but,

except swh, the other players are more e�ective in the left-hand side of the spectrum. Also, the

plots show that the �attest pro�les characterize the players obtained by the methods that employ

temporal di�erence learning (tdl or ctdl).

The pro�le of the handcrafted swh player is signi�cantly di�erent from those obtained by

learning algorithms. While the performances of the latter generally decrease with the opponents

getting stronger, the swh player does not strictly subscribe to that trend. Its pro�le crosses the

1-coev-rs and ipref1 curves at about 0.7 and 0.9, respectively, and surpasses them afterwards

signi�cantly, even though its overall performance is lower. More surprisingly, the swh pro�le seems

7.8. The bias of evolutionary sampling 75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Opponent performance

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ofi

le
s

di
ff

er
en

ce
(b

ia
s)

EVOL-RS
2-COEV-RS
1-COEV-RS
1-COEV
2-COEV

(a) IPD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Opponent performance

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

Pr
ofi

le
s

di
ff

er
en

ce
(b

ia
s)

EVOL-RS
2-COEV-RS
1-COEV-RS
1-COEV
2-COEV

(b) Othello

Figure 7.7: The di�erences between the pro�les obtained using random sampling and evolutionary
sampling.

then to reverse its trend, and copes better with the strongest opponents (performance of 0.9�0.96)

than with the slightly weaker ones (performance of 0.8�0.9).

7.8 The bias of evolutionary sampling

Since the performance pro�les used in these experiments rely on evolutionary sampling, which

trades better occupancy of extreme bins for bias when generating opponents in bins, it is desirable

to quantitatively assess the extent of that bias.

To this aim, we compare the performance pro�les obtained using random sampling with the

ones generated by means of evolutionary sampling. Random sampling is much worse at generating

the strongest and the weakest players than evolutionary sampling. As a result, it �lls up only

the bins in the interval [0.17, 0.83] for the IPD, and [0.17, 0.78] for Othello. For these non-empty

intervals, in Fig. 7.7 we plot the di�erences between the corresponding pro�les, which illustrate

the extent of the bias of the evolutionary sampling.

Let us notice �rst that the bias is predominantly positive for IPD, while for Othello it can be

either positive or negative. The bias characteristics is thus problem-dependent.

Secondly, the �gure shows that the bias of evolutionary sampling is generally low. The maxi-

mum absolute di�erence between pro�les is around 0.04 for the IPD, and only 0.015 for Othello.

The bias is generally growing with increasing opponent's performance, and can be expected to be

higher for the bins to right of 0.8. Nevertheless, the bias is similar for all methods (except for

1-Coev for IPD), thus its in�uence on the ranking of algorithms is limited. We can, therefore,

assume that the bias of evolutionary sampling does not preclude the resulting samples of tests

from being reliable and objective performance indicators.

7.9 Chapter summary

In this chapter, we formalized the technique of performance pro�les and demonstrated its usefulness

for comparing solutions for test-based problems and, implicitly, learning algorithms. Performance

pro�les proved to be capable of revealing the di�erences in characteristics between candidate so-

lutions that have similar expected utility. They can also be utilized to explain the discrepancy

between the outcomes of a round-robin tournament and expected utility. Because performance

76 Multi-Criteria Evaluation in Test-Based Problems

pro�les abstract from the internals of learning algorithms, nothing precludes them to be applied

to solutions other than best-of-run solutions, and we anticipate that they can be useful for, e.g.,

explaining the dynamics of search process and characterizing behavior [342] of other (i.e., non-

evolutionary) algorithms [150]. In prospect, we envision them as a valuable tool providing re-

searchers with a more detailed feedback on algorithm's characteristics and so helping them design

new approaches.

Although we applied here performance pro�les to two symmetric test-based problems, they are

de�ned in a general way, and thus applicable to the asymmetric case (when T 6= S) as well. The
only formal requirement is that the sum of payo�s obtained in a single interaction by a solution

and a test is constant.

For a relatively simple problem such as the IPD, simply drawing samples at random may

be su�cient to populate a range of bins that reveal the di�erences between the algorithms in

question. For harder problems like Othello, more sophisticated evolutionary sampling of tests may

be necessary to populate the extreme bins and obtain an assessment of the very strong opponents,

which may be important in practice. Such instrumentation of pro�les proved helpful in this study.

However, the more powerful strategy representations, like for instance n-tuples [227], may provide

players with performance near 1.0 against all random opponents. In such cases, the speci�c samples

used in our experiment may turn out to be insu�cient to reveal any di�erences, and even more

sophisticated sampling methods (or more computational e�ort) may be required. In any case, we

would recommend assessing the bias of the sampling method by confronting (where possible) the

bin sample with the random sample, as we did in this chapter.

When it comes to contributions to research in coevolutionary algorithms, we presented evi-

dence that coevolution can o�er an advantage over evolution with random sampling for learning

game strategies. This advantage is observable for both the IPD and Othello, in the right side of

the performance pro�les, and in head-to-head comparison for Othello. We conclude thus that an

algorithm that autonomously and dynamically rede�nes its own �tness function (1- and 2-coev)

can produce strategies which are better in such confrontation than those produced by an algorithm

that relies on an stationary (though not static) �tness function (evol-rs). However, pure coevo-

lution is not su�cient to attain that, and additional means like involvement of random opponents

are necessary.

The experiments performed in this chapter may be viewed as a case study that demonstrates

evaluation bottleneck (cf. Section 6.1) and its consequences in practice. In particular, we showed

that candidate solutions of similar expected quality may indeed specialize in solving di�erent

subsets of tests, as illustrated by their performance pro�les. In the case of the IPD and Othello,

this corresponds to a higher probability of winning the games with opponents of varying strength.

We also gave evidence that the distribution of tests' di�culty in test-based problems tends to

be highly non-uniform. When viewed in the context of an aggregative evaluation function, this

observation further strengthens our claim that driving the search purely with a scalar performance

measure (e.g., the number of solved tests) is ine�cient due to inability to di�erentiate easy and

di�cult tests during evaluation. It is important to stress here that performance pro�les, as intro-

duced in this chapter, are not meant to directly counteract this problem. Rather than that, they

are typically used to cast more light on candidate solutions and expose di�erences in their per-

formance that would otherwise pass unnoticed. Even though they provide a much deeper insight

into a candidate solution's quality than a scalar evaluation function, performance pro�les cannot

be used as alternative means of driving a search algorithm. For this reason, in the following chap-

ters, we focus on the notion of alternative search objectives that can substitute a scalar evaluation

function and improve search performance.

Chapter 8

Automatic Discovery of Search Objectives

In Chapter 6, we identi�ed the evaluation bottleneck and argued that the information lost in ag-

gregation of interaction outcomes can be essential for the success of an evolutionary search process.

In the previous chapter, we demonstrated one of its practical consequences � candidate solutions

with the same or similar expected utility tend to have signi�cantly di�erent performance pro-

�les, meaning that their behavior on the same set of tests is actually entirely di�erent. Although

performance pro�les proved to be a great analytical tool, they do not address the problem of eval-

uation bottleneck. In this chapter, we propose the framework for discovery of search objectives in

test-based problems, intended to widen this bottleneck by providing search algorithms with richer

information on solutions' characteristics. We demonstrate how such behavioral characteristics can

be embedded in an algorithm to perform a better-informed and directed search.

We begin our discussion by providing further motivations for the proposed framework in Sec-

tion 8.1. In Section 8.2, we introduce interaction matrices, and subsequently discuss several pos-

sible directions in which these matrices can be exploited to bene�t search algorithms. In Section

8.4, we formalize the proposed framework for heuristic discovery of search objectives, describe its

conceptual underpinnings, and demonstrate how it may facilitate the design of alternative means

of driving a search algorithm (evaluation functions). Afterwards, in Section 8.5, we discuss how

search objectives can be employed as basis for selection operators in EAs. We close by reviewing

some of the related concepts in Section 8.6. Some of the material presented in this chapter is based

on the following publications [214, 213, 186].

8.1 Motivation

The success of evolutionary search algorithms is contingent on two capabilities: generating evolv-

able candidate solutions, and selecting promising search directions. In evolutionary computation,

search operators are responsible for the former, and evaluation and selection mechanisms for the

latter. While a large number of search operators have been proposed in the past [252, 275], less

attention has been paid to evaluation and selection. On the face of it, limited interest in alternative

ways of evaluating and selecting candidate solutions is unsurprising. In the end, many problems

approached by various �avors of EAs are formulated as optimization problems, with well-de�ned

objective function (�tness) that in the case of test-based problems boils down to counting the

number of passed tests. However, the list of shortcomings of conventional objective functions

discussed in Chapter 6 clearly calls for alternative means of characterizing candidate solution's

performance. Such means should better inform a search algorithm about other aspects of candi-

date solution behavior and so broaden the bottleneck of scalar evaluation. In many domains, there

77

78 Automatic Discovery of Search Objectives

are no principal reasons to conceal the details of evaluation. This is particularly true for test-based

problems, where an act of evaluating a candidate solution involves interaction with multiple tests

and produces detailed information that can be potentially exploited and bene�t the search. Our

main motivation is therefore to widen the evaluation bottleneck by providing search algorithms

with richer information on solutions' characteristics that can be embedded in a running algorithm.

In this chapter, we present the framework for heuristic discovery of search objectives that aims at

providing alternative multifaceted characterizations of candidate solutions. The key concept be-

hind the algorithms that subscribe to this framework is an interaction matrix, which holds detailed

account on interaction outcomes with individual tests. By embracing the entirety of information

available in such matrices, it is possible to automatically devise compact, multi-aspect evaluation

of candidate solutions that may serve as a basis for selecting the most promising solutions from

the current population.

8.2 Interaction matrix

Recall from Section 5.1 that evaluation in test-based problems can be phrased as candidate so-

lutions engaging in interactions with tests. The outcomes of these interactions depend on an

interaction function which is an indicator function of the set of tests passed by a solution s. For

instance, given a set of tests T where each test (xi, yi) ∈ T is a pair composed of the input x and

the corresponding desired output y, the interaction function g can be characterized as:

g(s, t) = g(s, (x, y)) = [s(x) = y],

where s(x) is the output produced by s for x, and [·] is the Iverson bracket, i.e.,

[x] =





1 if x is true

0 otherwise.

In a more general setting, if a solution s passes a test t according to the interaction function g,

then the outcome of their interaction is g(s, t) = 1. Otherwise, we say that s fails t and g(s, t) = 0.

We assume that interaction outcomes are binary, though in general various degrees of passing tests

could be considered. For instance, passing a test could be graded according to the similarity of the

actual and desired output, i.e., g(s, t) = |s(x)− y|. See also Section 5.5 for more details regarding

the interaction function employed in CoEAs and GP.

In the context of the current population P , the outcomes of interactions of all candidate solu-

tions in a given population S with all tests from T can be conveniently gathered in an interaction

matrix

G = [gij = g(si, tj) : si ∈ P, tj ∈ T]. (8.2.1)

For a population of m candidate solutions and a set T of n tests, G is an m× n matrix where gij

is the outcome of interaction between ith candidate solution s and jth test tj . When interaction

outcomes are binary, gij = [si(xj) = yj] ; otherwise, gij = |si(xj)− yj |.

Example 8.1. Consider a population of tree candidate solutions S = {s1, s2, s3} and a set of four

tests T = {t1, t2, t3, t4}. In order to evaluate candidate solutions, they have to interact with every

test in T . Assume that the outcomes of these interactions are as follows: s1 solves every test, s2

8.3. Searching for structure in interaction matrices 79

solves t1 and t2, while s3 solves t3 and t4. The interaction matrix G looks then as follows:

G =




t1 t2 t3 t4

s1 1 1 1 1

s2 1 1 0 0

s3 0 0 1 1


. (8.2.2)

The �tness (5.3.2) of a given candidate solution is the sum of the corresponding row of G. For

instance, fT (s1) = 4 and fT (s2) = 2. Notice that individual rows of G are in fact outcome vectors

(6.4.1) that characterize the behavior of a candidate solution. �

Even for relatively small population size m = |S| and a moderate number of tests n = |T |, the
m × n interaction matrix G may become quite large. However, the elements of G are routinely

computed almost in any �avor of EAs, as evidenced by (4.4.2) and (4.4.3).

An interaction matrix enables simultaneous access to outcome vectors of all candidate solutions

and is a convenient tool for capturing the diversity of behaviors in an evolving population. Crucially

for the following considerations, it allows to compare and contrast not only the behaviors of

candidate solutions, but also the characteristics of tests, which is one of the key ideas behind

the algorithms that derive search objectives. How exactly a search algorithm may bene�t from

scrutinizing interaction matrices will become clear in the following sections.

8.3 Searching for structure in interaction matrices

Evolutionary algorithms search the problem space by selecting individuals in such a way that better

individuals have higher chances of becoming a parent to the next generation. To perform selection

of candidate solutions in S, i.e., to determine a subset S′ ⊂ S of promising candidate solutions,

an evolutionary algorithm has to elicit (implicitly or explicitly) information from an interaction

matrix G.

The arguably simplest approach is to aggregate the outcomes of interactions over all tests

available in T (rows in G) and adopt the resulting quantity as solutions' �tness that governs the

ordinary selection stage (e.g., tournament selection). The advantage of this approach is that fT

is an estimator of expected utility, which is the most common external search objective, so an

algorithm is driven by a measure that is consistent with the ultimate goal of search. As discussed

in Chapter 6, scalar evaluation incurs information loss, and pairs of solutions that were originally

incomparable can receive similar, if not identical, evaluation. The latter case is particularly likely

if the underlying interaction function assumes only a few values, which is common in test-based

problems (where it is most often two-valued).

An interaction matrix, on the other hand, conveys more detailed information on the structure

of the current population � for instance, the distribution of �tness. It also reveals a great deal

about the characteristics of tests, not least about their di�culty. To some extent, this additional

information has been exploited in the past approaches, which we review in the following sections.

8.3.1 Implicit �tness sharing and related methods

Implicit �tness sharing (IFS) [331, 241, 240] was designed to make an evaluation function aware

of varying di�culty among the set of tests. Recall from Chapter 7 that test-based problems with

uniform distribution of test di�culty are rarely found in practice, as opposed to problems where

test di�culty varies considerably. The conventional evaluation function (6.1.1) is oblivious to that

fact and grants the same reward for solving every test in T . As argued in Section 6.4, this may

80 Automatic Discovery of Search Objectives

result in premature convergence, as evolutionary search is opportunistic, and the programs in

population tend to learn how to pass the easier tests �rst. In order to encourage a search process

to solve the more di�cult tests, it would be thus desirable to increase the rewards for solving

them. In theory, this could be achieved using the objective or subjective di�culty discussed in

Section 6.2, but estimating either of them requires running a sample of programs, and thus incurs

additional computational cost. IFS assesses the di�culty of particular tests based on the current

population and weighs the rewards granted for solving them. Given a set of tests T, the IFS �tness

of a candidate solution s in the context of a population S is de�ned as:

fIFS(s) =
∑

t∈T : g(s,t)=1

1

|S(t)| (8.3.1)

where S(t) is the subset of candidate solutions in S that solve test t, i.e.:

S(t) = {s ∈ S : g(s, t) = 1}.

IFS treats thus tests as limited resources: programs share the rewards for solving particular tests,

each of which can vary from 1
|P | to 1 inclusive. Higher rewards are provided for solving tests that

are rarely solved by population members (small S(t)), while importance of tests that are easy

(large S(t)) is diminished.

The assessed di�culties of tests change as S evolves, which can help escaping local optima.

Fitness sharing can be perceived as a simple form of coevolution, where individuals compete for

tests and their fate depends on the performance of other individuals (though there are no direct,

face-to-face interactions between individuals). From yet another perspective, �tness sharing is a

diversity maintenance technique: an individual that solves a low number of tests can still survive

if its competence is rare. In this way, IFS helps reducing premature convergence; it shares this

objective with explicit �tness sharing proposed in [115], where population diversity is enforced by

monitoring genotypic or phenotypic distances between individuals.

8.3.2 Pareto-coevolution

One could also resort to a more direct approach to perform selection based on interaction matrices,

by employing the dominance relation �G de�ned on G (6.2.1). This idea has been intensely used

in coevolutionary algorithms, where it gave rise to Pareto-coevolution [86, 257] that abandons

aggregation of interaction outcomes in favor of using each test as a separate objective. In this way,

Pareto-coevolution treats a test-based problem as a multi-objective optimization problem, with as

many objectives as there are tests in T . It compares candidate solutions with �G � an individual

s1 is preferred to individual s2 (s1 �G s2) if and only if it performs at least as good as s2 on all

objectives, and strictly better on at least one objective.

Fig. 8.1 illustrates an example of Pareto coevolution that involves three candidate solutions

and two tests. Tests t1 and t2 act as separate objectives, while candidate solutions s1, s2 and

s3 are embedded in the space spanned by these objectives, i.e., they are arranged according to

their performance on the tests. For instance, s2 solves both tests and therefore dominates s1 and

s3, which solve only one test each. Notice, however, that s1 and s3 are mutually non-dominated

because each of them solves a di�erent test.

The dominance relation de�ned on tests, despite relying on all available and undistorted in-

formation on interaction outcomes, is not without its own problems. The number of tests in a

test-based problem is typically large (recall, for instance, the number of tests in Tic-Tac-Toe dis-

cussed in Section 7.1). In consequence, the likelihood of a solution in S dominating any other is

8.3. Searching for structure in interaction matrices 81

t2

t1

s1

s2s3

0 1

1

Figure 8.1: An example of Pareto-coevolution, where aggregation of interaction outcomes is aban-
doned in favor of treating tests t1 and t2 as separate objectives, and candidate solutions are s1,
s2 and s3 are compared with dominance relation on tests. Candidate solution s2 dominates the
other solutions because it solves both tests, while s1 and s3 are mutually non-dominated since each
solves a test that the other fails.

rather low, and quickly approaches zero when the number of tests grows. Moreover, it becomes

even lower when the tests are diversi�ed, as that increases the chance that each of compared solu-

tions passes a test that the other solution fails. When the dominance relation becomes sparse in

this sense, many pairs of candidate solutions are incomparable, making it hard to elicit any useful

information that would e�ciently drive search.

In a more conventional evolutionary multi-objective optimization setting (i.e., when the objec-

tives are explicitly de�ned as a part of problem formulation), �G alone also fails to provide a useful

search gradient, and algorithms like NSGA-II [75] involved additional mechanisms to perform se-

lection. Nevertheless, even when equipped with such extensions, those algorithms are known to

perform well only if the number of objectives is low (typically no more than 3 or 4). Extensions

of NSGA-II such as NSGA-III [74] push this boundary, but still perform best if the number of

objectives does not exceed 10.

8.3.3 Coordinate systems

Given the limitations of the dominance relation discussed in previous section, it becomes natural

to ask whether the number of tests could be reduced, so that the dominance relation may be

e�ectively employed as means for selecting candidate solutions. This question has in�uenced a

substantial body of past research, leading to the hypothesis that originated in the DEMO lab

of Jordan Pollack, according to which many test-based problems can be characterized by some

form of internal structure. As an example, consider a game of chess, where candidate solutions

and tests embody di�erent game-playing strategies. In such a setting, candidate solutions could

be compared according to their tactics, skills in controlling speci�c pawns, and other aspects of

their play. Each such characteristics may be linked to a dimension along which the behavior of

candidates could be compared. Knowledge of the problem structure and its dimensions could be

used to provide more insight into the nature of test-based problems, and in consequence, to design

better algorithms.

Formally, internal structure of a problem consists of a space, often called the structure space,

and a function that maps candidate solutions and tests onto that space. The internal structure may

be then viewed as a projection of tests onto a smaller set of objectives, such that there exists a one-

to-one mapping between the interaction outcomes and the vector of objectives for a given candidate

solution. The axes spanning the structure space are often called the underlying objectives of a

problem. Crucially, such objectives guarantee to preserve all relevant relations between candidate

82 Automatic Discovery of Search Objectives

solutions and tests. The existence of an internal structure of a problem in practice is manifested by

the groups of tests that examine the same (or similar) aspect of candidate solutions' performance.

The presence of certain patterns in outcomes of interactions that determine behavior of candidate

solutions on tests is also a tangible sign of this structure.

The notion of underlying objectives was �rst introduced in the work on coevolution [35], where it

was empirically observed that, under certain circumstances, the tests in a coevolutionary algorithm

may identify the objectives that governed the evaluation of candidate solutions. A very similar

idea was later presented in the form of an ideal test set and dimension extracting coevolutionary

algorithm [70].

In an e�ort to make these notions precise, Bucci and de Jong proposed formal methods for

framing the internal structure of a problem as a coordinate system (CS) [35, 69]. A CS arranges

the candidate solutions with respect to axes, each of them being an ordering of tests. A candidate

solution is placed in a CS in such a way that it solves all tests below it and fails those directly above

it. Consequently, a candidate solution placed high on an axis is preferred to candidates that are

lower as it solves more tests associated with that axis. For this reason, an axis in CS is often said

to measure some aspect of candidate solutions' quality. If the outcomes of interactions between all

candidate solutions and all tests are known for a given test-based problem, a CS can be constructed

that exactly reproduces the original dominance relation �G, i.e., arranges the candidate solutions
so that their spatial relationships in the CS are consistent with �G. Interestingly, for every test-

based problem there exists a CS of minimal dimensionality [35], and that dimensionality may

re�ect problem di�culty.

Unfortunately, coordinate systems de�ned above are exact, which causes them to su�er from

several problems. Firstly, by exactly reproducing �G, a CS does not provide any additional

information that could help driving the search process, despite its ability to compress tests into

a lower number of objectives. In particular, if �G is sparse, i.e., few solutions dominate other

solutions and there are no grounds for preferring some solutions to the others, even in the space

induced by the underlying objectives. The second challenge is the exponential complexity of the

algorithms that construct an exact CS from an interaction matrix [144, 141]. In practical terms,

this means that a CS cannot be embedded in an algorithm for the bene�t of an evolutionary search

process. Also, an interaction matrix built from the current populations of candidate solutions and

tests is by de�nition incomplete (because S and T are only transient samples of S and T), so
applying a costly exact algorithm to such a matrix seems particularly wasteful. For these reasons,

a CS is an interesting tool for studying the internal structure of test-based problems, but it is not

necessarily useful as a means to broaden the evaluation bottleneck and, except for [69], no past

work reported using a CS to support a search process.

8.3.4 Other approaches

Other methods that reward solutions for having rare characteristics have been proposed as well. An

example is co-solvability [185] that focuses on individual's ability to properly handle pairs of �tness

cases, and as such can be considered a `second-order' IFS. Such pairs are treated as elementary

competences (skills) for which solutions can be awarded. Lasarczyk et al. [203] proposed a method

for selection of �tness cases based on a concept similar to co-solvability. The method maintains

a weighted graph that spans �tness cases, where the weight of an edge re�ects the historical

frequency of a pair of tests being solved simultaneously. Fitness cases are then selected based on

a sophisticated analysis of that graph.

8.4. Heuristic Discovery of Search Objectives 83

Last but not least, the relatively recent research on semantic GP [188] can be also seen as an

attempt to provide search process with richer information of programs' behavioral characteristics.

Similarly, pattern-guided GP and behavioral evaluation [192] clearly set similar goals.

8.3.5 Summary

Scalarization and dominance, both employed by most of the approaches reviewed in this section,

occupy two extremes in characterization of candidate solution's performance. While these ap-

proaches have their merits, both su�er from severe limitations � the former directly contributes

to the evaluation bottleneck and ignores the wealth of information o�ered by G, while the latter

results in solutions becoming incomparable when the number of tests is large (which is typically

the case in test-based problems). As a result, both fail to provide a useful search gradient in most

cases. These observations clearly call for alternative ways of scrutinizing interaction matrices and

leveraging individual interaction outcomes for deriving a computationally tractable multi-aspect

characterization of candidate solutions. One interesting possibility, which we explore in the pro-

posed framework for discovery of search objectives in the section that follows, is to combine the

advantages of the two approaches, i.e., to preserve some information on dominance while avoiding

aggregation of interaction outcomes into a single scalar value.

8.4 Heuristic Discovery of Search Objectives

8.4.1 Rationale

In the theory of optimization, the No Free Lunch Theorem [363] states that all learning algorithms

are expected to perform poorly over some problems. One of its implications is that, in order

to perform well, a search algorithm should be tailored to a given problem [364]. From another

perspective, this may be viewed as an argument for introducing certain bias into search methods,

and thus allowing a learning system to be shaped towards the salient features of a problem.

While this bias can take many forms, it is most often associated with some domain knowledge

implemented directly into an algorithm by a human expert to, e.g., set a reasonable starting point

for a search algorithm, or to restrict the search space. Douglas Lenat, a prominent researcher in

arti�cial intelligence, once said:

�All our experiments in AI research have led us to believe that for automatic program-

ming, the answer lies in knowledge, in adding a collection of expert rules which will

guide code synthesis and transformation [209].�

Even though Lenat refers explicitly to automatic programming, his claim generalizes to other

paradigms of computational intelligence, as evidenced by the work of other researchers [244, 279,

249]. The possibility of enhancing a learning process by some sort of heuristic knowledge, like the

above mentioned expert rules, has been pursued in the EC community for quite some time now,

and a vast body of past research has further built on this idea. One example are so-called helper

objectives [152] occasionally used in EC and typically designed and/or engaged manually (like,

e.g., program size in GP [25]; see also Section 8.6 for an in-depth review of related concepts).

In this thesis, however, we are driven by the prospect of automatic discovery of such knowledge.

To achieve that goal, the knowledge in question needs to be `distilled' from some source. Here, we

posit that such the interactions between candidate solutions and tests could form such a source,

i.e., that certain behavioral patterns in the outcomes of interactions between candidate solutions

and tests may be present that re�ect their skills and shed additional light on their characteristics.

Potentially useful behavioral patterns may for instance involve solving speci�c combinations of

84 Automatic Discovery of Search Objectives

tests or detecting co-occurrence of candidate solutions that have the same or similar outcome

vectors. In competitive environments, identifying such patterns may help discovering a diverse

and strong set of novel of opponents (tests), worth the computational e�ort of beating. There are

many other behaviors that can characterize both candidates and tests. Crucially, they tend to

be accurate indicators of prospective performance, because they reveal meaningful dependencies

between candidate solutions, tests and outcomes of their interactions. By making search algorithms

capable of detecting such behavioral patterns, we hope to promote behaviorally diverse candidate

solutions with the potential to perform well in the future, even if at the moment of evaluation they

appear inferior to other evolving candidate solutions.

To further motivate the rationale behind designing methods that search for patterns in be-

haviors that are relevant for a given test-based problem, let us brie�y consider the role pattern

recognition plays in biology. There are myriads of ways in which patterns manifest themselves in

nature, from the design of a spider's web to the spiral of a nautilus shell. Indeed, our world is

full of patterns. Think of how an incoming storm is predicted based on the patterns of warm and

cold fronts, where they originate, the directions in which they move and the climate conditions

they will confront. Detecting such patterns, rules and regularities in information is a hallmark of

natural intelligence. As a matter of fact, being able to recognize patterns is what ultimately gave

humans their evolutionary edge over animals. The father of arti�cial intelligence Marvin Minsky

was among the �rst to extensively explore the link between pattern recognition and human intel-

ligence in order to endow machines with human-like perception and intelligence [247]. His legacy

was later continued by his student Ray Kurzweil who claims that all learning results from massive,

hierarchical and recursive pattern recognition processes taking place in the brain [196]. As an

example, consider how humans learn to read � they recognize the patterns of individual letters

�rst, then the patterns of words, then the groups of words, and eventually gain the ability to read

whole paragraphs. Not only are patterns ubiquitous in nature and our life, but they bring along

both order and predictability necessary for intelligent behavior.

Clearly, evaluation in test-based problems has the potential of providing extensive information

on patterns in behaviors of candidate solutions. Our key observation is that useful behavioral

patterns, which we conceptualize in the following as search objectives, emerge in an interaction

matrix that characterizes an evolving population. By identifying these objectives, we hope to elicit

more information on candidate solutions and broaden so the evaluation bottleneck (cf. Section 6.1).

The framework we propose in the subsequent sections is intended to lay foundations for algorithms

that discover search objectives in a heuristic, computationally tractable manner. We posit that such

objectives can be discovered automatically, in a largely data-driven manner, and the information

acquired in this way can be used to perform a better-informed and directed search.

8.4.2 Search Objectives

In this section, we introduce the concept of search objective, a formal object designed to encapsulate

the problem objectives and guide a search process by creating a useful gradient toward better

quality solutions. It originates in the observation that evaluation in test-based problems results

in detailed information on behavior of candidate solutions (cf. Section 8.1). A search objective

aims at better exploitation of behavioral information in an interaction matrix G, and typically

examines only selected aspect(s) of candidate solution's characteristics. When embedded in a

work�ow of conventional EAs, search objectives facilitate design of alternative evaluation functions

that characterize candidate solutions in multidimensional way and thus help to avoid the harmful

consequences of evaluation bottleneck.

8.4. Heuristic Discovery of Search Objectives 85

To better understand this new concept, let us begin the discussion by formally de�ning search

objectives.

De�nition 8.2. A search objective for a test-based problem (S, T, g) is a function

d : Sm → Rm, (8.4.1)

that maps an m-tuple of candidate solutions from S to an m-tuple of their evaluations (scores),

where m is the size of population S. The mapping realized by d is based on interactions between

elements of S and a subset T ′ ⊆ T of tests that are performed using an interaction function g.

It follows from the above de�nition that a search objective is not obliged to meet all the

requirements commonly imposed on evaluation functions. In particular, evaluation of a candidate

solution s does not have to be independent of other elements of S. The signature given in (8.4.1)

allows a search objective to simultaneously evaluate an entire population of candidate solutions.

For this reason, it is convenient to think about a search objective d as a vector function

d = (h1, h2, . . . , hm), (8.4.2)

where hi : Sm → R is a component function that evaluates a candidate solution si based on its

performance on T ′, but also on the performance of candidate solutions s1, . . . , si−1, si+1, . . . , sm.

Accordingly, si may receive di�erent scores depending on the context of evaluation, i.e, the re-

maining elements of S that were passed as the argument to d. For convenience, we will sometimes

abuse the notation and write simply hdi (si) to denote the score assigned by the search objective d

to the ith candidate solution in the context of other members of S.

Despite being oriented at contextual evaluation, the above de�nition is su�ciently general to

embrace also a conventional, one-argument evaluation function f : S → R. Functions of this form
are commonly employed in EC and can be easily expressed as a context-free search objective

d(s1, . . . , sm) = (f(s1), . . . , f(sm)), (8.4.3)

where the scores assigned to candidates are independent of each other. For this reason, search

objectives can be seen as a superclass of conventional evaluation functions.

Example 8.3. Some tests in test-based problems tend to be easily solvable by most candidate

solutions, hence carrying little information regarding solutions' capabilities. In order to shift the

attention of a search algorithm to rarely solved yet possibly more important tests, a search objective

d could weigh the outcomes of interactions:

hdi (si) =
∑

j

wj(S)g(si, tj).

The parameters wj increase (or decrease) thus the signi�cance of the outcomes resulting from an

interaction with the jth test. Notice that wj depends on a whole population and a single test and

in this sense it corresponds to the entire column of G. In practical terms, wj could be de�ned

manually to, e.g., re�ect test di�culty, as in implicit �tness sharing (cf. Section 8.3.1), or it could

be discovered automatically (learned) by analyzing the entire G. �

In test-based problems, a conventional evaluation function typically depends on all tests in T

(see e.g. 4.4.2). The concept of search objective is largely driven by the observation that it is

not the number of tests, but the particular combination of them that may be critical for a search

algorithm to solve a test-based problem. For this reason, in De�nition 8.2, we relax the above

86 Automatic Discovery of Search Objectives

dependency and let a search objective operate on a subset of tests T ′ ⊆ T . As argued in Section

6.5, a candidate solutions' ability to solve T ′ can be likened to a skill. By corresponding to a

combination of tests, a search objective is naturally suited to capture such skills and provides the

opportunity to make search algorithms more aware about the di�erences in behavior of candidate

solutions.

Identifying and maintaining a diverse set of skills in an evolving population is desirable for yet

another reason. As discussed in Section 6.4, some nodes in a transition graph that enumerates

all possible combinations of test outcomes can only be accessed once a candidate solution has

certain skill(s), i.e., achieves a speci�c outcome vector that enables such a transition. A search

objective allows to explicitly probe for these skills, and in this sense it establishes a more �ne-

grained evaluation that potentially leads to �nding candidate solutions with unique and relevant

characteristics. Such candidates may not be the best in terms of objective quality, but instead

they may act as the stepping stones that ultimately lead to the optimal solution.

Due to relying only on a handful of tests, a single search objective cannot be expected to

work particularly well in isolation. However, as search objectives may re�ect di�erent qualities of

candidate solutions, it is natural to use many of them. Driving evolution using multiple search

objectives that are `weak' in the above sense can actually be much more e�cient; consider for

instance ensembles of machine learning classi�ers, where multiple weak learners are pooled together

(via boosting [315], bagging [32], etc.) to create a `strong' ensemble classi�er.

Let us also note that search objectives are not limited to evaluating candidate solutions on

subsets of tests. They may, for instance, depend exclusively on outcomes of candidate solutions'

interactions with individual tests in T , i.e.,

d(s1, . . . , sm) = (g(s1, t), . . . , g(sm, t)), (8.4.4)

as in the dominance relation de�ned on tests (6.2.1).

Example 8.4. Consider a population of tree candidate solutions S = {s1, s2, s3} and a set of four

tests T = {t1, t2, t3, t4}. The interaction matrix G that gathers outcomes of interactions between

S and T is given below:

G =




t1 t2 t3 t4

s1 1 1 1 0

s2 1 1 0 0

s3 1 0 1 1


. (8.4.5)

The conventional evaluation function fT (5.3.2) applied to population S produces fT (s1) = 3,

fT (s2) = 2, and fT (s3) = 3 as the corresponding evaluations. Candidate solutions s1 and s3 solve

the same number of tests and are thus indiscernible by fT . Notice, however, that s3 has the unique

behavior compared to other members of S, i.e., it is the only candidate that solves tests t3 and

t4. In order to take advantage of this observation, a search objective d could evaluate candidate

solutions using only t3 and t4 and return the sum of corresponding interaction outcomes only on

those two tests:

d(s1, s2, s3) = (1, 0, 2).

According to d, s3 is now the most desirable candidate solution. By not being bound to all tests,

search objectives promote candidate solutions that would otherwise have little chances of surviving

selection. Maintaining a skill to solve t3 and t4 in the population may pay o� in the long run; an

ideal candidate solution could be produced by e.g. a crossover operator that exchanges information

between s1 and s3. �

8.4. Heuristic Discovery of Search Objectives 87

In the context of the above example, let us also note that the absolute values returned by a

search objective do not actually matter. From the perspective of order-based selection operators

such as tournament selection, it is entirely su�cient to make qualitative comparisons: only the

order of candidate solutions is relevant during selection. In consequence, the values returned by d

could be arbitrary as long as the order s2 � s1 � s3 is maintained, where � is a preference relation

such that a � b means that b is more desirable that a (cf. Section 5.3).

Let us also note that the spectrum of possible search objectives is by no means exhausted by

the examples demonstrated in this section. As indicated by (8.4.1), search objectives represent a

large class of functions that are capable of expressing virtually any real-valued evaluation function

used in the past studies on test-based problems.

It follows from our considerations, that in contrast to conventional evaluation functions, search

objectives are not required to objectively assess candidate solutions in the context of given problem.

Rather than that, they may be perceived as an elementary source of information, re�ecting only

selected characteristics of candidate solutions. In this sense, a search objective can be thought

of as de�ning certain features of a solution that are meant to guide search by creating a useful

gradient toward better performing solutions. This perspective is particularly important given the

iterative nature of evolutionary search process, where it is desirable to promote evolvable candidate

solutions that lend themselves to further development by means of variation operators.

The de�nition of search objective in (8.4.1) is essentially agnostic about a particular instance of

test-based problem. By not being bound to any speci�c problem or task, search objectives are to

promote problem-independent behavioral characteristics of candidate solutions that emerge from

interaction matrices. This observations brings us to the question of how to derive such objectives,

which we purse in the following section.

8.4.3 Deriving Search Objectives

Search objectives o�er an alternative means of driving search algorithms, however they are not

to be designed explicitly by humans. The key component of the proposed framework are thus

algorithms that automatically discover search objectives by analyzing an interaction matrix G.

Let us brie�y recall at this point that for a population of m candidate solutions and n tests, G

is an m × n matrix with elements corresponding to outcomes of interactions between particular

elements of S and T . Formally, discovery of search objectives involves transformation of m × n
matrix G into m× k matrix G′1, i.e.

u(G) = G′, (8.4.6)

where u is an algorithm responsible for mapping of G into G′, and k determines the number of

search objectives to be derived from G. In the following, we often refer to the process imple-

mented by u as derivation of search objectives. The terms `discovery' and `derivation' will be used

interchangeably.

As argued in Section 8.3, test-based problems are characterized by an internal structure that

implicitly de�nes several dimensions along which the behavior of candidate solutions can be com-

pared. The existence of this structure is also re�ected in G as indicated by groups of tests that

examine the same skill of solution's performance as well as the presence of behavioral patterns that

can be observed in outcomes of their interactions with tests. The role of u is thus to heuristically

discover and express this structure (or more precisely the information it conveys) in the matrix G′

that results from applying u to G.

1To simplify notation, we use the same symbols G and G' to denote the interaction matrices and the associated
spaces of objectives.

88 Automatic Discovery of Search Objectives

The interpretation of rows in G′ remains unchanged, i.e., each row coincides with a member

of population S. The columns of G′, on the other hand, de�ne k derived search objectives that

provide alternative characterization of candidate solutions in S in the context of their behavior on

tests in T . The value of jth derived objective for a candidate solution si corresponding to the ith

row of the derived interaction matrix G′ amounts to

hji (si) = g′i,j , (8.4.7)

where g′ij ∈ G′. The elements of G′ are required to be non-negative continuous values that are to be

maximized. Notice that by this token g′ijs already provide more �ne-grained evaluation compared

to binary information on either passing or failing a test o�ered by an interaction function g.

Recall from our discussion in Section 8.3.5 that scalarization and dominance can be seen as

two extremes in characterization of candidate solution's performance. With search objectives, we

hope to explore the middle ground between the two, and for this reason, we typically aim for k to

be much smaller than n.

In order to derive search objectives, u employs knowledge discovery algorithms to `datamine'

an interaction matrix. In other words, the entire process relies heavily on inclusion of learning in

order �nd the links between candidate solutions and tests based on their behavioral characteristics.

Since there is no supervised signal that would guide the derivation process, the set of learning data

experienced by u consists merely of observations (outcomes of interactions) describing candidate

solutions and tests (rows and columns of G). Discovery of search objectives is therefore the task

of unsupervised learning, where the objective is to explain the key features of G and model its

underlying structure. More precisely, the goal of u is to �nd such a representation of interaction

outcomes that enables multi-objective selection of candidate solutions and, at the same time,

preserves as much information about G as possible.

Let us now discuss, how derivation of search objectives can be embedded in the work�ow of

algorithms solving a test-based problem (S, T , g). In essence, evolutionary metaheuristics like

CoEAs (cf. Chapter 3) and GP (cf. Chapter 4) search for an ideal candidate solution by repeating

the cycle of evaluation, selection and variation (cf. 2.1):

· · · v−→ Si × Ti g−→ Gi
v−−→
fT

Si+1 × Ti+1
g−→ . . . , (8.4.8)

where Si ⊂ S is the population of candidate solutions and Ti ⊆ T is the set of tests in the

ith iteration of search. The interaction function g applied to all pairs from S × T produces an

interaction matrix Gi that forms the basis for evaluating candidate solutions (e.g by means of

scalarization as in Eq. 6.1.1). Next, a selection operator uses the outcomes of evaluation phase

in order to select the parent solutions for the next generation (i + 1). New populations Si+1 and

Ti+1 are then created with evolutionary search operators, and the cycle repeats. For simplicity,

in (8.4.8), we combine selection and variation together as a single operation v. Also, because Ti

changes with time, the above cycle summarizes the operation of conventional CoEA applied to a

test-based problem. If we make an additional assumption that the set of test does not change with

time, i.e., Ti is held constant in all iterations of search, (8.4.8) implements a broad class of EAs.

To enhance the evolutionary metaheuristics with the capability to discover search objectives,

formula (8.4.8) can be extended by introducing an additional step that involves mapping of the

outcomes of interactions in G to the space of derived search objectives G′:

· · · v−→ Si × Ti g−→ Gi
u−→ G′i

v−−−−−→
d1,...,dk

Si+1 × Ti+1
g−→ . . . (8.4.9)

The objectives d1, . . . , dk derived by u replace the conventional evaluation function fT and form

a multi-aspect characterization of candidate solutions in Si that serves as a basis for selecting

8.4. Heuristic Discovery of Search Objectives 89

Discovery of search
objectives

Heuristic
Dominance relation may

be distorted

Coordinate Systems
Infeasible for enhancing

evolutionary search

Discovery by Clustering
 Similar tests are grouped to

derive objectives
Chapter 9

Discovery by Factorization
Uses matrix factorization to

derive objectives from G
Chapter 10

Algorithms that employ search objectives to broaden
the evaluation bottleneck

Exact
Dominance relation is

perfectly preserved

Covering
Tests support

multiple objectives

Complete
All interaction outcomes

are available

Partial
Interaction matrix is

sparse

Surrogate Fitness via Factorization
of Interaction Matrix

Predicts the missing outcomes in G
Chapter 12

Partitioning
Mutually exclusive subsets

of tests form objectives

Figure 8.2: The taxonomy of the methods that process an interaction matrix to derive search
objectives.

the most promising individuals from S using v. The most commonly used selection operators

in EC such as the tournament selection may not readily support evaluation that is not scalar.

Rather than adjusting single-objective techniques or devising ad-hoc algorithms for this purpose,

it is natural to employ here methods that are inherently multi-objective (e.g. NSGA-II [75]). We

discuss this and other possibles of selection under search objectives in Section 8.5.

8.4.4 Taxonomy

To systematize the conceptual approaches to discovery of search objectives and guide our further

considerations regarding their properties, we propose the taxonomy shown in Fig. 8.2. The topmost

aspect concerns the completeness and precision of the process, i.e. whether u implements an exact

or a heuristic approach to derivation of search objectives. Exact methods perfectly preserve the

dominance relation in G and are mostly concerned with �nding the underlying objectives of a

problem (cf. Section 8.3.3), and therefore can be computationally expensive and not necessarily

useful as means to drive the search. Heuristic methods that represent the other branch in Fig.

8.2 are more appropriate given the iterative nature of evolutionary search and our desire to derive

objectives online, i.e. in parallel to the ongoing search/optimization process. Heuristic algorithms

are allowed to distort the original dominance structure in the interaction matrix G. Though this

can be considered a downside at �rst sight, note that even the information in G (which we consider

here the primary source of information) does not fully characterize candidate solutions, because

of the limited number of tests in T . In other words, it may not make sense to strive to perfectly

preserve the information in G, given that that information is anyway incomplete. Moreover, this

inconsistency provides us with critical advantages: the resulting dominance relation in G′ is more

dense and thus likely to impose a reasonably strong search gradient on an evolving population.

90 Automatic Discovery of Search Objectives

Another interesting property of u is its capability to merge several tests into a new derived

search objective. In a simplest case, it may be seen as partitioning of G into mutually exclusive

subsets of tests. In such a case, each test is used exactly once and any pair of original objectives

that are mutually redundant (i.e., identical columns in G) are guaranteed to be included in the

same derived objective. An example of method that partitions G is Discovery of Objectives by

Clustering (cf. Chapter 9) that groups similar tests together with the goal of exploiting these

similarities to �nd a low number of search objectives that characterize candidate solutions in a

current population. Otherwise, when the same test may support multiple objectives, u is said to

cover G. Such a design is more versatile as it allows detecting patterns that overlap columns in

G. This allows u to reuse pieces of the interaction matrix for the purpose of deriving multiple

objectives. Discovery of Objectives by Factorization, introduced in Chapter 10, is an example of

algorithm that implements this approach.

Interestingly, methods that cover G are not required to process every single interaction outcome

in G, which opens the door to discovery of search objectives even when G is only partially known

(i.e., sparse). Consider for instance problems with an in�nite or very large number of tests. Many

control problems belong to this category. Even in the discrete domains like Arti�cial Ant (cf.

Section 4.2) or Density Classi�cation Task (cf. Section 5.4.4), the numbers of possible environments

(or initial conditions) are often astronomical, not mentioning the continuous domain with problems

like inverted pendulum. In such problems, tests (environments) can be generated on demand, and

the interaction function performs candidate solution's simulation in an environment and is thus

computationally costly. Capability of u to derive search objectives that guide evolution in such

conditions can be invaluable. The most obvious way of implementing u when G is sparse is to

de�ne objectives using only the available interaction outcomes. Surrogate Fitness via Factorization

of Interaction Matrix (cf. Chapter 12) is to a large extent inspired by these observations.

8.4.5 Desired properties

Considering stochastic and iterative nature of evolutionary search, other desirable properties of u

involve invariance with respect to:

(i) permutations of rows and columns in G,

(ii) occurrence of multiple copies of candidate solutions and tests in S and T , and

(iii) basic algebraic operations on matrices including scaling (scalar multiplication) and transla-

tion (scalar addition).

These properties are also particularly important from the technical perspective. Depending on the

�avor of EA, a population of candidate solutions and/or tests is typically implemented as either a

set or a list. In the former case, the order of rows and columns in G is unde�ned and may change

(permute) in each iteration of search. In the latter, despite the �xed ordering of elements in lists,

there is a risk of introducing duplicates to either population via variation operators. This may

potentially lead to many duplicate rows and/or columns in G, hence (i) and (ii) should always

be satis�ed. At certain point of our discourse the encoding of interaction outcomes becomes

particularly important. For this reason, we also wish to guarantee insensitivity of u to scaling and

translation (iii) of its elements.

Figure 8.3 illustrates how an interaction matrix G is subject to translation (Fig. 8.3a), duplica-

tion of columns (Fig. 8.3b), and permutation of rows and columns (Fig. 8.3c) before the objectives

are derived with u. Ideally, u should guarantee that none of these operations a�ect G′. Recall

that search objectives provide evaluation of candidate solutions and help a selection algorithm

8.5. Selection under search objectives 91

0
BB@

t1 t2 t3 t4 t5

s1 1 0 1 1 1
s2 0 1 1 1 1
s3 1 1 0 1 0
s4 1 1 0 0 1

1
CCA

0
BB@

t1 t3 t2 t4 t5
s1 1 1 0 1 1
s2 0 1 1 1 1
s4 1 0 1 0 1
s3 1 0 1 1 0

1
CCA

0
BB@

t1 t2 t3 t4 t5 t6

s1 1 0 1 1 1 1
s2 0 1 1 1 1 1
s3 1 1 0 1 0 0
s4 1 1 0 0 1 1

1
CCA

0
BB@

t1 t2 t3 t4 t5

s1 2 1 2 2 2
s2 1 2 2 2 2
s3 2 2 1 2 1
s4 2 2 1 1 2

1
CCA

u
G0

s1 s2

s3 s4

a) scaling / translation

b) duplicate rows / columns

c) permutation of rows / columns

partial orderinteraction matrix G

Figure 8.3: Graphical illustration of three desired properties that characterize derivation of search
objectives. Matrix G′ produced as the outcome of derivation process should maintain the same
partial order of candidate solutions regardless of scaling/translation (a), presence of duplicate rows
and/or columns (b), and permutation of rows and/or columns in G.

to appoint the best candidate solution within the sample drawn from a population (notice that

a given act of selection typically operates only on a subset of individuals rather than the entire

population). As mentioned in Section 8.4.2, the absolute values typically do not matter as selec-

tion needs only qualitative, ordinal feedback in the form of partial or complete order of candidate

solutions. This implies that it is su�cient to require that the order induced by u does not change

whenever G is subject to simple transformations discussed earlier.

8.5 Selection under search objectives

From the perspective of selection in evolutionary metaheuristics, the goal of evaluation function

is to provide feedback regarding candidate solution's prospective odds of survival. Evaluation

therefore serves as the basis for selection operators that decide whether to apply search operators

to an individual, or whether to replace or keep it in the population. The framework for discovery

of search objectives is designed with a similar goal in mind, however it aims at better exploitation

of behavioral information for the sake of improving the communication between evaluation and

selection and making the latter aware of subtle di�erences among candidate solutions. We achieve

this is by deriving search objectives from G and characterizing candidate solutions with respect to

multiple such objectives. By doing so, we turn a single-objective test-based problem into a multi-

objective one. Nevertheless, most of the conventional selection techniques in EC (e.g., tournament

selection) are inherently single-objective and cannot be used to appoint the best candidate solution

when multiple search objectives are used simultaneously to drive search. In the following, we discuss

several alternative means to that end.

92 Automatic Discovery of Search Objectives

8.5.1 Aggregation

The simplest method of dealing with multiple search objectives is to aggregate them into a single,

parameterized evaluation function. This approach is commonly employed in the �eld of decision

making [302], but in EC the parameters of such a function, rather than being set manually (e.g.,

by a decision maker), are sometimes varied during search. The representatives of this class of

techniques typically rely on the weighting method [118, 139]. In consequence, candidate solutions

are assessed using a particular weight combination (either encoded directly in the candidate or

chosen randomly) and all members of the population are evaluated by essentially a di�erent objec-

tive function. On the positive side, this leads to simultaneous optimization in multiple directions

towards Pareto-optimal front. The potential disadvantage involves a tendency to optimize only

the easiest objectives and/or biasing search in a way that favors only convex portions of the front,

limiting thus the e�ectiveness of such algorithms [349].

Since the codomain of search objectives is typically de�ned on a metric scale, the above approach

can be streamlined even further by simply merging search objectives into scalar evaluation using,

for instance, arithmetic averaging. Another interesting possibility is to employ the geometric

mean, which is equivalent to the concept of hypervolume in multi-objective optimization. More

speci�cally, the hypervolume of candidate solution's performance given by the k search objectives

d1, . . . , dk can be characterized as

hvol(s) =

k∏

i=1

di(s).

The key property of hypervolume is that it increases as the scores on dis become more balanced.

As we showed in [186], this particular form of aggregation proves to be particularly useful in

the context of achieving balanced performance on all search objectives simultaneously. As an

example, consider two candidate solutions s1 and s2 with the same sum of scores on all objectives,

i.e.,
∑
i di(s1) =

∑
i di(s2). Assume further that the scores of s1 vary, while those of s2 are all

equal, i.e., di(s2) =
∑
i di(s2)/k. In such a case, hvol(s2) > hvol(s1).

Scalar aggregation is without doubt a convenient and straightforward approach to handling

multiple search objectives. On one hand, it opens the door to employing conventional selection

algorithms, but on the other, it signi�cantly increases the risk of evaluation bottleneck (cf. Sec-

tion 6.1). For this reason, we focus in the following on dedicated multi-objective selection methods.

8.5.2 Switching objectives

Alternative approach to combining the search objectives into a single scalar value is to select

candidate solutions according to only one of the k objectives at a time. In essence, this boils

down to parallel `single-objective' search where each selection event is potentially driven by a

di�erent search objective. This idea was for instance implemented by Scha�er [314, 313] in vector-

evaluated genetic algorithm, where a fraction 1/k of each new population is selected using distinct

objectives. Fourman [102] proposed a selection scheme in which candidate solutions participate

in binary tournaments, randomly choosing one objective to elect a winner of each tournament.

These ideas can be further extended, for instance by assigning a probability to each objective that

determines the frequency of choosing that objective as a selection criterion during evolution. These

probabilities can be either predetermined by the user, chosen randomly, or allowed to evolve with

the population [195]. Nevertheless, it has been shown that whenever a fraction of the next parent

population is selected using one of the k objectives, there is potential risk of biasing search towards

`mediocre' individuals (i.e. those solutions that do not excel at any particular objective) [299].

8.5. Selection under search objectives 93

Algorithm 5 Lexicase selection.

Input: Population S and set of tests T .
Output: The selected individual.

1. Let S′ ← S and T ′ ← T .

2. Draw at random an objective t ∈ T ′.

3. Set S′ ← S′ ∩ ct(S′) and T ′ ← T ′ \ {t}.

4. If |S′| > 1 and |T ′| > 1 go to step 2.

5. If |S′| = 1, return the only element of S′; otherwise return a randomly selected element in
S′.

The bottom line of switching search objectives during evolution is that these objectives tend

to act as stepping stones towards the given solution concept. As a result, the evolutionary search

may follow more advantageous paths (compared to following just one objective) in the space of

candidate solutions and should, in principle, be more likely to �nd the ideal solution. Despite

its appeal, probably the biggest limitation of applying this method in practice is the assumption

that a switching criteria which determines when to switch to the next objective has to be de�ned

manually be the experimenter.

8.5.3 Lexicographic ordering and lexicase selection

In order to avoid explicit aggregation, one may also resort to lexicographic approach that provides

a total ordering of all candidate solutions without assigning scalar �tness values. In this approach,

candidate solutions are ranked by considering each objective in a predetermined order, typically

from the most to the least important. In each selection event, two (or possibly more) randomly

chosen candidate solutions are �rst compared on the most important objective. If one of them

has superior performance, it is selected. If there is a tie, then the second objective with respect to

importance is considered, and so, on until one candidate proves strictly better than the other. In

the case that does not happen, a candidate solution is chosen randomly.

Lexicographic ordering has been successfully applied to, for instance, compare individuals under

tournament selection in a GA [102]. Another interesting application is by Luke [231], who proposed

a straightforward lexicographic parsimony pressure, a multi-objective technique for optimizing both

�tness and tree size in GP, by treating �tness as the primary objective and tree size as a secondary

objective in a lexicographic ordering.

The lexicographic ordering technique is only useful when the importance of each objective is

clearly known a priori. This assumption is actually not always met in practice, as it requires a

domain-speci�c knowledge that enables such an ordering. Since lexicographic ordering imposes a

total ordering on the space of candidate solutions, it is only appropriate for rank-based selection.

Moreover, its applicability is further limited to discrete and coarse-grained objectives. Otherwise,

when the objectives are real-valued, it has the tendency to focus almost entirely on the �rst ob-

jective, because candidate solutions will typically have distinct evaluations. This in turn leaves

the remaining objectives with hardly any impact on selection. The primary advantages of lexico-

graphic approach include its simplicity and computational e�ciency, which makes it competitive

with other non-Pareto methods such as the weighted sum of objectives discussed earlier.

Recently, Spector proposed a selection technique based on lexicographic ordering of objectives

called lexicase selection [333, 127]. A single act of applying lexicase selection to a given population

94 Automatic Discovery of Search Objectives

S under the objectives O proceeds as in Algorithm 5. In each parent selection event, lexicase

selection starts by adding all candidate solutions to the selection pool and randomly shu�ing

the order of test cases. It then proceeds by removing candidate solutions in the selection pool

that do not satisfy a pass condition ct on the �rst test case t. In its original de�nition, ct �lters

all candidate solutions with worse performance than the best performance on the current test t.

If more than one candidate solution remains in the pool, the �rst test case is removed and the

procedure is repeated for the next test case until only one candidate solution remains and becomes

a parent, or all test cases are used. In such a case, a parent is chosen randomly from the remaining

candidate solutions in the pool.

Notice that the entire process is very similar to lexicographic ordering, the main di�erence being

that the adopted ordering of objectives is random and drawn independently in every selection act.

This helps avoiding overfocusing on some objectives and diversi�es the population. In addition

to rewarding the candidate solutions for the best performance on individual objectives, lexicase

selection promotes diversi�ed candidates that are clearly superior on a randomly selected subset

of objectives. An individual that performs well on objective(s) that are di�cult for its competitors

has substantial chance to propagate to the next generation even if it performs poorly on many

other objectives. For instance, if a single candidate solution alone has the best performance for a

particular objective, then it will be selected whenever that objective comes up �rst in the random

ordering, regardless of its performance on other objectives.

Lexicase selection proved to be particularly e�cient for so-called uncompromising problems,

where it is not acceptable for a solution to perform sub-optimally on any objective in exchange for

good performance on other objectives [129, 128]. In our studies, we have shown that, in order to

improve search performance compared to more conventional selection operators, lexicase selection

requires substantial number of objectives to work with; when applied to a moderate number of

objectives, its diversi�cation capability and performance deteriorate [218].

8.5.4 Multi-objective selection

Multi-objective evolutionary algorithms (MOEAs, [56, 73]) have become increasingly popular for

handling problems with multiple objectives. To a large extent, MOEAs share the same conceptual

underpinnings as traditional EAs. The presence of multiple objectives requires however special

handling of candidate solutions by a selection operator. Usually, these operators take into account

the concept of Pareto optimality and employ the dominance relation (cf. Section 2.2) to rank

the individuals in a manner such that the non-dominated individuals have a higher probability of

being selected. However, the Pareto dominance only de�nes a partial order in the objective space,

and in consequence, not all candidate solutions can be compared to each other (or, more precisely,

the result of their comparison is inconclusive). One way to deal with this limitation is map that

partial order to a complete order by partitioning a population into several non-domination classes.

Candidate solutions are then ranked based on class membership; those in the same class have

equal rank and solutions with a lower rank are preferred. To di�erentiate the individuals within

a class, they are assigned a parameter called density, which is intended as a diversity preserving

mechanism. A complete order ≺c is then de�ned as follows:

x ≺c y ⇐⇒ (xrank < yrank) ∨ (xrank = yrank ∧ xdensity < ydensity).

The above approach is implemented by, among others, the Non-dominated Selection Genetic Al-

gorithm (NSGA-II, [75]). In order to select candidate solutions for the next generation, NSGA-II

employs a tournament selection on Pareto ranks. As a density measure, it uses crowding that

8.6. Related concepts 95

o2

o1

Rank 1Rank 2

Rank 3

Rank 4

Rank 5

s1

s2

s3

s4

q6

s0

q7

q8

q9

q5

s0

q6

s2 q9

q7

s1

s4s3

q8

q5

s0

q6

s2 q9

s1

Si

Qi

Si+1F1

F2

F3

F4

F5

Rejected

Non-dominated Crowding distance
sorting sorting

(b)(a)

Figure 8.4: (a) Schematic representation of the NSGA-II selection procedure (b) Pareto ranks.

rewards the individuals with unique and less common scores on search objectives. The method

also uses an elitist principle, i.e., it selects from the combined population of parents and o�spring,

rather than from parents only.

The greatest emphasis is however put on the non-dominated solutions. To illustrate this, in

Fig. 8.4, we demonstrate how NSGA-II selects candidate solutions at ith generation. In the

�rst step, the population of candidate solutions Si and the population of their o�spring Qi are

combined together to form the selection pool Ri. Next, Ri is partitioned into di�erent Pareto

non-dominated fronts (Pareto fronts) which are then used to �ll the new population Si+1, one at

a time, staring with the �rst Pareto front F1. The candidate solutions from the subsequent fronts

are then added to Si+1 until all available slots in the new population have been accommodated

(so that its cardinality is the same as the cardinality of the previous population). Usually, the

candidate solutions from the last considered front cannot all �t into Si+1, in which case they are

sorted according to the crowding distance in the descending order, and the requested number of

top individuals from the ordered list are selected.

NSGA-II uses Pareto dominance to assign rank values to candidate solutions, but there are

other possibilities, like for instance domination count [100] and domination strength [369]. There

is also a variety of density estimation methods that can be used for diversity promotion. The most

commonly used approaches include niching and �tness sharing [100], K-nearest-neighbors [370],

and ε-domination [167]. In recent years, methods based on fuzzy domination [269] have also been

proposed. For more details regarding these and other techniques, we refer the reader to the works

of Coello and Deb [56, 73].

8.6 Related concepts

In this section, we discuss several concepts in computational intelligence and machine learning that

are to some extent related to the framework of search objectives proposed here.

In EC, the idea of searching for alternative means of characterizing candidate solution's perfor-

mance is related to surrogate �tness functions. Also known as surrogate models, approximate �tness

functions, and response surfaces [153], surrogate �tness functions provide a computationally cheap

approximation of the original objective function and are thus particularly helpful in domains where,

e.g., evaluation involves simulating candidate solutions in some environment/context. While engi-

neered manually in the past, the availability of a multitude of probabilistic modeling and machine

learning techniques made the design of surrogate models much easier nowadays, and they are now

96 Automatic Discovery of Search Objectives

commonly built by learning from samples of evaluations. They are particularly popular in con-

tinuous optimization, where they can be conveniently implemented using polynomials, Gaussian

processes, or arti�cial neural networks. Occasionally, surrogate models have been also used in GP.

For instance, in [131], Hildebrandt and Branke proposed a surrogate �tness for GP applied to

job-shop scheduling problems. A metric was de�ned that re�ected the way in which the programs

ranked the jobs; when evaluating an individual, the metric was used to locate its closest neighbor

in a database of historical candidate solutions, and that neighbor's �tness was used as a surrogate.

Despite conceptual similarities between the notion of search objectives and surrogate �tness

functions, there are some key di�erences that clearly di�erentiate both concepts. First of all,

surrogate-assisted evolutionary search is mainly motivated by the need to reduce computational

time in optimization of expensive problems. For this reason, surrogate �tness functions are ex-

pected to closely approximate the original objective function. By contrast, the idea of search

objectives stems mainly from the observation that an objective function may not provide a suit-

able gradient for the search, particularly under the MEU solution concept. Secondly, a surrogate

�tness function, once integrated with an evolutionary search technique, is typically static and does

not change in the course of optimization. The framework of search objectives is on the other hand

dynamic, allowing the objectives to change with time and adapt to the current state of search

process. Finally, surrogates are typically applied to optimization problems, while the framework

for discovery of search objectives, as clearly indicated by the name, focuses on search problems.

One of the highlights of the framework proposed here is its ability to recast a single-objective

problem as a multi-objective one. First attempts of performing such a decomposition date back

to 1993, when Louis and Rawlins [223] demonstrated that certain deceptive problems could be

solved more easily using EAs equipped with a Pareto-based selection. This methodology was later

re�ned by Knowles in [168] and termed multiobjectivization. The essence of multiobjectivization is

to decompose the problem by introducing additional objectives that convey some problem-speci�c

knowledge. The authors demonstrate that such decomposition tends to eliminate some of the local

optima in the �tness landscape and thus makes search algorithms more e�cient. Our framework for

discovery of search objectives diverges from the concept of multiobjectivization in how these extra

objectives are derived and used to guide search. In [168], the objectives are hand-crafted, which

usually requires substantial domain knowledge, whereas in our framework search objectives are

derived automatically, as we will illustrate in Chapters 9 and 10. Furthermore, the decomposition

via multiobjectivization is an one-o� process, which implies that the objectives cannot change with

time (as in the case of surrogate-assisted evolutionary optimization). With our framework, we put

emphasis on changing the objectives dynamically.

As we have already discussed earlier, deriving search objectives transforms a single-objective

test-based problem into a multi-objective one. On the other hand, if we consider every test as an

`elementary' objective, our framework can be seen as a method that transforms a many-objective

problem into a multi-objective one. The recent interest in such transformation techniques [33, 222,

328] is justi�ed by the inferior performance of some multi-objective evolutionary algorithms when

more than three objectives are involved [162, 166]. Such objective reduction approaches assume

the existence of redundant objectives in a given M -objective problem and aim at identifying the

smaller (or smallest) set of m (m ≤ M) con�icting objectives which generates approximately

the same Pareto-optimal front as the original problem. They can be categorized into dominance

structure-based and correlation-based approaches. In the former case, the redundant objectives

are removed [33]; in the latter, the elimination concerns objectives that are non-con�icting, e.g.,

along the signi�cant eigenvectors of the matrix of correlations between the original objectives [312].

8.6. Related concepts 97

The idea of augmenting a single-objective optimization method with some additional objectives

has also surfaced in EC in the form of helper objectives [152] that are used along the original objec-

tive function (termed primary objective in this context) in a multi-objective setting. The concept

of helper objectives is closely related to that of multiobjectivization in employing additional, hand-

crafted objectives to guide the search. Helper-objectives are typically chosen in a way that helps

to avoid local optima, maintains diversity in a population of candidate solutions, and/or supports

the recognition of good building blocks (pieces of candidate solutions that positively contribute to

its evaluation) that can be exploited by crossover operator. According to Jensen, helper-objectives

should ideally remain orthogonal with the primary objective and re�ect some aspect of the prob-

lem which is expected to prove helpful during the search. For example, in job-shop scheduling,

helper objectives could be designed to re�ect the �ow-times of individual jobs [220]. This sort of

consideration requires however deep immersion in problem domain.

The usage of multiple search objectives can be seen as a means for rewarding candidate solutions

for being `original' in their capabilities. This motif has emerged in several works in the past, some

of which we already discussed in Section 8.3.1. Another interesting contribution with similar

motivations is novelty search [208, 254], where a measure of behavioral similarity substitutes for

the traditional objective function. The measure is used to reward the individuals who di�er

signi�cantly from the other individuals in the population and from selected past individuals stored

in an archive. Novelty promotes the emergence and coexistence of di�erent skills in a population,

and can be seen as an analog to curiosity and intrinsic motivation in reinforcement learning

and developmental robotics [160, 265]. In practice, it must be combined with a `complexifying'

algorithm like NEAT, which takes care of the order in which behaviors are discovered [208], usually

stimulating the candidate solution to discover the simple behaviors before the more complex ones.

The idea of dynamically selecting and switching objectives during evolution is closely related to

the concept of incremental evolution [116]. In this approach, candidate solutions are evolved incre-

mentally by tackling a succession of related subtasks. These subtasks implicitly de�ne evaluation

functions to be used at a particular stage of evolution. There is therefore a clear relation between

subtasks and search objectives, as both provide alternative means to guide a search algorithm. The

concept of incremental evolution has been extensively applied in the �eld of evolutionary robotics

[347, 26]. A particularly interesting piece of work in that area is by Harvey [122], who trained

robots to distinguish and move towards either triangular and rectangular objects. Noteworthy, the

robots learned three subtasks: recognition, pursuit and discrimination between the two geometric

shapes.

In coevolutionary algorithms, the closest counterpart of search objectives are coordinate sys-

tems (cf. Section 8.3.3). Recall that the dominance relation induced by derived search objectives

does not have to be consistent with the original dominance relation de�ned on G, but instead it is

required to create a useful search gradient. Coordinate systems were designed with similar goal in

mind, however, they implement an exact approach, i.e., the spatial arrangement of solutions in the

CS exactly reproduces the original dominance structure. If that structure was sparse, such was

also the structure of the derived CS (which typically manifested in the CS having many dimen-

sions). Furthermore, because the problem of �nding the CS of minimal dimensionality is NP-hard

[144], and because its dimensionality for even the simplest test-based problems turns out to be

very high, using these formalisms to actually drive search is rare and does not lead to signi�cant

improvements [143].

Last but not least, there are certain connections between the framework of search objectives

proposed here and semantic GP [252] and behavioral GP [191, 187, 183]. In semantic GP, one

de�nes program semantics as the vector of outputs produced by that program for particular tests.

98 Automatic Discovery of Search Objectives

From the viewpoint of our framework, a single row in an interaction matrix is the outcome of

confronting program's semantics with the vector of desired outputs. Recent years have seen a

large number of contributions that employ this characterization of program behavior to design

new initialization, search, and selection operators [251, 350].

8.7 Chapter summary

In this chapter, we introduced the framework for automatic discovery of search objectives, which

serves the purpose of broadening the evaluation bottleneck (cf. Section 6.1) and acquiring alterna-

tive (or additional) behavioral information from candidate solutions. A fundamental idea behind

our framework is that candidate solutions are often complex entities that behave in rich ways,

and their behaviors can be exploited to make the search for an ideal solution more e�ective. We

formalize this idea using the concept of interaction matrices that gather outcomes of interactions

between candidate solutions and tests, and using such matrices to devise multi-aspect evaluation

of candidate solutions.

Chapter 9

Discovery of Search Objectives by

Clustering

The framework for discovery of search objectives introduced in the previous chapter addresses the

shortcomings of conventional evaluation (cf. Chapter 6) by providing multifaceted characteriza-

tions of candidate solutions that can be used as alternative means of driving the search. The core

component of any method that subscribes to this framework is a derivation algorithm u that trans-

forms G into a derived interaction matrix G′ (Eq. 8.4.6). The columns of G′ de�ne a low number

of performance measures, which we refer to as search objectives, while their elements are inter-

preted as scores of candidate solutions on these objectives. So far, we have discussed the proposed

framework in isolation, without showcasing any particular derivation algorithm. In this chapter,

we propose the �rst concrete method for discovery of search objectives by heuristic clustering of

interaction outcomes (DOC).

This chapter is organized as follows: in Section 9.1, we introduce the method and then, in

Sections 9.2 and 9.3, we lay down its formal underpinnings, proving that derived search objectives

preserve a great deal of dominance between candidate solutions. Next, in Section 9.4, we present

the results of a comparative experiment involving CoEAs and three unrelated test-based domains:

Iterated Prisoner's Dilemma [51], Number Games [70], and Density Classi�cation [86]. In Section

9.5, we evaluate DOC's usefulness in GP. We analyze algorithm performance, search dynamics,

the number of discovered objectives, and the correlations between them. We conclude the chapter

with discussion is Section 9.6 and closing remarks in Section 9.8.

The approach presented in this chapter has been originally published [211] and later extended

in [186, 214].

9.1 DOC

In Chapter 6, we showed that achieving certain combinations of interaction outcomes can be

the key to a more e�ective search. Based on this observation, we propose Discovery of Search

Objectives by Clustering (DOC), a method that identi�es the combinations that prevail in the

current interaction matrix and uses them to gauge the candidate solutions. This causes novel

combinations of test outcomes to be less likely 'forgotten' in the search, even if they are inferior

in terms of scalar evaluation.

DOC replaces the conventional evaluation stage of an evolutionary algorithm (cf. Section 8.4.3).

Given a population S of m candidate solutions and a set T of n tests, it proceed as follows:

99

100 Discovery of Search Objectives by Clustering

Figure 9.1: Example of compression of interaction matrix (a) featuring a four-dimensional domi-
nance structure (b, c), into a derived interaction matrix (d), resulting with the dominance structure
shown in (e).

1. Calculate the m × n interaction matrix G between the candidate solutions from S and the

tests from T using the interaction function g.

2. Cluster the tests. We treat every column of G, i.e., the vector of interaction outcomes of all

solutions from S with a test t, as a point in an m-dimensional space. A clustering algorithm

of choice is applied to the n points obtained in this way. The outcome of this step is a

partition {T1, . . . , Tk} of the original n tests in T into k subsets/clusters Tj ⊂ T , j ∈ [1, k],

where 1 ≤ k ≤ n and ∀j : Tj 6= ∅.

3. De�ne the search objectives. For each cluster Tj , we average row-wise the corresponding

columns in G. This results in an m × k derived interaction matrix G′, with the elements

de�ned as follows:

g′ij =
1

|Tj |
∑

t∈Tj

g(si, t) (9.1.1)

where si is the candidate solution corresponding to the ith row of G.

The columns of G′ implicitly de�ne k transient (i.e., adequate only for this speci�c S and T) search

objectives that characterize the candidate solutions in S. The value of jth such objective for a

candidate solution si is g
′
ij . Note however that these objectives are derived from the interactions

between a speci�c S and a speci�c T , and as such are unde�ned outside S and T . Nevertheless,

to emphasize the analogy between the search objectives g′ and the original interaction function g,

we will alternatively denote g′ij as g
′
j(si).

The derived search objectives form a multi-objective characterization of the candidate solutions

in the context of the current population of tests. They can be subsequently employed by any multi-

objective selection method discussed in Section 8.5.

Example 9.1. Consider the matrix of interactions between the population of candidate solutions

S = {a, b, c, d} and the population of tests T = {t1, t2, t3, t4}, shown in Fig. 9.1a. The four-

dimensional space of interaction outcomes is shown in two two-dimensional scatter plots (Figs. 9.1b

and 9.1c) that span t1 × t2 and t3 × t4, respectively. The performance of candidate solutions on

the tests t1 and t3 is quite correlated, and so is t2 and t4. Assume the clustering algorithm (step 2

of DOC) notices these similarities and produces k = 2 clusters that partition T into {T1, T2} with
T1 = {t1, t3} and T2 = {t2, t4}. Averaging the interaction outcomes within Tjs (step 3 of DOC)

results in the derived interaction matrix G′ shown in Fig. 9.1d. Fig. 9.1e presents the locations of

the candidate solutions in the space of derived objectives.

If interaction outcomes are to be maximized, the only dominance holding in the original space

is b � a. In the space of derived objectives (Fig. 9.1e) b still dominates a. However, now also

c dominates d, thought originally these two solutions were mutually non-dominated (incompara-

ble). As a result of `compressing' of the original interaction matrix, some information about the

dominance structure has been lost.

9.2. Properties of DOC 101

In the particular case of c and d, introducing dominance in favor of c may be desirable, as c

outperforms d on two original tests (t3, t4), while only one test (t1) supports the opposite relation

(and t2 is neutral in this respect). DOC trades the lower number of resulting objectives for certain

inconsistency with the original interaction outcomes. Nevertheless, we posit that this imprecision

may be a price worth paying for obtaining a potentially useful search gradient. In Section 9.3, we

present a detailed analysis of dominance preservation. �

DOC broadens the bottleneck of evaluation in characterizing the candidate solutions with k

objectives rather than with a single one (cf. motivations in Chapter 6). On the other hand, using

small k is likely to cause the dominance relation in the derived space to be dense enough to provide

a reasonably strong search gradient (as opposed to the dominance on all tests, discussed next to

Eq. 6.2.1). As a result, candidate solutions that feature di�erent `skills' (embodied by particular

search objectives) can coexist in a population, even if some of them are clearly better than others

in terms of scalar evaluation. For instance, solution c in the above example is not dominated in

G′, although its scalar �tness (12) is lower than that of the most �t solution b (13).

Because DOC drives selection using multiple search objectives, it might seem appropriate to

pair it not with the solution concept of MEU, but with that of Pareto optimality (cf. Section 5.3).

We claim however that this convergence is only apparent. Notice �rst that the desired objectives

are transient, derived in every generation independently, from a usually di�erent interaction matrix.

Therefore, one cannot claim that DOC optimizes for any speci�c objectives throughout an entire

run. Moreover, the solution concept of Pareto optimality comes in handy when one aims at �nding

a set of candidate solutions that possibly closely approximate the non-dominated ones and exploit

the trade-o� between the objectives. This is not the case in the class of problems we consider in

this thesis: our goal is to �nd one solution that maximizes the odds of passing any test, for which

MEU is the most appropriate solution concept.

9.2 Properties of DOC

In Section 8.4.3, we discussed several properties that characterize search objectives and methods

for their discovery. DOC naturally conforms to several of these properties. In particular, evaluation

conducted by DOC is contextual: as in all algorithms solving test-based problems, the outcome of

evaluation of a candidate solution in S depends on the current tests in T . However, that outcome

depends also on the other candidate solutions in S, because they together determine the result of

clustering. Notice that such an interaction between candidate solutions is not common in EAs.

As the clustering algorithm partitions the set of tests T , rather than, e.g., selecting some tests,

none of the tests are discarded, and each of them in�uences one of the derived objectives. Also,

clustering guarantees that the tests that are mutually redundant (i.e., identical columns in G) will

support the same search objective (cf. Section 8.4.5). In general, the more tests are similar in

terms of solutions' performance on them, the more likely they will end up in the same cluster and

contribute to the same search objective. Clustering also guarantees insensitivity to permutations

of rows and columns in G, and basic algebraic operations, i.e., scaling and translation (though the

latter depends on the internals of the clustering algorithm and the metric used therein).

For k = 1, DOC degenerates to a single-objective approach: all tests form one cluster, and G′

has a single column that contains solutions' (normalized) estimate of expected utility de�ned in

(5.3.1). Setting k = n implies G′ = G, and every derived objective being associated with a single

test.

102 Discovery of Search Objectives by Clustering

Table 9.1: Dominance relation �G in the test space and dominance relation �G′ in the space of
derived objectives. Note that the non-dominance case in the derived space (si 6�G′ sj ∧ sj 6�G′ si)
includes also indiscernibility, i.e., the case ∀ r : g′r(si) = g′r(sj).

si �G′ sj si 6�G′ sj ∧ sj �G′ si sj �G′ si
si �G sj Preserved FN Inversion

si 6�G sj ∧ sj �G si FP Preserved FP
sj �G si Inversion FN Preserved

The derived objectives sum up to the scalar �tness (5.3.2), i.e.,
∑k
j=1 g

′
ij = f(si), and each

of them is a linear combination of selected columns in G. This feature is essential for dominance

preservation, as we demonstrate in the next subsection.

9.3 Preservation of dominance

As demonstrated in Example 9.1, the objectives derived by DOC are lossy, i.e., the dominance

relation in the space of derived objectives is in general di�erent from the dominance relation in

the space of original objectives. In this section, we investigate the nature of those di�erences.

Consider a pair of candidate solutions si,sj with di�erent interaction outcomes, i.e. ∃t ∈ T :

g(si, t) 6= g(sj , t). Table 9.1 lists the combinations of the possible relations between si and sj in

the original space of interaction outcomes (�G) and in the space of the derived objectives (�G′).

The cases in which the relation is consistent in both spaces are marked by 'Preserved'. In the

remaining combinations, three types of errors may take place, two of which can be likened to

errors in statistical tests:

• False positive errors (FP), when one of the solutions dominates the other in G′, although

they were incomparable (mutually non-dominated) in G,

• False negative errors (FN), when a dominance in G ceases to hold in G′,

• Inversions of dominance, when one of the solutions dominates the other in G, while G′

supports the opposite relation.

Of these categories, inversions are clearly the most severe mistakes, as they may deceive selection

and so misguide the search process. In the following, we show that DOC cannot commit this kind

of errors.

Theorem 9.2. Let si, sj be candidate solutions such that si �G sj, i, j ∈ {1, . . . ,m}. Then

si �G′ sj .

Proof. . Let us assume that sj �G′ si. Thus for some r = 1, . . . , k there holds g′r(si) < g′r(sj),

then by (9.1.1) we have that

1

|Tr|
∑

t∈Tr

g(si, t) <
1

|Tr|
∑

t∈Tr

g(sj , t),

where Tr ∈ {T1, . . . , Tk}. The above inequality is equivalent to

∑

t∈Tr

(g(si, t)− g(sj , t)) < 0.

For this to hold, at least one of the summed terms has to be negative. This is however impossible,

as si �G sj , i.e g(si, t) ≥ g(sj , t) for all t ∈ T . Therefore si �G′ sj .

9.4. Experimental analysis in the domain of CoEAs 103

DOC will never cause dominance inversion, and is in this sense non-deceptive.

Theorem 9.2 implies that DOC cannot commit false negative errors. For si 6�G′ sj ∧ si 6�G′ sj

to hold in G′, at least one derived objective g′r has to reverse the ordering of the solutions in

question (i.e., g′r(si) < g′r(sj)), which, as we have shown above, is impossible.

To investigate the false positive errors, we assume si 6�G sj ∧ sj 6�G si. The absence of

dominance implies that there exists at least one test t such that g(si, t) < g(sj , t) and at least one

test t′ such that g(si, t
′) > g(sj , t

′). Let us assume that these are the only tests in T and that a

single derived objective g′1 is built from them, i.e.,

g′1(s) =
1

2
(g(s, t) + g(s, t′)).

The presence and direction of dominance between si and sj in the derived space will depend on

the sign of g′1(si)− g′1(sj) = 1
2 (g(si, t)− g(sj , t) + g(si, t

′)− g(sj , t
′)). Clearly, depending on how

much si is worse than sj on t and better than sj on t
′, the sign of that expression can be arbitrary.

This holds also if there are other tests in T .

Therefore, DOC can commit false positive errors, i.e., posit a dominance in G′ for a pair of

solutions when it is factually absent in G. This error is unavoidable, given the reduced dimension-

ality of G′1. On the face of it, this may be considered undesirable. However, note that, for most

problems T is only a sample from a universe of tests T , so even G does not fully characterize the

candidate solutions (cf. Section 5). As discussed in Section 8.4.4, attempting to perfectly preserve

the dominance in G′ may be not worth the e�ort, given that G captures only a partial charac-

teristics of the solutions in S. By the same token, we do not �nd it critical that the clustering

algorithms employed by DOC are heuristic, and thus may produce sub-optimal groupings of tests.

9.4 Experimental analysis in the domain of CoEAs

The following computational experiment is intended to quantify the impact of search objectives

derived by DOC on the e�ciency of coevolutionary learning in test-based problems representing

various domains. Our secondary objective is to inspect the resulting objectives and cast some light

on the dynamics of search process driven by them.

9.4.1 Basic coevolutionary con�gurations

All con�gurations described in the following implement the generational two-population coevo-

lutionary algorithm, with separate populations of candidate solutions S and tests T . In every

generation, each candidate solution s ∈ S interacts with every test t ∈ T , producing an interac-

tion matrix G (cf. Section 5). The con�gurations di�er only in the way the �tness values of the

individuals in S are calculated from G.

In the conventional coevolutionary learning (CEL), our reference method, the �tness of a can-

didate solution s is the estimate of expected utility (Eq. 5.3.2) calculated from the interactions

with all tests in T , i.e., the average of the corresponding row of G. This �tness is then used by a

conventional scalar selection operator (tournament of size 5 or or µ+λ, depending on the domain;

Section 9.4.4).

DOC (Sect. 9.1) clusters the columns of the interaction matrixG and produces k ≥ 1 objectives

gj that characterize the candidate solutions in S. To avoid �xing k in advance, we decided to employ

X-MEANS [280], an extension of the popular k-means algorithm. Given the admissible range of

1 In general, the likelihood of committing such errors grows with the ratio of the number of tests (dimensionality
of the original dominance space) to the number of derived objectives.

104 Discovery of Search Objectives by Clustering

k, X-MEANS picks k that produces the clustering that maximizes the Bayesian Information

Criterion. In this experiment, we allow X-MEANS consider k ∈ [1, 5] and employ the Euclidean

metric to measure the distances between the observations (the columns of G).

The resulting k objectives necessitate a multiobjective selection mechanism (cf. Section 8.5.4).

Therefore, DOC employs NSGA-II, the arguably most popular multi-objective selection algorithm

[75]. We use NSGA-II rather than recently proposed NSGA-III [74] due to questionable perfor-

mance gains o�ered by the latter [140].

Concerning the evaluation of tests, CEL, DOC and the other con�gurations presented in the

following rely on distinctions (cf. Section 5.5.1). The �tness Q̂S(t) of a test t ∈ T is the number

of pairs of candidate solutions in S it di�erentiates:

Q̂S(t) = |{(s1, s2) ∈ S × S : g(s1, t) 6= g(s2, t)}| (9.4.1)

Q̂S promotes the tests that inform the candidate solutions about the di�erences between them,

rather than how they perform. Distinctions proved e�ective at maintaining the coevolutionary

gradient in many nontrivial test-based problems [70, 337, 27].

9.4.2 Additional control con�gurations

Comparing DOC to the CEL cannot fully explain the anticipated di�erences, because there are

two aspects that di�erentiate these methods. Firstly, NSGA-II employed by DOC is more so-

phisticated than the scalar selection used in CEL: not only it operates on a combined pool of

parents and o�spring (and is thus quite elitist), but essentially performs a two-stage selection by

�rst rejecting the lower ranks of the Pareto-ranking, and then employing tournaments on ranks

and crowding to draw the parents (cf. Section 8.5.4). Secondly, the sole fact of having any multi-

ple objectives causes selection to operate di�erently, because the likelihood of dominance between

solutions decreases with the number of objectives, and many inconclusive comparisons result in

weaker selection pressure.

To separate these aspects, we design two additional control setups. To control for NSGA-II

selection, we design the 1-MEANS setup, which is simply DOC with the numbers of clusters

k = 1. Technically, there is no need to run clustering in this setup as all tests by de�nition

belong to the same cluster. In this con�guration, selection of candidate solutions is driven by a

single derived objective g1 which, by averaging the outcomes on all tests in T , is equivalent to the

expected utility (Eq. 5.3.1; cf. Section 9.2), i.e., the �tness used by CEL. However, contrary to

CEL that relies on scalar selection, 1-MEANS employs NSGA-II, and thus still involves ranking.

To control for the presence of multiple objectives, we provide the RAND con�guration, which

replaces DOC's clustering of the interaction matrix G with the following steps. First, RAND

draws k from [1, 5] at random. Then it randomly partitions the columns of G into k objectives,

which are then treated in the same way as in DOC. Thus, contrary to 1-MEANS, RAND relies

on multiple objectives (unless the drawn k happens to be 1), but those objectives in general do

not re�ect any similarities between the columns of G. This con�guration should help us verify if

discovering meaningful clusters is essential2.

9.4.3 Extensions of DOC

The basic DOC algorithm clusters the interaction outcomes using the Euclidean distance which

allows handling continuous as well as multi-valued interaction outcomes (for instance, the IPD

2Note that the objectives derived by RAND, by being selected at random, are estimates of expected utility in
the same sense as Q̂T (Eq. 5.3.2), albeit based on smaller samples than the entire population of tests T . Also,
similarly to DOC, they sum up to scalar �tness.

9.4. Experimental analysis in the domain of CoEAs 105

benchmark presented below features ternary interaction outcomes). However, using the Euclidean

distance may render it di�cult to capture the combinations of skills exhibited by particular solu-

tions.

Consider a population hosting two candidate solutions S = {s1, s2}. In such a case, clustering

takes place in a two-dimensional space, with dimensions corresponding to s1 and s2. Assume that

clustering leads to two clusters with the centroids in m1 = [0.8, 0.9] and m2 = [0.5, 0.4]. Now

consider a test t with the interaction outcomes [0, 1], i.e., g(s1, t) = 0 and g(s2, t) = 1. The

Euclidean distance between t and m1 amounts to d(t,m1) =
∑
i(t(i)−m1(i))2 ≈ 0.65 (i ∈ {1, 2}

iterates over dimensions; we omit the square root for simplicity), while d(t,m2) ≈ 0.61. Therefore,

t will be assigned to the second cluster. However, that cluster groups tests that are more often

solved by s1 than by s2 (0.5 > 0.4). One may argue that the �rst cluster is more suitable for t, as

it hosts the tests with complementary characteristics (0.8 < 0.9).

To address this problem, we consider two extensions of DOC. In DOC-BIN, we binarize the

centroids, i.e., the distance is de�ned as d′(t,m) =
∑
i(t(i)−[m(i)])2, where [m(i)] denotes rounding

m(i) the closest integer. For the example above, d′(t,m1) = 1 and d′(t,m2) = 2, so t would be

assigned to the �rst cluster.3

By rounding the centroids' coordinates to the closest integer, DOC-BIN implicitly assumes

that the tests in a cluster should be characterized by 0 on the ith dimension if less than half of

the tests in the cluster are solved by si, and by 1 otherwise.

However, the above reasoning ignores the fact that a strong solution will solve most (and not

half) of the tests in T (and, conversely, a weak solution will solve hardly any tests). Setting the

threshold to 50 percent seems thus rather arbitrary; a more adequate value can be estimated from

the performance of si on all tests. Therefore, in the last con�guration, DOC-AVG, the distances

are calculated according to formula d′′(t,m) =
∑
i(t(i)− [m(i)]g)

2, where

[m(i)]g =





0 if m(i) < 1
|T |
∑
t∈T g(si, t)

1 otherwise
.

9.4.4 Test problems

The suite of benchmarks consists of Iterated Prisoner's Dilemma (IPD, Section 5.4.3) [13], Numbers

Games (NGs, Section 5.4.2) [353] and Density Classi�cation Task (DCT, Section 5.4.4) [66], elegant

and well-de�ned problems that have been widely used to analyze evolutionary learning algorithms.

In particular, they are excellent testbeds for coevolutionary algorithms due to their test-based

nature and large (and for NGs in�nite) number of tests. Popularity of these benchmarks for

competitive coevolution stems primarily from their high di�culty, manifested in the failure to

obtain quality solutions with generic metaheuristics.

Another particularly appealing feature is their kinship to complex real-world scenarios. For

instance, IPD is widely used to model systems in biology [259], psychology [305], and economics

[130]. Recently, it gained even more popularity as a demanding task for competitive environ-

ments [245, 64, 51, 53]. Cellular automata used in DCT have applications in many �elds including

CPUs, cryptography [361], and real-world biological and chemical systems [362, 163]. DCT is also

very di�cult, as witnessed by the relatively slow improvement of best-known solutions over time

[286, 86, 365]. Finally, NGs were designed to objectively measure the performance of coevolu-

3For binary domains, DOC-BIN with the Euclidean distance is equivalent to DOC with the Hamming distance
(assuming centroids were determined by the mode in place of the arithmetic mean). However, this is not true for
multi-valued interaction functions like in the IPD benchmark.

106 Discovery of Search Objectives by Clustering

tionary algorithms and determine whether they are vulnerable to coevolutionary pathologies (cf.

Section 3.7).

As IPD and NGs are symmetric games, we employ the same strategy representation for can-

didate solutions and tests. In the asymmetric DCT, di�erent representations are necessary. The

detailed description of each benchmark in the experimental suite can be found in Section 5.4. In

the following, we only provide the details regarding the experimental setup.

Iterated Prisoner's Dilemma

We use IPD with c = 9 choices, which we found to be much more demanding than the 3-choice

IPD used in [53]. Each strategy is a look-up table of 9× 9 + 1 = 82 moves and the size of search

space is 982 ≈ 1.77× 1078. We make each IPD game consist of 150 PD episodes.

For IPD, all con�gurations maintain populations of 50 candidate solutions and 50 tests. How-

ever, because NSGA-II e�ectively merges the parents and the o�spring prior to selection, we

set the size of candidate solution population to 100 for CEL. This provides for fair comparison:

every method engages 100 × 50 = 5,000 IPD games per generation. With runs lasting for 200

generations, the total e�ort per run amounts to 1,000,000 games.

Both populations are initialized with uniformly randomized look-up tables. For selection in

the single-objective methods, tournament of size 5 is used. The only source of genetic variation is

a mutation operator, which iterates over all elements of a look-up table and with probability 0.2

replaces the original choice (move) with one of the remaining c − 1 choices selected at random.

This operator has been found to provide su�cient variation for multiple-choice IPD [51].

Numbers Games

We consider l ∈ {3, 4, 5}-dimensional variants of COA and COO (cf. Section 5.4.2). Following

[70], for both populations, the initial values in each dimension are uniformly sampled from [0, 0.1].

O�spring individuals are created from the parents by picking at random two dimensions from [1, l],

and adding to them a random value x chosen uniformly from [−0.1, 0.1]. Both populations host

200 individuals each. For selection, we use the (µ + λ) evolution strategy [22], with µ = 100 and

λ = 100. Each evolutionary run lasts for 1000 generations.

Density Classi�cation Task

The initial population of CA rules contains lookup tables drawn at random. As drawing the ICs

in uniformly causes them to be usually very di�cult (the expected number of ones is close to l
2),

they require a more sophisticated initialization. First, a number d is uniformly sampled from the

interval [0, l]. Then, a vector of length l is �lled with 1s on the �rst d positions and 0s on the

remaining positions. Finally, the vector is randomly shu�ed. As a result, the number of ones per

IC is uniformly distributed in the population of tests.

Rules and ICs are varied by a 2% and 5% per-bit mutation rate, respectively. Both populations

(of candidate solutions and tests) host 200 individuals each. For selection, the (µ + λ) evolution

strategy [22] is used. An evolutionary run lasts for 200 generations, resulting in the total e�ort

of 8,000,000 interactions. We consider three DCT instances of various di�culty: an easy one

(DCT-1, l = 31, r = 2, p = 110), studied in [260], a medium one (DCT-2, l = 59, r = 3, p = 110),

used among others in [?], and a hard one (DCT-3, l = 149, r = 3, p = 320), investigated in [157].

9.4. Experimental analysis in the domain of CoEAs 107

Table 9.2: Average objective performance (estimated expected utility) of the best-of-run individ-
uals, averaged over 60 evolutionary runs. Bold font marks the best result for each benchmark.

cel 1-means rand doc doc-bin doc-avg

ipd 78.30± 1.33 83.54± 1.72 88.98± 1.19 90.76± 1.12 91.15± 1.19 91.43± 0.99

dct-1 59.77± 3.38 79.02± 2.69 81.10± 2.17 89.53± 0.67 83.37± 2.49 89.33± 1.03

dct-2 53.02± 2.30 56.56± 3.51 60.12± 3.91 71.33± 3.51 64.89± 4.83 77.24± 3.66

dct-3 50.18± 0.05 50.21± 0.05 50.12± 0.05 51.45± 1.83 49.51± 2.08 53.26± 2.81

coo-3 86.61± 3.64 53.02± 4.73 49.73± 4.64 89.59± 4.32 96.27± 2.89 94.76± 2.87

coo-4 50.97± 1.30 29.19± 2.39 26.72± 1.60 54.70± 3.85 59.63± 4.26 53.98± 3.94

coo-5 36.46± 1.79 20.61± 0.92 22.47± 1.66 37.48± 2.00 37.16± 2.35 35.39± 2.39

coa-3 83.42± 6.31 58.08± 8.10 51.34± 7.93 93.00± 4.92 96.58± 3.45 89.08± 6.17

coa-4 23.30± 4.59 22.32± 5.69 20.51± 5.37 30.56± 6.89 39.36± 7.61 35.63± 6.67

coa-5 3.97± 0.87 6.0± 1.88 8.24± 2.39 8.77± 2.67 12.06± 4.05 18.14± 5.3

9.4.5 Performance

The assessment of candidate solutions in S, whether single-objective in CEL or multi-objective

in DOC, depends on the current state of the population of tests T and is thus subjective. As a

result, a candidate solution's �tness may strongly di�er from its true performance. The objective

performance measure for all test problems considered here is the expected utility (Eq. 5.3.1). To

estimate it, we let a candidate solution interact with 50,000 random tests, generated by the domain-

speci�c procedures used for initializing the population of tests (see the previous three sections).

We assess so the best-of-run individuals, i.e., the candidate solution in the last population with

the highest subjective �tness. This measurement does not a�ect algorithms' behavior.

Table 9.2 presents the expected utility of the best-of-run solutions for particular benchmarks

and methods averaged over 60 evolutionary runs, accompanied by 95% con�dence intervals. To

compare the methods on all benchmarks simultaneously, we employ the Friedman's test for multiple

achievements of multiple subjects [159]. Compared to ANOVA, it does not require the distributions

of variables in question to be normal.

Friedman's test operates on average ranks, which for the considered methods are as follows:

doc-avg doc-bin doc cel 1-means rand

1.9 2.2 2.3 4.7 4.9 5.0

The p-value is � 0.001, which indicates that at least one method performs signi�cantly di�erent

from the remaining ones. The bold font marks the methods that are outranked at 0.05 signi�cance

level by all DOC variants (the �rst three methods in the ranking) according to post-hoc analysis

using symmetry test [135].

The derived objectives allow DOC to outperform the standard coevolutionary search (CEL)

and the other two control setups (1-MEANS, RAND) not only on aggregated ranks, but also on

every benchmark, regardless of problem di�culty. This result is often further improved by DOC-

BIN and DOC-AVG. For the conceptually more challenging benchmarks, i.e., IPD and DCT,

DOC-AVG fares consistently the best. For the abstract number games, the ranking of DOC

variants is less predictable.

Interestingly, for some benchmarks we observe also positive in�uence of decomposing the scalar

�tness function by random clustering (RAND). Nevertheless, the inferior overall performance of

RAND suggests that the objectives that result from random partitioning of interaction matrix

do not provide as e�cient search gradient. In Numbers Games, such a blind extraction of objec-

108 Discovery of Search Objectives by Clustering

Figure 9.2: The histogram of search objectives in DOC for every benchmark problem. RAND is
not included as it features uniform distribution of k.

tives even misleads the search algorithm and ultimately leads to worse performance than simple

coevolution (CEL).

The other control setup, 1-MEANS, aimed at isolating the impact of NSGA-II selection,

achieves the worst performance in almost every benchmark. Thus, while NSGA-II selection is

the crucial part of DOC, using it in a single-objective setting does not translate into an improved

search performance.

The obtained results support our claim than DOC is capable of meaningful grouping of tests

and exploiting the resulting derived objectives in a multi-objective setting. The superiority of all

DOC variants with respect to all three control setups (CEL, 1-MEANS, RAND) corroborates

our hypothesis that better performance can be achieved only by simultaneous involvement of these

two capabilities.

9.4.6 Number of derived objectives

In DOC, the X-MEANS clustering algorithm dynamically adjusts the number of clusters (and

search objectives) k to the actual interaction matrix. This number may convey certain information

about problem characteristics. In Figure 9.2, we present the histograms of k for every benchmark,

gathered from 200 generations of all 60 runs of all three DOC variants. Given that the DOC

con�gurations overall outperformed the control ones, the observed values of k should be considered

as having positive impact on method performance. The graphs reveal that for easier problems such

as IPD and DCT-1, a lower number of objectives is su�cient to e�ectively improve the search

performance, while the harder ones typically bene�t from greater values of k.

Figure 9.2 shows that X-MEANS rarely sets k = 1; in fact, we observe this happening only

for COA. Apparently, interaction outcomes can be usually better captured using more than one

cluster (at least in terms of the Bayesian Information Criterion used by X-MEANS). Also, as this

is accompanied by high performance of DOC, we may say that operating in a multidimensional

9.4. Experimental analysis in the domain of CoEAs 109

�1.0

�0.5

0.0

0.5

1.0
COA-3 COA-4 COA-5 COO-3 COO-4

0 50 100 150 200
�1.0

�0.5

0.0

0.5

1.0
COO-5

0 50 100 150 200

DCT-1

0 50 100 150 200

DCT-2

0 50 100 150 200

DCT-3

0 50 100 150 200

IPD

Generation

DOC DOC -BIN DOC -AVG RAND

Figure 9.3: Pearson's correlation between the discovered search objectives averaged generation-
wise over all runs and all pairs of search objectives.

objective space is in a sense favored by the approach. On the other extreme, k = 5 objectives are

never derived, suggesting that this upper limit was a good choice for the problems studied here.

Finally, it may be interesting to note that both DOC and DOC-BIN have the tendency to

maintain a greater number of extracted objectives, while DOC-AVG has the opposite property.

We should however admit that these considerations have to be taken with a grain of salt, as the

particular ks observed in Figure 9.2 result not only from the coevolutionary dynamics, but also

from the particular measure (Bayesian Information Criterion) used by X-MEANS.

9.4.7 Correlation of objectives

As argued in Chapter 6, we anticipate that nontrivial problems feature mutually-exclusive un-

derlying objectives (`skills'), i.e., such that it is di�cult to simultaneously make progress on all

of them. It is thus interesting to ask whether such `polarization' becomes re�ected in the search

objectives derived by DOC.

To quantify the dissimilarity between any two objectives g′1 and g′2 discovered by DOC for

a given population of candidate solutions S and a population of tests T , we employ the Pearson

linear correlation coe�cient calculated for the candidate solutions in S, i.e., the correlation between

the two corresponding columns in the compressed matrix G′ of interactions between S and T . In

Fig. 9.3, we present the correlation calculated in this way, averaged over all pairs of objectives

(columns of G′) in a given generation of an evolutionary process and across all 60 evolutionary runs.

The correlation of the objectives discovered by DOC is usually much lower than the correlation

for RAND. Because RAND partitions T randomly, each objective it de�nes is based on a random

sample of T , and the averages calculated from such samples tend to be similar and thus exhibit

high correlation. DOC, on the other hand, attempts to �nd a partitioning of G that minimizes the

within-cluster variation, i.e., the amount by which the columns of G within a cluster di�er from

each other. The objectives it discovers are thus likely to be signi�cantly di�erent from each other

and capture diversi�ed aspects of solution's capabilities. This is particularly evident for DCT and

COA, where the correlation of objectives discovered by DOC gradually decreases in the early stage

110 Discovery of Search Objectives by Clustering

COA-3 COA-4 COA-5 COO-3 COO-4

0 50 100 150 200

COO-5

0 50 100 150 200

DCT-1

0 50 100 150 200

DCT-2

0 50 100 150 200

DCT-3

0 50 100 150 200

IPD

Generation

DOC DOC-BIN DOC-AVG RAND

Figure 9.4: Average within-cluster sum of squares (WSS) between the discovered search objectives.

of evolution and then stabilizes. Interestingly, for DCT, the correlation becomes even negative, in

which case an improvement on one objective causes a deterioration on the other. These observations

corroborate the hypothesis about the mutually exclusive character of the derived search objectives.

9.4.8 Intra- and inter-cluster variance

Correlation characterizes the relationship between the search objectives, without actually consid-

ering how `well de�ned' they are internally. To investigate this aspect, we inspect the derived

objectives using the tools characteristic for cluster analysis: within-cluster variance and between-

cluster variance of the clusters associated with search objectives. We de�ne the within-cluster sum

of squares (WSS) as:

WSS =
∑

i

∑

x∈Ti

||x−mi||2,

where Ti is i-th cluster and mi is its centroid (calculated using arithmetic mean). Lower WSS

implies greater similarity between the observations in clusters.

In Fig. 9.4, we present the WSS averaged across all 60 evolutionary runs, plotted against

the generation number. The clusters discovered by DOC are typically more compact than those

resulting from the random partitioning performed by RAND. This is not surprising, since random

grouping is destined for a larger variance. What is more interesting though is the prevailing

decreasing trend over the course of evolution, which suggests that the objectives gradually converge

towards speci�c skills revealed by the candidate solutions. WSS decreases also for RAND; however,

Table 9.2 showed that this trend is not accompanied with a good performance. This indicates that

the objectives discovered by DOC are indeed meaningful, i.e., capable of creating a useful search

gradient for the candidate solutions.

The decrease of WSS is not a rule however: we observe just the opposite trend for, e.g., DCT.

We hypothesize that this may be attributed to candidate solutions initially exhibiting very similar

behaviors (when, for instance, the tests in the �rst generations turn out to be too di�cult for most

candidate solutions in the population).

9.4. Experimental analysis in the domain of CoEAs 111

COA-3 COA-4 COA-5 COO-3 COO-4

0 50 100 150 200

COO-5

0 50 100 150 200

DCT-1

0 50 100 150 200

DCT-2

0 50 100 150 200

DCT-3

0 50 100 150 200

IPD

Generation

DOC DOC -BIN DOC -AVG RAND

Figure 9.5: Average between-cluster sum of squares (BSS) between the discovered search objec-
tives.

The between-cluster sum of squares (BSS) measures how distinct and well-separated the clusters

are from each other:

BSS =
∑

i

ni||m−mi||2

where ni is the size of the i-th cluster and m is the global mean of the data. Fig. 9.5 presents the

BSS of the derived objectives averaged across 60 evolutionary runs. BSS for RAND is close to zero

most of the time. As for WSS, this was expected, given the probabilistic nature of the partitioning

performed by RAND. For all variants of DOC, we observe relative stabilization of BSS, typically

preceded by a gradual decrease. However, for DCT, we observe a rapid increase of BSS in the early

stages of evolution. For DCT-1, the easiest instance of the problem, this is followed by a slight

drop. In both domains, pure DOC achieves the highest BSS, though DOC-AVG and DOC-BIN

are not far behind. Interestingly, in case of NGs, the situation is quite di�erent: BSS is initially

high, suggesting that the objectives are very diverse. Over time, it gradually decreases, causing

the objectives to lose their distinct character. The decrease of BSS co-occurs also with the slight

rise of the correlation between search objectives (cf. Fig 9.3).

9.4.9 Visualization of the search objectives

Correlations and within- and between-cluster variance provide only cursory information about the

derived objectives. A deeper insight can be provided by presenting them graphically. Figures 9.6

and 9.7 visualize the objectives derived by DOC in the last generation of a selected single run for

every benchmark. The following procedure was used to create the graphs. First, we scanned the

�nal populations of evolutionary runs in search of compressed interaction matrices G′ that had

k = 2 columns. For each row in G′, a green point marks the performance of a candidate solution

on the two search objectives. The labels on the axes indicate the number of tests that contributed

to the corresponding objective (i.e., the sizes of the corresponding clusters).

112 Discovery of Search Objectives by Clustering

0 111
corr =−0.39

0

89

o 2
COA-3

0 110
corr =−0.88

0

90
COA-4

0 139
corr =−0.87

0

61
COA-5

0 157
corr =−0.9

0

43
COO-3

0 164
corr =−0.57

0

36
COO-4

0 120
corr =−0.44

0

80

o 2

COO-5

0 163
corr =−0.84

0

37
DCT-1

0 96
corr =−0.74

0

104
DCT-2

0 132
corr =−0.71

0

68
DCT-3

0 25
corr =−0.48

0

25
IPD

random evolved

Figure 9.6: Visualization of the negatively correlated search objectives. The evolved candidate
solutions marked in green, the random ones in red.

In Fig. 9.6, we group the graphs for the runs that ended with negatively correlated derived

objectives. To this aim, we use the Pearson correlation coe�cient of the performance of candidate

solutions on the search objectives. Due to the coevolutionary nature of DOC, the �nal candidate

solutions in S are adapted to the tests in the �nal T , so the green marks in Fig. 9.6 re�ect only

certain combinations of performances on the search objectives. To illustrate the characteristics of

the search objectives in a more unbiased way, we plot also the performance of random candidate

solutions. To this aim, 5000 random candidate solutions are generated using the problem-speci�c

procedures described in Section 9.4.4. The performance of each such solution on the search objec-

tives is measured by performing interactions with the tests that gave rise to the two objectives in

G′, and averaging the outcomes within the two clusters (see Eq. 9.1.1). The points obtained in

this way are then plotted in red. Where the marks overlap, color saturation re�ects their density.

Each inset in Fig. 9.6 corresponds to a di�erent pair of search objectives, speci�c to a problem

being solved, a run, and the state of both coevolving populations at the end of run. The common

feature of all graphs is that the evolved solutions stretch between the axes of objectives, each of

them di�erently exploiting the trade-o� between the objectives. In doing so, they clearly attempt

to approximate the Pareto-front. DOC is clearly able to maintain diversity in a population till

the very end of evolutionary runs and so mitigates premature convergence.

The random solutions, on the other hand, typically perform well only on one objective each.

Furthermore, they are usually dominated by the evolved candidate solutions and only some of

them come close to the Pareto fronts of the evolved candidate solutions. The number of random

individuals that manage to achieve a non-zero performance on both derived objectives is relatively

small.

The spatial arrangements of solutions shown in Fig. 9.6 are characteristic for runs which ended

with decorrelated objectives and as such meet our expectations about the behavior of the method.

Nevertheless, occasionally DOC derives uncorrelated or positively correlated objectives, which

lead to the `anomalous' distributions presented in Fig. 9.7. Another type of anomaly is when

9.5. Experimental analysis in the domain of GP 113

0 169
corr = 0.09

0

31

o 2

COA-3

0 113
corr = 0.28

0

87
COA-4

0 72
corr = 0.61

0

128
COA-5

0 117
corr = 0.07

0

83
COO-3

0 61
corr = 0.38

0

139
COO-4

0 154
corr = 0.04

0

46

o 2

COO-5

0 127
corr = 0.16

0

73
DCT-1

0 133
corr = 0.53

0

67
DCT-2

0 107
corr = 0.41

0

93
DCT-3

0 98
corr = 0.13

0

2
IPD

random evolved

Figure 9.7: Visualization of the positively correlated derived objectives. The evolved candidate
solutions marked in green, the random ones in red.

the number of tests that support particular objectives becomes highly imbalanced. In some cases

that imbalance may strongly distort the distribution of solutions, as in the case of IPD, where

the objective plotted on the ordinate consists of only two tests, causing both random and evolved

solutions to align in �ve horizontal layers, corresponding to the possible aggregated outcomes of

interactions {0.0, 0.5, 1.0, 1.5, 2.0} with the tests. In the case of COA-3 in Fig. 9.7, we observe

dense clusters of both candidate and random solutions near the axes, indicating overspecialization

to one of the objectives. In such a case, neither the evolved nor the random solutions trade-o� the

skills identi�ed by the objectives particularly well.

Let us emphasize, however, that our distinction of `normal' (Fig. 9.6) and `anomalous' (Fig. 9.7)

behaviors of DOC is rather subjective and intended only to illustrate the spectrum of possible

outcomes. In general, we did not observe signi�cant correlation between the `esthetics' of solutions'

arrangements and the performance. Also, these graphs present the state of search objectives in the

�nal population of the run, when good solutions have been usually already found and it becomes

di�cult to make further progress.

9.5 Experimental analysis in the domain of GP

Program synthesis from examples is considered a particularly demanding class of test-based prob-

lems. Recall from Section 5.5.2 that it is commonly approached with GP, where the set of tests T

is �xed and given as a part of problem formulation. The search dynamic of GP algorithm is thus

entirely di�erent than that of CoEA, where T changes with time. The experiments in this section

are intended to demonstrate that DOC proves useful also in such environments.

In the following, we examine the capabilities of DOC by performing its experimental assess-

ment on 17 discrete program synthesis tasks representing two di�erent domains. To a large extent,

the experiments conducted here share their con�guration with the experiments performed in Sec-

114 Discovery of Search Objectives by Clustering

Table 9.3: The common parameter setting for all methods in the experiment.

Parameter Setting

Population size 1000
Population initialization Ramped half-and-half
Tournament size 7
Crossover probability 0.9
Mutation probability 0.1
Number of runs 50

Termination condition 200 generations or an ideal solution is found

tion 9.4. In the next two sections, we discuss thus only the methods and benchmarks that are

speci�c for GP (within this thesis) and have not been introduced earlier.

9.5.1 Methods

The compared algorithms implement generational evolutionary algorithm and vary only in the

selection procedure. Otherwise, they share the same parameter settings, with the initial population

�lled with the ramped half-and-half operator, subtree-replacing mutation engaged with probability

0.1 and subtree-swapping crossover engaged with probability 0.9. We run a series of experiments

with runs lasting up to 200 generations and with population size |S| = 1000. The search process

stops when the assumed number of generation elapses or an ideal program is found; the latter case

is considered a success. For a summary of the parameter settings see Table 9.3.

Based on the experiments with CoEAs performed in Section 9.4.5, we employ here the most

e�cient variant of DOC, i.e., DOC-AVG (from now on, we refer to it simply as DOC). We confront

DOC with several control setups. The �rst baseline is the conventional Koza-style GP discussed

in detail in Chapter 4, which employs conventional scalar evaluation function (6.1.1) as �tness and

a tournament of size 7 in the selection phase. The second control is implicit �tness sharing (IFS

[241]) presented in Section 8.3.1, with �tness de�ned as in Formula 8.3.1 and also with tournament

of size 7. The last control con�guration is RAND, which we introduced in Section 9.4.2.

9.5.2 Benchmark problems

In the form presented in Section 9.1, DOC can handle only binary interaction outcomes, where

a candidate solution either passes a test or not. Because of that, we compare here the methods

only on problems with discrete interaction outcomes. However, it is a common practice to evaluate

GP also on regression problem (cf. Section 5.4.5). Such problems involve a continuous interaction

function that typically re�ects errors on particular tests. To address them, in Chapter 11 we

propose an extension of DOC (and the entire framework for discovery of search objectives) to

continuous domains. The e�ectiveness of DOC on regression problems is discussed in detail in

Section 11.2

In Table 9.4, we summarize the benchmark program synthesis task used in this chapter. There

are 17 benchmarks in total, 7 of which belong to the Boolean domain and 10 to a categorical

domain. The table provides the instruction set used in each domain as well as the number of

variables and tests for every problem. The last column shows the size of the search space, which

is considered by the compared search algorithms.

9.5. Experimental analysis in the domain of GP 115

Table 9.4: The program synthesis task used in the experiment.

Domain Instruction set Problem Variables |T | Cardinality of search space

Boolean and, nand, or, nor

Cmp6 6 64 264

Cmp8 8 256 2256

Maj6 6 64 264

Maj8 8 256 2256

Mux6 6 64 264

Mux11 11 2048 22048

Par5 5 32 232

Categorical ai
Dsci 3 27 327

Mali 3 15 315

Boolean Benchmarks

The �rst group of program synthesis tasks are Boolean benchmarks, which employ instruction set

{and, nand, or, nor} and are de�ned as follows. For an v-bit comparator Cmp v, a program is

required to return true if the v
2 least signi�cant input bits encode a number that is smaller than

the number represented by the v
2 most signi�cant bits. In case of the majority Maj v problems,

true should be returned if more that half of the input variables are true. For the multiplexer

Mul v, the state of the addressed input should be returned (6-bit multiplexer uses two inputs to

address the remaining four inputs). In the parity Par v problems, true should be returned only

for an odd number of true inputs.

Algebra problems

The second group of benchmarks are the algebra problems originating from Spector et al.'s work

on evolving algebraic terms [335]. These problems dwell in a ternary domain: the admissible values

of program inputs and outputs are {0, 1, 2}. The peculiarity of these problems consists of using

only one binary instruction in the programming language, which de�nes the underlying algebra.

Below, we present the semantics of that instruction for the considered �ve algebras:

a1 0 1 2 a2 0 1 2 a3 0 1 2 a4 0 1 2 a5 0 1 2

0 2 1 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 2

1 1 0 0 1 1 0 2 1 1 2 0 1 0 2 0 1 1 2 0

2 0 0 1 2 1 2 1 2 0 0 0 2 0 1 0 2 0 1 0

In the following, the employed algebra is indicated by the su�x the name of term to be evolved.

For each of the �ve algebras, we consider two tasks. In the discriminator term tasks (Dsc in

the following), the goal is to synthesize an expression that accepts three inputs x, y, z and is

semantically equivalent to the one shown below:

tA(x, y, z) =




x if x 6= y

z if x = y
(9.5.1)

There are thus 33 = 27 �tness cases in these benchmarks. The second tasks (Mal), consists in

evolving a so-called Mal'cev term, i.e., a ternary term that satis�es the equation:

m(x, x, y) = m(y, x, x) = y (9.5.2)

This condition speci�es the desired program output only for some combinations of inputs: the

desired value for m(x, y, z), where x, y, and z are all distinct, is not determined. As a result,

116 Discovery of Search Objectives by Clustering

Table 9.5: Average and .95-con�dence interval of the best-of-run �tness. Last row presents the
averaged ranks of con�gurations.

Problem doc ifs rand gp

Cmp6 0.94 0.94 0.62 0.54
Cmp8 0.52 0.00 0.04 0.02
Maj6 0.98 0.98 0.86 0.54
Maj8 0.00 0.00 0.00 0.00
Mux6 1.00 1.00 1.00 0.98
Par5 0.06 0.00 0.00 0.02
Dsc1 0.28 0.24 0.00 0.00
Dsc2 0.52 0.46 0.06 0.00
Dsc3 0.92 0.84 0.50 0.44
Dsc4 0.10 0.00 0.00 0.00
Dsc5 0.74 0.28 0.02 0.12
Mal1 0.98 0.90 0.78 0.88
Mal2 0.84 0.90 0.64 0.00
Mal3 0.96 1.00 0.78 0.68
Mal4 0.54 0.48 0.26 0.00
Mal5 0.98 0.92 1.00 0.88
Rank: 1.406 2.188 2.906 3.500

there are only 15 �tness cases in our Mal tasks, the lowest of all considered benchmarks. The

motivation for the discriminator and Mal'cev term problems is originally that they're of interest

to mathematicians [54]. Here, we chose them as benchmarks because of their di�culty and formal

elegance.

9.5.3 Results

We focus on two aspects in the analysis that follows: GP's end-of-run success rate and the size of

evolved programs. The �rst one re�ects the end-to-end performance of the proposed method, most

relevant from the practical perspective of solving discrete-�tness test-based problems. The second

aspect is meant to capture the complexity of candidate solutions in tree-based GP, measured as

the number of nodes in their trees. The results presented below are averages over 50 independent

runs of evolution, repeated for each combination of method and problem.

Table 9.5 shows the success rates obtained by particular methods on each benchmark, with

the best results marked in bold. The last row contains the global rank of a given con�guration,

obtained by averaging the ranks on individual benchmarks.

The benchmarks vary in the level of di�culty, ranging from very easy ones, which are solved in

all runs by all methods (Mux6), to di�cult ones, on which even the best-performing con�gurations

barely exceed 6 percent probability of success (Par5). Most importantly, DOC tends to systemat-

ically improve success rates compared to ordinary GP, regardless of di�culty, on all benchmarks.

It also achieves the best overall average rank of 1.406 and outperforms the other control con�gu-

rations on 13/16 benchmarks. The second place is taken by IFS with the average rank of 2.188

and the highest success rate on 6/16 benchmarks. RAND and GP perform noticeably worse with

the best result on 3/16 and 1/16 benchmarks, respectively.

To statistically evaluate these results, we employ the Friedman's test for multiple achievements

of multiple subjects [159], for all con�gurations presented in the table (i.e., in relation to global

average ranks in the bottom row in Table 9.5). The obtained p-value for Friedman test is 3.46 ×
10−12, which strongly indicates that at least one method performs signi�cantly di�erent from

the remaining ones. To determine the signi�cantly di�erent pairs, we conduct post-hoc analysis

9.5. Experimental analysis in the domain of GP 117

0 50 100 150 200
0

5

10

A
v
g
.

b
e
st

fi
tn

e
ss

Cmp6

0 50 100 150 200
0

20

40

Cmp8

0 50 100 150 200
0

5

10 Maj6

0 50 100 150 200
0

5

10

15

A
v
g
.

b
e
st

fi
tn

e
ss

Mux6

0 50 100 150 200
0

5

10

Par5

0 50 100 150 200
0

2

4

6

8
Dsc1

0 50 100 150 200
0

2

4

6

8

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc2

0 50 100 150 200
0

2

4

6
Dsc3

0 50 100 150 200
0

2

4

6

8
Dsc4

0 50 100 150 200
0

2

4

6

8

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc5

0 50 100 150 200
0

2

4

Mal1

0 50 100 150 200
0

1

2

3

4 Mal2

0 50 100 150 200
0

2

4

Generations

A
v
g
.

b
e
st

fi
tn

e
ss

Mal3

0 50 100 150 200
0

2

4

Generations

Mal4

0 50 100 150 200
0

1

2

3

Generations

Mal5

doc ifs rand gp

1
Figure 9.8: Average and .95-con�dence interval of the best-of-generation �tness.

118 Discovery of Search Objectives by Clustering

Table 9.6: Average and .95-con�dence interval of number of nodes in the best-of-run program.
Last row presents the averaged ranks of con�gurations.

Problem doc ifs rand gp

Cmp6 133.065 ±16.226 201.650 ±12.259 194.589 ±21.418 228.660 ±23.939

Cmp8 245.814 ±22.885 268.385 ±11.532 249.797 ±12.097 314.826 ±21.000

Maj6 189.506 ±17.168 283.115 ±12.840 223.874 ±20.711 297.198 ±21.755

Maj8 218.388 ±10.376 361.392 ±17.457 407.027 ±20.506 465.553 ±24.007

Mux6 66.256 ±4.580 148.742 ±8.231 88.863 ±8.271 113.215 ±15.836

Par5 297.752 ±20.957 299.031 ±14.029 337.352 ±20.897 407.300 ±22.916

Dsc1 158.997 ±12.039 165.074 ±9.003 31.701 ±15.222 86.639 ±25.317

Dsc2 161.880 ±12.989 170.963 ±10.687 86.124 ±23.018 128.936 ±21.391

Dsc3 116.893 ±12.104 179.495 ±11.594 162.862 ±12.295 164.792 ±16.247

Dsc4 194.817 ±14.981 56.008 ±12.826 10.182 ±11.115 5.599 ±8.840

Dsc5 132.496 ±11.019 123.598 ±12.441 23.955 ±12.528 55.948 ±21.743

Mal1 92.888 ±11.478 135.065 ±11.584 95.678 ±17.128 84.096 ±10.078

Mal2 96.845 ±10.676 132.411 ±10.271 102.337 ±14.570 160.670 ±12.247

Mal3 111.727 ±12.740 132.598 ±8.652 122.724 ±17.083 138.464 ±16.686

Mal4 158.938 ±13.725 162.231 ±12.207 145.837 ±18.957 160.373 ±17.089

Mal5 43.431 ±4.457 91.444 ±10.786 40.114 ±8.053 49.912 ±7.409

Rank: 1.812 3.312 1.875 3.000

using the symmetry test [135]. Table 9.7 presents the p-values for the hypothesis that a setup

in a row is better than a setup in a column (the signi�cant p-values are marked in bold). This

comparison reveals that the performance improvement of DOC relative to control methods GP

and RAND is signi�cant. The di�erence is however statistically insigni�cant for IFS, but DOC

achieves higher success rates more often and manages to solve a problem that remained unsolved

by other algorithms, i.e., Dsc4.

Figure 9.8 presents the average �tness of the best-of-generation solution (technically, we present

the complement of �tness, i.e., n − f(p)). The �gure demonstrates that in the initial stages of

search, when population contains still many random programs, DOC behaves similarly to the

control con�gurations. Its superiority becomes evident in the later stages of evolutionary process,

when the programs in the population become more sophisticated and start exhibiting more complex

behaviors. Conventional evaluation function in GP often fails to di�erentiate candidate solutions

at this stage, which results in premature converge. This observation is particularly conspicuous in

the case of Dsc1 and Mal2 benchmarks. For more di�cult problems such as Dsc4, scalar evaluation

does not provide useful search gradient, leading to nearly �at curves throughout entire learning

process. DOC on the other hand maintains steady progress on most benchmarks and solves on

average more tests than the other con�gurations. This is also true for IFS, however DOC tends to

make progress at a faster rate, �nding an ideal solution earlier.

The improved performance of DOC can be at least to some extent attributed to its capability

to overcome the negative e�ects of overspecialization on individual tests (cf. Section 3.7). For

instance, in the Boolean benchmark Cmp6, the task is to determine whether the number encoded

by the three least signi�cant input bits b0, b1, b2 is smaller than the number encoded by the three

most signi�cant bits b3, b4, b5. A program that checks if b2 is o� and simultaneously b5 is on

solves the quarter of the total of 26 = 64 tests in this task. This can be expressed with a mere

few instructions from the assumed instruction set, e.g., as (b2 nor b2) and b5. Conventional

scalar evaluation function employed by GP makes it particularly likely for evolution to exploit

such opportunities by synthesizing programs that focus on such easy subproblems; however, their

further extension to cover the other tests may turn out to be di�cult and cause evolution to stall.

9.6. Discussion 119

Table 9.7: Post-hoc analysis of Friedman's test conduced on Table 9.5 (left) and 9.6 (right): p-
values of incorrectly judging a setup in a row to achieve better �tness than a setup in a column.
Signi�cant values (α = 0.05) are marked in bold.

doc ifs rand gp

doc 0.253 0.002 0.000
ifs 0.326 0.010

rand 0.499
gp

doc ifs rand gp

doc 0.006 0.999 0.046
ifs

rand 0.009 0.066
gp 0.903

Conversely, DOC attempts to autonomously decompose a problem into a few subproblems (meant

as groups of tests) that are meant to prevent such situations. It is likely that at least one derived

search objective will correspond to the easier tests, but even if a candidate solutions manages to

score perfectly on that objective, it is not guaranteed to survive if it does not make progress on

other objectives as well. Moreover, candidate solutions that solve the other, disjoints subsets of

tests have also chance to survive in the population, and at some point be recombined with the

other solutions, potentially leading to o�spring that combines their skills.

Table 9.6 shows the average and 95% con�dence interval of the number of nodes in the best-

of-run programs. The best-of-run programs produced by DOC turn out to be the smallest on

average. To an extent this was expected: DOC achieves the best success rate, and the runs are

terminated at success, so the runs of this method last for the lowest number of generations on

average. As programs in GP tend to grow with time [198], the best programs found in the early

stages of evolution are likely to be smaller than their counterparts in the later stages. However,

IFS, which is the runner-up in the ranking in terms of success rate, turns out to produce much

larger programs, even though its average run lengths (not reported here) do not diverge much from

those of DOC. This observation is con�rmed by the Friedman's test shown in Table 9.7 � DOC

produces signi�cantly smaller programs than IFS and GP. This may suggest that DOC implicitly

promotes more compact solutions. Given that multiobjective selection in DOC requires uniform

progress on all derived search objectives in order to make progress, one plausible hypothesis that

explains this phenomenon is that overgrown programs fail to generalize beyond certain subsets of

tests and are thus discarded during selection. Also, its reasonable to assume that at least one of

derived search objectives actually promotes simpler programs.

9.6 Discussion

The experiment demonstrated that DOC is able to identify meaningful search objectives (Sec-

tion 9.4.9) that are often internally cohesive (Section 9.4.8) and mutually non-redundant (Sec-

tion 9.4.7). The method autonomously adjusts the number of search objectives to the problem

characteristics and the dynamics of evolutionary search (Section 9.4.6), and systematically im-

proves the performance in comparison to the conventional CoEA and GP driven by the scalar

evaluation (Sections 9.4.5 and 9.5.3). The method maintains these features across diversi�ed

benchmarks of various di�culty.

The search objectives can be arranged into coordinate systems that have natural graphical

interpretation (Figs. 9.6 and 9.7). In this respect, they are similar to the coordinate systems of

underlying objectives studied in the past works of Bucci and de Jong [35, 69]. The apparent

similarity notwithstanding, the derived objectives cannot be however expected to correspond to

the underlying objectives, for several reasons. As we have shown in Sec. 9.3, DOC can introduce

additional (i.e., not backed up by an interaction matrix) dominance relationships between the

120 Discovery of Search Objectives by Clustering

candidate solutions; the coordinate systems of underlying objectives, to the contrary, are exact in

perfectly preserving the dominance. Secondly, the clustering conducted by DOC is heuristic and

thus not guaranteed to optimally assign the tests to the search objectives. Finally, DOC allows the

interaction outcomes to be arbitrarily valued, while the exact coordinate systems assume binary

interaction outcomes.

The heuristic character of DOC is advantageous in several respects. Firstly, it entails only

moderate computational overhead (cf. Section 9.7), while the problem of construction of an exact

coordinate system has been proven in [144, 141] to be NP-hard. Secondly, by being based on

the outcomes of interactions with a transient population of tests T , the search objectives match

the current capabilities of the candidate solutions in S. In other words, the search objectives

evolve along the candidate solutions and may adapt to their capabilities, creating a suitable search

gradient while avoiding overspecialization.

In the coevolutionary settings, the tests in T are rewarded for distinctions calculated directly

from the original interaction matrix G (and not from G′). Therefore, they are not explicitly a�ected

by DOC's multi-objective evaluation. This implies that the �rst iteration of the evolutionary loop

in DOC produces the same second population of tests as in CEL (and in all other con�gurations

considered here). However, the candidate solutions selected in that iteration from S in DOC are

likely to be di�erent from those selected in the �rst iteration of CEL. This results in a di�erent

interaction matrix in the second generation, and consequently other selection outcomes in T . In

this indirect way, the multi-objective evaluation of DOC a�ects the dynamics of evolution in the

population of tests.

By providing otherwise unavailable grounds for preferring some solutions over the others, the

objectives derived by DOC are expected to be more informative than the scalar evaluation. How-

ever, one must admit that the process of discovering the objectives is not always guaranteed to

succeed. DOC relies heavily on the possibility of identifying certain patterns in interaction out-

comes. The more similar the behavior of candidate solutions on the tests is, the harder it becomes

for a clustering algorithm to discover the groups of tests that could be attributed to skills. For

instance, when disengagement [44] occurs in coevolutionary settings, i.e., all tests currently in T

are solved by all candidate solutions (or all are failed), all tests end up in the same cluster, causing

the method to degenerate to a single-objective approach and lose its upper hand. Scenarios close

to disengagement (a very large fraction of solved or failed tests) may also cause the numbers of

tests supporting di�erent objectives to become highly unbalanced, leading to disrupted approxi-

mation of the Pareto front. Furthermore, DOC may also underperform when the original objective

function is inherently single-objective (for instance in simple problems) or hard to automatically

decompose into search objectives. Finally, DOC can discover search objectives only if their exis-

tence is manifested behaviorally, i.e., re�ected in the outcomes of interactions between candidate

solutions and tests. If the skills do not manifest in interaction outcomes, DOC has no means to

discover them. This may be the case in the problems where passing any test requires all (or most)

skills.

9.7 Computational overhead

The process of discovering search objectives obviously incurs an additional computational cost,

which for the k-means-like heuristic clustering algorithms is of the order of O(knm), where m and

n are respectively the sizes of S and T . The multi-objective selection is also more computationally

demanding than the traditional selection operators based on scalar �tness � the complexity of

NSGA-II algorithm isO(nm2) [75]. The total overheadO(knm+nm2) is thus linear in the function

9.8. Chapter summary 121

Table 9.8: Algorithm runtimes (in seconds) for the coevolutionary benchmarks, averaged over 60
evolutionary runs.

cel 1-means rand doc doc-bin doc-avg

ipd 15.7± 0.1 14.6± 0.2 14.4± 0.2 17.2± 0.4 17.6± 0.2 17.4± 0.2

dct-1 394.7± 4.2 428.1± 7.1 436.2± 6.3 472.4± 5.7 450.8± 6.3 468.6± 6.2

dct-2 511.2± 7.3 526± 7.8 529.3± 15.7 616.1± 12 618.1± 16 622.5± 16.4

dct-3 1420.8± 48.9 1429.6± 45.9 1438.7± 58 1424.1± 56.4 1483.2± 60.6 1471.4± 51

coo-3 98.9± 5.6 101.9± 0.2 104.8± 0.2 106.9± 5.3 105.7± 5.3 105± 5.4

coo-4 99.8± 5.5 102.9± 0.2 105.8± 0.2 107.4± 4.9 105.9± 4.9 104.7± 5.2

coo-5 100.2± 5.4 104.1± 0.1 105.3± 0.3 109.2± 4.9 107.9± 4.5 105± 5

coa-3 114.6± 5.9 115± 0.2 116.9± 0.2 116.3± 5.3 118.6± 5.6 119.8± 5.6

coa-4 113.5± 5.8 116.2± 0.2 115.9± 0.2 116.5± 5.3 119.9± 5.5 116.9± 5.3

coa-5 115.1± 5.3 114.9± 0.2 115± 0.3 117.4± 5 121.5± 4.9 122.5± 5

of n, which encourages using DOC with relatively large populations of tests and moderately sized

populations of candidate solutions.

These expenses result however from DOC's postprocessing of interaction outcomes, while in

many applications it is the interactions that consume the majority of computational budget. This

particularly applies to many test-based problems, where there are multiple tests to interact with,

and a single interaction outcome may require running a possibly complex program (in GP), per-

forming a costly simulation, or playing a game that involves multiple turns. In such cases, the cost

of clustering and multi-objective selection may be an insigni�cant fraction of the overall computa-

tion time.

The empirical evidence gathered from our experiments con�rms the moderate overhead of the

derivation process. Table 9.8 presents the runtimes accompanied by 95% con�dence intervals for

particular methods and the coevolutionary benchmarks considered in Section 9.4. The times are

clearly higher forDOC when compared to CEL across all the benchmarks, but the overhead is only

7.12 percent on average w.r.t. CEL, and it never exceeds 17.03 percent. These numbers could be

further reduced by using more e�cient algorithms or, e.g., limiting the number of internal iterations

of the X-MEANS clustering algorithms (which normally proceeds until datapoints stop migrating

between clusters). This would not necessarily deteriorate the quality of evolved solutions, because

optimal clustering is probably not essential here, given that the evolutionary search is by nature

stochastic. For brevity, we do not report here the runtimes of GP algorithms considered in Section

9.5, however similar observations hold also there.

9.8 Chapter summary

The DOC algorithm described in this chapter is a means to widen the evaluation bottleneck

between the �tness function and a search algorithm. By providing the search process with multiple

characteristics of candidate solutions, DOC makes a search algorithm better informed.

In replacing the original objective function with heuristic and transient objectives, DOC clearly

subscribes to the proposed framework of discovery of search objectives (cf. Section 8.4). Rely-

ing on such objectives is not necessarily less e�cient than using the standard scalar evaluation

function that counts the number of passed tests. In a rugged and multimodal �tness landscape,

the original objective may actually turn out to be more deceptive than an imperfect search objec-

tive. This becomes particularly true in DOC, where multiple diversi�ed search objectives are used

simultaneously and so mitigate premature convergence.

Chapter 10

Discovery of Search Objectives by

Factorization

In this chapter we introduce a second method that subscribes to the framework for discovery of

search objectives in test-based problems (cf. Section 5.1). The approach, dubbed DOF (Discovery

of Search Objectives by Factorization), uses the popular machine learning technique of non-negative

matrix factorization (NMF) to heuristically derive a low number of search objectives from an

interaction matrix between candidate solutions and tests. NMF, which proved e�ective in, among

others, recommender systems and multidimensional data analysis, allows us to capture the major

factors that characterize interaction outcomes in G. These factors are the primary building blocks

of search objectives derived by DOF. We demonstrate that, when employed to drive search, they

foster diversi�cation of search directions while maintaining a useful search gradient for the entire

evolution.

We begin our considerations by formally introducing the concept of matrix factorization in

Section 10.1. Next, in Section 10.2, we describe in detail the proposed approach, and discuss

several ways in which factors discovered by NMF can be used to de�ne search objectives. In

Section 10.3 and 10.4, we discuss the properties of DOF, and subsequently, in Section 10.5, we

present the results of comparative experiment involving, among others DOF and DOC in the

domain of tree-based GP. We conclude the chapter with discussion in Section 10.6 and summary

in Section 10.7.

The preliminary version of the method presented in this chapter has been published in [213].

10.1 Non-negative Matrix Factorization

Given a non-negative m × n matrix G and a desired factorization rank r, non-negative matrix

factorization [21, 112] searches for non-negative matrices (factors) W and H that together form a

lower rank approximation of G, i.e.:

G ≈WH s.t. W,H ≥ 0, (10.1.1)

where W ∈ Rm×k is a weight matrix and H ∈ Rk×n is a feature matrix (or a basis matrix). In

the context of DOF, G is a matrix of interactions between candidate solutions in S and tests in

T , and each candidate solution s ∈ S is associated with a row in W (a vector ws ∈ Rk), and each

test t ∈ T corresponds to a column in H (a vector ht ∈ Rk), i.e. m = |S| and n = |T |. This

correspondence inclines us to abuse the notation and index the elements, rows, and columns of

matrices with candidate solutions and tests.

123

124 Discovery of Search Objectives by Factorization

Algorithm 6 Two-block coordinate descent framework for NMF.

Require: factorization rank r, population size m, number of tests n, number of steps l.

1: function NMF(G)
2: W,H ← Initialize(m,n, r)
3: for i = 1, 2, . . . , l do
4: W = Update(G,H,W)
5: H = Update(G,W,H)

6: return W,H

In NMF, the n-dimensional outcome vectors (Eq. 6.4.1) in G are represented in a r-dimensional

linear subspace spanned by the basis vectors hj , j = 1, . . . , r, and their coordinates are given by

the vectors ws. By setting r � min(m,n), the high-dimensional data can be represented by a

set of low-dimensional vectors in the hope that the basis vectors can discover the latent semantic

structure in G. Notice also that if G's rank is ≤ r, there exists an exact solution to (10.1.1).

To perform the factorization, particularly when rank(G) > r, which is the case in DOF,

equation (10.1.1) is commonly reformulated as the following optimization problem:

min
W,H

L(W,H) ≡ 1

2
||G−WH||2F s.t. W,H ≥ 0, (10.1.2)

where || · ||F is the Frobenius norm. Quantifying the discrepancy between G and its approximation

WH with the (quadratic) Frobenius norm is reasonable in many practical situations, as it implicitly

assumes the presence of Gaussian noise in the factorized matrix. It allows also to compute the

optimal approximation using truncated singular value decomposition, albeit only when strict non-

negativity of W and H is not required. As opposed to its unconstrained variant, NMF is NP-hard

in general [351]. Most algorithms, including the one used here and explained in the following, resort

to standard nonlinear optimization methods, and are only guaranteed to converge to stationary

points. On the positive side, these heuristics proved to be successful in many practical applications,

and they typically run in O(mnr) operations.

The minimization problem given by (10.1.2) is non-convex when formulated with both W and

H simultaneously holding the variables; however it is convex in either W or H. Thus, by keeping

one matrix constant, the other can be found by solving simple non-negative least squares problem;

for instance, for �xed W , we have to solve

min
H≥0

||G−WH||2F .

This is the main reason why virtually all NMF algorithms follow a two-block coordinate descent

scheme, shown in Algorithm 6. The update rules in lines 4 and 5 are expected to decrease the

approximation error given by (10.1.2), and are typically applied for a �xed number of iterations,

or until the error is su�ciently small.

The most straightforward way to initialize W and H in line 2 of Algorithm 6 is to generate

them randomly, e.g. by sampling individual weights uniformly from the interval (0, 1). There

are several more advanced initialization strategies that aim at reducing the number of iterations

necessary to obtain a good factorization, or converging to a better stationary point. However,

these techniques typically do not provide any formal guarantees such as the upper bound on the

number of steps necessary for convergence, which is actually not surprising, given NP-hardness of

NMF.

10.1. Non-negative Matrix Factorization 125

The most popular approach to implement theUpdate steps in Algorithm 6 is the multiplicative

update algorithm (MU) [207], which alternates the following two steps:

wsj ← wsj
(GHT)sj

(WHHT)sj
, (10.1.3)

hjt ← hjt
(WTG)jt

(WTWH)jt
. (10.1.4)

In each iteration, the new values ofW and H are found by multiplying the current ones by a factor

that depends on the quality of approximation. The above update rules are essentially parameter-

free and have been shown to monotonically improve NMF's quality of approximation in [207].

As discussed in [48], in order to guarantee convergence to a stationary point, it is important to

reinitialize the entries of W that happen to decrease to zero to a small positive value whenever

their partial derivatives become negative. The reason for this is that MU can only modify non-zero

entries of W . Another possibility is to use a rescaled gradient descent method, see e.g. [17].

As originally proposed by Lee and Seung [207], MU converges rather slowly, see e.g. [119] for

a theoretical analysis. The convergence speed can be however signi�cantly improved by updating

W several times before updating H because the products HHT and GHT do not need to be

recomputed [113]. There are also plenty more e�ective NMF implementations that adhere to

Algorithm 6, such as ALS, ANLS, or HALS. For a more in-depth review of these and other

algorithms, we refer the reader to [112].

An important di�culty of using NMF in practice is non-uniqueness [204], i.e., existence of

equivalent factorization outcomes (W ′, H ′) such that WH = W ′H ′. It is easy to show that any

matrix U such that WU ≥ 0 and U−1H ≥ 0 generates an equivalent factorization into W ′ = WU

and H ′ = UH. For instance, U can be chosen as a monomial matrix, i.e. a matrix with exactly

one positive entry in each row and column, which results in scaling and permutation of factors in

W and H. As it will become apparent soon, such transformations are not an issue in DOF. More

problematic are however the non-monomial matrices that satisfy the above conditions because they

may lead to factorizations with di�erent interpretations, see e.g. [111]. A common extension that

addresses this issue in practice is regularization that forces the factors to be sparse, i.e. feature

relatively few non-zero elements. Sparse representation encodes much of the data using few active

components, which makes the encoding easier to interpret. Sparseness in both W and H has also

been shown to be crucial for NMF to learn parts-based and intuitive features of data [206]. In

practice, sparsity can be enforced by adding a penalty term, such as a L1-norm penalty:

min
W,H

f(W,H) ≡ 1

2
||G−WH||2F + λ(||W ||1 + ||H||1), (10.1.5)

where λ controls the degree of regularization. We refer the reader to [137] for recent results on the

non-uniqueness of NMF.

Much of the appeal of NMF comes from its ability to automatically extract sparse and easily

interpretable factors that correspond to underlying features of G. The non-negativity constraint al-

lows the model to learn parts-like representations by additively combining features that attempt to

`reproduce' the original input. This characteristic is consistent with many real-world applications,

where parts, to form a whole, usually need to be combined additively (and not subtracted) [206].

No wonder then that NMF became a popular tool in pattern recognition or classi�cation, where

it shows its strengths in learning meaningful features from real-life datasets such as collections

of face images [206] or text documents [274]. Other interesting applications of NMF include air

emission control [267], computational biology [77], or blind source separation [45]. In the following,

we employ NMF as the core component of our algorithm for discovery of search objectives.

126 Discovery of Search Objectives by Factorization

10.2 DOF

DOF employs NMF to extract the factors from G, and subsequently uses them to de�ne transient

search objectives. In terms of evolutionary computation, it plays a role of a selection method that

subsumes also the process of evaluation. When applied to a population S of m candidate solutions

and a set T of n tests, and given a factorization rank r, a parameter of the algorithm, it proceeds

as follows (we provide both textual description here, and an algorithmic summary in Algorithm 7):

1. Calculate the m× n matrix G of interactions between the candidate solutions in S and the

tests from T .

2. Perform NMF to factorize G into an m× r matrix W and r × n matrix H.

3. Calculate the r derived search objectives dj , j = 1, . . . , r, de�ning the score of candidate

solution si on objective dj as

dj(si) = wij . (10.2.1)

In other words, W is interpreted as a m× r derived interaction matrix G′, with the elements

de�ned as g′ij = dj(si).

4. Apply a multiobjective selection method to the objectives dj in order to select the parents

and generate candidate solutions for the next generation.

In the DOF-W variant of the method, the columns of W are treated as search objectives, while

their values for candidate solutions are taken directly from the corresponding rows in W (10.2.1).

Search objectives for a candidate solution s can be thus interpreted as the coordinates of outcome

vectors o(s) in r-dimensional space induced by NMF. Because all elements of G,W and H are non-

negative, and multiplication of W and H composes weights and factors additively, the resulting

search objectives are guaranteed to contribute only positively to interaction outcomes (or not

contribute in rare cases when an element of W or H is strictly zero). This allows us to assume

that they are positively correlated with interaction outcomes in G, and treat them as objectives

to be maximized in multiobjective selection (step 4).

NMF transforms G into a joint latent factor space such that the outcomes of interactions are

modeled as inner products in that space. It follows that W and H together convey all necessary

information that explains the individual outcomes in G. It seems therefore wasteful to deliberately

discard the information in H. To address this issue, we propose a second variant of the method,

dubbed DOF-WH, where step 3 of the above DOF algorithm de�nes search objectives di�erently,

namely as

dj(si) = wijg
T
i · hj = wij

∑

k∈I(s)
gikhjk, (10.2.2)

where I(s) = {k : tk ∈ T, g(s, tk) = 1}. In this variant (see also Algorithm 7), a search objective

weighs the features in H describing the tests tk ∈ T , k ∈ I(s) by candidate solution's factors inW .

As a result, the jth objective for a given candidate aggregates the jth factor for that candidate in

W and the jth factor for all tests in H that were solved by this candidate. The motivation for the

WH variant is as follows. NMF decomposes individual interaction outcomes in G into the sum of

r components, each multiplying a weight in W by a factor in H, i.e.:

gst ≈ ws1h1t + ws2h2t + · · ·+ wsjhjt︸ ︷︷ ︸
jth component

+ · · ·+ wsrhrt. (10.2.3)

The jth search objective derived by DOF-WH can be thus interpreted as the sum of jth compo-

nents, each being a fraction of the outcome resulting from an interaction of s with tk ∈ T , k ∈ I(s).

See also Example 10.1 for a more detailed illustration of DOF-WH.

10.2. DOF 127

Algorithm 7 Discovery of search objectives via factorization (DOF).

Require: factorization rank r.

1: function DOF(S, T)
2: for s ∈ S do
3: for t ∈ T do
4: g(s, t)← Interact(s, t) . computes an interaction matrix G

5: W,H ← NMF(G, r)
6: for j ∈ 1, . . . , r do
7: for si ∈ S do
8: if DOF-W then . determines a variant of the method
9: g′j(si)← wij
10: else
11: g′j(si)← wijg

T
j · hk

12: return G′

The non-negativity constraint motivated us also to change the encoding of interaction outcomes

from the conventional 0s and 1s (cf. Section 8.2) to respectively 1s and 2s. Allowing zeroes in

G would force the NMF algorithm to approximate them from above only and in general lead to

solutions of lower quality, i.e., higher error (10.1.5). With the adopted encoding, the resulting

WH matrix is allowed to hold values lower than 1 and greater than 2, and the cases of passing

and failing the tests are handled more symmetrically. This also requires adjusting the de�nition

of I(s) accordingly.

Example 10.1. Consider the following interaction matrix G holding the outcomes of interactions

with four tests

G =




t1 t2 t3 t4

s1 2 2 2 2

s2 1 1 2 2

s3 1 1 1 1


, (10.2.4)

where the rows correspond to candidate solutions s1, s2, and s3. s1 passes all tests and has thus

�tness of 4, s2's �tness is 2, and s3 is the worst with �tness 0. Because the interaction outcomes

for the �rst and the third candidate solution are linearly dependent, this matrix has rank 2 and

can be factorized exactly for r = 2. The factorization computed by the NMF library in the R

package [108] using the nmf function applied with default settings is as follows (values rounded to

two decimal places):

W ×H =




d1 d2

s1 0.70 2.05

s2 0.73 0.66

s3 0.35 1.02


×

(t1 t2 t3 t4

d1 0.70 0.70 2.70 2.70

d2 0.74 0.74 0.06 0.06

)
.

In DOF-W, the two columns of W form the derived objectives d1 and d2. Note that neither of

them orders the candidate solutions consistently with �tness: d1 orders them as follows: s2, s1, s3,

d2 ranks them s1, s3, s2, while the ordering according to the scalar �tness is s1, s2,s3. The derived

search objectives are therefore not guaranteed to be consistent with the order imposed by �tness.

This example shows also that DOF-W does not preserve dominance relation (6.2.1) between

candidate solutions. Considering our four tests as elementary objectives, the dominances that hold

in G are s1 � s2, s2 � s3, and s1 � s3. In the space of the two derived objectives d1 and d2,

only s1 � s3 holds, and s1 and s2 are mutually non-dominated. This was however expected: one

128 Discovery of Search Objectives by Factorization

can show formally that reduction of the number of objectives inevitably leads to loss of dominance

(see proofs formulated in terms of partially ordered sets (posets) in [141]). Also, preservation of

dominance is of secondary importance for DOF: with dozens or more tests used in typical test-based

problemns, and diversi�ed candidate solutions' scores on them, the number of pairs of candidate

solutions in dominance is very low already in the original space of tests, so there is not much of

dominance to be preserved in the NMF process.

Despite not preserving ordering nor dominance, the derived search objectives do convey some

information on the structure de�ned inG. For instance, the average ranks of candidate solutions are

1.5, 2.0, and 2.5, respectively, and they order the candidate solutions consistently with f . Moreover,

the derived search objectives convey some preferential information even when r < rank(G). Let

us slightly modify G in (10.2.4) by assuming that this time s3 passed the �rst test, so that the

new interaction matrix is

G1 =




t1 t2 t3 t4

s1 2 2 2 2

s2 1 1 2 2

s3 2 1 1 1


. (10.2.5)

As a consequence, the �rst and third row of G1 become linearly independent, and rank(G1) = 3.

It is thus impossible to factorize G1 into suchW and H that restore G1 perfectly for r = 2. Indeed,

the call of nmf function in R package leads to

W1 =




d1 d2

s1 0.96 1.51

s2 0.39 1.84

s3 0.86 0.38


, H1 =

(t1 t2 t3 t4

d1 2.16 1.20 0.72 0.72

d2 0.05 0.35 0.90 0.90

)
, (10.2.6)

the product of which notably diverges from G2:

W1 ×H1 =




t1 t2 t3 t4

s1 2.17 1.70 2.07 2.07

s2 0.95 1.13 1.96 1.96

s3 1.88 1.17 0.97 0.97


.

However, the average ranks of candidate solutions s1, s2 and s3 are 1.5, 2.0 and 2.5, and thus seem

to re�ect well their overall performance.

Example 10.2. In order to demonstrate DOF-WH, let us now consider the more general case

in which an arbitrary interaction matrix G is subject to NMF. Assume m = 3, n = 4, r = 2, and

the following matrices W and H resulting from factorization:

W =




f1 f2

s1 w11 w12

s2 w21 w22

s3 w31 w32


, H =

(t1 t2 t3 t4

f1 h11 h12 h13 h14

f2 h21 h22 h23 h24

)
.

We may now rewrite individual interaction outcomes in G as inner products of the corresponding

rows and columns in W and H, i.e.

Ĝ = W ×H =




t1 t2 t3 t4

s1 w11h11 + w12h21 w11h12 + w12h22 w11h13 + w12h23 w11h14 + w12h24

s2 w21h11 + w22h21 w21h12 + w22h22 w21h13 + w22h23 w21h14 + w22h24

s3 w31h11 + w32h21 w31h12 + w32h22 w31h13 + w32h23 w31h14 + w32h24


.

10.3. Properties 129

The value of search objective dj for the ith candidate solution is computed by taking a product

of the jth weight in the ith row in W and the sum of factors in the jth row in H that correspond

to the tests in T solved by the ith candidate solution (Eq. 10.2.2). To make the further part of

this example more concrete, let us assume that W and H have been obtained from the interaction

matrix G1, which states that s1 passes all tests, s2 passes t3 and t4, and s3 passes only t1. In that

case, the derived interaction matrix G′ produced by DOF-WH takes the following form:

G′ =




d1 d2

s1 w11(h11 + h12 + h13 + h14) w12(h21 + h22 + h23 + h24)

s2 w21(h13 + h14) w22(h23 + h24)

s3 w31h14 w32h24


.

When individual weights and factors are multiplied, we arrive at the following matrix

G′ =




d1 d2

s1 w11h11 + w11h12 + w11h13 + w11h14 w12h21 + w12h22 + w12h23 + w12h24

s2 w21h13 + w21h14 w22h23 + w22h24

s3 w31h11 w32h21


,

It is easy to notice how the derived objectives correspond to the learned components of individual

interaction outcomes in Ĝ. For convenience, we rewrite below the relevant parts of Ĝ, highlighting

the corresponding components between the matrices:

Ĝ =




t1 t2 t3 t4

s1 w11h11 + w12h21 w11h12 + w12h22 w11h13 + w12h23 w11h14 + w12h24

s2 w21h13 + w22h23 w21h14 + w22h24

s3 w31h11 + w32h21


.

For the candidate solution s2, the objectives are derived by adding the values in the same colors.

Let us now inspect the objectives derived by DOF-WH from G1 (10.2.5). When applied for

every candidate solution, the Eq. 10.2.2 yields the following search objectives:

G′1 =




d1 d2

s1 4.61 3.32

s2 0.56 3.31

s3 1.86 0.02


.

Compared to W1 (10.2.6), the second search objective d2 now orders the solutions consistently

with �tness. This is however not guaranteed to happen in general. Concerning the dominances,

only s2 � s3 is absent from G′, which suggests that DOF-WH may have the potential to elicit a

more useful search gradient than DOF-W. �

10.3 Properties

DOF is engaged independently in each generation of an evolutionary run. Therefore, the derived

objectives are transient, re�ecting the contents of interaction matrix at a given stage of search

process (cf. Section 8.4.3). In particular, one should not expect the objectives derived in a given

generation to correspond in any way to the objectives derived in even the very previous or very

next generation.

NMF employed by DOF guarantees invariance to permutation of rows and columns in G,

insensitivity to duplicate rows or column in G, and resistance to scaling/translation of its values

130 Discovery of Search Objectives by Factorization

(cf. Section 8.4.5). Though the latter may a�ect the absolute values of factors in W and H, this

is not relevant from the perspective of search objectives, which care only about the ordering of

candidate solutions.

DOF may involve an arbitrary selection method in step 4. Following the design of DOC, our

default choice is NSGA-II algorithm [75]. Recall from Section 8.5.4 that NSGA-II is speci�c in

building a joint ranking of equal numbers of parent and o�spring solutions, followed by subsequent

removal of the worse half of them. This obviously necessitates that evaluations on all objectives

need to be known for both parents and o�spring. For consistency with this feature of NSGA-II,

we apply DOF to the union of parents' and o�spring set, so that the set S that gives rise to the

original interaction matrix G in the above algorithm stands for that union. However, the outcomes

of parents' interactions with tests are already known, as they have been calculated in the previous

generation. Only the o�spring candidate solutions have to be applied to tests. Therefore, the

computational cost in terms of solution-test interactions is the same for DOF as for standard EAs,

i.e., |T | interactions per candidate solution per generation.

The values of the factors resulting from NMF can be arbitrary (yet obviously positive). There-

fore, one cannot expect the derived search objectives to have similar magnitudes. This is however

not problematic for NSGA-II and most other multiobjective selection methods, as they assume

objectives to be de�ned on ordinal scales and never directly compare them with each other. Also,

the crowding distance used in NSGA-II to resolve ties on Pareto-ranks is based on the product of

normalized objectives [75], so magnitudes are unproblematic there either.

The factorization rank r determines the number of search objectives and controls the degree

to which G is `compressed' into W and H. DOF is designed for low values of r (in the order

of a few), because typical multiobjective selection methods like NSGA-II cannot handle large

numbers of objectives. Nevertheless, in Chapter 11, we combine DOF with lexicase selection, and

let it discover up to 100 objectives. In the extreme case of r = 1, W and H become vectors. If

r < rank(G), the compression of G into W and H is inevitably lossy. In practice, the rank of G

depends on the diversity of candidate solutions in population on one hand, and on the uniqueness

of tests in T on the other. In most cases, one should expect that rank to be very high, sometimes

even close to min(m,n), because any two candidate solutions are likely to yield di�erent interaction

outcomes for at least one test and, analogously, any two tests are likely to elicit di�erent response

from at least one candidate solution.

Let us also note that search objectives derived by DOF remain unde�ned beyond the set of

considered candidate solutions S. In other words, given G, W and H obtained from a set of

candidate solutions S, little (if anything) can be said about the values of search objectives for a

candidate solution not in S (unless it has the same interaction outcomes as a candidate in S). This

limitation is however not an issue for DOF, where generalization beyond S is not required.

10.4 Analysis of dominance relation

In Example 10.1, we demonstrated that DOF does not preserve the dominance relation between

candidate solutions in G. To be precise, it may commit false negative errors (cf. Section 9.3). In the

following, we prove that DOF does not commit arguably the most severe mistake of inverting the

dominance relation between candidate solutions in G. We will also prove that DOF cannot commit

false positive errors. We start with proving these properties for DOF-W, and then generalize them

to DOF-WH.

10.4. Analysis of dominance relation 131

De�nition 10.3. The candidate solutions si, sj are equivalent in G (si ∼G sj) if gik = gjk for

every k = 1, . . . , n.

De�nition 10.4. The candidate solutions si, sj are comparable in G if either si �G sj , sj �G si

or si ∼G sj .

From these de�nitions it follows that si, sj are comparable if and only if

∀k gik ≥ gjk or ∀k gjk ≥ gik,

where k = 1, . . . , n.

Assume further that NMF is is applied to G and yields an exact decomposition/factorization,

i.e. G = WH (cf. (10.1.1)). For reader's convenience, we detail W and H below:

W =




w11 w12 · · · w1k′ · · · w1r

w21 w22 · · · w2k′ · · · w2r

...
...

. . .
...

. . .
...

wj1 wj2 · · · wjk′ · · · wjr
...

...
. . .

...
. . .

...

wm1 wm2 · · · wmk′ · · · wmr




H =




h11 h12 · · · h1k · · · h1n

h21 h22 · · · h2k · · · h2n

...
...

. . .
...

. . .
...

hk′1 hk′2 · · · hk′k · · · hk′n
...

...
. . .

...
. . .

...

hr1 hr2 · · · hrk · · · hrn




.

Theorem 10.5. Let G be a non-negative interaction matrix and G = WH be its exact non-

negative factorization for some r. Let si �G sj for some i and j, i, j ∈ {1, . . . ,m}. If si and sj
are comparable in W , then si �W sj .

Proof. From si �G sj it follows there exists a test tk ∈ T such that

gik > gjk (10.4.1)

for some k = 1, . . . , n. Suppose, for the sake of contradiction, that si and sj are comparable in W

and that si �W sj is not true. Then either sj �W si or sj ∼W si. In the �rst case, there must

exist k′ = 1, . . . , r such that

wjk′ > wik′ ∧ wjl ≥ wil, l 6= k′, l = 1, . . . , r. (10.4.2)

When these elements of W become multiplied by the elements of H, we consider two subcasess.In

the subcase hk′k > 0, then we have

wjk′hk′k > wik′hk′k.

Hence

wjk′hk′k +

r∑

l=1,l 6=k′
wjlhlk

︸ ︷︷ ︸
=gjk

> wik′hk′k +

r∑

l=1,l 6=k′
wjlhlk

gjk +

r∑

l=1,l 6=k′
wilhlk > wik′hk′k +

r∑

l=1,l 6=k′
wilhlk

︸ ︷︷ ︸
=gik

+

r∑

l=1,l 6=k′
wjlhlk

gjk +

r∑

l=1,l 6=k′
wilhlk > gik +

r∑

l=1,l 6=k′
wjlhlk.

132 Discovery of Search Objectives by Factorization

From the last inequality it follows immediately

r∑

l=1,l 6=k′
(wil − wjl)hlk > gik − gjk.

From wjl ≥ wil for l 6= k′, l = 1, . . . , r we have that the left-hand side of this formula must be

non-positive. According to (10.4.1), gik − gjk > 0, hence we arrive at contradiction.

The subcase hk′k = 0 also leads to contradiction with (10.4.1), because taking into account

(10.4.2) we obtain

gjk =

r∑

l=1,l 6=k′
wjlhlk ≥

r∑

l=1,l 6=k′
wilhlk = gik.

In the second case, i.e. sj ∼W si, we have wjk = wik for every k = 1, . . . , n. This implies

gjk = gik for every k, hence we arrive at a contradiction.

Since we have arrived at a contradiction in all cases, our original supposition that sj �W si

cannot be true, which proves that the inversion of dominance cannot happen whenever si and sj

are comparable in W . Notice also that if si and sj are not comparable in W , then by de�nition,

inversion of dominance in W cannot happen. We summarize this result in a more general way in

the following theorem:

Theorem 10.6. Discovery of search objectives by factorization does not lead to inversion of the

dominance relation in G′.

The above theorem applies instantly to DOF-W. In case of DOF-WH, recall that a factor wjk

is multiplied by the expression cjk = gTj · hk (Eq. 10.2.2) that is guaranteed to be non-negative

and its magnitude depends on the number of solved tests in G by the candidate solution sj . Notice

further that if sj �G si, then

cjk ≥ cik (10.4.3)

because sj solves more tests than si. From (10.4.3) and from (10.4.2) it follows that

wjk′cjk′ >wik′cik′ for k
′

= 1, . . . , r,

wjlcjl ≥wilcil for l 6= k
′

From this point, a similar proof by contradiction can be easily performed for DOF-WH.

In the following, we prove that DOF cannot commit false positive errors.

Proposition 10.7. Let si, sj be arbitrary candidate solutions. If si, sj are comparable in W , then

si, sj are comparable in G.

Proof. We have si �W sj or sj �W si or si ∼W sj . Let us suppose �rst that si �W sj . Then

there exists k′, 1 ≤ k′ ≤ r such that

wik′ > wjk′ ∧ wil ≥ wjl, l 6= k′, l = 1, . . . , r. (10.4.4)

For any �xed k, k = 1, . . . , n we have

gik =

r∑

l=1

wilhlk ≥
r∑

l=1

wjlhlk = gjk.

If hk′k 6= 0, then gik > gjk holds, so si, sj are comparable in G. Arguing in a similar manner in

both cases sj �G′ si and si ∼W sj , we obtain, respectively, gjk ≥ gik and gik = gjk. Thus, in any

case we have that si, sj are comparable in G.

10.5. Experimental evaluation 133

From Proposition 10.7 it immediately follows

Theorem 10.8. If si, sj are incomparable in G, then si, sj are incomparable in W .

Theorem 10.8 implies that DOF cannot commit false positive errors.

To summarize our considerations, discovery of search objectives by factorization, when per-

formed in exact manner (i.e., G = WH), may lead to the loss of dominance (false negative errors)

in G′ (see Example 10.1), but it is guaranteed not to posit a dominance between candidate solu-

tions if it was not present in G (Theorem 10.8). Finally, the dominance relation between any pair

of candidate solutions comparable in G′ is never reversed (Theorem 10.6).

It is important to emphasize again that the above theoretical results hold only for the scenarios

in which G is factorized into W and H exactly, which is the case if rank(G) ≤ r. No such

guarantees exist otherwise. The likelihood of dominance inversions or new dominances arising in

the space of derived objectives depends on the characteristics of the heuristic algorithm used for

NMF (e.g., the MU algorithm used in this thesis). Nevertheless, as argued in other parts of this

chapter, one can assume that the impact of such undesirable phenomena on DOF's performance

is likely to be low, given the stochastic character of evolutionary search.

10.5 Experimental evaluation

In this section we present the results of a comparative experiment involving two variants of DOF

introduced in Section 10.2. Our goal, beyond demonstrating the strength of factorization-based

evaluation (Sections 10.5.2 and 10.5.3), is to answer the following questions:

1. Is the success of methods that derive search objectives more due to diversi�cation, or due

to the useful search gradient created by the derived objectives? The experiment addressing

this question is reported in Section 10.5.4.

2. How do derived search objectives relate to �tness? What is the dynamics of search process

driven by such objectives? In Section 10.5.5, we visualize the objectives derived by DOF and

attempt to answer these questions.

We close this section by discussing computational e�ciency of DOF methods in Section 10.5.6.

10.5.1 Methods and benchmarks

In the following computational experiments, we assess the characteristics of DOF using as the

baseline the standard Koza-style tree-based GP algorithm, which is driven by conventional evalu-

ation function (6.1.1), and IFS with �tness de�ned as in (8.3.1). We also compare DOF to DOC

described in Section 9.1, which derives search objectives by clustering of interaction outcomes.

The factorization of interaction matrix in DOF is realized by the MU algorithm ((10.1.3)

and (10.1.4)), implemented as discussed in Section 10.1. To speed-up convergence, we conduct 5

updates ofW before updatingH. When invoked for a given interaction matrix G, we perform up to

50 iterations of MU. If the approximation error (10.1.2) drops below 10−5, we stop the optimization

earlier. We consider three values of the factorization rank r ∈ {2, 3, 4}. This choice is dictated by

the limited capability of handling larger numbers of objectives by the NSGA-II selection, which

we apply to derived objectives in order to perform multiobjective selection of parent solutions for

the next generation in DOF.

In order to make the following experiments comparable with those already conducted in Sec-

tion 9.5, we strictly follow the experimental protocol and the benchmark problems used there. For

an overview of the parameters used in evolution, see Table 9.3. The benchmark problems represent

134 Discovery of Search Objectives by Factorization

Table 10.1: Success rate of the best-of-run individuals (per 50 runs) and average ranks of methods
w.r.t. success rate. Bold font marks the best result for each benchmark.

gp ifs doc dof-w dof-wh
Benchmark r 2 3 4 2 3 4
Cmp6 0.54 0.94 0.94 1.00 0.00 0.00 0.98 1.00 0.06
Cmp8 0.02 0.00 0.52 0.08 0.00 0.00 0.06 0.00 0.00
Maj6 0.54 0.98 0.98 0.90 0.00 0.00 0.98 1.00 0.00
Maj8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mux6 0.98 1.00 1.00 1.00 0.72 0.00 1.00 1.00 0.98
Par5 0.02 0.00 0.06 0.06 0.00 0.00 0.06 0.06 0.00
Dsc1 0.00 0.24 0.28 0.30 0.20 0.00 0.20 0.38 0.70
Dsc2 0.00 0.46 0.52 0.40 0.46 0.00 0.42 0.60 0.86
Dsc3 0.44 0.84 0.92 0.88 0.58 0.00 0.86 0.98 0.98
Dsc4 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.06
Dsc5 0.12 0.28 0.74 0.26 0.36 0.00 0.56 0.88 0.78
Mal1 0.88 0.90 0.98 1.00 1.00 0.98 1.00 1.00 1.00
Mal2 0.00 0.90 0.84 1.00 1.00 0.92 0.92 1.00 1.00
Mal3 0.68 1.00 0.96 0.90 1.00 0.32 0.96 1.00 1.00
Mal4 0.00 0.48 0.54 0.62 0.94 0.74 0.48 0.84 0.86
Mal5 0.88 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Rank 6.88 5.47 4.26 4.32 5.44 7.12 4.59 2.85 4.06

the Boolean and categorical domains, and are described in Section 9.5.2. See also Table 9.4 for the

details regarding the instruction set, the number of variables and the tests used in each domain.

The results presented below are averages over 50 independent runs of evolution, repeated for

each combination of method and problem.

10.5.2 Success rate

The primary performance indicator we consider is success rate, i.e., the percentage of runs that

ended up with a correct program. Table 10.1 presents this performance measure for particular

con�gurations and benchmarks. In order to ease the analysis and take into account the fact that

some benchmarks are inherently more di�cult than others, we summarize Table 10.1 by ranking

the methods on every benchmark independently, and reporting the averaged ranks at the bottom

of the table. The best results on individual benchmarks are also marked in bold.

The results reveal that the conventional single-objective GP tends to solve reliably only the

easiest problems (e.g. Mux6 with the average success rate among all con�gurations of 85.3). IFS

systematically improves on GP's performance, achieving higher success rates on all benchmarks.

However, it is the multiobjective methods based on two or more search objectives that deliver the

largest leap in performance. Table 10.1 reports the results obtained by six DOF con�gurations

in total, one for each combination of the method's variant and factorization rank r. Of these

con�gurations, DOF-WH with r = 3 achieves the best results, having at least as high success rate

as the other methods for all problems except for Mal4, Dsc2, and Cmp8. It also appears, that

r = 3 is the optimal setting for DOF-WH as its overall outcomes for r = 2 and r = 4 are slightly

worse. Judging from the performance on individual benchmarks, DOF-WH with r = 4 favors

categorical problems, as it systematically outperforms the other methods, except for Dsc5, where

it ranks second.

DOF-W, on the other hand, performs the best when r = 2. For r = 3, we observe evident

deterioration of success rates, particularly for Boolean benchmarks. For instance, Cmp6 and Maj6

are not solved even once, whereas the probability of success when r = 2 is equal or above 90. This

10.5. Experimental evaluation 135

Table 10.2: Post-hoc analysis of Friedman's test conduced on ranks achieved by the best performing
con�gurations from Table 10.1. Signi�cant values (α = 0.05) are marked in bold.

doc gp ifs dof

doc 0.001 0.329
gp
ifs 0.167
dof 0.369 0.000 0.005

trend continues for r = 4, for which DOF-W fails to solve most of the benchmarks and ranks as the

last con�guration. This may suggest that as the factorization ranks increases, the weights in W

alone do not di�erentiate the candidate solutions well enough to create a useful search gradient.

Another plausible explanation of this phenomenon is that NSGA-II, which is employed as the

selection method in DOF, fails to obtain a representative, evenly distributed approximation of

the Pareto front, which is necessary to �nd good, diversi�ed solutions. Nevertheless, in its best

setting, DOF-W takes the 4th spot among all the methods, and manages to rank before GP and

IFS. We hypothesize that when r = 2 or r = 3, NMF is encouraged to come up with factors that

model only the critical aspects of the interactions that prove to be particularly suitable to guide

the search process.

The performance on individual benchmarks, although interesting, does not reveal much re-

garding the relations of compared methods in terms of the likelihoods of synthesizing a correct

program for any problem. For this reason, in the following, we rank only the best performing DOF

con�guration (the WH variant with r = 3) and the control methods. For clarity of presentation,

from now on, by DOF we mean its best performing con�guration. The ranks are as follows:

DOF DOC IFS GP

1.406 2.094 2.812 3.688

To statistically evaluate these results, we apply the Friedman's test for multiple achievements of

multiple subjects [159] to the above con�gurations in relation to their average ranks. The obtained

p-value for Friedman test is 5.07×10−7, which strongly indicates that at least one method performs

signi�cantly di�erent from the remaining ones. To determine the signi�cantly di�erent pairs, we

conduct post-hoc analysis using the symmetry test [135]. Table 10.2 presents the p-values for the

hypothesis that a setup in a row is better than a setup in a column (the signi�cant p-values are

marked in bold). This comparison reveals that the performance improvement of DOF relative to

control methods GP and IFS is signi�cant. The di�erence is however statistically insigni�cant for

DOC. Nevertheless, it is interesting to note that DOF achieves higher or equal success rates on all

benchmarks except for Cmp8, which remains unsolved by DOF (cf. Table 10.1).

To analyze the search dynamics of DOF, in Fig. 10.1 we plot the average best-of-generation

�tness graphs for particular methods and benchmark problems, with 95% con�dence intervals

marked as semi-transparent bands. This �gure clearly shows that both DOF and DOC tend to

improve the learning speed compared to the standard GP algorithm and IFS. In many cases, they

not only learn faster, but also achieve a lower values of �tness, which indicates that they solve more

tests on average (recall that we technically present the complement of �tness, i.e., n−f(p)). When

it comes to head-to-head comparison between DOF and DOC, it appears that DOF maintains an

upper hand when solving categorical problems. Although the di�erences are not large, particularly

at the beginning of evolution, where both methods make roughly the same progress, they become

more evident typically after 50 generations, when DOF's curve diverges from that of DOC and

ultimately converges to a lower values. This is particularly easy to notice for Dsc1 and Mal4.

136 Discovery of Search Objectives by Factorization

0 50 100 150 200
0

5

10

A
v
g
.

b
e
st

fi
tn

e
ss

Cmp6

0 50 100 150 200
0

20

40

Cmp8

0 50 100 150 200
0

5

10 Maj6

0 50 100 150 200
0

5

10

15

A
v
g
.

b
e
st

fi
tn

e
ss

Mux6

0 50 100 150 200
0

5

10

Par5

0 50 100 150 200
0

2

4

6

8
Dsc1

0 50 100 150 200
0

2

4

6

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc2

0 50 100 150 200
0

2

4

6
Dsc3

0 50 100 150 200
0

2

4

6

8
Dsc4

0 50 100 150 200
0

2

4

6

8

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc5

0 50 100 150 200
0

2

4

Mal1

0 50 100 150 200
0

1

2

3

4 Mal2

0 50 100 150 200
0

2

4

Generations

A
v
g
.

b
e
st

fi
tn

e
ss

Mal3

0 50 100 150 200
0

2

4

Generations

Mal4

0 50 100 150 200
0

1

2

3

Generations

Mal5

dof doc ifs gp

1
Figure 10.1: Average and .95-con�dence interval of the best-of-generation �tness.

10.5. Experimental evaluation 137

Table 10.3: Average and .95-con�dence interval of number of nodes in the best-of-run program.
Last row presents the averaged ranks of con�gurations.

Benchmark dof doc ifs gp

Cmp6 114.933 ±6.637 133.065 ±16.226 201.650 ±12.259 228.660 ±23.939

Cmp8 165.444 ±8.203 245.814 ±22.885 268.385 ±11.532 314.826 ±21.000

Maj6 145.381 ±8.025 189.506 ±17.168 283.115 ±12.840 297.198 ±21.755

Maj8 275.567 ±12.806 218.388 ±10.376 361.392 ±17.457 465.553 ±24.007

Mux6 67.896 ±4.214 66.256 ±4.580 148.742 ±8.231 113.215 ±15.836

Par5 275.617 ±12.527 297.752 ±20.957 299.031 ±14.029 407.300 ±22.916

Dsc1 131.777 ±7.187 158.997 ±12.039 165.074 ±9.003 86.639 ±25.317

Dsc2 124.538 ±9.115 161.880 ±12.989 170.963 ±10.687 128.936 ±21.391

Dsc3 92.281 ±7.806 116.893 ±12.104 179.495 ±11.594 164.792 ±16.247

Dsc4 158.406 ±8.016 194.817 ±14.981 56.008 ±12.826 5.599 ±8.840

Dsc5 101.505 ±6.710 132.496 ±11.019 123.598 ±12.441 55.948 ±21.743

Mal1 63.182 ±4.039 92.888 ±11.478 135.065 ±11.584 84.096 ±10.078

Mal2 61.033 ±4.452 96.845 ±10.676 132.411 ±10.271 160.670 ±12.247

Mal3 64.470 ±4.229 111.727 ±12.740 132.598 ±8.652 138.464 ±16.686

Mal4 87.992 ±8.692 158.938 ±13.725 162.231 ±12.207 160.373 ±17.089

Mal5 45.506 ±2.718 43.431 ±4.457 91.444 ±10.786 49.912 ±7.409

Rank: 1.438 2.250 3.375 2.938

Table 10.4: Post-hoc analysis of Friedman's test conduced on Table 10.3. Signi�cant values (α =
0.05) are marked in bold.

dof doc ifs gp

dof 0.000 0.005 0.283
doc 0.066 0.434
ifs
gp 0.773

DOC, on the other hand, fares better on Boolean benchmarks, where it tends to outperform DOF

in terms convergence rate. These observations are consistent with Table 10.1, which points to the

similar conclusions.

10.5.3 Program size

In this section, we compare the methods in terms of complexity of candidate solutions they produce,

measured as the number of nodes in their program trees. Table 10.3 shows the average and 95%

con�dence interval of the number of nodes in the best-of-run programs. For a more detailed insight,

we also summarize Table 10.3 by ranking the methods on every benchmark independently, and

then averaging the ranks for each method.

DOF produces the smallest programs on 10/16 benchmarks and achieves the average rank of

1.438. It is an impressive feat, given that the programs produced by DOC are already signi�cantly

smaller than those of GP and IFS (cf. Table 9.6). DOC ranks second with the average rank of

2.25, outperforming the other methods on 3/16 benchmarks. GP ranks third with the result of

2.938 and, similarly to DOC, obtains the best result on 3/16 benchmarks. IFS appears to be

the most susceptible to bloat, producing noticeable more complex candidate solutions, and takes

the last spot in the comparison with the average rank of 3.375. The outcomes of the Friedman's

test shown in Table 10.4 con�rm these observations � DOF produces signi�cantly smaller trees

than GP and IFS. The di�erence between DOF and DOC is however not statistically signi�cant,

however the results are clearly in favor of DOF. As suggested by the Minimum Description Length

138 Discovery of Search Objectives by Factorization

Table 10.5: Average number of generations before an ideal program is found. Bold font points to
a con�guration that �nds it faster.

Problem dof doc

Cmp6 118.070 ±12.936 51.000 ±6.330

Maj6 139.978 ±9.343 71.000 ±9.438

Mux6 34.340 ±2.217 26.660 ±1.284

Par5 186.721 ±13.398 143.000 ±9.585

Dsc1 98.676 ±11.242 87.571 ±17.727

Dsc2 104.295 ±9.343 103.462 ±17.691

Dsc3 67.460 ±7.858 57.870 ±8.874

Dsc4 133.500 ±24.990 139.600 ±30.138

Dsc5 95.846 ±12.006 96.000 ±14.056

Mal1 26.180 ±6.483 29.224 ±6.026

Mal2 28.160 ±6.434 37.167 ±9.269

Mal3 40.180 ±7.035 39.104 ±7.741

Mal4 58.881 ±10.802 70.815 ±16.968

Mal5 19.740 ±1.693 18.510 ±2.095

principle [301], DOF's capability to evolve smaller programs may be of crucial importance for its

good performance.

Given the above outcome, it is particularly interesting to further scrutinize the results obtained

by DOF and DOC. Recall from Section 9.5.3 that without any direct countermeasure, programs

in GP tend to bloat with time. We ask thus whether the tendency to produce small programs in

DOF stems from the shorter evolution. To this aim, we inspect the average run length of both

methods, i.e. the average number of generations before an ideal candidate solution is found, and

report the results in Table 10.5. We omit any benchmarks which were not solved at least once by

either method, i.e. Cmp8 and Maj8. Interestingly, the results suggest that DOC tends to �nd the

correct programs faster, despite DOF's higher success rates. Indeed, DOC �nishes evolution with

success earlier than DOF on 9/14 benchmarks, however it is DOF that produces smaller programs

on 7 of these (Cmp6, Maj6, Par5, Dsc1, Dsc2, Dsc3, Mal3, cf. Table 10.3). The only exception is

Mal5, where DOC both �nishes earlier and �nds a smaller solution.

As demonstrated here, smaller number of generations indeed positively correlates with deliver-

ing of shorter programs. However, it is apparently not the only factor responsible for the synthesis

of more concise programs in DOF. Another plausible explanation is that DOF operates on a more

syntactically diversi�ed population that leads to reduced bloat [3]. In order to verify the above

hypothesis, we measure syntactic entropy of population of candidate solutions. In information

theory, the concept of entropy is commonly used to quantify the uncertainty associated with a

random variable. More speci�cally, the entropy H(X) of a random variable X with probability

mass function p(x) can be used to measure the average information content that is missing when

the value of X is unknown [321]. The entropy for discrete variables, as de�ned by Shannon, is as

follows:

H(X) = −
∑

i

pi log2 pi, (10.5.1)

where pi is the empirical chance of observing value i. Crucially for our considerations, a random

variable that may take on a large number of values at comparable probabilities has a higher

entropy than a random variable with a limited range of values. The random variable X is a

function de�ned on a population S and assuming values in the set {c1, c2, . . . , cl}, where ci counts
the occurrences of each unique program tree (expression represented by a tree) in S, i.e X(s) = ci

10.5. Experimental evaluation 139

Table 10.6: Average syntactic entropy of candidate solutions from the last generation of evolution-
ary run, accompanied by .95-con�dence interval.

Problem dof doc

Cmp6 10.665 ±0.012 10.582 ±0.033

Cmp8 10.686 ±0.015 10.554 ±0.025

Maj6 10.661 ±0.016 10.567 ±0.033

Maj8 10.756 ±0.009 10.437 ±0.019

Mux6 10.599 ±0.012 10.490 ±0.019

Par5 10.526 ±0.013 10.568 ±0.029

Dsc1 10.067 ±0.040 9.784 ±0.020

Dsc2 10.046 ±0.051 9.789 ±0.013

Dsc3 10.364 ±0.016 9.844 ±0.008

Dsc4 10.056 ±0.037 9.746 ±0.029

Dsc5 9.752 ±0.058 9.696 ±0.026

Mal1 9.936 ±0.041 9.742 ±0.058

Mal2 9.807 ±0.050 9.807 ±0.017

Mal3 10.313 ±0.032 9.865 ±0.008

Mal4 9.825 ±0.115 9.762 ±0.069

Mal5 9.668 ±0.075 9.537 ±0.080

and P (X = ci) = ci
|S| for i = 1, 2, . . . , l. In this sense, syntactic entropy is a measure of expected

programs' uniqueness in S.

Table 10.6 presents the average syntactic entropy of candidate solutions, accompanied by 95%

con�dence interval, measured in the last generation of an evolutionary run. Though the absolute

di�erences between DOC and DOF are not big, the trend is clear. DOF tends to maintain higher

syntactic entropy on the majority of benchmark problems, which gives us some evidence that

expressions (programs) evolved by DOF are characterized by the greater degree of variability on

the level of their source code. With more syntactic diversity, it becomes more likely that some of

the programs in the population continue improving their �tness. This, in turn, reduces the risk of

bloat, i.e. growth of program size without accompanying improvement of �tness.

10.5.4 Behavioral diversity and search gradient

The results presented in Section 10.1 raise the question why DOF performs signi�cantly better than

regular GP or IFS. We already showed in the previous section that driving search with multiple

derived objectives allows maintaining higher level of syntactical diversity. Another hypothesis is

that the induced by DOF diversity is not only syntactical, but also behavioral (semantic). Yet

another possibility is that search objectives derived by DOF elicit a more useful search gradient

that paves the way for �nding an optimal solution faster and more reliably. In particular, given

that r is typically much smaller than the rank of the original interaction matrix G, we expect the

dominance relation induced by G′ to be more dense than the dominance relation in G . In the

following, we evaluate both these hypotheses, i.e. we investigate �rst whether DOF maintains a

higher level of behavioral diversity than the other methods, and then we empirically quantify the

amount of dominance in G and G′ to assess whether there is indeed grounds for claiming that

search objectives elicit a more useful search gradient.

Figure 10.2 shows the behavioral diversity of candidate solutions at each generation, measured

as the fraction of unique semantics (vector of outputs, Eq. 6.4.3) in the population, and plotted as

an average across 50 evolutionary runs. For Boolean benchmarks, DOF maintains the highest level

of behavioral diversity over the course of evolution, which exceeds even IFS, which is explicitly

designed to increase diversity by reducing the in�uence of a test on a candidate solutions' �tness

140 Discovery of Search Objectives by Factorization

0 50 100 150 200
0

0.2

0.4

U
n
iq
u
e
o
u
tp

u
t
v
e
c
to

rs Cmp6

0 50 100 150 200
0

0.2

0.4

0.6 Cmp8

0 50 100 150 200
0

0.2

0.4

Maj6

0 50 100 150 200
0

0.2

0.4

U
n
iq
u
e
o
u
tp

u
t
v
e
c
to

rs Mux6

0 50 100 150 200
0

0.2

0.4

Par5

0 50 100 150 200
0

0.2

0.4

0.6

0.8 Dsc1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

U
n
iq
u
e
o
u
tp

u
t
v
e
c
to

rs Dsc2

0 50 100 150 200
0

0.2

0.4

0.6

0.8 Dsc3

0 50 100 150 200
0

0.2

0.4

0.6

0.8 Dsc4

0 50 100 150 200
0

0.2

0.4

0.6

0.8

U
n
iq
u
e
o
u
tp

u
t
v
e
c
to

rs Dsc5

0 50 100 150 200
0

0.2

0.4

0.6

0.8 Mal1

0 50 100 150 200
0

0.2

0.4

0.6

0.8 Mal2

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Generations

U
n
iq
u
e
o
u
tp

u
t
v
e
c
to

rs Mal3

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Generations

Mal4

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Generations

Mal5

dof doc ifs gp

1
Figure 10.2: Behavioral diversity of candidate solutions at each generation, averaged over 50
evolutionary runs, with 95% con�dence intervals marked as semi-transparent bands.

10.5. Experimental evaluation 141

proportionately with the number of candidate solutions in the current population that solve it

(8.3.1). The only exception is Par5, where shortly after the initial spike in diversity of IFS between

generations 10 and 90, both methods maintain very similar level of diversity. Quite surprisingly,

the level of population diversity in DOC drops quickly after the �rst few generations, sometimes

even below the diversity of ordinary GP, and then settles around 0.2. However, given the overall

good performance of DOC on Boolean problems (cf. Table 10.1) and its tendency to �nd optimal

solutions early (cf. Table 10.5), we believe this result could be attributed to fast convergence of

DOC on these problems. For instance, on Cmp6, DOC takes 51 generations on average to �nd

a perfect candidate solution, while its diversity curve drops from 0.4 to around 0.15 at roughly

generation 50, which indeed suggests that the population may have converged.

The plots for categorical problems demonstrate that the level of diversity maintained by DOF

drops rapidly for the �rst 20 generations and then stabilizes for the remaining part of evolution.

Though it never falls below 0.3, both DOC and IFS systematically achieve higher levels of be-

havioral diversity, despite some swings up and down early in the evolution. Interestingly, at the

beginning of evolution, IFS behaves similarly to DOF, i.e the diversity dramatically drops, some-

times even below the level of 0.2, and then starts to slowly increase, achieving the highest diversity

of all methods on 6/10 problems (Dsc1, Dsc2, Dsc5, Mal2, Mal3, Mal4). DOC, on the other hand,

also loses diversity early on, but at a much slower rate, and eventually settles between 0.5 and

0.6. This makes DOC the runner-up in terms of diversity on these benchmarks. On the remain-

ing ones, it achieves the highest diversity, although the di�erences between all methods are much

less prominent. By juxtaposing these observations with the success rates presented in Table 10.1,

we conclude that on the categorical problems, relatively low behavioral diversity (around 0.4) is

su�cient for achieving high success rates. This observation is con�rmed by the results of DOF,

which performs the best on these problems (cf. Table 10.1). IFS, despite maintaining the highest

diversity, systematically attains lower success rates than DOF.

The �gures presented here show that the runs employing discovery of search objectives, ei-

ther via clustering of factorization, tend to maintain higher levels of diversity than conventional

evolutionary search driven by a scalar evaluation. On some problems, DOF and DOC even sur-

pass IFS, which we �nd remarkable given that IFS was designed to maintain population diversity.

Even though DOF was not designed for diversity maintenance, it tends to produce relatively high

behavioral diversity, while also �nding the most successful candidate solutions.

Table 10.7 provides an in-depth analysis of the dominance relation induced by the best per-

forming DOF variant, i.e DOF-WH with r = 3. The �rst two columns present the percentage

of pairs of candidate solutions in S such that one solution dominates the other in G (�G) and

G′ (�G′), respectively. The next column characterizes the frequency of committing false positive

errors (FP). We report it as the percentage of dominances introduced in G′ that are absent in

G. In the fourth column (INV), we report the percentage of dominance inversion in G′. The last

column (PRE) quanti�es DOF's capability to preserve the dominance in G′ as the percentage of

cases in which the relation is consistent in both G and G′. Notice that 1 − PR is equal to the

amount of false negative errors, and for this reason we do not report it as a separate column.

The results are reported for individual benchmark problems as the averages over 200 evolutionary

generations and 50 independent runs, accompanied by 95% con�dence intervals.

The amount of dominance in G clearly suggests that very few candidate solutions dominate one

another. To be precise, the percentage of dominance never exceeds 8.45 percent and its mean value

across all problems, reported in the bottom row of Table 10.7, is 3.08 percent. Not surprisingly,

the percentage of dominance decreases as the number of tests increases; see for example Cmp6 and

Cmp8. However, the distribution of values across all problems also suggests that it also decreases

142 Discovery of Search Objectives by Factorization

Table 10.7: Analysis of the dominance relation induced by DOF. The table reports the percentage
of dominances in G (�G) and G′ (�G′), the frequency of committing false positive errors (FP),
the frequency of inversions of dominance (INV), and the percentage of preserved dominances in
G′ (PRE).

Problem �G �G′ fp inv pre

Cmp6 2.96 ±0.09 4.31 ±0.22 3.71 ±0.23 0.00 ±0.00 24.06 ±2.22

Cmp8 1.19 ±0.13 3.90 ±0.24 3.70 ±0.24 0.00 ±0.00 20.44 ±4.05

Maj6 3.59 ±0.21 8.12 ±0.31 6.80 ±0.40 0.00 ±0.00 43.61 ±6.13

Maj8 1.16 ±0.12 6.83 ±0.31 6.49 ±0.33 0.00 ±0.00 34.86 ±3.67

Mux6 2.22 ±0.12 2.61 ±0.22 2.25 ±0.16 0.00 ±0.00 18.77 ±3.40

Par5 0.59 ±0.08 0.14 ±0.05 0.03 ±0.00 0.00 ±0.00 18.63 ±7.40

Dsc1 0.61 ±0.08 18.65 ±1.22 18.22 ±1.24 0.00 ±0.00 88.30 ±2.17

Dsc2 0.95 ±0.09 22.90 ±1.38 22.25 ±1.41 0.00 ±0.00 91.01 ±1.94

Dsc3 1.68 ±0.12 22.31 ±0.99 21.15 ±1.01 0.00 ±0.00 89.39 ±1.39

Dsc4 0.89 ±0.07 21.06 ±1.51 20.44 ±1.51 0.00 ±0.00 90.13 ±2.67

Dsc5 0.52 ±0.05 21.51 ±1.45 21.13 ±1.47 0.00 ±0.00 92.94 ±2.34

Mal1 5.79 ±0.16 19.37 ±1.37 16.05 ±1.26 0.00 ±0.00 73.42 ±3.44

Mal2 7.13 ±0.20 22.64 ±1.30 18.57 ±1.14 0.00 ±0.00 75.64 ±4.11

Mal3 5.69 ±0.19 15.15 ±1.00 11.84 ±0.77 0.00 ±0.00 70.04 ±5.51

Mal4 8.44 ±0.26 22.24 ±1.19 17.29 ±0.98 0.00 ±0.00 75.89 ±3.58

Mal5 5.79 ±0.20 21.62 ±1.46 18.07 ±1.22 0.00 ±0.00 79.20 ±4.84

Mean: 3.080 14.591 13.005 0.000 61.651

with the relative di�culty of problem, measured as the number of runs that failed to �nd a perfect

candidate solution. For instance, the percentage of dominance for Par5 and Dsc4, which are the

most di�cult problems in our benchmark suite (cf. low success rates in Table 10.1), are 0.59

and 0.897, respectively; these are among the lowest values reported in Table 10.7. These results

empirically con�rm our intuition that the dominance relation in G is rather sparse.

Given these observations, it is arguably interesting to ask whether DOF manages to maintain

higher level of dominance in G′. The results in the second column of Table 10.7 answer this

question. Clearly, the compression of G into a few derived search objectives in G′ leads to a

noticeable increase in the likelihood of dominance in G′; on average, it amounts to 14.59 percent.

For individual benchmarks, the increase may be however much more signi�cant. For instance, in

case of Dsc2 it is well beyond 21 percent. Notably, DOF maintains higher percentage of dominance

for all problems. The most obvious explanation is that by design G′ has fewer columns (three in

this analysis); low number of search objectives derived by DOF naturally facilitates more dense

dominance relation in G′.

The percentage of dominance inversions is zero for all benchmark problems, which implies

that DOF never committed this type of error in our experiments. Based on Theorem 10.6, we

may expect such a result only when r >= rank(G). In our experiments, we typically have that

r < rank(G), which implies that exact NMF is often not possible. The obtained result may

however suggest that the approximation error in NMF is su�ciently low so as not to invert the

dominance relation. On the other hand, the percentage of FP errors committed by DOF is rather

low for Boolean problems and slightly higher for algebra benchmarks, never exceeding 7 and 23

percent, respectively. On average, it amounts to roughly 13 percent. At �rst sight this result might

appear unexpected, particularly in the light of Theorem 10.8. Recall however that this theorem

also assumes exact NMF; the observed FP errors are thus caused by heuristic nature of employed

NMF algorithm (cf. Section 10.1). Nevertheless, based on Theorem 10.8, we may expect the

percentage of FP errors to approach zero as the factorization error (10.1.2) also approaches zero.

10.5. Experimental evaluation 143

On one hand, FP errors may appear undesirable as they clearly distort the original information

in G. On the other, the capability to posit a dominance in G′ that was factually absent in G may

also be considered valuable. Consider for instance a situation in which a candidate solution s1

solves only easy tests, while a candidate solution s2 solves a more diversi�ed set of tests, which

includes some easy and some di�cult tests, and is disjoint with the set of tests solved by s1. Even

though they are incomparable in the sense of �G, there is a chance that s2 �G′ s1. The latter may

be bene�cial for the search process, because s2 can be prospectively a more promising candidate

solution. Nevertheless, the experimental results seem to suggest that FP errors do not have any

signi�cant impact on success rates; problems with 0 and 100 percent success rates tend to have

very similar percentage of FP errors (cf. Cmp6 and Cmp8, Maj6 and Maj8, Dsc3 and Dsc4 in

Table 10.1).

Despite not preserving the dominance relation between candidate solutions in general, it is

interesting to see that DOF manages to transfer 61.65 percent of these relations to G′ on aver-

age. For Boolean problems, this percentage ranges from 18.77 to 43.61 percent. For categorical

problems, it is noticeably higher and varies between 70.05 and 92.95 percent. The actual impact

of the preserved dominances on the selection process is unfortunately hard to assess. Recall that

DOC guarantees preserving the dominance relation and tends to achieve worse success rates than

DOF; this gives us some premises to assume that this characteristics is of secondary importance

to DOF. Another argument for this is that there is typically not much to preserve in the �rst

place, as evidenced by the percentage of dominances present in G (the �rst column of Table 10.7).

On the other hand, the results for Boolean problems seem to suggest that success rates positively

correlate with the amount of dominance preserved (which might be however a statistical �uke).

To conclude our considerations, the experimental evidence presented here suggests that DOF

maintains higher levels of behavioral diversity, which we hypothesize contributes positively to

the observed increases in performance. Although maintaining higher levels of diversity may be

overall bene�cial, simply maintaining a semantically diverse set of candidate solutions does not

single-handedly help �nd an ideal solution without su�ciently strong pressure toward the goal.

This is particularly evident in the case of IFS, which maintains even higher diversity than DOF

on some benchmark problems, yet tends to achieve systematically lower success rates. It seems

therefore that, in combination with the increased diversity, DOF manages also to provide an

adequate search gradient to exploit good candidate solutions, which we believe is enabled by the

relatively high count of dominances between candidate solutions in G′. Without it, the dominance

relation employed by any multiobjective selection method would not have grounds for deeming one

candidate solution better than other, resulting in a weak search gradient. The evidence gathered

in this section suggests thus that DOF's capability to maintain high levels of diversity while also

applying diversi�ed search gradient is largely responsible for its success on the benchmark problems

presented here.

10.5.5 Visualization of search objectives

In the previous sections, we focused on the impact of derived search objectives on various aspects of

search performance, neither investigating the relations between them, nor paying much attention

to how candidate solutions exploit the trade-o�s between them. To provide a deeper insight into

this aspect of search objectives, Fig. 10.3 visualizes the objectives derived by DOF in the last

generation of a single randomly selected run for each of our benchmark problems. For the purpose

of creating the graphs, we employed DOF-WH with factorization rank r = 2, so that exactly two

search objectives are derived in each generation of evolutionary run. For each row in G′, a blue

144 Discovery of Search Objectives by Factorization

20 40 60
0

20

40

60

100 200 300

100

200

Cmp8

0 20 40 60

20

40

60
Maj6

20 40 60

20

40

60

Mux6

10 20 30

10

20

30
Par5

0 10 20 30

10

20

30 Dsc1

10 20 30

10

20

30
Dsc2

10 20 30

10

20

30
Dsc3

10 20 30

10

20

30
Dsc4

10 20 30

10

20

30

Dsc5

0 5 10 15
0

5

10

15 Mal1

5 10 15

5

10

15

Mal2

0 5 10
0

5

10

15

Mal3

0 5 10 15 20
0

5

10

15
Mal4

5 10 15 20

5

10

15 Mal5

Random

Evolved

1
Figure 10.3: Visualization of search objectives derived by DOF-WH with r = 2. The axes corre-
spond to two derived objectives, and each point re�ects the candidate solution's performance on
these objectives. The evolved candidate solutions are marked in blue, the random ones in magenta.
Color saturation re�ects their density.

10.5. Experimental evaluation 145

Table 10.8: Pearson's correlation coe�cient averaged over all pairs of search objectives and across
50 evolutionary runs. Each column corresponds to a di�erent generation of evolutionary search.

Problem 1 10 25 50 100 150 200 Mean
Cmp6 −0.626 −0.648 −0.665 −0.625 −0.642 −0.689 −0.683 −0.654
Cmp8 −0.774 −0.739 −0.716 −0.680 −0.794 −0.627 −0.713 −0.720
Maj6 −0.536 −0.545 −0.552 −0.553 −0.541 −0.509 −0.509 −0.535
Maj8 −0.829 −0.771 −0.789 −0.786 −0.662 −0.726 −0.652 −0.745
Mux6 −0.672 −0.639 −0.620 −0.558 −0.558 −0.558 −0.558 −0.595
Par5 −0.847 −0.864 −0.832 −0.812 −0.779 −0.810 −0.747 −0.813
Dsc1 −0.199 −0.510 −0.462 −0.407 −0.409 −0.481 −0.420 −0.413
Dsc2 −0.172 −0.660 −0.587 −0.602 −0.614 −0.612 −0.615 −0.552
Dsc3 −0.530 −0.733 −0.710 −0.735 −0.612 −0.757 −0.758 −0.691
Dsc4 −0.093 −0.407 −0.358 −0.345 −0.365 −0.371 −0.390 −0.333
Dsc5 −0.100 −0.700 −0.559 −0.587 −0.475 −0.408 −0.275 −0.443
Mal1 −0.227 −0.369 −0.381 −0.373 −0.274 −0.274 −0.274 −0.310
Mal2 −0.172 −0.335 −0.332 −0.331 −0.334 −0.331 −0.319 −0.308
Mal3 −0.523 −0.545 −0.502 −0.548 −0.583 −0.584 −0.473 −0.537
Mal4 −0.214 −0.420 −0.467 −0.230 −0.479 −0.447 −0.567 −0.403
Mal5 −0.206 −0.196 −0.168 −0.165 −0.165 −0.165 −0.165 −0.176
Mean: -0.420 -0.568 -0.544 -0.521 -0.518 -0.522 -0.507

points marks the performance of a candidate solution on the search objectives. Following our

previous visualizations (cf. Section 9.4.9 and Fig. 9.6), we also plot the performance of random

candidate solutions. In DOF, discovery of search objectives is a one-o� process, i.e. once G is

factorized into a product of W and H, it is no longer possible to derive objectives for candidate

solutions not present in G, unless the entire process is repeated for a new interaction matrix. To

circumvent this limitation, we generate randomly 500 extra candidate solutions that are subject to

evaluation on all tests exactly as regular candidate solutions. The outcomes of their interactions

with tests are then added to G just before applying NMF, leading to extra rows in W that do not

a�ect the rows corresponding to evolved candidate solutions in any signi�cant way. Let us note

that these actions do not impact search in any meaningful way, and are only performed for the

purpose of preparing the graphs. The points obtained in this way are plotted in magenta on each

graph. Where the marks overlap, color saturation re�ects their density.

Each inset in Fig. 10.3 corresponds to a di�erent pair of search objectives, speci�c to a problem

being solved, a run, and the population of candidate solutions at the end of run. Not surprisingly,

the evolved candidate solutions follow a similar trend as in Fig. 10.3, spanning almost uniformly

the space between the axes of objectives. The best candidate solutions clearly approximate the

Pareto-front, exploiting the trade-o� between objectives in various ways. The random solutions,

on the other hand, are typically clustered in the bottom left corner of the graphs, which implies

low performance on both objectives. In fact, they are dominated by the vast majority of evolved

candidate solutions, hardly ever drawing anywhere near the Pareto-front of evolved candidate

solutions. Interestingly, the evaluation provided by the derived search objectives appears to be

very meticulous; even random solutions are partitioned into multiple Pareto ranks (though it is

also possible that those layers simply result from the discrete nature of interaction outcomes). This

is particularly evident on graphs that belong to algebra benchmarks (e.g. Mal5). The individual

graphs provide evidence that DOF maintains a high level of diversity even at the end of evolution.

The graphs also suggest that the search objectives derived by DOF are strongly decorrelated.

To provide some evidence that this is indeed true, in Table 10.8, we report the value of Pearson's

correlation coe�cient in several generations of evolutionary search, averaged over all pairs of ob-

146 Discovery of Search Objectives by Factorization

20 40 60 80

20

40

60

80
Cmp6-1

20 40 60 80

20

40

60

80
Cmp6-10

20 40 60 80

20

40

60

80
Cmp6-30

100 200 300

100

200

300
Maj8-1

100 200 300

100

200

300
Maj8-10

100 200 300

100

200

300
Maj8-30

10 20 30 40

10

20

30

40
Par5-1

10 20 30 40

10

20

30

40
Par5-10

10 20 30 40
10

20

30

40
Par5-30

10 20 30 40

10

20

30

40
Dsc5-1

10 20 30 40

10

20

30

40
Dsc5-10

10 20 30 40

10

20

30

40
Dsc5-30

5 10 15 20

5

10

15

20
Mal1-1

0 5 10 15 20

5

10

15

20
Mal1-10

5 10 15 20

5

10

15

20
Mal1-30

1
Figure 10.4: The relation between search objectives derived by DOF-WH with r = 2 and the
number of solved tests (�tness), plotted for selected benchmark problems (in rows) at three di�erent
points of evolution (in columns). The numbers next to benchmark names indicate the generation
number. Each points corresponds to a single candidate solution and re�ects its performance on
two search objectives. The color denotes their �tness, ranging from dark blue for low values to
dark red for high values of �tness.

10.5. Experimental evaluation 147

jectives and across 50 runs (technically, these are thus average correlations between all pairs of

columns in W). The results clearly demonstrate that the average correlation between objectives

is always negative. In other words, an increase in performance on one objective is associated with

a decrease on the other. This strongly suggests that individual search objectives measure di�erent

aspects of candidate solution's quality that are in con�ict with each other. Judging from the av-

erages across the benchmarks problems reported in the bottom row of Table 10.8, the objectives

derived in the early stages of evolution are characterized by a slightly weaker negative correlation

than those derived later. Furthermore, the observed decorrelation appears to be stronger for the

di�cult problems. For instance, the average correlation coe�cient across all generations, reported

in the last column of Table 10.8, is the lowest for Par5 and Maj8, which, as the previous results

have shown, are arguably the hardest problems in our benchmark suite. This might suggest that it

is easier to derive search objectives for problems that are inherently more di�cult. We also antic-

ipate such problems to feature more than two underlying objectives, hence it might be bene�cial

to let DOF work with more objectives in such cases.

Search objectives are intended to provide alternative multi-aspect characterization of candidate

solutions on one hand, and to make search algorithms capable of exploiting that characterization

on the other. Concerning the former, it becomes justi�ed to ask if candidate solutions that score

high in the eyes of conventional evaluation function are also valuable according to search objectives,

and vice-versa. In an attempt to answer this question, in Fig. 10.4, we plot candidate solutions

in such a way that their coordinates correspond to performance on particular search objectives,

while their color re�ects �tness meant as the number of solved tests (the colors range from dark

blue for low values of �tness, through yellow in the middle, to dark red at the high end). In

the rows of Fig. 10.4, we presents these graphs for �ve selected problems (Cmp6, Maj8, Par5,

Dsc5, Mal1). To investigate how temporal changes in a population of candidate solutions a�ect

the relation between �tness and search objectives, each column of Fig. 10.4 is associated with a

di�erent point in evolution, staring from the very �rst generation of search (the leftmost column),

after ten generations have elapsed (the middle column), and after one hundred generations (the

rightmost column).

The common feature of all graphs is that the search objectives corresponding to both axes

are positively correlated with �tness, i.e. the higher a candidate solution scores on any objective,

the more tests it solves. The �gure also suggests that scalar �tness fails to di�erentiate many

candidate solutions that actually behave very di�erently in terms of performance on the derived

search objectives. This trend appears to continue over the course of evolution, as suggested by the

subsequent graphs in each row. The �gure reveals also how candidate solutions gradually move

in the direction of upper right corner, while maintaining overall high diversity, in the process.

Notice also how in some cases high �tness corresponds to a rather small portion of Pareto-front,

which means that many promising candidate solution may be discarded prematurely when search

is driven by scalar �tness function.

These observations together suggest that the search dynamics of DOF is signi�cantly di�erent

from that of GP. However, the empirical results presented in this chapter provide strong evidence

that DOF is more advantageous when it comes to the probability of �nding an optimal solution.

10.5.6 Computational overhead

The process of discovering search objectives via factorization incurs additional computational cost

which in DOF originates from two sources: performing the NMF (using the MU algorithm) and

carrying out multiobjective selection using the NSGA-II. The computational complexity of the MU

148 Discovery of Search Objectives by Factorization

50 100 250 500 1,000 2,000

101

102

103

Population size

A
v
g
.
to
ta
l
ti
m
e
[s
]

Maj8

dof doc ifs gp

1
Figure 10.5: Scaling of wall-clock runtimes as a function of population size.

algorithm discussed in Section 10.1 is of the order of O(mnr) per iteration. Taking into account the

complexity of multiobjective selection via NSGA-II algorithm and assuming i iterations of NMF,

the total overhead is O(mnri+nm2), which is actually similar to the overhead of DOC (cf. Section

9.6), given that r is typically very small and NMF may terminate earlier than after the assumed

50 iterations when the reconstruction error drops below the assumed threshold. Given that, we

expect the extra costs of NMF to become only a small fraction of the total cost of evaluation in

many test-based problems.

In order to get an empirical sense of how DOF scales with respect to some parameters of

problem instance in comparison to the control methods, we run a series of experiments on one of

the hardest problem in our benchmark suite, i.e. Maj8 (cf. Table 10.1). We vary the population

size m between 50 and 2000, and let each method search for an ideal solution for 200 generations.

We then select 10 runs for each con�guration of method and population size that failed to �nd

an ideal candidate solution. This allows us to ignore any runs that ended earlier, making it safe

to assume that each con�guration is given the same computational budget. We use the results of

these experiments to estimate the time complexity of DOF as a function of m. The computations

were conducted on a cluster of uniform PCs in Pozna« Supercomputing and Networking Center,

with 2.6 GHz Intel Xeon E5-2697 processors and 64 GB of memory.

The results of the time complexity experiment are shown in Fig. 10.5 as a log-log plot, with

average wall-clock times on the y-axis and the population size on the x-axis. We estimate the

runtime t as a function of population size m by �nding a linear trend via least-squares that is

best-�t to the log transformed data, i.e.:

log(t) = a log(m) + b, (10.5.2)

A couple of straightforward transformations give us the time scaling formula as t = cma, where c =

exp(b). For DOF, a = 1.07 and b = −0.328 (the determination coe�cient for the regression model

is r2 = 0.987). Therefore the runtime of DOF as a function of m is estimated to t = 0.72m1.07,

which suggests the time complexity with respect to m to be much more optimistic than DOF's

worst case complexity of O(mnri + nm2). In general, DOF falls between GP and IFS in terms

of wall-clock times (cf. Fig. 10.5). At higher population sizes (m ≥ 500), it achieves the lowest

run times, on par with IFS. DOF's tendency to evolve smaller programs (cf. Section 10.5.3) is

10.6. Discussion 149

Table 10.9: Average evaluation and factorization time in DOF, accompanied by 95% con�dence
intervals. The last column reports the percentage of evaluation time taken by NMF.

Problem Eval [s] NMF [s] Ratio [%]
Cmp6 1.262 ±0.024 0.113 ±0.001 8.93
Cmp8 1.671 ±0.043 0.307 ±0.002 18.39
Maj6 1.393 ±0.026 0.117 ±0.001 8.38
Maj8 2.867 ±0.073 0.321 ±0.005 11.21
Mux6 0.727 ±0.010 0.114 ±0.001 15.68
Par5 2.505 ±0.060 0.097 ±0.000 3.87
Dsc1 0.945 ±0.016 0.095 ±0.000 10.09
Dsc2 0.956 ±0.015 0.095 ±0.000 9.94
Dsc3 1.078 ±0.017 0.095 ±0.000 8.81
Dsc4 0.982 ±0.018 0.095 ±0.000 9.64
Dsc5 0.761 ±0.017 0.095 ±0.000 12.48
Mal1 0.639 ±0.009 0.087 ±0.001 13.56
Mal2 0.634 ±0.012 0.089 ±0.001 14.09
Mal3 0.881 ±0.015 0.086 ±0.001 9.76
Mal4 0.947 ±0.019 0.083 ±0.001 8.76
Mal5 0.414 ±0.003 0.087 ±0.001 21.01
Mean: 1.166 0.124 11.54

surely helpful here, as smaller programs take less time to evaluate. DOC, on the other hand, is on

average more computationally expensive (complexity model t = 0.13m1.36), particularly for larger

population sizes.

It is also interesting to investigate the impact of NMF on evaluation time, i.e. how much

the time needed to evaluate candidate solutions is lengthened by NMF. To this end, in Table

10.9, we report the average total evaluation time (the time needed to conduct the interactions

between candidate solutions and tests, and to derive search objectives) and factorization time,

accompanied by 95% con�dence intervals for particular methods and benchmarks considered in

this chapter. Since evaluation subsumes discovery of search objectives, and by this token also the

process of NMF, in the last column of Table 10.9, we report the percentage of evaluation time

taken by NMF. The empirical evidence gathered from our experiments suggests that the overhead

of NMF compared to the overall evaluation time is small, 11.54 percent on average, and never

exceeds 21.01 percent. It is also worth pointing out that these numbers could be further reduced

by using more e�cient implementation of NMF (possibly even GPU-based) or, e.g., limiting the

number of iterations used by NMF algorithm. We expect that su�ciently good factorization for

our needs can be found after only a few iterations, since the precision of reconstruction of the

interaction matrix G is of secondary importance � it is the order of candidate solutions induced

by W and H that matters, which we expect not to change too much after the very �rst iterations.

10.6 Discussion

Of the two proposed variants, DOF-W and DOF-WH, the latter performs consistently better on

our benchmark suite (cf. Section 10.5.2). The most obvious explanation is that DOF-W, by relying

merely on W to derive objectives, uses only part of the information elicited by NMF. In certain

scenarios, cursory feedback o�ered by W may even turn deceptive, as demonstrated by decreasing

performance of DOF-W for higher values of factorization rank r. In contrast, DOF-WH employs

both matrices,W and H, which allows it to embrace the entirety of rich information learned during

factorization to derive better informed search objectives that lead to systematic improvements in

150 Discovery of Search Objectives by Factorization

performance. Let us also note the DOF-WH presented here is an enhanced version of the original

DOF-WH variant proposed in [213].

The use of NMF in DOF is motivated by its capability to explain the interaction outcomes

in G, i.e., characterizing both candidate solutions and tests in terms of the latent factors inferred

from the patterns observed in their interactions. The latent factors may for instance measure

the degree to which a candidate solution possess certain skills necessary to pass individual tests

and re�ect how well it deals with tests that require that skill. Factorizing an interaction matrix

allows us thus to discover the most descriptive dimensions for characterizing candidate solution's

capabilities. It is however hard to provide unambiguous interpretation of the factors learned by

NMF, especially in the context of GP, where the mapping from program syntax to semantics is very

complex. One interesting possibility would be to identify the �rst few most important dimensions

from a matrix decomposition and juxtapose the candidate solutions' location in this space with,

e.g., its syntactic representation. We would not be surprised to �nd out that NMF groups together

candidate solutions that maintain semantically similar pieces of code.

We decided to keep r constant during evolution, because automatic tuning of r in NMF is rather

di�cult, mainly due to the prohibitively large computation costs associated with such a selection.

For instance, a natural choice in many applications is to perform a cross-validation and pick r that

leads to the lowest approximation error. Cross-validation requires however computing multiple

independent factorizations, which is too expensive to perform in every generation of an evolutionary

run. Another interesting possibility involves tracking the decay of singular values of the interaction

matrix. This approach essentially boils down to computing singular value decomposition, which is

not cheap either. Nevertheless, given overall good performance of DOF for �xed r, we believe that

any potential performance gain resulting from automatic selection of r may not be worth extra

computational e�ort.

A vigilant reader has surely noticed the absence of experiments with CoEAs in this chapter.

This decision is mainly motivated by the overwhelmingly positive performance of DOF on GP

problems, giving us a strong reason to believe that good performance of DOF is not incidental,

and would likely carry over to CoEAs. Another argument that justi�es this claim is that both DOF

and DOC are essentially agnostic about the actual metaheuristic powering the search. They only

care about an interaction matrix, which makes them viable methods for any test-based problem.

One may claim that neither DOF nor DOC ultimately solve the evaluation bottleneck problem

(cf. Section 6.1), since in place of a single scalar objective to drive a search, we derive up to

four objectives, which may be considered very little compared to the abundance of information

available in an interaction matrix. On the other hand, using a small number of objectives is likely

to cause the dominance relation in the derived space to be dense enough to provide a necessary

search gradient. This observation is corroborated by the experimental evidence presented in this

chapter, which shows that even `modest' widening of evaluation bottleneck signi�cantly boosts the

likelihood of �nding an ideal candidate solution, compared to conventional single-objective search

techniques.

The formalism of matrix factorization employed in this chapter creates also other interesting

opportunities that are worth mentioning here. In particular, NMF can be computed even for sparse

matrices. This makes it possible to perform interactions only between some pairs of candidate

solutions and tests, place their outcomes in G, and let the NMF generalize this data in a way

that allows predicting unknown outcomes of interactions. In Chapter 12, we further build on

this idea, giving rise to a range of approaches aimed at reducing computational cost incurred by

evaluation. Furthermore, NMF applied to an interaction matrix facilitates �nding semantically

10.7. Chapter summary 151

similar candidate solutions and/or tests of similar di�culty, which opens the door to pursuing,

e.g., a family of recommendation-driven search operators.

10.7 Chapter summary

In this chapter, we proposed a novel a algorithm, DOF, that combines the technique of non-

negative matrix factorization with the metaheuristic of evolutionary algorithms. DOF replaces the

original scalar evaluation function with heuristic search objectives de�ned using the latent factor

space that results from applying NMF to an interaction matrix. By doing so, it clearly subscribes

to the proposed framework of discovery of search objectives (Chapter 8).

By scrutinizing individual interaction outcomes, DOF goes even further than DOC in har-

vesting information about candidate solutions and their behavior. Crucially, this enables DOF

to derive a multi-faceted characterization of candidate solutions by means of search objectives

that systematically leads to higher success rates in comparison to the conventional EAs driven

by the scalar evaluation (Section 10.5.2). Test-based problems that proved very hard to solve for

conventional single-objective search often become tractable when approached by DOF.

The experiments reported in this chapter demonstrate that DOF is able to derive meaningful

search objectives (Section 10.5.5) that lead to an increased behavioral diversity over the course

of evolution and a strong search gradient that facilitates discovery of high-quality candidate solu-

tions (Section 10.5.4). The empirical evidence gathered from our experiments suggests also small

overhead of the method (Section 10.5.6), encouraging application of DOF in practice.

Chapter 11

Discovery of Search Objectives in

Continuous Domains

Empirical evidence brought in the previous two chapters suggests signi�cant practical utility of the

framework for discovery of search objectives in test-based problems. The two concrete implemen-

tations of the framework, DOC and DOF, not only address the problem of evaluation bottleneck,

but also prove more e�ective than conventional (co)evolutionary search that navigates the search

space using scalar �tness function. These methods are however limited in being applicable only

to problems with constrained interaction outcomes, which includes binary domains where candi-

date solutions either pass a test or not (exempli�ed with the benchmarks used in the previous

two chapters), and domains where interaction outcomes are continuous (or at least ordered) but

constrained (e.g., games with multiple yet constrained payo� function). Given that a signi�cant

fraction of test-based problems involves an interaction function with unconstrained continuous

outcomes (e.g., symbolic regression, see Section 5.4.5), it becomes natural to seek for means of

extending such approaches in that direction. For instance, in symbolic regression, which is of our

primary interest in this chapter, outcomes of interactions could re�ect absolute errors made by

candidate solutions on particular tests (cf. Sections 4.4 and 8.2)

The contribution of this chapter is thus a largely universal approach for transforming inter-

action matrices generated in continuous domains (Section 11.1) to a form that is appropriate for

DOC, DOF and their variants (those presented in this thesis and the potential ones). Apart from

presenting and motivating this particular method, we thoroughly assess its performance on a range

of uni- and multivariate symbolic regression benchmarks (Section 11.2). Additionally, we hybridize

our approach with lexicase selection and carefully evaluate the resulting con�gurations.

The method presented in this chapter has been originally published [216].

11.1 Mapping continuous errors to interaction outcomes

DOC and DOF have been originally designed with binary interaction outcomes in mind. Tech-

nically, we expect them to still perform well for continuous or multi-valued ordered interaction

outcomes, because the algorithms they are built upon behave well in such scenarios: the k-means

algorithm in DOC can handle arbitrary distributions of data points, and the MU algorithm in

DOF operates on arbitrary non-negative values. However, in order to apply them to test-based

problems with unconstrained interaction outcomes, we introduce a preprocessing step that maps

the � in general arbitrary large � continuous errors to interaction outcomes. It is however im-

portant to emphasize that by 'unconstrained' we mean here real-valued non-negative interaction

153

154 Discovery of Search Objectives in Continuous Domains

outcomes. In practice, they will typically have the interpretation of errors, e.g. approximation

errors in symbolic regression. i.e. gij ∈ R≥0 ∪ {NaN}, where NaNs signal execution errors (like

division by zero etc.). For regression tasks considered in this chapter, gij is the absolute deviation

of candidate solution's output w.r.t. desired output yj , i.e. gij = |si(xj) − yj | (cf. Section 8.2).

Notice that this reverses the convention adopted in the previous chapters, where greater values of

interaction outcomes were more desirable.

The preprocessing method proceeds as follows:

1. Calculate the interaction matrix G between the candidate solutions from the current popu-

lation S and the tests from T .

2. Replace in G the NaNs and the values that are greater than a threshold ϕ with the positive

in�nity +∞.

3. Standardize the columns of G, omitting any in�nities.

4. Apply sigmoid `squeezing' non-linearity 1/(1 + e−x) to the elements of G.

The last step maps the unconstrained range of original interaction outcomes onto the closed interval

[0, 1] and also aims at reducing the impact of outliers on clustering in DOC and factorization in

DOF. Such outliers may arise when candidate solution's output si(xj) diverges greatly from the

desired output yj , and propagate through the earlier steps of the above procedure (notice that

they are only linearly scaled in step 3). If not handled in Step 4, they could make it di�cult to

detect meaningful cluster centers in DOC and arrive at good factorizations in DOF.

As a result of applying the above preprocessing steps, the values in G are now guaranteed to

be in the range [0, 1]. Crucially, the smaller ϕ, the more sensitive the method becomes to small

errors. For example, assuming ϕ = 200 and the following errors made by a single individual on six

test cases in the initial G:

0.3 1.6 3.3 150.8 51.3 160.3

none of them would be omitted during standardization. Moreover, relatively small interaction out-

comes for the second and third elements become indiscernible after standardization and squeezing:

0.29 0.3 0.3 0.79 0.46 0.81,

which may have consequences for further processing, in particular for selection. If, on the other

hand, we set ϕ = 50, only the �rst three errors would be considered for computing mean and

standard deviation necessary for standardization. As a result, the di�erences between the smaller

errors are ampli�ed:

0.24 0.47 0.78 1.0 1.0 1.0.

The motivation for parameterizing this process with ϕ is that maintaining the di�erences between

smaller errors may be more important than for the larger errors, as for the latter it may be justi�ed

to consider them `equally bad'. In the experimental section, we propose to automate the choice

of ϕ by setting it to the 95th percentile of the errors in an interaction matrix G, which proves

e�ective in empirical evaluation.

Other design choices such as standardization and sigmoid non-linearity are motivated by the

importance of providing for the same magnitude of outcomes on tests, while maintaining their

individual capability of discrimination between candidate solutions. The former is particularly

important for DOC, as it employs clustering based on Euclidean distances that is isotropic of space

and therefore sensitive to unequal variances of observations in di�erent dimensions (dimensions

that have larger attributes have greater impact on the distance).

11.2. Experiments 155

11.2 Experiments

We conduct an extended experimental assessment of DOC and DOF by confronting them with

reference approaches on a suite of 18 symbolic regression benchmarks. The primary objective of

the experiment is to gauge the performance of these methods in terms of typical metrics such as

training set error, test set error and program size, in the domain of tree-based GP.

To this point, we employed search objectives in a purely multi-objective fashion; with this

experiment we intend to �nd out whether search objectives lend themselves to a di�erent selection

techniques. With this in mind, our secondary objective is to assess usefulness of lexicase selection

(cf. Section 8.5.3) when applied to derived search objectives. We also intend to gain some deeper

insight into the di�erences between the methods by scrutinizing their behavior on our benchmark

problems.

11.2.1 Compared algorithms

The experimental setup is exactly the same as in our previous experiments (cf. Table 9.3). Fol-

lowing common practice, a program is deemed correct when fT (s) < 2−23, where fT (5.3.2) is

program's square error on the set of tests T .

DOC and DOF are implemented as described in Section 9.1 and 10.2, respectively. The only

di�erence lies in how an interaction matrix is processed prior to derivation of search objectives.

To account for arbitrary large continuous interaction outcomes (errors), we employ the mapping

approach described in Section 11.1. As already signaled there, we set ϕ to 95th percentile of the

errors in an interaction matrix. This allows us to ignore the top 5 percent of the largest errors

that would otherwise distort the standardization of G. In the preliminary experiments, we also

experimented with median, which turned out to perform slightly worse on average. As a result

of the preprocessing step, outcomes of interactions in G are guaranteed to be in the range [0, 1],

enabling both DOC and DOF to proceed as originally designed (where, however, the interaction

outcomes in DOF are technically incremented by 1, to distance them from 0; see Section 10.2).

We consider those con�gurations of DOC and DOF that performed the best in the experiments

conducted in Chapters 9 and 10, i.e., DOC with X-MEANS (k = [1, 5]) and DOF-WH (r = 3).

We confront the above methods with several control setups. The �rst of them is the conventional

Koza-style GP (cf. Section 9.5.1). The other control methods are shortly introduced in the

following subsections.

ε-lexicase selection

ε-lexicase selection (LEX) has been recently proposed for symbolic regression problems [197], and

builds upon lexicase selection that has been originally designed for `uncompromising' problems

[127]. ε-lexicase selection addresses poor performance of lexicase selection on continuous errors

by modulating the pass condition ct (cf. Section 8.5.3) that controls the subset of tests that are

allowed to pass to the next iteration of selection process. In the following, we use the variant of

ε-lexicase selection that proved to be the most e�ective in [197] and uses pass condition de�ned

as:

et(s) < e∗t + λ(et), (11.2.1)

where et(s) is the error of candidate solution (program) s on test t, e∗t is the smallest error

committed on t by the programs in the current population S, and λ(et) is the median absolute

deviation of the errors on test t across the population.

156 Discovery of Search Objectives in Continuous Domains

Similarly to DOC, in addition to rewarding the programs for solving test cases, LEX promotes

diversi�ed programs that pass randomly selected subset of tests. In this way, di�erent tests are

emphasized in each selection event. An individual that passes test(s) that are rarely passed by its

competitors has substantial chance to propagate to the next generation even if it performs poorly

on many other tests. Note that in contrast to DOC and DOF, LEX does not explicitly de�ne any

objectives or alternative �tness functions. In this sense, it is `natively' a selection method.

Age-Fitness Pareto Optimization

Age-Fitness Pareto Optimization (AFPO) [316] is a multi-objective method that assigns each

individual an age equal to the number of generations it has been present in the population. In

each generation, AFPO selects random parents from the population and applies crossover and

mutation operators to produce |S| − 1 o�spring. The o�spring and a single randomly initialized

individual are then added to the population, doubling so its size. Next, Pareto tournament selection

on two objectives, �tness (maximized) and age (also maximized), is iteratively applied by randomly

selecting a subset of individuals and removing the dominated ones until the size of the population

is reduced back to |S|.

Hybrid Approaches

In their original form, derived objectives identi�ed by DOC and DOF drive the selection process

in a multi-objective fashion to avoid aggregation of interaction outcomes with all tests into a

single scalar value, which is characteristic for the traditional evaluation function. One of the main

motivations for LEX was also to avoid such aggregation, and the decisions made by the algorithm

regarding which programs to select are based on distinct tests (cf. Section 8.5.3). Moreover,

compared to NSGA-II used for selection in DOC and DOF, lexicase is naturally prepared to

handle larger numbers of objectives. These observations encourage us to combine these methods

into hybrid approaches, in which lexicase selection is performed on the derived objectives.

In hybrid approaches, DOCLEX and DOFLEX, we �rst derive new search objectives and

subsequently, we apply LEX using the particular derived objectives as if they were regular test

cases. To be precise, the method proceeds as follows. In each iteration, a derived objective is

drawn at random. Then, individuals in the population that do not satisfy the pass condition ct on

that objective are �ltered. If more than one individual remains, the process repeats, �ltering any

remaining individuals that do not satisfy ct on the next derived objective drawn at random. This

process continues until only one individual remains and is selected, or until all derived objectives

have been processed, in which case a random program is selected from the remaining programs.

Based on our experience, LEX tends to work best if there are at least several dozens of tests. For

this reason, in DOCLEX, we set k ∈ [10, 100], and let X-MEANS pick the optimal value of k

during clustering. In DOFLEX, r cannot be greater than min(m,n), so we set r = n in order to

derive as many search objectives as there are tests; the motivation for this setting will be brought

in the discussion that follows the experiment.

11.2.2 Benchmark problems

We compare the methods on 18 uni- and bi-variate symbolic regression problems, listed in Table

11.1. In univariate problems, 20 Chebyshev nodes [39] constitute the set of tests T , while 20

uniformly sampled points are used for testing. Chebyshev nodes are commonly used as values

for independent variables because they protect from Runge's phenomenon [308] (see also [38], Ch

11.2. Experiments 157

Table 11.1: The symbolic regression task used in the experiment.

Problem De�nition Variables Range |T |
R1 (x+ 1)3/(x2 − x+ 1) 1 [−1, 1] 20
R2 (x5 − 3x3 + 1)/(x2 + 1) 1 [−1, 1] 20
R3 (x6 + x5)/(x4 + x3 + x2 + x+ 1) 1 [−1, 1] 20
Kj1 0.3x sin(2πx) 1 [−1, 1] 20
Kj4 x3e−x cos(x) sin(x)(sin(x)2 cos(x)− 1) 1 [0, 10] 20
Kj8

√
x 1 [0, 100] 20

Kj14 arcsinh(x) 1 [−3, 3] 20
Kj15 x3/5.0 + y3/2.0− y − x 2 [−3, 3] 20
Ng3 x5 + x4 + x3 + x2 + x 1 [−1, 1] 20
Ng4 x6 + x5 + x4 + x3 + x2 + x 1 [−1, 1] 20
Ng5 sin(x2) cos(x)− 1.0 1 [−1, 1] 20
Ng6 sin(x) + sin(x2 + x) 1 [−1, 1] 20
Ng7 log(x+ 1) + log(x2 + 1.0) 1 [0, 2] 20
Ng8

√
x 1 [0, 4] 20

Ng9 sin(x) + sin(y2) 2 [0, 1]
2

100

Ng12 x4 − x3 + (y2/2)− y 2 [0, 1]
2

100

Pg1 1/(1 + x−4) + 1/(1 + y−4) 2 [−5, 5]
2

100

Vl1 e−(x−1)2/(1.2 + (y − 2.5)2) 2 [0, 6]
2

100

8). For bivariate problems, 10 values are picked in analogous way for each input variable and

their Cartesian product de�nes the set of input variables used in T . The table also presents the

mathematical expressions to be synthesized by GP in each problem, the range of values from which

the points are sampled, and the cardinality of T . We use the set of instructions that is typical for

symbolic regression, i.e +,−,×, /, exp, log, sin, cos. We use the protected logarithm implemented

as log |x| and the protected division, which returns 0 for a divisor equal to zero [336]. By varying

in the number of variables, the required functions, and the characteristic of desired output, this

selection of benchmarks forms good representation of problems considered in research on GP and

its practical applications [238, 278].

11.2.3 Results

Figure 11.1 shows the average best-of-generation �tness (i.e., error on the training set) achieved

by particular methods on di�erent benchmark problems, with 95% con�dence intervals marked

as semi-transparent bands. Clearly, each of the considered methods that drive the search using

derived objectives signi�cantly improves the performance of the standard GP algorithm. The

best performance is achieved either by DOC or DOCLEX, depending on the problem. LEX and

DOCLEX tend to maintain the lowest training set error during evolution, with DOC eventually

catching up. DOF performs slightly worse than the already mentioned methods, but still better

than two other control methods AFPO and GP. DOFLEX, on the other hand, seems to be the

weakest algorithm of the analyzed ones. It has the highest variance, and often achieves inferior

results when compared to other methods. These observations are con�rmed by Table 11.2 that

shows 5h3 average and 95 con�dence intervals of the �nal best-of-run �tness.

To provide an aggregated perspective on performance, we employ the Friedman's test for mul-

tiple achievements of multiple subjects [159] on the best-of-run �tness. The p-value for Friedman

test is 3.46×10−12, which strongly indicates that at least one method performs signi�cantly di�er-

ent from the remaining ones. To determine the signi�cantly di�erent pairs, we conduct a post-hoc

analysis using the symmetry test [135]. The left inset in Table 11.4 presents the p-values for the

158 Discovery of Search Objectives in Continuous Domains

0 50 100 150 200
0

1

2

3
A

v
g
.

b
e
st

fi
tn

e
ss R1

0 50 100 150 200
0

0.2

0.4

0.6 R2

0 50 100 150 200
0

0.1

0.2

R3

0 50 100 150 200
0

0.1

0.2

0.3

A
v
g
.

b
e
st

fi
tn

e
ss Kj1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1 Kj4

0 50 100 150 200
0

1

2

3
Kj8

0 50 100 150 200
0

2

4

6

8

10

A
v
g
.

b
e
st

fi
tn

e
ss Kj14

0 50 100 150 200
0

20

40
Kj15

0 50 100 150 200
0

0.5

1

1.5 Ng3

0 50 100 150 200
0

0.5

1

1.5

A
v
g
.

b
e
st

fi
tn

e
ss Ng4

0 50 100 150 200
0

0.1

0.2
Ng5

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Ng6

0 50 100 150 200
0

0.1

0.2

0.3

A
v
g
.

b
e
st

fi
tn

e
ss Ng7

0 50 100 150 200
0

0.2

0.4

Ng8

0 50 100 150 200
0

0.5

1
Ng9

0 50 100 150 200
0

0.2

0.4

0.6

Generations

A
v
g
.

b
e
st

fi
tn

e
ss Ng12

0 50 100 150 200
0

1

2

3

Generations

Pg1

0 50 100 150 200
0

0.5

1

Generations

Vl1

gp lex afpo doc
doclex dof doflex

1

Figure 11.1: Average and .95-con�dence interval of the best-of-generation �tness.

11.2. Experiments 159

Table 11.2: Average and .95-con�dence interval of the best-of-run �tness. Last row present the
averaged ranks of setups.

Problem gp lex afpo doc doclex dof doflex

R1 0.133 ±0.027 0.039 ±0.013 0.235 ±0.025 0.046 ±0.008 0.034 ±0.011 0.076 ±0.013 0.093 ±0.013

R2 0.104 ±0.020 0.037 ±0.007 0.122 ±0.014 0.040 ±0.006 0.019 ±0.003 0.057 ±0.008 0.141 ±0.032

R3 0.022 ±0.004 0.005 ±0.001 0.037 ±0.003 0.007 ±0.001 0.003 ±0.001 0.022 ±0.003 0.050 ±0.006

Kj1 0.060 ±0.013 0.010 ±0.003 0.067 ±0.009 0.012 ±0.003 0.009 ±0.002 0.060 ±0.010 0.117 ±0.015

Kj4 0.128 ±0.021 0.092 ±0.021 0.152 ±0.022 0.045 ±0.009 0.034 ±0.006 0.110 ±0.011 0.195 ±0.040

Kj8 0.427 ±0.128 0.208 ±0.048 0.297 ±0.059 0.126 ±0.030 0.099 ±0.020 0.174 ±0.051 0.306 ±0.056

Kj14 2.586 ±0.463 2.468 ±0.415 2.031 ±0.242 1.354 ±0.182 0.923 ±0.153 1.457 ±0.196 2.957 ±0.630

Kj15 10.229 ±1.380 4.517 ±0.793 14.236 ±1.189 7.426 ±0.921 2.069 ±0.324 6.629 ±0.946 10.428 ±1.432

Ng3 0.103 ±0.022 0.029 ±0.016 0.128 ±0.016 0.030 ±0.005 0.031 ±0.010 0.045 ±0.007 0.097 ±0.024

Ng4 0.135 ±0.035 0.040 ±0.016 0.184 ±0.018 0.031 ±0.007 0.033 ±0.010 0.064 ±0.012 0.111 ±0.019

Ng5 0.016 ±0.006 0.006 ±0.002 0.012 ±0.003 0.005 ±0.001 0.004 ±0.001 0.009 ±0.002 0.045 ±0.010

Ng6 0.047 ±0.012 0.021 ±0.007 0.066 ±0.012 0.015 ±0.005 0.016 ±0.004 0.022 ±0.004 0.073 ±0.013

Ng7 0.030 ±0.010 0.012 ±0.004 0.034 ±0.006 0.007 ±0.001 0.007 ±0.002 0.016 ±0.003 0.041 ±0.007

Ng8 0.025 ±0.005 0.024 ±0.006 0.022 ±0.005 0.009 ±0.003 0.011 ±0.003 0.007 ±0.005 0.045 ±0.009

Ng9 0.184 ±0.042 0.061 ±0.022 0.154 ±0.048 0.038 ±0.030 0.030 ±0.011 0.072 ±0.029 0.331 ±0.065

Ng12 0.184 ±0.021 0.089 ±0.010 0.228 ±0.020 0.094 ±0.011 0.062 ±0.008 0.180 ±0.017 0.310 ±0.019

Pg1 0.259 ±0.079 0.221 ±0.069 0.247 ±0.046 0.121 ±0.026 0.094 ±0.042 0.223 ±0.075 0.495 ±0.112

Vl1 0.138 ±0.018 0.189 ±0.042 0.196 ±0.018 0.107 ±0.009 0.063 ±0.011 0.191 ±0.018 0.311 ±0.036

Rank: 5.444 2.889 5.778 2.222 1.389 3.722 6.556

Table 11.3: Median and .95-con�dence interval of test set �tness of the best-of-run programs. Last
row presents the averaged ranks of setups.

Problem gp lex afpo doc doclex dof doflex

R1 0.192 ±0.042 0.046 ±0.017 0.266 ±0.032 0.055 ±0.009 0.042 ±0.016 0.071 ±0.012 0.124 ±0.043

R2 0.127 ±0.022 0.059 ±0.017 0.141 ±0.018 0.047 ±0.008 0.033 ±0.017 0.071 ±0.012 0.184 ±0.045

R3 0.043 ±0.006 0.010 ±0.003 0.052 ±0.005 0.011 ±0.002 0.009 ±0.002 0.028 ±0.004 0.068 ±0.009

Kj1 0.126 ±0.021 0.071 ±0.027 0.108 ±0.018 0.031 ±0.009 0.044 ±0.014 0.098 ±0.017 0.180 ±0.027

Kj4 0.555 ±0.097 0.329 ±0.068 0.291 ±0.058 0.164 ±0.052 0.282 ±0.076 0.274 ±0.052 0.684 ±0.131

Kj8 210.659 ±405.680 29.085 ±37.352 1.029 ±0.307 0.882 ±0.273 3.235 ±3.101 0.639 ±0.237 1.218 ±0.410

Kj14 3.785 ±0.647 3.040 ±0.541 2.516 ±0.340 1.548 ±0.179 1.672 ±0.364 2.151 ±0.425 4.264 ±0.855

Kj15 11.380 ±1.391 5.466 ±1.063 14.601 ±1.108 7.367 ±0.831 3.005 ±0.471 6.885 ±0.910 12.243 ±1.545

Ng3 0.120 ±0.025 0.033 ±0.017 0.146 ±0.018 0.034 ±0.006 0.034 ±0.010 0.043 ±0.006 0.099 ±0.023

Ng4 0.173 ±0.035 0.049 ±0.019 0.205 ±0.019 0.035 ±0.010 0.047 ±0.015 0.071 ±0.014 0.133 ±0.020

Ng5 0.024 ±0.010 0.018 ±0.009 0.011 ±0.003 0.005 ±0.001 0.005 ±0.002 0.009 ±0.002 0.053 ±0.021

Ng6 0.046 ±0.013 0.025 ±0.011 0.037 ±0.011 0.008 ±0.004 0.016 ±0.005 0.014 ±0.004 0.070 ±0.015

Ng7 0.040 ±0.012 0.018 ±0.007 0.038 ±0.008 0.012 ±0.005 0.066 ±0.045 0.025 ±0.008 0.051 ±0.011

Ng8 0.129 ±0.018 0.135 ±0.032 0.077 ±0.024 0.056 ±0.016 0.114 ±0.038 0.024 ±0.015 0.176 ±0.041

Ng9 0.211 ±0.055 0.058 ±0.032 0.079 ±0.038 0.012 ±0.012 0.131 ±0.088 0.085 ±0.041 0.501 ±0.107

Ng12 0.265 ±0.044 0.187 ±0.029 0.282 ±0.020 0.188 ±0.031 0.220 ±0.064 0.297 ±0.023 0.448 ±0.048

Pg1 2.085 ±0.277 1.746 ±0.272 1.580 ±0.217 1.170 ±0.168 1.475 ±0.198 1.717 ±0.222 2.252 ±0.217

Vl1 0.636 ±0.076 0.532 ±0.079 0.608 ±0.086 0.427 ±0.043 0.427 ±0.075 0.562 ±0.052 0.831 ±0.081

Rank: 5.667 3.333 4.889 1.722 2.667 3.333 6.389

Table 11.4: Post-hoc analysis of Friedman's test conduced on Table 11.2 (training set, left) and
11.3 (test set, right): p-values of incorrectly judging a setup in a row to achieve better �tness than
a setup in a column. Signi�cant values (α = 0.05) are marked in bold.

gp lex afpo doc doclex dof doflex

gp 0.999 0.719
lex 0.007 0.001 0.910 0.000

afpo 0.934
doc 0.000 0.969 0.000 0.363 0.000

doclex 0.000 0.363 0.000 0.910 0.020 0.000

dof 0.201 0.065 0.002

doflex

gp lex afpo doc doclex dof doflex

gp 0.953
lex 0.020 0.317 0.000

afpo 0.934 0.363
doc 0.000 0.275 0.000 0.847 0.275 0.000

doclex 0.001 0.969 0.033 0.969 0.000

dof 0.020 1.000 0.317 0.000

doflex

hypothesis that a setup in a row is better than a setup in a column. The signi�cant p-values

are marked in bold. This comparison indicates that the performance improvement of DOC and

DOCLEX relative to control methods GP and AFPO is signi�cant.

For a more detailed insight, we also rank all con�gurations in the bottom row of Table 11.2.

The best overall average rank of 1.39 was achieved by DOCLEX, which outperforms the other

methods on 13/18 benchmarks. The second is DOC with the average rank of 2.22 and the lowest

error on 3/18 benchmarks. Third place is taken by LEX with the average rank of 2.89 and the

lowest error on 1/18 benchmarks.

Concerning the generalization capability, Table 11.3 presents the median and 95% con�dence

interval of test set �tness of the best-of-run program. The results are largely consistent with the

160 Discovery of Search Objectives in Continuous Domains

Table 11.5: Average and .95-con�dence interval of number of nodes in the best-of-run program.
Last row presents the averaged ranks of setups.

Problem gp lex afpo doc doclex dof doflex

R1 92.437 ±9.83 100.008 ±11.07 30.170 ±1.38 81.442 ±7.02 101.085 ±12.20 89.206 ±4.57 87.903 ±14.13

R2 99.776 ±17.78 101.452 ±9.66 25.597 ±1.35 84.166 ±6.02 110.236 ±14.05 109.446 ±6.62 90.809 ±8.16

R3 112.906 ±14.58 122.057 ±10.60 32.255 ±1.63 103.675 ±7.76 123.575 ±13.85 134.024 ±9.05 122.974 ±9.67

Kj1 111.203 ±16.66 134.972 ±16.18 32.499 ±1.59 96.185 ±9.05 109.394 ±12.52 144.953 ±10.27 148.799 ±13.63

Kj4 133.811 ±15.04 130.992 ±9.75 40.949 ±2.22 108.622 ±9.68 134.536 ±13.96 142.368 ±10.57 146.039 ±13.20

Kj8 150.517 ±16.56 140.043 ±11.70 35.363 ±1.81 95.444 ±7.90 147.541 ±12.49 117.642 ±8.25 131.048 ±10.25

Kj14 89.812 ±7.69 86.670 ±7.10 23.324 ±1.24 71.025 ±3.97 98.103 ±9.04 95.905 ±9.33 110.179 ±8.01

Kj15 110.263 ±11.37 116.492 ±8.23 26.498 ±1.36 108.840 ±7.48 134.830 ±9.14 104.770 ±6.94 136.477 ±10.61

Ng3 89.343 ±11.99 99.310 ±12.00 27.755 ±1.86 65.468 ±5.01 100.422 ±12.84 100.974 ±8.16 94.524 ±8.10

Ng4 91.692 ±11.22 91.805 ±9.54 27.099 ±1.32 86.014 ±9.43 98.851 ±9.93 94.838 ±6.47 93.499 ±7.34

Ng5 60.719 ±9.52 66.786 ±10.72 19.564 ±1.63 51.837 ±6.40 67.796 ±10.52 99.257 ±12.23 84.411 ±10.61

Ng6 82.674 ±11.56 80.698 ±7.67 24.255 ±2.01 69.064 ±8.43 83.287 ±10.08 113.484 ±16.39 96.361 ±9.40

Ng7 66.389 ±9.14 75.943 ±6.52 19.454 ±1.47 67.261 ±5.45 90.062 ±10.93 129.159 ±15.66 89.042 ±9.22

Ng8 63.756 ±8.55 80.615 ±10.48 22.530 ±1.26 54.663 ±6.22 75.417 ±8.86 89.167 ±10.35 81.057 ±7.61

Ng9 90.664 ±14.54 98.202 ±13.23 20.756 ±2.43 64.692 ±11.44 87.062 ±11.47 104.855 ±12.87 98.217 ±10.35

Ng12 83.121 ±13.88 91.343 ±6.95 22.000 ±1.44 95.799 ±6.73 116.942 ±11.98 142.845 ±14.95 104.046 ±15.90

Pg1 64.462 ±7.80 87.612 ±7.15 24.062 ±1.12 64.629 ±3.85 90.902 ±10.21 91.096 ±8.08 110.165 ±12.05

Vl1 107.003 ±10.53 111.494 ±10.92 29.776 ±1.47 100.707 ±6.98 126.004 ±10.70 120.169 ±7.46 121.183 ±13.61

Rank: 3.556 4.278 1.000 2.278 5.556 5.833 5.500

Table 11.6: Post-hoc analysis of Friedman's test on Table 11.5. Signi�cant values (α = 0.05) are
in bold.

gp lex afpo doc doclex dof doflex

gp 0.954 0.080 0.026 0.098
lex 0.565 0.317 0.618

afpo 0.007 0.000 0.565 0.000 0.000 0.000

doc 0.565 0.040 0.000 0.000 0.000

doclex 1.000
dof

doflex 1.000 0.999

results on the training set, and again we observe the positive e�ects of driving search using derived

objectives. Across all problems, the median best �tness on the test sets is obtained by DOC,

which achieves the best overall average rank of 1.72. DOCLEX is second with the rank of 2.67,

while LEX and DOF both rank third with the same average result of 3.33. The methods do not

exhibit heavy over�tting to training data, except for Kj8, Kj15 and Pg1, where higher test errors

are apparent. Interestingly, despite this tendency, DOC and DOF manage to maintain the lowest

errors on these benchmarks. Friedman's test conducted on test set �tness from Table 11.3 results

in p-value of 8.02 × 10−10 and the right inset in Table 11.4 demonstrates its post-hoc analysis.

Observations are largely con�rmed: DOC and DOF are both better than GP, while DOC and

DOCLEX also signi�cantly outperform AFPO.

Table 11.5 shows the average and 95% con�dence interval of the number of nodes in the best-

of-run programs. We are not surprised to see AFPO produce the smallest programs on average,

as one of its motivations was to address the issue of bloat in GP. DOC comes second, with the

rank of 2.27, and produces much smaller programs than the control methods. LEX, which ranked

next after DOC in terms of �tness, turns out to produce much larger programs, even though its

average run lengths do not diverge much from those of DOC (the run lengths are not reported for

brevity). This observation is con�rmed by the Friedman's test shown in Table 11.6 � DOC produces

signi�cantly smaller programs than LEX, DOCLEX, DOF and DOFLEX. LEX also seems to have

slightly detrimental e�ect on program size when used in a hybrid approach with DOC.

11.3 Discussion

The overall positive results corroborate our �ndings from the previous chapters and extend them to

continuous domains. The alternative, transient objectives derived automatically from interaction

matrices by DOC and DOF turn out to surpass a range of other methods on the key performance

11.4. Chapter summary 161

indicators. Crucially, the proposed methods manage to outperform also LEX, which showed supe-

rior performance in multiple previous studies [127, 197, 218].

This outcome suggests also that the decisions we made when designing the preprocessing

method described in Section 11.1 were largely appropriate. Indeed, preliminary experiments, not

reported here for brevity, suggested that all key components of that method are essential:

• The `capping' of the maximum error with ϕ in Step 2 to emphasize the di�erences in low

ranges of error,

• The standardization in Step 3 to provide for the same magnitude of outcomes on tests, while

maintaining their individual capability of discrimination between programs, and

• The sigmoid squeezing in Step 4 to map the outcomes in entire matrix to the same interval

so that they have same magnitude and are thus comparable when used by DOC and DOF.

The method is also e�ectively parameter-free, as it adjusts ϕ automatically, relying on the statistics

of error distribution in G.

It is encouraging to see that the low errors on the training set in most cases translate to test

sets. Given that smaller programs tend to generalize better, this result can be in part attributed,

particularly for DOC and DOCLEX, to moderate sizes of programs evolved by these methods.

This is interesting, given that, except for AFPO, none of the setups considered here explicitly

rewards smaller programs. It would be interesting to �nd out whether there are any other (than

size) characteristics of the programs evolved with derived objectives that make them perform so

well, and we consider this one of interesting follow-up directions.

Last but not least, let us note that the overall underperformance of DOFLEX should be mainly

attributed to the fact that we aimed here at possibly non-arbitrary parameter settings. For DOF,

no obvious means for automatic setting of factorization rank have been proposed to date, so we set

it to the highest possible value (r = n), as there is substantial conceptual and empirical evidence

that LEX yields the best results when the number of tests is at least in dozens [127, 128]. However,

it seems that this setting is suboptimal for DOF, leading to discovery of non-discriminative and

redundant objectives. One possible reason for such a behavior is the observation that NMF tends to

set many factors to zero for high values of r, which is not necessary bene�cial from the perspective

of discovery of search objectives. This observation points to another natural follow-up research,

which could investigate the role of sparsity.

11.4 Chapter summary

In this chapter, we empirically generalized the �ndings from Chapter 9 and 10 concerning methods

that derive search objectives from interaction matrices. We may thus claim now that derived

objectives, though heuristically derived and transient, are e�ective means of search not only for

domains with discrete and/or constrained interaction outcomes, but also for those where interaction

outcomes are continuous and unconstrained. This elevates the derived objectives to a fully-�edged

concept for metaheuristics applied to test-based problems, including, but not limited to, GP. Given

that most of the proposed methods are practically parameter-free, and so is the preprocessing

method proposed in this chapter, one may seriously consider including these solutions as out-of-

the-box functionalities in metaheuristic toolkits.

Chapter 12

Surrogate Fitness via Factorization of

Interaction Matrix

Evaluation of candidate solutions in evolutionary computation is usually the most expensive com-

ponent of search process in terms of computation time required. This is particularly true in

applications where �tness evaluation involves some form of simulation, e.g., of an engineering arte-

fact (like a controller) in some virtual environment. Evaluation may become even more expensive

in test-based problems where assessing a candidate solution requires simulating its behavior in

multiple contexts. This is often necessary in order to account for the inherent noisiness of the

environment, or to address the possibility of multiple initial states, or in adversarial environments

where the context is actively opposing the agent (solution). Two- and multi-player games are good

examples of the latter case. Arguably, testing a program on a given set of tests in GP can also be

seen as an expensive simulation, particularly when programs become large.

Lowering the computational cost incurred by evaluation by simply reducing the number of

tests is often not a viable option. Few tests implies inaccurate �tness, and consequently a poorly

informed search process. Moreover, discarding tests may cause a task to be formally underspeci�ed

(underconstrained). For instance, a set of tests for a multiplexer problem (see Example 6.1) that

misses even a single test does not technically specify that problem anymore. Also, when an

interaction function is binary, a low number of tests leads to coarse-grained �tness that often fails

to di�erentiate solutions (cf. Section 6.1).

The practical answer to this challenge in evolutionary computation are surrogate models (cf.

Section 8.6), in which the original �tness function f : X → R is abandoned in favor of a computa-

tionally less expensive, albeit approximate, surrogate �tness function f̂ : X → R. In some cases, f̂

can be designed and implemented manually by an expert knowledgeable in the given application

area. However, it is often more convenient and became recently more common to learn such models

from examples using machine learning algorithms [58].

In this chapter, we demonstrate that the conceptual framework for discovery of search objectives

comes in handy also in such a setting. The formalism of NMF that is the core component of DOF

algorithm (cf. Chapter 10) allows not only deriving search objectives, but also predicting outcomes

of interactions between candidate solutions in S and tests in T . In the following, we propose a

method inspired by this observation that heuristically estimates the �tness from G using NMF.

Crucially, that estimation requires only a fraction of elements of G to be known, which implies

that only some interactions between candidate solutions and tests have to be conducted. As we

demonstrate in the following, this allows substantial reduction of required computational e�ort.

The method presented in this chapter has been originally published [212] and later extended

in [217, 210].

163

164 Surrogate Fitness via Factorization of Interaction Matrix

12.1 Factorization of G with missing interaction outcomes

Recall from Section 10.1 that NMF produces two non-negative matrices W and H that multiplied

together form a lower rank approximation of G. To this end, NMF solves optimization problem

given by (10.1.2). For reader's convenience, we repeat it here

min
W,H

L(W,H) ≡ 1

2
||G−WH||2F s.t. W,H ≥ 0. (12.1.1)

Crucially for our further considerations, G can be factorized in the this way even if some of its

elements are unknown, i.e., when G is sparse. This makes matrix factorization a powerful tool in

collaborative �ltering (a technique used by recommender systems [298]), where it can be used to

�ll in the gaps in a large matrix (of, e.g., users' recommendations [169]), even if only small part of

that matrix is known for certain.

As it follows from (10.1.1), to predict an interaction outcome of a candidate solution s with a

test t from the matrices W and H found by solving (12.1.1), we calculate the dot product of two

vectors corresponding to s and t:

ĝst = wT
s ht =

r∑

j=1

wsjhjt. (12.1.2)

However, the update rules given by (10.1.3) and (10.1.4) implicitly assume that the input matrix is

complete. For sparse matrices, arguably the most popular approach to minimize expression (12.1.1)

is stochastic gradient descent (SGD) optimization. The algorithm loops through all available

interaction outcomes in G in random order and for each given training case gst it �rst predicts ĝst

and then computes the associated prediction error between the known and predicted outcome of

interaction for given s and t

est = gst − ĝst = gst −wT
s ht.

Then it modi�es the parameters proportionally to the learning rate γ in the opposite direction of

the gradient, i.e.:

wsj = wsj − γ
∂

∂wsj
e2
st = wsj + γesthjt,

hjt = hjt − γ
∂

∂hjt
e2
st = hjt + γestwsj ,

where j = 1, . . . , r. To prevent over�tting to the interaction outcomes used for training, its common

to add the regularization term λ(||W ||2F + ||H||2F) to the loss function, which yielding the following

update rules:

wsj = wsj + γ(esthjt − λwsj), (12.1.3)

hjt = hjt + γ(estwsj − λhjt), (12.1.4)

The update rules are applied for a �xed number of iterations, or until the error given by (12.1.1)

is su�ciently small. Stochastic gradient descent owes its popularity to the ease of implementation

combined with fast running times. For a comparison of various NMF techniques for collaborative

�ltering see e.g. [109].

Crucially for our needs, stochastic approach helps exploiting behavioral similarity between can-

didate solutions and tests in an interaction matrix because parameter updates based on interaction

outcomes from a certain row or column will also decrease the loss in similar rows and columns.

Furthermore, gradient-based NMF algorithms usually converge in at most a few dozens of steps,

even when G is relatively large [169, 28].

12.2. SFIMX 165

Algorithm 8 Surrogate Fitness via Factorization of Interaction Matrix (SFIMX).

Require: factorization rank r.

1: function SFIMX(S, T, α)
2: for s ∈ S do
3: T ′ ← Sample(T, α)
4: for t ∈ T ′ do
5: g(s, t)← Interact(s, t) . apply candidate s to test t

6: W,H ← NMF(G, r)
7: Ĝ←WH . predict missing gijs

8: Ĝ← ReplaceKnown(G, Ĝ)
9: for si ∈ S do
10: f(si)←

∑n
j=1 ĝij

11: return F

12.2 SFIMX

As argued in the introduction to this chapter, computing a complete interaction matrix G can

be computationally costly, particularly if executing individual interactions gij is expensive, the

number of tests in T is large, or both. To alleviate this problem, we propose a method dubbed

Surrogate Fitness via Factorization of Interaction Matrix (SFIMX), which calculates only a fraction

of interaction outcomes (so that G is sparse), and uses NMF to estimate the remaining interaction

outcomes from those known ones. The method expects two parameters: the factorization rank

r and the desired density α ∈ (0, 1] of partial interaction matrix (meant as a complement of

sparsity). SFIMX employs the NMF formalisms described in Sections 10.1 and 12.1 to replace the

conventional �tness evaluation stage of EA with the following steps:

1. Calculate in part the sparse m × n interaction matrix G between the candidate solutions

from the current population S and the tests from T in the following way:

a) For each candidate solution s, draw a nonempty random subset of tests T ′ ⊂ T of size

αn to interact with, where α ∈ (0, 1] is the parameter that controls the fraction of

interactions to be calculated.

b) Perform interactions between s and tests in T ′, placing their outcomes in the appropriate

cells of the corresponding row of G.

2. Factorize G in non-negative components W and H, using only the known elements of G, and

ignoring any missing (unknown) interaction outcomes.

3. Use the obtained matrices to estimate all interaction outcomes by calculating Ĝ = WH.

4. Replace predictions in Ĝ with interaction outcomes that are given in G.

5. Compute from Ĝ the �tness of a candidate solution s ∈ S as:

fSFIMX(s) =

n∑

j=1

ĝsj , (12.2.1)

i.e. in the same way as in the conventional scalar �tness.

These steps are summarized in Algorithm 8. To comply with NMF's requirement of G's elements

being strictly positive, in line 5 of Algorithm 8, we set g(s, t) = 1 if s fails t and g(s, t) = 2

otherwise. Note that α ≥ 1
|T | must hold for T ′ to be nonempty.

166 Surrogate Fitness via Factorization of Interaction Matrix

Example 12.1. Consider the population of candidate solutions S = {s1, s2, s3, s4} and the set

of tests T = {t1, t2, t3, t4, t5}. Assume that SFIMX is run with α = 3
5 and step 1 of the above

algorithm yields the following sparse matrix of interactions G between S and T :

G =




t1 t2 t3 t4 t5

s1 2 1 2

s2 2 1 1

s3 1 2 2

s4 2 1 1




Let r = 3. The application of NMF implemented via SGD to G (line 6 of Algorithm 8) returns

the following decomposition into W and H:

W =




f1 f2 f3

s1 0.46 1.96 0.6

s2 1.27 0.1 0.95

s3 1.37 0.02 2.83

s4 0.4 1.86 1.60



, H =




t1 t2 t3 t4 t5

f1 0.48 1.50 0.01 0.41 0.41

f2 0.87 0.14 0.19 0.77 0.01

f3 0.11 0.09 1.02 0.50 0.51


.

When multiplied (line 7 of Algorithm 8), W and H lead to the following reconstructed interaction

matrix:

Ĝ = WH =




t1 t2 t3 t4 t5

s1 2 1.02 1 2 0.52

s2 0.8 2 1 1.07 1

s3 1 2.31 2.1 2 2

s4 2 1 2.01 2.4 1




In the next step, ReplaceKnown copies the known interaction outcomes from G to Ĝ (this step is

ine�ective in this example, as the outcomes for known interactions have been perfectly estimated,

but that is not always the case). Finally, in line 10, we calculate the �tness of particular candidate

solutions by summing the corresponding rows of the reconstructed interaction matrix, which results

in f(s1) = 6.54, f(s2) = 5.87, f(s3) = 9.41, and f(s4) = 8.41. Overall, SFIMX enabled calculating

these values using αnm = 12 known interaction outcomes, compared to nm = 20 interactions

required by the conventional scalar �tness function. �

In the above example, the reconstructed matrix Ĝ perfectly reproduces the known interaction

outcomes, so the square approximation error minimized by NMF (Eq. 10.1.2) attains zero. In

general, the approximation error tends to be greater for smaller r and greater α. It should be

noted however that, regardless how well NMF reconstructs the known interaction outcomes, the

unknown ones are only extrapolated, so the value of SFIMX's �tness will in general diverge from

the true �tness (Eq. 5.5.1).

12.3 Properties of SFIMX

SFIMX is designed for test-based problems (cf. Section 5). Given that in many instances of prob-

lems belonging to this class individual tests come from the same domain and together describe

the desired behavior of the same input-output functionality, one can expect the outcomes of can-

didate solution's interactions with them to be mutually dependent. This condition is necessary

for SFIMX to accurately predict the outcomes of some interactions from the outcomes of other

interactions. Nevertheless, we expect it to be satis�ed in many practical situations, as it is actually

12.4. Experiment 167

much harder (if not impossible) to come across problems where interaction outcomes are entirely

independent. Notice also that if this was the case, then solving every test would require from a

candidate solution completely di�erent set skills. This is however in con�ict with the nature of

learning tasks which typically involve discovery of some sort of general knowledge that has to be

extrapolated even beyond the training cases.

Predictions made by SFIMX are based on how behaviorally similar candidate solutions interact

with the tests in T . As a result, evaluation in SFIMX is contextual : a prediction ĝst made for

a missing outcome depends not only on s and t, but also on other candidate solutions in S and

other tests in T . Consequently, all available outcomes of interactions between S and T together

determine the NMF model and therefore in�uence how predictions for missing interaction outcomes

are made.

SFIMX's estimates are linear combinations of the elements in W and H. Furthermore, the

non-negativity constraint allows only additive linear combinations of the factors, thus enabling it

to learn `parts' that have distinct features and physical representations [206]. Notice also that

interaction outcomes reconstructed by NMF are real-valued rather than discrete. As a result, even

when the known interaction outcomes are binary (1s and 2s), the �tness calculated by SFIMX

(Eq. 12.2.1) is no longer restricted to n + 1 discrete values, but can assume an arbitrary value.

That leads to a more �ne-grained �tness that is likely to be less susceptible to loss of gradient (cf.

Section 6.3).

SFIMX cannot accumulate any knowledge about the characteristics of individual tests along an

evolutionary search process � at its heart it is a memoryless estimation technique that starts anew

in each generation. While this may appear like a disadvantage, we argue that it actually bene�ts

SFIMX, due to the capability to immediately react to the ongoing changes in the population.

Such an approach also precludes any past bias that could otherwise negatively impact the current

estimates.

One might argue that SFIMX does not diverge so much from the traditional approaches to

surrogate �tness, and that the only essential di�erence is that the former estimates the outcomes

of interactions, while the latter estimate the outcomes of �tness evaluation. In response, let us

point to an important advantage of our method, which it owes to the tight embedding in test-

based problems: SFIMX predicts interaction outcomes from other interaction outcomes (and by

this token also from behavior of candidate solutions on tests), and in this way abstracts from the

characteristics of a given application. In contrast, traditional surrogates predict �tness from the

(usually genotypic) properties of candidate solutions, and are thus more application-speci�c and

more di�cult to design.

12.4 Experiment

The purpose of the experiment is twofold. Firstly, we examine the performance of SFIMX in

the domain of tree-based GP, following the experimental protocol and benchmark problems used

in Section 9.5. Secondly, we are interested in verifying whether SFIMX is a viable method for

reducing the computational cost incurred by evaluation. For that aim, we control the fraction

of interactions to be calculated by the parameter α ∈ {0.1, 0.2, . . . , 0.9} in SFIMX algorithm (cf.

Section 12.2).

The factorization is realized by the SGD algorithm ((12.1.3) and (12.1.4)). As in Section 10.5,

we perform up to 50 iterations of SGD, each involving both steps, i.e., (12.1.3) and (12.1.4). If the

approximation error (Eq. 10.1.2) drops below 10−5, we stop the optimization earlier.

168 Surrogate Fitness via Factorization of Interaction Matrix

12.4.1 Compared algorithms

We consider three settings of factorization rank r that controls the degree to which the interaction

outcomes are being compressed by factorization. The con�guration dubbed SFIMX-F uses r =

min(m,n), which is equivalent here to r = n, because for the considered benchmarks m > n. This

value should be considered large, as NMF can then perfectly reproduce the known interaction

outcomes, because the rank of G can be at most min(m,n).

The SFIMX-H con�guration uses r = n/2, which forces the interaction outcomes to be

compressed in half the number of weights in matrix W and features in matrix H. However, this

number can be still considered quite high, given that we expect the interaction outcomes to be

mutually correlated between candidate solutions and tests.

Finally, the con�guration SFIMX-L uses the smallest rank r = dlog2 ne. In this case, r is in

the order of the number of input variables; for instance, for the Mux6 problem r = log2 26 = 6.

The non-SFIMX baseline methods include conventional Koza-style GP (cf. Section 9.5.1) and

Random Subset Selection (RSS). The latter calculates �tness using a subset of αn tests drawn

independently (and anew in every generation) for each row of G. This proceeding is intended to

mimic the evaluation scheme known in coevolutionary algorithms [53].

To verify whether an ideal program has been found, in the last generation of an evolutionary

run, we evaluate the best candidate solution(s) on all tests. This amounts to computing additional

(1− α)n interactions and applies to all SFIMX and RSS con�gurations.

12.4.2 Success rates

We focus on two aspects in the analysis that follows: SFIMX's end-of-run success rate and the

accuracy of predicting interaction outcomes. The �rst one re�ects the end-to-end performance

of the proposed method, most relevant from the practical perspective of solving discrete-�tness

test-based problems (here: program synthesis). The second aspect characterizes SFIMX on a

more internal and elementary level. For the purpose of this experiment, we limit our attention to

SFIMX-F for α ∈ [0.1, 0.9] (denoted as SFIMX-Fα). The results presented below are averages over

50 independent runs of evolution, repeated for each combination of method and problem.

Table 12.1 shows the success rates obtained by particular variants of methods on each bench-

mark, as a function of the fraction α of the performed interactions. The last column contains the

global rank of a given con�guration, obtained by averaging the ranks on individual benchmarks.

The last row shows success rates obtained by ordinary GP.

The best overall average rank of 6.03 is achieved by SFIMX-F0.4. Eight out of nine SFIMX-F

con�gurations rank above any of the control con�gurations; only SFIMX-F0.1 ranks below GP and

some RSS setups. The last observation is not surprising, given that SFIMX-F0.1 is forced to make

predictions from the mere 10 percent of actual outcomes of program-test interactions. GP attained

the average rank of 8.78, surpassing all RSS con�gurations.

It is di�cult to establish a clear pattern as to which values of α are the most bene�cial in terms

of success rates. As a rule of thumb, we may say that setting α in [0.4, 0.6] is favorable. However,

using other values is not very detrimental, except for α = 0.1 that should be avoided. For many

problems SFIMX-F maintains decent success rates even for very low setting of this parameter; for

instance it is better than or comparable to GP for α = 0.2 on Cmp8, Mux6, Dsc1, Dsc2, Dsc3,

Dsc5, Mal2, Mal3, Mal4, and Mal5. On the other hand, we also anticipate that too high values of

α may be also suboptimal. Our hypothesis is that high α reduces the amount of noise in �tness

estimates, and some noise in �tness has been proven helpful in past works [53].

12.4. Experiment 169

Table 12.1: Success rate of SFIMX-F (×100) of best-of-run individuals, averaged over 50 evolu-
tionary runs. Bold marks the best result for each benchmark.

α Cmp6 Cmp8 Maj6 Maj8 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5 Rank
sfimx-f

0.9 44 2 40 0 100 0 0 4 46 0 16 80 64 84 40 98 6.12
0.8 66 0 68 0 98 4 0 0 42 0 4 86 62 80 30 88 7.53
0.7 68 0 64 0 98 0 4 0 48 0 8 78 57 82 34 94 6.69
0.6 50 2 54 0 100 0 2 0 44 0 4 76 57 90 50 92 6.59
0.5 44 0 50 0 100 0 2 8 44 0 2 72 70 82 52 100 6.53
0.4 46 10 70 0 100 2 4 6 52 0 10 76 36 74 26 82 6.03
0.3 36 0 44 0 100 0 10 12 42 0 16 60 48 88 42 90 7.25
0.2 36 0 32 0 100 0 4 16 64 0 2 70 66 80 36 94 7.31
0.1 12 0 2 0 90 0 0 0 26 0 0 60 64 62 22 78 13.00

rss

0.9 23 3 56 0 96 0 0 3 26 0 0 73 13 76 3 86 10.94
0.8 30 0 53 0 96 0 0 0 26 0 0 76 50 80 6 90 10.78
0.7 26 0 43 0 86 0 0 0 26 0 3 83 30 46 10 86 12.06
0.6 40 0 46 0 96 0 0 0 23 0 0 56 33 73 16 93 11.44
0.5 30 0 36 0 96 0 0 3 6 0 0 46 26 63 10 96 12.22
0.4 20 0 40 0 86 0 0 0 16 0 6 43 33 66 3 93 12.66
0.3 20 0 16 0 90 0 0 0 6 0 0 53 23 63 0 80 14.44
0.2 3 0 3 0 96 0 0 0 3 0 0 50 30 63 3 66 14.47
0.1 0 0 3 0 66 0 0 0 0 0 0 26 36 30 3 76 15.16

gp

GP 54 2 54 0 98 2 0 0 44 0 12 88 0 68 0 88 8.78

To provide an aggregated perspective on SFIMX-F's performance, we employ the Friedman's

test for multiple achievements of multiple subjects [159] on the best-of-run �tness. The p-value

is 1.86 × 10−5, which strongly indicates that at least one method performs signi�cantly di�erent

from the remaining ones. The post-hoc analysis using the symmetry test [135] indicates that the

leading con�guration SFIMX-F0.4 is signi�cantly better than RSS that uses α ∈ [0.1, 0.5]. As

suggested by the very close ranks, there is no statistically signi�cant di�erence between GP and

any con�guration of SFIMX-F.

On one hand, the above empirical evaluation gives us strong evidence that it is often not

su�cient to guide search process using only a sample of tests. On the other, it suggests that

SFIMX-F manages to learn patterns in G that allow it to maintain performance on a par with,

if not better than, conventional approach that calculates the exact �tness based on all tests. In

order to scrutinize SFIMX-F in that aspect, in Table 12.2 we report the average prediction accuracy

obtained by SFIMX-F on each benchmark and for each value of α. Technically, the accuracy is

the 1-complement of mean absolute error of Ĝ = WH with respect to G, calculated only for the

matrix entries that are being predicted. To that aim, when conducting these evolutionary runs,

we calculate also the missing exact interaction outcomes (but use them only for the purpose of

this measurement). To complete the picture, the last three rows of the table present the accuracies

obtained by SFIMX-F, SFIMX-H and SFIMX-L, averaged over all benchmarks.

The overall observation that emerges from the above experiment is that SFIMX manages to

maintain remarkably high level of accuracy, particularly for α ≥ 0.7 The plausible explanation

for the convergence of SFIMX's performance for the higher values of α is that with the majority

of interaction outcomes known for certain, predicting the remaining ones (i) becomes relatively

easy and can be done well enough using NMF, and/or (ii) the error committed on estimating the

outcomes for the remaining interactions is not so critical as to deceive the search process. Individual

values in Table 12.2 clearly show that the accuracy of methods' predictions systematically improves

with the amount of provided information (i.e., known interaction outcomes). And conversely: in

170 Surrogate Fitness via Factorization of Interaction Matrix

Table 12.2: Prediction accuracy obtained by SFIMX-F (SX-Fα) on each benchmark and for each
value of α, averaged over 50 evolutionary runs. The last three rows present the accuracies obtained
by SFIMX-F, SFIMX-H and SFIMX-L, averaged over all benchmarks. Bold marks the best result
for each benchmark.

Problem sx-f0.9 sx-f0.8 sx-f0.7 sx-f0.6 sx-f0.5 sx-f0.4 sx-f0.3 sx-f0.2 sx-f0.1

Cmp6 98.4 ±0.0 98.2 ±0.0 97.7 ±0.0 97.4 ±0.0 96.8 ±0.0 95.8 ±0.1 94.0 ±0.1 91.5 ±0.1 86.8 ±0.2

Cmp8 99.0 ±0.0 98.9 ±0.0 98.8 ±0.0 98.6 ±0.0 98.4 ±0.0 98.0 ±0.0 97.3 ±0.0 96.4 ±0.1 93.7 ±0.1

Maj6 97.7 ±0.0 97.4 ±0.0 96.8 ±0.1 96.3 ±0.1 95.5 ±0.1 94.2 ±0.1 92.1 ±0.1 89.0 ±0.2 84.1 ±0.2

Maj8 98.4 ±0.0 98.3 ±0.0 98.1 ±0.0 97.8 ±0.0 97.2 ±0.0 96.6 ±0.1 95.4 ±0.1 93.3 ±0.1 88.1 ±0.1

Mux6 97.9 ±0.0 97.1 ±0.0 96.8 ±0.0 95.7 ±0.0 93.8 ±0.1 92.7 ±0.1 86.4 ±0.1 83.6 ±0.2 75.3 ±0.2

Par5 96.5 ±0.1 95.0 ±0.1 93.0 ±0.2 90.2 ±0.2 85.2 ±0.3 78.3 ±0.3 69.4 ±0.2 55.3 ±0.1 49.3 ±0.0

Dsc1 94.2 ±0.2 96.3 ±0.2 94.1 ±0.2 94.0 ±0.2 91.8 ±0.2 86.7 ±0.2 80.3 ±0.2 75.1 ±0.1 69.4 ±0.1

Dsc2 93.6 ±0.1 93.3 ±0.1 92.9 ±0.2 91.0 ±0.2 89.3 ±0.2 86.0 ±0.2 81.1 ±0.2 75.2 ±0.1 67.3 ±0.1

Dsc3 94.6 ±0.1 94.7 ±0.1 93.5 ±0.1 91.8 ±0.1 89.1 ±0.2 87.0 ±0.2 82.6 ±0.2 77.0 ±0.2 70.2 ±0.1

Dsc4 98.1 ±0.1 97.6 ±0.1 97.1 ±0.2 96.5 ±0.2 96.1 ±0.2 92.6 ±0.2 85.3 ±0.2 77.0 ±0.1 68.3 ±0.1

Dsc5 94.1 ±0.2 92.7 ±0.2 92.3 ±0.2 89.7 ±0.2 86.3 ±0.2 80.8 ±0.2 77.8 ±0.2 71.9 ±0.1 66.4 ±0.1

Mal1 76.2 ±0.3 70.5 ±0.3 69.4 ±0.3 69.4 ±0.3 66.2 ±0.3 61.9 ±0.2 60.0 ±0.2 57.2 ±0.1 55.2 ±0.1

Mal2 86.0 ±0.2 81.0 ±0.3 76.3 ±0.3 71.3 ±0.3 69.7 ±0.3 63.4 ±0.2 61.1 ±0.2 57.5 ±0.1 54.6 ±0.1

Mal3 88.7 ±0.2 86.8 ±0.2 80.4 ±0.2 79.2 ±0.3 75.3 ±0.2 70.1 ±0.2 66.5 ±0.2 62.8 ±0.2 59.3 ±0.1

Mal4 87.8 ±0.2 81.1 ±0.3 81.3 ±0.3 73.4 ±0.3 73.8 ±0.3 68.2 ±0.3 64.6 ±0.2 58.8 ±0.1 56.6 ±0.1

Mal5 80.2 ±0.3 69.3 ±0.3 65.7 ±0.3 63.2 ±0.3 61.9 ±0.2 57.4 ±0.1 57.0 ±0.1 57.0 ±0.1 53.4 ±0.0

sfimx-f: 92.6 90.5 89.0 87.2 85.4 81.9 78.2 73.7 68.6
sfimx-h: 92.3 91.7 89.6 88.0 85.8 80.7 75.3 71.1 66.7
sfimx-l: 92.3 92.2 91.1 90.2 88.9 85.7 80.0 72.6 65.4

case of SFIMX-F0.1, the accuracy drops below 60 percent on 6 benchmarks, and below 70 percent

on 10 benchmarks, which may be the main reason for its poor performance.

Interestingly, for Mal benchmarks, the accuracy of SFIMX, is noticeably lower regardless of α.

This may suggest that SFIMX lacks the necessary capabilities to capture complex dependencies

between interaction outcomes that emerge when solving these problems. This could be the e�ect

of programs in the population becoming more sophisticated and thus starting to exhibit more

complex behaviors that is di�cult to model using direct linear combination of the elements in W

and H. Recall also that Mal benchmarks feature the lowest number of tests, 15, which may make

discovering dependencies more di�cult.

When juxtaposed, the average accuracies obtained for di�erent values of NMF's rank r reveal

that SFIMX-L tends to provide the overall highest accuracy; it outperforms SFIMX-F and SFIMX-

H on 6 out of 9 settings of α, only slightly losing in extreme cases, i.e. when α is 0.1, 0.2 or

0.9. Nevertheless, the di�erences between the methods never exceed 5.3 percent and typically

oscillate around 2-3 percent. The likely reason for inferior predictive performance of SFIMX-F

and SFIMX-H is over�tting. Both con�gurations have signi�cantly more parameters to learn,

allowing better �t to training data (i.e., the known interaction outcomes), but potentially yielding

worse generalization performance (i.e., accuracy of predictions of the unknown

We demonstrate also that SFIMX goes hand in hand with reduced runtime of search. It should

be rather obvious that lower values of α lead to greater acceleration of search, positively in�uencing

the overall method's runtime. However, the actual gains depend on the cost of a single interaction

and the e�ciency of NMF. We may thus anticipate the greatest payo� in applications where

interaction function involves some form of time-costly simulation, e.g., of an engineering artifact

(like a controller) in some virtual environment. The empirical results shown in Table 12.3 largely

con�rm our expectations. For brevity, we present only the `odd' values of α. SFIMX-F0.1 takes on

average the least time to complete its runs, followed by con�gurations employing higher values of

α. The di�erence between SFIMX-F0.9 and GP reaches roughly 18 percent on average and stems

12.4. Experiment 171

Table 12.3: Runtimes (in seconds) of SFIMX-F (SX-Fα) on each benchmark and for each value
of α, averaged over 50 evolutionary runs. Algorithm runtimes (in seconds) for the coevolutionary
benchmarks, averaged over 50 evolutionary runs.

Problem sx-f0.1 sx-f0.3 sx-f0.5 sx-f0.7 sx-f0.9 gp

Cmp6 606.2 ±24.9 681.7 ±51.6 755.7 ±90.3 786.1 ±69.4 795.8 ±91.0 1663.1 ±119.7

Cmp8 1131.8 ±73.2 1219.2 ±51.7 1262.1 ±112.0 1309.7 ±62.1 1554.1 ±75.3 1636.2 ±207.1

Maj6 629.9 ±46.1 725.3 ±48.2 836.8 ±108.6 909.6 ±59.2 955.0 ±82.8 1035.4 ±205.4

Maj8 1249.3 ±115.3 1501.6 ±128.3 1557.6 ±91.1 1657.0 ±86.7 1709.8 ±75.3 2018.1 ±269.9

Mux6 652.1 ±70.6 767.1 ±88.5 807.9 ±49.1 910.3 ±68.3 1007.8 ±58.1 1100.1 ±208.3

Par5 213.7 ±8.3 454.7 ±95.2 750.1 ±58.8 881.7 ±74.7 956.8 ±53.4 1219.1 ±132.7

Dsc1 366.9 ±19.3 468.5 ±56.2 536.4 ±148.2 662.4 ±89.1 772.9 ±155.2 908.9 ±47.6

Dsc2 374.3 ±25.2 462.8 ±102.9 523.4 ±41.1 696.6 ±72.5 748.6 ±94.8 855.7 ±86.6

Dsc3 391.6 ±56.2 487.6 ±26.0 505.6 ±22.1 728.5 ±64.6 722.4 ±46.0 950.6 ±47.3

Dsc4 363.4 ±46.3 462.1 ±20.8 560.4 ±89.7 660.2 ±98.5 760.9 ±84.2 895.5 ±78.1

Dsc5 364.3 ±85.3 475.0 ±111.0 553.1 ±126.9 661.3 ±129.2 771.1 ±156.4 878.8 ±152.7

Mal1 264.0 ±71.9 391.2 ±61.8 591.7 ±71.1 613.1 ±96.7 705.2 ±70.2 817.0 ±69.6

Mal2 263.7 ±43.8 460.7 ±66.1 583.6 ±43.5 677.2 ±52.6 736.9 ±54.1 837.6 ±41.5

Mal3 218.3 ±48.9 408.4 ±53.2 550.6 ±38.3 599.2 ±38.1 721.2 ±37.7 827.0 ±26.4

Mal4 261.2 ±29.9 449.0 ±84.5 552.9 ±73.8 607.1 ±54.5 650.4 ±53.3 913.0 ±50.7

Mal5 262.2 ±41.6 372.0 ±34.9 491.6 ±73.2 665.7 ±20.1 702.3 ±29.3 877.6 ±76.3

most likely from bloated programs in GP that consume more time to evaluate. Overall, for αs in

the above-recommended interval [0.4, 0.6], SFIMX yields speedups of 34 percent on average.

These results corroborate our hypothesis that that the problem of predicting interaction out-

comes in test-based problems can be e�ectively and e�ciently addressed with NMF. By maintaining

success rate on par with GP and simultaneously searching the space of candidate solutions faster,

SFIMX appears to be a useful surrogate model to speed up the evaluation process.

12.4.3 Results for increased population size

The last section demonstrated that SFIMX manages to successfully reduce the number of program-

test interactions necessary for evaluation, thus sparing in each generation (1− α)mn interactions

and reducing run time. In the following, we investigate what can be gained by investing these

savings in an increased population size. To this end, we increase the baseline population size

m = 1000 by the factor of 1/α (this applies also to RSS). This implies that, for instance, for the

lowest α considered here, i.e., 0.1, we increase the population size 10 times. As a result, the overall

computational budget (as measured with the number of interactions, i.e., excluding the cost of

NMF) is the same for SFIMX and the baseline con�gurations in both settings, and amounts to

1,000n interactions per generation and thus 200,000n interactions per run.

Table 12.4 shows the success rates obtained by particular variants of methods on each bench-

mark, as a function of the fraction α of the performed interactions, and for three di�erent values

of r. The last column (RankG) contains the global rank of a given con�gurations, obtained by

averaging the ranks on individual benchmarks. The second-to-last column (RankL) presents the

ranks obtained by each method within the group of con�gurations that share the same value of

factorization rank r. The last row shows success rates obtained by ordinary GP, where �tness is

calculated from all tests.

To provide an aggregated perspective on the impact of factorization rank r on SFIMX perfor-

mance, we average the ranks of con�gurations that share the same value of factorization rank r,

leading to the following ranking:

SFIMX-F SFIMX-H SFIMX-L

14.10 16.44 18.41

172 Surrogate Fitness via Factorization of Interaction Matrix

Table 12.4: Success rate (×100) of best-of-run individuals, averaged over 30 evolutionary runs.
SFIMX con�gurations have population size increased by the factor of 1/α. Bold marks the best
result for each benchmark.

α Cmp6 Cmp8Maj6 Maj8 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5 RankL RankG
sfimx-f

0.9 56 3 66 0 100 6 10 6 46 0 3 76 50 90 16 76 7.34 21.29
0.8 63 0 83 0 100 16 6 0 60 0 20 76 66 93 33 100 6.16 17.44
0.7 73 16 73 0 100 0 10 10 43 0 10 70 66 93 20 90 6.34 19.15
0.6 66 3 86 3 100 6 3 6 70 0 10 76 86 96 70 90 5.38 14.85
0.5 70 13 73 6 100 0 13 0 80 0 13 93 70 96 50 100 5.03 13.59
0.4 66 10 73 0 100 6 16 6 86 0 30 100 90 96 53 100 4.38 11.41
0.3 73 10 80 0 100 0 43 56 86 0 26 86 90 100 60 100 3.88 11.24
0.2 90 10 83 0 100 0 23 13 93 6 50 100 86 100 73 100 3.09 8.53
0.1 93 3 73 0 100 0 33 70 90 6 23 90 96 100 76 100 3.41 9.44

sfimx-h

0.9 66 3 66 0 100 0 13 3 30 0 3 83 30 93 23 96 6.78 21.47
0.8 70 3 70 6 100 3 3 13 53 0 10 83 50 76 23 96 5.75 18.18
0.7 86 6 80 3 100 0 0 0 50 0 6 96 90 93 30 100 4.78 15.91
0.6 73 0 70 0 100 0 3 0 63 0 13 96 73 93 30 100 5.53 17.97
0.5 73 0 66 6 100 0 0 10 66 0 20 86 80 96 43 96 5.28 16.91
0.4 86 0 73 0 100 0 0 10 70 0 33 83 83 96 60 100 4.56 15.68
0.3 70 0 76 0 100 0 6 26 53 0 16 90 96 93 60 100 4.50 14.94
0.2 80 3 66 0 100 0 33 26 96 0 26 86 93 93 60 100 3.88 12.76
0.1 86 0 20 0 100 0 23 23 70 0 26 86 93 100 63 100 3.94 14.18

sfimx-l

0.9 56 3 60 0 100 3 0 0 53 0 16 90 26 86 13 96 5.97 21.74
0.8 43 6 86 0 100 3 3 6 26 0 6 86 43 73 3 96 6.00 21.26
0.7 66 6 56 3 100 3 0 3 46 0 3 90 50 80 23 96 5.62 19.88
0.6 66 6 56 0 100 0 0 10 66 0 13 90 40 83 16 86 5.88 21.32
0.5 76 13 80 6 100 3 6 10 70 0 16 90 73 83 33 100 3.28 12.38
0.4 93 13 80 0 100 0 3 16 63 6 26 83 80 93 60 100 3.19 12.44
0.3 93 10 83 0 100 3 10 10 86 0 33 90 93 86 50 96 3.00 11.91
0.2 76 3 73 0 100 0 3 16 56 0 20 63 63 80 40 100 4.97 18.06
0.1 6 0 0 0 100 0 0 0 6 0 0 70 70 76 20 100 7.09 26.68

rss

0.9 46 0 50 0 100 0 0 0 30 0 0 70 53 56 10 90 5.56 27.21
0.8 33 0 53 0 96 0 0 0 26 0 0 63 33 80 13 96 5.91 28.32
0.7 13 0 40 3 100 0 0 0 26 0 0 66 33 63 13 90 6.06 27.44
0.6 43 0 56 0 96 0 0 0 26 0 0 70 23 60 3 100 5.68 27.65
0.5 23 0 63 0 100 0 0 3 43 0 3 80 43 66 16 93 4.06 24.88
0.4 33 0 56 0 100 0 0 0 33 0 0 83 46 80 16 96 4.32 25.03
0.3 56 0 60 0 100 0 0 0 43 0 3 83 56 80 23 96 3.71 24.38
0.2 36 0 50 0 100 0 0 0 23 0 0 73 66 93 16 100 4.76 25.26
0.1 20 0 26 0 100 0 0 0 36 0 0 76 60 80 16 100 4.94 25.94

gp

54 2 54 0 98 2 0 0 44 0 12 88 0 68 0 88 26.26

The ranking suggests that higher values of r contributes positively to the overall performance of

the method. Possible explanation for such a behavior is that NMF employed by SFIMX is working

with more features, allowing it to build a more complex, and possibly more accurate model of

interaction outcomes in G.

The global ranking of con�gurations con�rms the above observation and reveals that the best

con�guration is SFIMX-F in combination with α = 0.2. It achieves the average rank of 8.53,

outperforming all control methods by a signi�cant margin. The next three places in the ranking

are also occupied by SFIMX-F, albeit working with α equal to 0.1, 0.3 and 0.4, respectively. The

gains in success rates for lower α are also present in the two remaining groups that share the same

value of r. SFIMX-H achieves the best results with α = 0.2, followed by α = 0.1 and α = 0.3.

12.4. Experiment 173

Table 12.5: Post-hoc analysis of Friedman's test conduced on ranks achieved by the best performing
con�gurations from Table 12.4. Signi�cant values (α = 0.05) are marked in bold.

sfimx-f0.2 sfimx-l0.3 sfimx-h0.2 gp rss0.3
sfimx-f0.2 0.866 0.808 0.000 0.000
sfimx-l0.3 1.000 0.003 0.007
sfimx-h0.2 0.005 0.011

gp
rss0.3 0.999

SFIMX-L, on the other hand, performs best for α ranging between 0.3 and 0.5. For the values of

α lower than 0.3, its performance however deteriorates, to the point that for α = 0.1 it is the only

SFIMX con�guration that ranks behind GP and a few RSS setups. Nevertheless, SFIMX-L still

delivers decent performance and for its preferred setting α = 0.3 it surpasses GP, RSS and SFIMX-

H on most benchmarks, taking 5th place in the global ranking. We �nd this result remarkable

given that SFIMX-L uses roughly an order of magnitude fewer weights (in W) and features (in H)

than SFIMX-F and SFIMX-H. This corroborates our hypothesis that the interaction outcomes in

G are signi�cantly correlated and lend themselves to high compression without a�ecting the overall

performance of the method. Good performance of SFIMX-L is particularly appealing, as low r

implies low computational overhead of factorization: for SFIMX-L, it amounts only to roughly 6

percent of the total cost of calculating the 1, 000|T | program-test interactions.

The success rates of SFIMX for individual benchmarks are always the best among the considered

methods � see the values marked in bold in Table 12.4. For SFIMX-F, the SFIMX variant that

overall fares the best, there is at least one setting of α that makes SFIMX succeed systematically

on three problems (Mux6, Mal1, and Mal5), i.e., in every run (success rate 100). In that respect,

it is not equaled by any control method.

SFIMX performs also well in qualitative terms. It manages to produce solutions for all prob-

lems, while GP never solves Maj8, Dsc1, Dsc2, Dsc4, Mal2 and Mal4, and RSS never solves Cmp8,

Par5, Dsc1 and Dsc4, and hardly ever solves Maj8, Dsc2 and Dsc5. On those hard problems,

SFIMX is in most cases remarkably resistant to the setting of α: for Cmp8 and Dsc1, it succeeds

for most values of α in the range [0.1, 0.9], and for Dsc5 for α ∈ [0.1, 1.0]. The only exceptions are

Maj8 and Dsc4 where it manages to solve the problem only for some α, and no more than twice

in 30 runs.

To statistically evaluate these results, we employed the Friedman's test for multiple achieve-

ments of multiple subjects, for all con�gurations presented in the table (i.e., in relation to global

average ranks in the rightmost column in Table 12.4). The obtained p-value is 4.36 × 10−9,

which strongly indicates that at least one method performs signi�cantly di�erent from the remain-

ing ones. We conducted the post-hoc analysis using symmetry test [135], which revealed that

SFIMX-F con�gurations employing α ∈ [0.1, 0.4] are signi�cantly better than GP and all RSS con-

�gurations. Notably, similar observation holds also for SFIMX-H with α = 0.2 and for SFIMX-L

with α ∈ [0.3, 0.5]. The di�erences are insigni�cant within the groups that share the same α and

between the corresponding SFIMX con�gurations for di�erent values of r.

For additional insight, we also rank and apply the Friedman's test to the best performing

con�gurations in each group

SFIMX-F0.2 SFIMX-L0.3 SFIMX-H0.2 RSS0.3 GP

1.875 2.375 2.438 4.094 4.219

174 Surrogate Fitness via Factorization of Interaction Matrix

Table 12.6: Success rate (×100) of best-of-run individuals, averaged over 30 evolutionary runs.
SFIMX con�gurations have their runtime (number of generations) increased by the factor of 1/α.
Bold marks the best result for each benchmark.

α Cmp6 Cmp8Maj6 Maj8 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5 RankL RankG
SFIMX-F

0.9 53 6 73 0 100 6 0 10 30 0 13 76 26 83 6 90 6.25 19.62
0.8 70 16 56 0 100 6 3 6 43 0 0 60 60 96 36 96 5.41 16.44
0.7 66 10 66 6 100 6 0 3 36 0 10 66 46 76 20 93 6.16 17.38
0.6 70 20 76 6 100 0 0 0 43 0 6 66 56 93 50 93 5.38 16.47
0.5 76 3 60 0 100 0 0 23 50 0 10 76 50 76 30 76 6.09 19.31
0.4 73 3 70 10 100 6 3 30 53 0 0 80 46 96 43 86 4.59 13.94
0.3 56 13 53 0 96 0 13 10 73 0 16 83 63 100 56 96 4.62 13.91
0.2 83 30 66 0 100 3 20 26 83 0 20 70 76 100 60 93 3.19 9.38
0.1 86 26 100 0 100 0 10 13 96 0 16 86 90 93 30 100 3.31 9.31

SFIMX-H
0.9 50 3 66 0 100 3 0 0 40 0 6 60 26 90 10 96 6.66 21.72
0.8 63 6 66 0 100 13 0 6 53 0 10 70 40 63 20 96 5.72 17.81
0.7 60 3 63 0 100 10 0 16 53 0 6 63 63 90 56 86 6.00 17.38
0.6 63 33 83 0 100 3 0 3 70 0 16 76 100 100 46 96 3.84 11.66
0.5 83 6 63 0 100 0 6 23 70 0 6 80 73 86 43 96 4.78 13.78
0.4 76 6 80 3 100 3 6 26 56 0 20 56 70 80 60 96 4.19 12.03
0.3 50 10 66 0 100 0 3 10 66 0 3 70 63 86 40 86 6.03 17.97
0.2 83 13 50 0 100 0 13 23 73 0 0 60 76 96 60 96 4.41 14.34
0.1 86 10 70 0 100 0 10 26 73 0 16 70 76 100 66 90 3.38 11.38

SFIMX-L
0.9 50 0 53 3 100 3 0 0 40 0 6 66 43 86 0 73 6.59 23.53
0.8 43 0 56 3 100 3 0 0 43 0 3 90 30 56 0 86 6.56 23.59
0.7 56 3 73 0 100 6 0 3 66 0 6 73 36 86 6 90 5.31 19.09
0.6 76 30 66 6 100 0 0 3 66 0 36 80 63 80 20 96 4.28 14.00
0.5 60 36 73 0 100 0 3 3 60 0 16 83 83 86 10 90 4.41 15.06
0.4 76 6 80 10 100 10 3 10 73 0 3 70 60 93 33 96 3.41 11.84
0.3 86 33 86 3 100 3 3 10 76 0 20 70 76 96 53 93 2.75 9.06
0.2 83 23 73 16 100 0 6 20 66 0 6 50 50 73 23 80 4.47 16.19
0.1 0 16 0 0 100 0 0 0 20 0 0 56 30 86 16 76 7.22 26.84

RSS
0.9 30 0 26 0 96 0 0 0 33 0 0 70 30 73 6 86 5.34 28.53
0.8 56 0 30 0 100 0 0 0 6 0 0 80 36 66 6 73 5.16 26.88
0.7 30 0 36 0 93 0 0 0 20 0 0 63 36 63 13 83 5.47 29.16
0.6 46 0 33 0 100 0 0 0 30 0 0 70 33 53 3 83 5.25 27.84
0.5 46 0 30 0 93 0 0 0 23 0 0 80 33 60 6 100 5.16 26.59
0.4 46 0 26 0 93 0 0 0 23 0 0 56 30 66 13 80 5.88 29.78
0.3 50 0 50 0 93 0 0 0 16 0 0 60 20 73 16 90 5.06 28.38
0.2 63 3 56 0 100 0 0 0 13 0 0 60 43 86 10 93 3.88 24.09
0.1 36 6 53 0 100 0 0 0 26 0 0 43 43 90 16 93 3.81 24.47

GP
54 2 54 0 98 2 0 0 44 0 12 88 0 68 0 88 24.25

Table 12.5 presents the p-values for the hypothesis that a setup in a row is better than a setup

in a column (the signi�cant p-values are marked in bold). This comparison con�rms the observa-

tions made earlier that the performance improvement of SFIMX con�gurations relative to control

methods GP and RSS is signi�cant.

12.4.4 Results for increased runtime

Increasing population size by the factor of 1/α is one viable method of spending the evaluation

cycles spared thanks to SFIMX. The other interesting possibility, which we experimentally validate

in the following, is to let SFIMX runs last longer with the same population size. Non-SFIMX

methods are thus allowed to perform up to 200 generations of search, while SFIMX increases this

12.4. Experiment 175

Table 12.7: Post-hoc analysis of Friedman's test conduced on ranks achieved by the best performing
con�gurations from Table 12.6. Signi�cant values (α = 0.05) are marked in bold.

sfimx-l0.3 sfimx-f0.1 sfimx-h0.1 rss0.3 gp

sfimx-l0.3 1.000 0.891 0.000 0.003
sfimx-f0.1 0.949 0.000 0.006
sfimx-h0.1 0.004 0.056

rss0.3
gp 0.913

number accordingly (i.e., 1/α times), up to 2000 generations for α = 0.1. Let us again emphasize

that, as a result of this action, the computational budget, measured as the number of performed

interactions, is the same for SFIMX and control methods.

Table 12.6 reports the success rates resulting from 30 runs of each con�guration on every

benchmark. The table is formatted in the same manner as in the previous experiment. The results

are largely consistent with those obtained for an increased population size (cf. Table 12.4). We

observe close-to-systematic improvement in success rates for low values of α. This trend holds

for all benchmark problems and regardless of the factorization rank r. The average ranks of

con�gurations sharing the same value of r are as follows:

SFIMX-F SFIMX-H SFIMX-L

15.08 15.34 17.69

which suggests that SFIMX-F tends to achieve the highest success rates, though the di�erences

are less prominent than in the previous section.

The global ranking of con�gurations, shown in the last column of Table 12.6, reveals that

the overall best result is achieved by SFIMX-L0.3 with the rank of 9.06. We �nd this result

particularly interesting, given that SFIMX-L is also the most computationally e�cient variant

of SFIMX. Notably, the very same con�guration performed the best in the SFIMX-L group in

combination with an increased population size (cf. Table 12.4), which suggests that α = 0.3 is

the optimal choice for SFIMX-L. The subsequent places in the ranking are taken by SFIMX-F0.1,

SFIMX-F0.2 and SFIMX-H0.1 with the ranks 9.31, 9.38 and 9.38, respectively. The best results are

thus consistently obtained for α ∈ [0.1, 0.3], though there appears to be more variation in ranks for

higher α, and between the di�erent settings of r. All SFIMX con�gurations except for SFIMX-L0.1

rank before any control con�guration, which only strengthens our claim that the computational

budget spared by SFIMX can be invested elsewhere to boost its search performance. GP and

RSS occupy the last few places in the ranking, achieving the lowest success rates of all compared

methods. Compared to the variant with increased population size, RSS performs slightly worse,

surpassing GP only when α = 0.2.

In terms of statistical signi�cance, we perform Friedman test in relation to global average rank

in Table 12.6. The test is conclusive (p-value is 1.42× 10−6). Post-hoc analysis shows that indeed

the top-ranking con�gurations (SFIMX-L0.3, SFIMX-F0.1, SFIMX-F0.2) are signi�cantly better

than GP and all RSS con�gurations.

For an additional insight, we also rank and apply the Friedman's test to the best performing

con�guration in each group, which leads to the following ranking:

SFIMX-L0.3 SFIMX-F0.1 SFIMX-H0.1 RSS0.3 GP

2.062 2.156 2.531 4.219 4.344

Table 12.7 presents the p-values for the hypothesis that a setup in a row is better than a setup in

a column (the signi�cant p-values are marked in bold). This comparison con�rms the observations

176 Surrogate Fitness via Factorization of Interaction Matrix

made earlier that the performance improvement of the best SFIMX con�gurations relative to

control methods GP and RSS is signi�cant.

By juxtaposing the success rates in Table 12.6 with those in Table 12.4, we arrive at the con-

clusion that it pays-o� more to invest the spare computational budget in large populations rather

than letting candidate solutions evolve longer. Though the di�erences between the corresponding

con�gurations in both tables are not statistically signi�cant, the trend is clearly in favor of the

former.

12.5 Adaptive test selection in SFIMX

In this section, we consider alternative means of drawing the tests to interact with in line 3 of

Algorithm 8. Our aim is to improve SFIMX's performance by replacing the uniform probability

distribution that is used there and changing it adaptively as a run progresses. The motivation is

that the outcomes of interactions with certain tests are likely to be more di�cult to predict than

others. Should that be true, then it might be particularly bene�cial to compute these interactions

rather than use SFIMX to estimate them from the remaining elements of G. And conversely: if

there are grounds to claim that, for some candidate solutions and tests, the outcomes of their

interactions are easy to predict, then it may be worth not to perform them and let them be

estimated by the NMF.

12.5.1 Methods

Recall from Section 7.2 that test di�culty meant as the probability of t being passed can be

estimated based on the historical interaction outcomes, gathered for instance throughout an evo-

lutionary run. This is the key idea behind the extensions of SFIMX we describe in the following:

the interaction matrix is inspected in each generation, certain statistics are updated and used to

parameterize the probability distribution employed by the Sample function in line 3 of Algorithm

8. Crucially, only the actual (computed) interactions from the historical Gs are used for this pur-

pose � the estimated ones in Ĝs are ignored. Therefore, the prediction of test di�culty is based

on the interaction outcomes that were computed in the past, so no extra interactions are required.

By inspecting the interaction matrix in every generation, the methods adapt the probability dis-

tribution to the current state of population, shifting sample's attention towards the tests that

were the most challenging in the recent generations.

We propose three methods of controlling Sample. The �rst one, dubbed DIFF, is based on

test di�culty p(t), which we de�ne as the number of candidate solutions that did not pass test t

up to the current point of evolutionary run (i.e., up to the previous generation). This indicator is

updated in each generation based on the current population S, where the initial population starts

with a vector p initially zeroed for every test in T :

p(t)← p(t) + |s ∈ S : g(s, t) = 1|. (12.5.1)

In evaluation with SFIMX, p is L1-normalized (i.e., divided by
∑
t p(t)) and used as the probability

distribution by Sample. As a consequence, the more di�cult tests have a higher chance of being

included in T ′. We expect this probability distribution to improve the estimation of interaction

outcomes, as the outcomes of interactions with easier tests should be in principle also easier to

predict. More di�cult tests, on the other hand, are typically characterized by greater variability

in the interaction outcomes, thus we expect SFIMX to commit greater errors in their estimation.

12.5. Adaptive test selection in SFIMX 177

In the second variant, DIST, we employ the concept of distinctions (Eq. 9.4.1), borrowed from

competitive coevolution [86]. By analogy to p above, we use the current population S to update

the total number of distinctions q(t) made so far by t in the following way:

q(t)← q(t) + |{(s1, s2) ∈ S × S : g(s1, t) 6= g(s2, t)}|, (12.5.2)

where q is initially all-zeroes. Large values of q indicate the tests that inform the search algorithm

about the di�erences between candidate solutions, rather than about their absolute performance.

As in DIFF, q is normalized and used by Sample. Interestingly, there seems to be a link between

the concept of distinctions and the concept of error variance used in works that combine GP with

coevolution [317].

While the above two methods use ad-hoc measures of tests di�culty to infer which interaction

outcomes are more di�cult to predict, there exists a more direct alternative: measuring the di�-

culty of prediction using the di�erence between the known elements of G and the corresponding

estimated elements of Ĝ. The resulting method, referred to as ERR in the following, accumulates

those errors e(t) throughout the run similarly to DIST and DIFF:

e(t)← e(t) +
∑

s∈S
|g(s, t)− ĝ(s, t)|, (12.5.3)

where e is then normalized and used in Sample. In contrast to p (Eq. 12.5.1) and q (Eq. 12.5.2)

that depend solely on the performance of candidate solutions, e depends also on the quality of

factorization conducted by the NMF, and so re�ects the inherent estimation di�culty (which

depends, among others, on the factorization rank r).

Let us emphasize that, even though the probability distributions de�ned above replace the

uniform distribution used in the basic SFIMX, drawing of the tests to conduct interactions with is

still performed independently for each candidate solution (and with replacement between individual

candidates). It is thus possible (though unlikely for the common proportions of population size and

number of tests) for some tests to be absent from T ′ (randomly drawn subset of tests in SFIMX,

T ′ ⊂ T) in a given generation. Also, let us reiterate that all these methods accumulate only the

outcomes of the interactions that have been actually performed in the past, so that the quantities

aggregated by the above formulas are not biased (at least directly) by the errors committed by

NMF when estimating the unknown interaction outcomes.

12.5.2 Experimental setup

In the following experiment, we are interested in verifying whether the extensions DIFF, DIST, and

ERR improve the performance of a regular SFIMX. For this reason, we consider as the baselines

the con�gurations introduced in Section 12.4.1:

• SFIMX-F that uses the highest factorization rank r = min(m,n),

• SFIMX-H with r = n/2, and

• SFIMX-L that uses the smallest rank r = dlog2 ne.
See Section 12.4.1 for more details regarding the above methods. Spare evaluation cycles are

invested in larger population size (cf. Section 12.4.3). We limit our attention to α ∈ {0.1, 0.2, 0.3},
as these proved most e�ective for the original SFIMX. We follow the experimental settings and

benchmark problems used in Section 12.4.

178 Surrogate Fitness via Factorization of Interaction Matrix

Table 12.8: Success rate (×100) of best-of-run individuals, averaged over 30 evolutionary runs.
The second-to-last column (RankL) presents the ranks within the groups of con�gurations sharing
r. The last column contains the global rank (RankG) of a given con�guration.

α Cmp6 Cmp8Maj6 Maj8 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5 RankL RankG
sfimx-f

0.1 93 3 73 0 100 0 33 70 90 6 23 90 96 100 76 100 7.50 16.34
0.2 90 10 83 0 100 0 23 13 93 6 50 100 86 100 73 100 7.56 16.78
0.3 73 10 80 0 100 0 43 56 86 0 26 86 90 100 60 100 8.62 19.19

diff

0.1 100 96 96 0 100 0 56 90 100 13 50 100 100 100 83 100 3.94 8.22
0.2 100 96 100 0 100 0 56 83 100 30 56 100 93 100 83 100 3.94 8.16
0.3 100 76 100 0 100 3 60 86 100 10 76 93 100 100 80 100 3.59 7.16

dist

0.1 100 23 100 0 100 0 36 60 100 6 30 100 93 100 70 100 5.62 11.66
0.2 100 36 100 0 100 0 30 43 86 0 43 93 93 100 60 96 7.22 15.41
0.3 80 16 90 0 100 3 16 6 93 0 10 80 90 100 40 100 8.81 20.62

errs

0.1 96 23 93 0 100 0 53 66 100 3 53 90 93 100 83 100 5.62 11.69
0.2 93 10 100 0 100 0 36 36 93 0 46 90 100 100 56 100 7.16 15.41
0.3 93 13 90 0 100 3 20 40 96 0 43 86 66 93 46 100 8.41 18.50

sfimx-h

0.1 86 0 20 0 100 0 23 23 70 0 26 86 93 100 63 100 7.69 21.06
0.2 80 3 66 0 100 0 33 26 96 0 26 86 93 93 60 100 7.31 20.38
0.3 70 0 76 0 100 0 6 26 53 0 16 90 96 93 60 100 8.19 22.66

diff

0.1 100 80 83 0 100 0 36 70 96 3 43 86 96 100 80 100 3.84 12.25
0.2 100 83 100 0 100 0 46 56 100 0 50 86 86 100 73 100 4.16 12.59
0.3 100 80 100 0 100 0 63 60 100 10 60 93 100 96 66 100 3.31 9.91

dist

0.1 96 26 86 0 100 0 26 36 93 0 26 86 90 96 46 100 6.44 18.44
0.2 96 13 100 0 100 0 23 16 90 0 33 70 76 100 40 100 7.22 19.62
0.3 93 23 96 0 100 0 6 26 96 0 40 70 66 90 16 100 7.78 21.53

errs

0.1 90 0 63 0 100 0 30 26 96 3 26 80 90 96 73 96 7.31 20.72
0.2 96 20 80 0 100 0 13 40 73 0 30 76 86 96 40 100 7.38 21.16
0.3 80 6 80 0 100 0 3 30 83 0 30 80 76 100 73 100 7.38 21.41

sfimx-l

0.1 6 0 0 0 100 0 0 0 6 0 0 70 70 76 20 100 9.12 29.38
0.2 76 3 73 0 100 0 3 16 56 0 20 63 63 80 40 100 7.34 26.81
0.3 93 10 83 0 100 3 10 10 86 0 33 90 93 86 50 96 5.62 21.09

diff

0.1 40 86 3 0 100 0 0 0 30 0 0 83 86 90 53 100 6.69 24.78
0.2 100 90 100 0 100 0 36 40 100 13 63 63 80 86 43 100 3.88 14.69
0.3 100 56 100 0 100 0 20 76 100 10 66 100 100 100 80 100 2.72 9.44

dist

0.1 20 23 0 0 100 0 0 0 13 0 0 60 46 86 23 93 9.31 29.75
0.2 96 43 100 0 100 0 13 16 90 0 23 53 53 63 30 100 6.47 22.78
0.3 90 20 93 0 100 0 16 6 93 0 13 76 76 96 40 100 5.91 22.56

errs

0.1 20 23 0 0 100 0 0 6 16 0 0 60 70 90 33 100 8.00 27.44
0.2 93 16 96 0 100 0 0 3 93 0 23 53 53 76 46 93 7.66 25.69
0.3 93 23 96 0 100 3 13 13 83 0 30 70 50 93 60 100 5.28 20.75

12.5.3 Success rates

Table 12.8 reports the success rates obtained by particular con�gurations on each benchmark,

grouped by the value of the factorization rank r, starting from SFIMX-F in the upper part of the

table, SFIMX-H in the middle, and SFIMX-L at the bottom. In each group, we show the results

obtained by the three proposed SFIMX extensions and the baseline SFIMX for α ∈ {0.1, 0.2, 0.3}.
The second-to-last column presents the ranks obtained by each con�guration within the group.

12.5. Adaptive test selection in SFIMX 179

Table 12.9: Post-hoc analysis of Friedman's test conduced on ranks achieved by the SFIMX-F
con�gurations from the upper part of Table 12.4. Signi�cant values (α = 0.05) are marked in bold.

α = 0.3
sfimx-f diff-f dist-f errs-f

sfimx-f 0.999
diff-f 0.001 0.000 0.004
dist-f
errs-f 0.963 0.917

We �rst analyze the behavior of the proposed extensions in groups of con�gurations that

share the same value of r. By comparing the extended SFIMX variants with the corresponding

baseline SFIMX-F con�gurations, we observe close to systematic improvement in success rates in

the methods that employ DIFF. This observation holds regardless of α, albeit the di�erences are

particularly prominent for α = 0.3 (the average rank 3.59 vs. 8.62). It is encouraging the see large

improvements in success rates even for the hardest problems in our benchmark suite, including

Cmp8, Par5, Dsc1, Dsc4 and Dsc5. The two remaining extensions, DIST and ERRS, also tend to

rank before their corresponding baseline SFIMX-F con�gurations, the only exception being DIST

for α = 0.3 (the average rank 8.81 vs. 8.62). The di�erences are however not as evident as in the

case of DIFF. For instance, when α = 0.2 the average ranks of DIST and ERRS are 7.22 and 7.16,

respectively, which is only a minor improvement over the baseline con�guration with the rank of

7.56. Of these two extensions, it is rather di�cult to clearly indicate which leads to better results;

for α = 0.1 they even obtain the same rank of 5.62.

To investigate the statistical signi�cance, we conduct Friedman's test for multiple achievements

of multiple subjects [159]. We repeat the test three times for di�erent values of α, each time

obtaining the p-value that is � 0.001, which strongly indicates that at least one method performs

signi�cantly di�erent from the remaining ones. The post-hoc analysis using the symmetry test [135]

(also conducted thrice) indicates that the improvement of DIFF relative to the regular SFIMX-F

across all values of α is indeed signi�cant. For α = 0.2 and α = 0.3, DIFF is also signi�cantly

better than DIST and ERRS. For brevity, in Table 12.9 we show only the outcomes for α = 0.3.

Similar observations can be made for SFIMX-H and SFIMX-L. When DIFF is used, the im-

provements are unquestionable. The con�gurations that combine SFIMX with DIFF achieve top

ranks, and we observe systematically higher success rates for all considered values of α. In terms

of statistical signi�cance, Friedman test performed independently in each group and for each α

is conclusive (p � 0.001). Post-hoc analysis, omitted here for brevity, consistently shows that

DIFF's rank is signi�cantly better than SFIMX's and than the two alternative extensions (DIST

and ERRS).

For a more detailed insight, we also rank all 36 con�gurations on each benchmark and present

the averaged ranks in the last-but-one column of Table 12.8. The best overall average rank of

7.16 is achieved by DIFF-F0.3. The �rst non-DIFF methods in the ranking are DIST-F0.1 and

ERR-F0.1, occupying 6th (rank 11.66) and 7th place (rank 11.69) in the ranking, respectively. The

�rst baseline con�guration in the ranking is SFIMX-F0.1 with the 13th place and the rank of 16.34.

The ranking reveals also that the methods employing the DIST sampling typically rank better than

ERR, which may suggest that in certain cases distinctions are more useful than the errors from

factorization for shaping the probability distribution of test drawing. We are particularly pleased

to see that con�gurations based on SFIMX-L behave so well (e.g. DIFF-F0.3 with the 5th place and

the rank of 9.44), regardless of the choice of parameters. By using the smallest factorization rank

r = dlog2 ne, they are on average computationally cheaper than the other methods (cf. Table 12.3).

180 Surrogate Fitness via Factorization of Interaction Matrix

Table 12.10: Post-hoc analysis of Friedman's test for DIFF. The p-value 1.54 × 10−9. Signi�cant
values (0.05) are in bold.

sfimx α = 0.3
diff-f sfimx-f diff-h sfimx-h diff-l sfimx-l

diff-f 0.002 0.941 0.000 0.981 0.000
sfimx-f 0.908 0.998
diff-h 0.040 0.001 0.010

sfimx-h
diff-l 0.021 1.000 0.000 0.005

sfimx-l 0.991

This advantage is crucial for larger problems that involve more tests and yield larger interaction

matrices.

Figure 12.1 shows the average best-of-generation �tness graphs for particular methods and

benchmark problems, with 95% con�dence intervals marked as semi-transparent bands. We present

only the best performing con�gurations, i.e those that used α = 0.3 and DIFF extension. By com-

paring the extended SFIMX variants with the corresponding baseline con�gurations (marked by

the same color on the graph), we observe improvements in learning speed and best-of-generation

�tness in the methods that employ DIFF. For certain problems, including Cmp8, Dsc4, Dsc5, the

di�erences between the methods are particularly prominent, showing clear superiority of DIFF

to the original SFIMX. The best performance is achieved either by DIFF-F or DIFF-L, depend-

ing on the problem. DIFF-H performs slightly worse or falls in between the already mentioned

con�gurations, but most importantly, it still achieves lower �tness than any baseline setup.

To provide an aggregated perspective on the performance of the DIFF extension against the

other methods, we employ the Friedman's test again. Post-hoc analysis using symmetry test

[135] is shown Table 12.10. We report the results only for α = 0.3 that consistently leads to

the highest success rates (cf. Table 12.8). The comparison indicates that the improvement of

DIFF relative to the regular SFIMX across all con�gurations is indeed signi�cant. In particular,

DIFF-F is signi�cantly better than SFIMX-F, SFIMX-H and SFIMX-L. Similar observations can

be made for DIFF-H and DIFF-L, which outperform their counterparts. For other values of α (0.1

and 0.2), DIFF still delivers statistically signi�cant improvements and surpasses SFIMX on most

benchmarks (cf. Table 12.8).

12.5.4 Visualization of measures of test di�culty

In order to gain a deeper insight into the di�erences between DIFF, DIST and ERR, in Fig. 12.2 we

plot the changes of the normalized di�culty of all 32 tests in the Par5 problem, one of the harder

benchmarks in our suite, for the �rst 100 generations. To create the graphs, we �rst computed

the test di�culty according to Eqs. 12.5.1-12.5.3 (Section 12.5.1). Then, the resulting 32-element

vectors were averaged across 50 runs to form the mean test di�culty. Finally, the resulting 32×100

matrix was normalized and presented as a heatmap, with brighter colors corresponding to harder

tests.

Judging from the graphs in Fig. 12.2, DIFF starts to di�erentiate tests' di�culty from the early

stages of evolutionary runs and manages to maintain that di�erentiation with time. As evolution

proceeds, the brighter stripes fade away, some faster than others, as candidate solutions in the

population adapt and solve the more di�cult tests. DIST behaves similarly, however the di�erences

in the di�culty measure seem to be more subtle and, judging from somewhat lower performance of

this variant, insu�cient to shape the probability distribution in a way that would make a signi�cant

12.5. Adaptive test selection in SFIMX 181

0 50 100 150 200
0

2

4

6

8

A
v
g
.

b
e
st

fi
tn

e
ss

Cmp6

0 50 100 150 200
0

10

20

30

40 Cmp8

0 50 100 150 200
0

2

4

6

8
Maj6

0 50 100 150 200
0

5

10

15

A
v
g
.

b
e
st

fi
tn

e
ss

Mux6

0 50 100 150 200
0

5

10

Par5

0 50 100 150 200
0

2

4

6

Dsc1

0 50 100 150 200
0

2

4

6

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc2

0 50 100 150 200
0

2

4

6
Dsc3

0 50 100 150 200
0

2

4

6

8
Dsc4

0 50 100 150 200
0

2

4

6

A
v
g
.

b
e
st

fi
tn

e
ss

Dsc5

0 50 100 150 200
0

2

4
Mal1

0 50 100 150 200
0

1

2

3

Mal2

0 50 100 150 200
0

2

4

Generations

A
v
g
.

b
e
st

fi
tn

e
ss

Mal3

0 50 100 150 200
0

1

2

3

4

Generations

Mal4

0 50 100 150 200
0

1

2

3

Generations

Mal5

diff-f sfimx-f
diff-h sfimx-h
diff-l sfimx-l

1
Figure 12.1: Average and .95-con�dence interval of the best-of-generation �tness for DIFF and the
baseline SFIMX con�gurations when α = 0.3.

182 Surrogate Fitness via Factorization of Interaction Matrix

10
0

75
50

25
0

G
en

er
at

io
n

Diff

Tests

Dist Err

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12.2: Normalized di�culty of 32 tests in Par5 problem during the �rst 100 generations as
indicated by the three methods: DIFF, DIST and ERR. The brighter the color, the more di�cult
the test.

Table 12.11: Mean absolute error (×100) when reconstructing G in SFIMX, averaged over 30
evolutionary runs. Green cells indicate con�gurations with lower error than the regular SFIMX.

Method Cmp6 Cmp8 Maj6 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5
sfimx

F 11.83 9.75 12.73 14.21 19.93 11.39 16.45 17.14 9.77 16.66 26.72 26.05 26.21 26.03 28.52
H 13.31 10.76 14.13 16.28 22.09 12.23 16.75 18.13 10.48 16.44 30.66 29.49 27.34 28.36 32.69
L 13.53 13.01 14.63 17.47 21.31 9.80 14.23 17.43 8.69 13.66 28.74 25.97 24.80 24.76 31.61

diff

Full 11.66 9.50 12.53 14.20 20.17 10.74 15.10 15.92 10.35 14.84 26.62 24.95 24.18 23.07 29.32
Half 12.96 10.47 14.05 15.60 21.57 12.41 16.73 17.39 10.36 14.45 29.95 27.49 26.10 25.69 33.49
Log 13.40 12.83 14.38 16.80 20.50 9.22 13.96 15.80 8.90 12.82 27.88 24.71 24.81 23.23 30.66
dist

F 11.66 9.61 12.82 14.52 20.38 12.06 16.13 16.55 10.09 15.00 27.25 25.94 25.01 24.31 29.96
H 13.19 10.57 14.16 16.04 21.64 11.33 16.84 17.89 11.33 16.30 30.80 29.76 26.75 27.71 32.76
L 13.49 12.92 14.34 17.03 21.20 10.19 15.98 16.81 8.53 15.64 29.85 26.20 24.90 24.12 31.69
err

F 11.79 9.47 12.31 14.33 21.51 19.25 19.15 17.93 15.30 21.86 28.14 28.44 26.35 26.35 30.24
H 13.22 10.42 14.12 16.24 23.45 20.87 20.87 19.83 13.50 23.66 32.39 32.15 29.01 30.25 34.61
L 14.07 12.82 14.84 17.62 23.58 14.42 19.42 18.47 10.65 19.40 31.52 31.04 27.02 29.30 33.67

impact on the success rate. ERR is characterized by the most uniform distribution of all three

methods. Apparently, NMF's estimation error turns out to be roughly uniformly distributed

across all tests. All in all, the visualization provided in Fig. 12.2 con�rms that neither DIST nor

ERR discern the tests well enough to guide search more e�ectively than the corresponding SFIMX

baselines, and this is most likely the reason why they are unable to enhance SFIMX's performance.

Finally, we verify whether the methods improve the predictive capabilities of SFIMX. In Ta-

ble 12.11 we present the mean absolute estimation error calculated as
∑
i |Gi−Ĝi|, where i iterates

over generations of a run (i ∈ [1, 200]), for the same Par5 problem. To calculate this error, we

compute, alongside with the estimated interaction matrix Ĝ, also the complete interaction matrix

G, even though the latter is never used by �tness. Green color indicates that an extended con�g-

uration achieves lower error than its SFIMX counterpart. DIFF and DIST tend to systematically

decrease the error on most of problems, however the reduction typically does not exceed 12%.

ERR performs noticeably worse, managing to improve the error on just a handful of problems.

By juxtaposing these results with the success rates from Table 12.8, we may conclude that the

performance improvement of DIFF originates, at least to some extent, from the more accurate

predictions.

12.5.5 Summary

The SFIMX extensions proposed in this section corroborate our claims that tests not only vary

in di�culty, but also that this variability can be exploited to make search more e�ective. We

12.6. Automatic tunning of α in SFIMX 183

used this property of test-based problems to shape the probability with which the tests are being

drawn for interactions. That proved overall bene�cial, without incurring signi�cant computational

overheads. The best variant, DIFF, proved signi�cantly better than its counterpart, regardless of

the choice of parameters. Though the boost in success rate o�ered by DIST and ERR with respect

to SFIMX is rather minor, the trend is clear.

It is not unlikely that further improvements could be achieved with introduction of additional

mechanisms. For instance, all methods considered here base their estimates on the entire history

of evolutionary run, i.e. on the interaction outcomes for candidate solutions from the most recent

generations, as well as of the not so well-performing candidates from the initial generations. One

may argue that some form of aging applied to the estimates (e.g., exponential smoothing) may

make them more up-to-date, better tuned to the capabilities of the candidate solutions in the

current population, and thus more bene�cial for success rate.

A natural follow-up of the experiments performed here could be engagement of DIFF, DIST,

ERR, and techniques alike to other methods that derive search objectives form interaction ma-

trices. DOF is the obvious candidate here as it employs NMF to obtain a multi-dimensional

characterization of candidate solutions that could directly bene�t from such an enhancement (cf.

Section 10.2).

12.6 Automatic tunning of α in SFIMX

The most important parameter of SFIMX is α that controls the number of interactions to be

computed. In essence, it trades-o� evaluation precision for computational performance. By setting

α to a low value, we may expect signi�cant speed-up in terms of learning speed, however at the

expense of more noisy �tness. It thus makes more sense to use low α early on to maximize its

potential. Conversely, high values of α imply more accurate evaluation and may be argued to be

particularly useful towards the end of evolution, when precise evaluation is required to di�erentiate

candidate solutions and make further progress. Clearly, both arguments are feasible, which was

in part con�rmed by the overall observation made in the experiments in this chapter, i.e. that

α ∈ [0.4, 0.61] typically leads to best performance of SFIMX (cf. Table 12.1). Therefore, rather

than committing to a single value of α, it may be more bene�cial to automatically adjust it to

the transient characteristics of search process. By increasing α online, we hope to improve the

evaluation accuracy and provide the search process with better guidance.

12.6.1 ADASFIMX

In this section, we propose an extensions of SFIMX dubbed ADASFIMX that automatically adapts

α based on the current learning performance. The method is shown in Algorithm 9. The basic

idea to start with low α and gradually increase it as the search performance starts to deteriorate.

To this end, we determine the rate at which α grows by exploration step γ ∈ (0, 1) and discretize

α into 1/γ levels and start with level = 1 (corresponding to α = γ). In line 7 of Algorithm 9,

we compute α based on the current level and γ. The adaptation mechanism is inspired by the

algorithms designed for multi-armed bandit problems [11]: with probability 1 − ε, we use the

current level of α, and with probability ε, we perform exploration on the next level (i.e., with

greater α; lines 5-6 of Algorithm 9). Once the level is chosen, we proceed as in regular SFIMX,

computing �tness from estimated interaction matrix Ĝ as in (12.2.1).

For the current and the next level, we track the change in learning speed de�ned as:

learn_speed =
∆p

∆e
,

184 Surrogate Fitness via Factorization of Interaction Matrix

Algorithm 9 ADASFIMX - adaptive tunning of α based on the statistics of learning performance.

Require: window size w, exploration rate ε, exploration step γ

1: level← 1 . A global variable
2: H ← {} . History of learning speed

3: function AdaSfimx(S, T)
4: curr ← level
5: if Rand(0, 1) < ε then
6: curr ← level + 1

7: α← curr × γ
8: F ← SFIMX(S, T, α)
9: UpdateLevel(curr, α)
10: return F
11:

12: function UpdateLevel(curr, α)
13: learn_speed = ∆p

∆e
14: H[curr]← Concat(H[curr], learn_speed)
15: Vlevel ← w most recent values from H[level]
16: Vlevel+1 ← w most recent values from H[level + 1]
17: if len(Vlevel) < w or len(Vlevel+1) < w then
18: return
19: if mean(Vlevel) < mean(Vlevel+1) then . switch condition
20: if α < 1 then
21: level← level + 1
22: H[level]← ∅

where ∆p is the the most recent increase in the objective performance (see Section 12.6.3), i.e.

the di�erence of the objective performance of the best individual from the current generation and

the best-of-generation individual from the previous generation, and ∆e denotes the computational

e�ort (the total number of interactions) that caused this increase.

By observing the learning speeds for two consecutive levels, the algorithm eventually makes a

decision to switch from level to level+ 1 (lines 19-22 in Algorithm 9). Such a change is permanent

and increases the �tness precision, at the expense of the number of interactions to compute. Notice

that in order to make the decision based on the most recent data, we take into account only w most

recent learning speeds (lines 15-16 of Algorithm 9). We also make sure that the algorithm gathers

enough samples prior to making any decisions regarding the level of α (line 17 of Algorithm 9).

12.6.2 Position evaluation in Othello with n-tuple networks

In this section, we describe the problem of learning position evaluation function in the game of

Othello (cf. Section 5.4.1), which will be later used in the experiment to assess the e�ectiveness

of ADASFIMX.

Due to an extreme number of possible board states in Othello, the position (board) evaluation

function cannot be learned directly and has to be approximated. Among a range of formalisms that

can be used to that aim, Bledsoe and Browning [24] introduced n-tuple networks, a particularly

powerful and computationally e�cient function approximators, which were originally applied to

the problem of optical character recognition. In the context of games, they were �rst used by

Buro [41], and later popularized by Lucas [227]. The main advantages of n-tuple networks are

their conceptual simplicity and e�ciency in realizing nonlinear mappings, in which they surpass

the weighted piece counter (WPC), a simple linear combination of board states, often used as a

baseline method for implementing position evaluation functions.

12.6. Automatic tunning of α in SFIMX 185

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

2 1 0

2 1 0

210

210

2

1

0

2

1

0

2

1

0

2

1

0

012 weight

000 1.14
...

...
011 0.19
...

...
101 �1.03
110 3.07
111 0.10
...

...
201 �2.59
210 0.1
211 0.99
...

...
222 0.14

Figure 12.3: A straight 3-tuple employed eight times for the given board position (symmetric
sampling). The eight symmetric expansions of the 3-tuple return 0.19− 1.03 + 2× 0.1− 2.59 + 3×
0.99 = −0.26.

An n-tuple network consists of m tuples of up to n di�erent board locations each. For a given

board state b, the network outputs the sum of values returned by the individual tuples, each of

which depends on the occupation of indicated board locations indicated. The ith tuple, where

i = 1, . . . ,m, contains a sequence of ni board locations (locij)j=1,...,ni , ni ≤ n, and an associated

look-up table LUTi. The table contains weights for each possible combination of states that can

be constructed using the locations in the tuple. The value of an n-tuple network can be thus

interpreted as a position evaluation function f :

f(b) =

m∑

i=1

fi(b) =

m∑

i=1

LUTi
[
idx

(
bloci1 , . . . ,blocini

)]

idx (v) =

|v|∑

j=1

vjc
j−1,

where blocij is a board value at location locij , v is a sequence of board values (0 ≤ vk < c, for

k = 1, . . . , |v|), and c denotes the number of possible board values (c = 3 for Othello). As a result,

one look-up table of length ni contains 3ni weights.

To improve the e�ectiveness of n-tuple networks, we also employ symmetric sampling that

exploits the inherent symmetries of a game board [227]. In symmetric sampling, a single tuple

is employed 8 times, and returns one value for each possible board rotation and re�ection (see

Fig. 12.3).

Board inversion

A game-playing agent (candidate solution) selects its moves by unrolling the game tree from the

current state (by one or more levels) and applying the position evaluation function to them,

preferring the moves that lead to positions of the highest value. Since we expect the agent to

play both black and white, and given that Othello is an almost symmetric game, we train only

the black agent, and when playing as the white player we temporarily �ip all the pieces on the

board in order to interpret the board from the black player's perspective. Then we select the best

move according to the position evaluation function, �ip the pieces back, and play the white piece

186 Surrogate Fitness via Factorization of Interaction Matrix

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

Figure 12.4: All 24 straight 3-tuples (648 weights). Their symmetric expansions have been shown
in light gray.

in the selected location. This method is called board inversion [236, 306] and has been found more

e�cient than using doubled function or output negation [142].

Systematic n-tuple networks

In order choose the shapes of tuples, Lucas [227] proposed to randomly generate a small number

of long snake-shaped sequences. However, it has been recently shown that a large number of short

systematically selected tuples leads to better results [142]. The systematic n-tuple network consists

of all possible vertical, horizontal, and diagonal n-tuples of the same length (see Fig. 12.4). Its

smallest representative is a network of 1-tuples. Thanks to symmetric sampling, only 10 of such 1-

tuples are required to cover an 8×8 Othello board, and a 10×1-tuple network contains 10×31 = 30

weights. The comparison of di�erent n-tuple architectures has been performed by Ja±kowski and

Szubert [146]. The authors report that the combination of straight 4-tuples and (square) 2 × 2

tuples achieves the best results.

12.6.3 Experimental setup

In the following experiments, we evaluate SFIMX and ADASFIMX on the problem of position

evaluation in the game of Othello. To this end, we employ Coevolutionary CMA-ES, a variant of

one-population CoEA that combines the covariance matrix adaptation evolutionary strategy [120],

a state-of-the-art continuous black-box optimization method, with a competitive �tness function.

The evolving candidate solutions (game strategies) are evaluated by playing a double game (cf.

Section 5.4.1) against each other in a round-robin fashion (cf. Section 3). The �tness is the sum

of scores obtained in these games, where in a single game the win, loss or draw counts as 1, 0.5 or

0 points, respectively. The elements of interaction matrix G are in the [0, 1] range and correspond

to the outcome of a double game.

We strictly follow the experimental setup from [146] in order to directly compare the results.

Candidate solutions are represented as real-valued vectors interpreted as the weights of a systematic

n-tuple network consisting of all straight 4-tuples and all square 2 × 2-tuples. The step-size σ of

CMA-ES is initialized to 1. The initial starting point for CMA-ES is generated by sampling the

weights uniformly from the range [−0.1, 0.1]. We use the population size λ = 400 that was found

to achieve the best results in [146]. All algorithms were run 5 times.

12.6. Automatic tunning of α in SFIMX 187

0 1 2 3 4 5 6 7 8

Effort ×107

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
er

fo
rm

an
ce

CoCMAES

SFIMX-0.1

SFIMX-0.2

SFIMX-0.3

SFIMX-0.4

SFIMX-0.5

Figure 12.5: Average performance of the best-of-generation individuals obtained using SFIMX
with constant α. Each run was stopped after 1000 generations.

To objectively measure the progress of algorithms, we employed an external performance mea-

sure consisting in playing (double) Othello games against 11 previously published position evalua-

tion functions on 1000 opening positions. In that aspect, we follow the protocol described in [146],

to which we refer for more details. Every 10 generations, we report the average of 22000 games.

The ADASFIMX setup, which automatically adapts α during a run (cf. Section 12.6.1), em-

ploys the same objective performance measure for computing the learning speed but estimates it

only from 100 positions to reduce the computational overhead. Both SFIMX and ADASFIMX use

factorization rank r = log(λ) ≈ 10.

12.6.4 Experimental veri�cation

In the �rst experiment, we were interested in verifying whether basic SFIMX is a viable method

for accelerating the vanilla round-robin-based CoCMAES. To this aim, we control the fraction of

interactions to be calculated by the parameter α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in Algorithm 8. Since

the number of interactions is reduced by a factor of 1−α, in each generation we spare (1−α)|S|2
interactions.

Figure 12.5 plots the objective performance of the best-of-generation individual as a function

of computational e�ort (the number of interactions). The results clearly demonstrate that SFIMX

provides signi�cant speed-up while maintaining the overall performance. The curve that represents

the baseline CoCMAES is dominated by the other methods for most of the time, indicating that

the same performance can be achieved much faster. For instance, SFIMX with α = 0.1 achieves

the performance level of 0.75 nearly 2.2 times quicker than the baseline CoCMAES. Despite the

fact that we stopped the run after 1000 generations, it can already be observed that it would not

achieve the same performance level as the baseline method, since the higher the performance levels,

the more precise �tness is required.

The observations made above led us to the design of ADASFIMX that automatically adjusts α

during evolution (cf. Section 12.6.1 and Algorithm 9). ADASFIMX uses step size γ = 0.1, leading

to 10 levels of α {0.1, 0.2, . . . , 1.0}. We also set the window size w = 20 so that the mean learning

188 Surrogate Fitness via Factorization of Interaction Matrix

0 1 2 3 4 5 6 7 8

Effort ×107

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
er

fo
rm

an
ce

ADASFIMX

CoCMAES 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
lp

h
a

Figure 12.6: Average performance of the best-of-generation individuals obtained using CoCMAES
and CoCMAES augmented by ADASFIMX.

speed is computed from the 20 most recent learning speeds in H. Exploration rate ε is set to

0.1. Preliminary experiments (not reported here for brevity) revealed that ADASFIMX behaves

roughly the same for w ∈ {10, 20, 50}.
In Fig. 12.6, we compare the objective performance of the best-of-generation individuals ob-

tained using ADASFIMX and the baseline CoCMAES. We also plot α to visualize how it changes

during the learning. The results demonstrate that ADASFIMX learns faster throughout the evo-

lutionary run. CoCMAES achieves a similar level of performance, but does so at a much slower

pace. For instance, the performance of roughly 0.8 (i.e., 80% probability of winning against the

reference players) is achieved by ADASFIMX after 6 × 107 games, i.e., about a quarter faster

than by CoCMAES. This clearly indicates that ADASFIMX manages to achieve state-of-the-art

performance at signi�cantly lower computational expense.

The fact that both methods ultimately achieve the same level of performance is not surprising

since ADASFIMX eventually converges to the round-robin CoCMAES. As shown by the plot,

ADASFIMX starts computing the complete interaction matrix G at the end of evolution, shortly

after reaching the milestone of 7.5 × 107 interactions. From that point onward, it progresses just

as a regular CoCMAES, achieving roughly the same performance.

12.7 Chapter summary

Surrogate Fitness via Factorization of Interaction Matrix aims at reducing the overall computa-

tional cost of �tness evaluation, while bene�ting from the speci�cs of test-based problems. Given

the outcomes of a random sample of all solution-test interactions, SFIMX uses non-negative matrix

factorization to predict the outcomes of remaining interactions and so estimate the �tness of candi-

date solutions. In an empirical evaluation, we demonstrated its e�ectiveness as a surrogate model

to speed up the evaluation process (Section 12.4.2). When performance is of the highest priority,

it is possible to invest the computational budget spared by SFIMX into a larger population (Sec-

tion 12.4.3), or increased evolution time (Section 12.4.4). In either case, we observed signi�cant

improvement in the probability of �nding the ideal candidate solution. We also extended SFIMX

12.7. Chapter summary 189

by replacing the uniform probability distribution used to draw tests to interact with during eval-

uation with the distribution biased towards more di�cult tests (Section 12.5). Finally, we showed

the method for an automatic choice of α that controls the overall number of interactions to be

computed during evaluation (Section 12.6).The conceptual contribution that is worth emphasiz-

ing is SFIMX's abstraction from domain speci�cs: interaction outcomes are predicted from other

interaction outcomes, and the method is agnostic about the internals of function evaluation. We

�nd this advantage pivotal in comparison to most of traditional surrogate models, which predict

�tness from solution's characteristics, and are thus domain-speci�c.

Chapter 13

Conclusions

13.1 Summary

Our experience with test-based problems covered in this thesis, suggests that interaction matrices

in test-based problems form a rich source of multi-faceted characterization of candidate solutions

and tests. This insight, along with the observed tendency to treat evaluation functions as a black

box, shaped the design of the proposed framework for discovery of search objectives. In the

following, we summarize its key features and related claims we made in this thesis:

1. Search objectives re�ect only selected characteristics of candidate solutions. Rather than

providing objective assessment of candidate solution's quality, their role is to guide search

by creating a useful gradient towards better performing solutions.

2. Search objectives may help avoiding overfocusing on some tests and diversify the popula-

tion by continuously shifting the selection pressure to di�erent objectives. The emphasis is

thus put on di�erent aspects of candidate solution's quality, thereby promoting behaviorally

diverse candidate solutions with the potential to perform well, and minimizing the risk of

premature convergence.

3. Search objectives are derived in every generation of evolutionary run independently. In

this way, they change dynamically to capture new and interesting behaviors that emerge in

interaction matrices during evolution.

4. Discovery of search objectives is a heuristic process. The dominance relation induced by

these objectives is not required to be consistent with the original relation de�ned on tests.

It is, however, capable of providing search gradient that is strong enough to e�ciently solve

a range of problems of practical interest. Heuristic approach allows us also to minimize to

computational cost associated with it, and enables the objectives to be derived online during

evolution.

5. Discovery of search objectives turns a single-objective problem into a multi-objective one.

This allows us to avoid pitfalls of scalar evaluation discussed in Chapter 6, and enhances

evolvability, i.e. the possibility to progressively �nd better solutions. Multi-objective ap-

proach also facilitates exploration of di�erent trade-o�s between possibly con�icting search

objectives.

6. The framework for discovery of search objectives is independent of any particular test-based

problem and, in particular, of representation of candidate solutions and tests. The only

requirement is the access to an interaction matrix.

191

192 Conclusions

As argued elsewhere [187, 160], we postulate that treating �tness function as a black box is un-

justi�ed, especially when more detailed information on solution's characteristics, like interaction

outcomes, is easily available. Such information typically requires more e�ort in conceptual analy-

sis, implementation and computational expense to harness, but, as we demonstrated in this thesis,

these costs may pay o� in the long run with a more e�ective search method.

The algorithms for discovery of search objectives proposed here may make signi�cant impact

in many application areas of EC that comply with the test-based paradigm, like design of complex

artifacts, synthesis of controllers, and learning game strategies � in short, everywhere where the

quality of a candidate solution can be determined only by evaluating it against a number of tests.

In a broader perspective, the results presented in this dissertation form yet another argument for

the quest for alternative means of driving search in heuristic algorithms [183, 194]. In comparison

to the research on hyper-heuristics [40], where the question is how to perform search, in our

framework we focus on what to drive the search with. Indeed, in many domains there are neither

conceptual nor technical obstacles for distilling more precise and useful information from candidate

solutions. To that aim, we employed here the interaction matrix, but potential other approaches

abound. Given the potential bene�ts evidenced in this dissertation, such opportunities should be

exploited more often in research and practice of test-based problems, and we strongly encourage

the readers to consider this path.

13.2 Contributions

The main contributions of this thesis may be summarized as follows:

• Identi�cation of pitfalls accompanying scalar evaluation in test-based problems, including

the phenomenon of evaluation bottleneck that originates in the aggregation of outcomes of

interactions between candidate solutions and tests. [Chapter 6]

• The concept of performance pro�le, a generic and domain-independent tool for multi-criteria

evaluation of solutions produced by evolutionary algorithms solving test-based problems.

[Chapter 7]

• Introduction and formalization of the uni�ed framework for automatic discovery of search

objectives in test-based problems, intended to widen the evaluation bottleneck by providing

search algorithms with richer information on solutions' characteristics. [Chapter 8]

• The algorithm for discovery of search objectives by heuristic clustering of outcomes of inter-

actions between candidate solutions and tests (DOC). [Chapter 9]

• The algorithm for discovery of search objectives by non-negative factorization of interaction

matrix (DOF). [Chapter 10]

• The universal approach for transforming interaction matrices generated in continuous do-

mains to a form that is appropriate for the proposed framework for automatic discovery of

search objectives in test-based problems. [Chapter 11]

• The algorithm for reducing the overall computational cost of evaluation in test-based prob-

lems that learns to predict outcomes of interactions taking place between candidate solutions

and tests (SFIMX). [Chapter 12]

• The extension of SFIMX algorithm that assesses the per-test estimation errors by comparing

the predicted outcomes with the actual ones, and use these errors to bias the sampling

13.3. Future work 193

of interactions that are conducted, i.e. making the interactions on the `hard' tests to be

executed rather than predicted. [Chapter 12]

• The extension of SFIMX algorithm that automatically adapts its parameters. [Chapter 12]

• Experimental evaluation of the proposed algorithms on selected test-based problems. [Chap-

ters 9 � 12]

• Implementation of the proposed algorithms as a common software framework written in Java

and Python programming languages.

13.3 Future work

The work presented in this thesis may be extended in many directions. Let us point out a few of

them in the following list:

• In practical terms, the proposed framework for discovery of search objectives broadens the

evaluation bottleneck in information �ow between an evaluation function and a selection

operator. Concerning other possibilities, a particularly interesting area of future work is to

provide search operators with a more detailed information on behavior of candidate solutions

and thus making their actions more directed and responsive to the current state of evolution.

For instance, based on a factorization of interaction matrix (cf. Chapter 10), a crossover op-

erator could �rst select behaviorally-dissimilar parents (or even parents with complementary

behavior), and then fuse the capabilities elaborated by particular individuals.

• Discovered search objectives are transient in their nature, meaning that they cannot accu-

mulate knowledge about the characteristics of individual tests along an evolutionary search

process. One one hand, starting from scratch, as a tabula rasa, is desired as it allows search

objectives to adapt to the current stage of evolution. On the other, we �nd it worth in-

vestigating whether it is possible to bene�t from the knowledge acquired in the previous

generations, while remaining also responsive to the ongoing changes in the population via

continuous learning.

• We �nd it worthwhile to brie�y discuss possible extensions of the algorithms devised in this

thesis. In particular, DOC and DOF can discover search objectives only if their existence

is manifested behaviorally, i.e. re�ected in the outcomes of interactions between candidate

solutions and tests. If such behavioral patterns do not manifest themselves in interaction

outcomes, there is no grounds to discover them. It is therefore interesting to ask whether

we could mine for patterns (not necessarily behavioral, as we did in this thesis) in e.g.

representation of candidate solutions.

• Search objectives derived by the proposed algorithms dwell in the linear space. Though

the experimental evidence presented in this thesis suggests that in case of many test-based

problems this is not a limitation, it may be expected that complex dependencies (behavioral

patterns) between interaction outcomes arise from applying candidate solutions to various

tests, and such interactions may need a more complex, nonlinear model to be well cap-

tured. This is particularly true for SFIMX, where outcomes of interaction are predicted

based on linear combinations of the elements in the matrices W and H, resulting from non-

negative factorization. These observations point to the natural follow-up research, in which

nonlinear models of interaction outcomes could be explored. Neural networks operating in

auto-associative regime such as autoencoders [133] that implement a `bottleneck' architecture

seem to be particularly adequate to this task.

194 Conclusions

Naturally, the above ideas are not even close to fully exhausting the scope of possible future

research directions. Prospectively, we hope to see the extensions of the proposed framework for

discovery of search objectives to other paradigms of learning, including for instance reinforcement

learning. This could open the door to tackling even more di�cult problems, including those of

`uncompromising' nature [126, 129]. Only time will bring the answers to this and other suppositions

formulated in this thesis.

Bibliography

[1] The On-line Encyclopedia of Integer Sequences, Published Electronically at https://oeis.org, 2017.

[2] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving Patches for Software Repair. In

Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages

1427�1434. ACM, 2011.

[3] Eva Alfaro-Cid, Juan J Merelo, F Fernández de Vega, Anna Isabel Esparcia-Alcázar, and Ken

Sharman. Bloat Control Operators and Diversity in Genetic Programming: A Comparative Study.

Evolutionary Computation, 18(2):305�332, 2010.

[4] Louis Victor Allis et al. Searching for Solutions in Games and Arti�cial Intelligence.

Rijksuniversiteit Limburg, 1994.

[5] Peter J Angeline. An Alternate Interpretation of the Iterated Prisoner's Dilemma and the

Evolution of Non-mutual Cooperation. In Proceedings 4th Arti�cial Life Conference, pages

353�358, 1994.

[6] Peter J. Angeline. Subtree Crossover: Building Block Engine or macromutation? In John R. Koza,

Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,

editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 9�17,

Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann. URL http:

//ncra.ucd.ie/COMP41190/SubtreeXoverBuildingBlockorMacromutation_angeline_gp97.ps.

[7] Peter J. Angeline and Jordan B. Pollack. Competitive Environments Evolve Better Solutions for

Complex Tasks. In Stephanie Forrest, editor, Proceedings of the 5th International Conference on

Genetic Algorithms, ICGA-93, pages 264�270, University of Illinois at Urbana-Champaign, 17-21

July 1993. Morgan Kaufmann. ISBN 1-55860-299-2. URL

http://www.demo.cs.brandeis.edu/papers/icga5.pdf.

[8] Andrea Arcuri and Xin Yao. A Novel Co-evolutionary Approach to Automatic Software Bug

Fixing. In Jun Wang, editor, 2008 IEEE World Congress on Computational Intelligence, pages

162�168, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press. doi:

10.1109/CEC.2008.4630793.

[9] Daniel Ashlock and Colin Lee. Agent-case Embeddings for the Analysis of Evolved Systems. IEEE

Transactions on Evolutionary Computation, 17(2):227�240, 2013.

[10] Wirt Atmar. Notes on the Simulation of Evolution. IEEE Transactions on Neural Networks, 5(1):

130�147, 1994.

[11] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit

Problem. Machine learning, 47(2-3):235�256, 2002.

[12] Robert Axelrod. Genetic Algorithms and Simulated Annealing, chapter The Evolution of Strategies

in the Iterated Prisoner's Dilemma, pages 32�41. Morgan Kaufman, Los Altos, CA, 1987.

195

http://ncra.ucd.ie/COMP41190/ SubtreeXoverBuildingBlockorMacromutation_angeline_gp97.ps
http://ncra.ucd.ie/COMP41190/ SubtreeXoverBuildingBlockorMacromutation_angeline_gp97.ps
http://www.demo.cs.brandeis.edu/papers/icga5.pdf

196 Bibliography

[13] Robert Axelrod. The Evolution of Strategies in the Iterated Prisoner's Dilemma. The dynamics of

norms, pages 199�220, 1987.

[14] Yaniv Azaria and Moshe Sipper. Gp-gammon: Genetically Programming Backgammon Players.

Genetic Programming and Evolvable Machines, 6(3):283�300, 2005.

[15] Thomas Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Oxford university press, 1996.

[16] Thomas Back, Ulrich Hammel, and H-P Schwefel. Evolutionary Computation: Comments on the

History and Current State. IEEE transactions on Evolutionary Computation, 1(1):3�17, 1997.

[17] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. Stability Analysis of Multiplicative

Update Algorithms and Application to Nonnegative Matrix Factorization. IEEE Transactions on

Neural Networks, 21(12):1869�1881, 2010.

[18] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Programming

� an Introduction; on the Automatic Evolution of Computer Programs and Its Applications.

Morgan Kaufmann, San Francisco, CA, USA, January 1998. ISBN 1-55860-510-X. URL http:

//www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description.

[19] Lawrence Beadle and Colin Johnson. Semantically Driven Crossover in Genetic Programming. In

Jun Wang, editor, Proceedings of the IEEE World Congress on Computational Intelligence, pages

111�116, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press. doi:

10.1109/CEC.2008.4630784. URL http://results.ref.ac.uk/Submissions/Output/1423275.

[20] Patrick Berarducci, Demetrius Jordan, David Martin, and Jennifer Seitzer. GEVOSH: Using

Grammatical Evolution to Generate hashing functions. In R. Poli, S. Cagnoni, M. Keijzer,

E. Costa, F. Pereira, G. Raidl, S. C. Upton, D. Goldberg, H. Lipson, E. de Jong, J. Koza,

H. Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry, D. Thierens, W. Stolzmann, P. L. Lanzi,

S. W. Wilson, M. O'Neill, C. Ryan, T. Yu, J. F. Miller, I. Garibay, G. Holi�eld, A. S. Wu,

T. Riopka, M. M. Meysenburg, A. W. Wright, N. Richter, J. H. Moore, M. D. Ritchie, L. Davis,

R. Roy, and M. Jakiela, editors, GECCO 2004 Workshop Proceedings, Seattle, Washington, USA,

26-30 June 2004. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/WUGW001.pdf.

[21] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and Robert J Plemmons.

Algorithms and Applications for Approximate Nonnegative Matrix Factorization. Computational

statistics & data analysis, 52(1):155�173, 2007.

[22] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution Strategies�a Comprehensive Introduction.

Natural computing, 1(1):3�52, 2002.

[23] Alan D. Blair and Jordan B. Pollack. What makes a good co-evolutionary learning environment.

Australian Journal of Intelligent Information Processing Systems, 4(3/4):166�175, 1997.

[24] Woodrow Wilson Bledsoe and Iben Browning. Pattern Recognition and Reading by Machine. In

Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference,

pages 225�232. ACM, 1959.

[25] Stefan Bleuler, Johannes Bader, and Eckart Zitzler. Reducing Bloat in GP with Multiple

Objectives. In Joshua Knowles, David Corne, and Kalyanmoy Deb, editors, Multiobjective Problem

Solving from Nature: from concepts to applications, Natural Computing, chapter 9, pages 177�200.

Springer, 2008. doi: 10.1007/978-3-540-72964-8_9.

[26] Josh Bongard. Behavior Chaining-incremental Behavior Integration for Evolutionary Robotics. In

ALIFE, pages 64�71, 2008.

http://www.elsevier.com/wps/find/bookdescription.cws_home/ 677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/ 677869/description#description
http://results.ref.ac.uk/Submissions/Output/1423275
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/WUGW001.pdf

197

[27] Josh C Bongard and Hod Lipson. Nonlinear System Identi�cation Using Coevolution of Models

and Tests. Evolutionary Computation, IEEE Transactions on, 9(4):361�384, 2005.

[28] Olivier Bousquet and Léon Bottou. The Tradeo�s of Large Scale Learning. In Advances in neural

information processing systems, pages 161�168, 2008.

[29] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

[30] Jeremy S. Bradbury and Kevin Jalbert. Automatic Repair of Concurrency Bugs. In Massimiliano

Di Penta, Simon Poulding, Lionel Briand, and John Clark, editors, Proceedings of the 2nd

International Symposium on Search Based Software Engineering (SSBSE '10), Benevento, Italy,

7-9 September 2010. URL

http://www.ssbse.org/2010/fastabstracts/ssbse2010_fastabstract_04.pdf. Fast abstract.

[31] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Number XVI in Genetic

and Evolutionary Computation. Springer, 2007. ISBN 0-387-31029-0. URL

http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0.

[32] Leo Breiman. Bagging Predictors. Machine learning, 24(2):123�140, 1996.

[33] Dimo Brockho� and Eckart Zitzler. Are All Objectives Necessary? on Dimensionality Reduction in

Evolutionary Multiobjective Optimization. In Parallel Problem Solving from Nature-PPSN IX,

pages 533�542. Springer, 2006.

[34] Sébastien Bubeck et al. Convex Optimization: Algorithms and Complexity. Foundations and

Trends R© in Machine Learning, 8(3-4):231�357, 2015.

[35] A. Bucci, J. Pollack, and E. De Jong. Automated Extraction of Problem Structure. In Genetic and

Evolutionary Computation�GECCO 2004, pages 501�512. Springer, 2004.

[36] Anthony Bucci. Emergent Geometric Organization and Informative Dimensions in Coevolutionary

Algorithms. PhD thesis, Waltham, MA, USA, 2007.

[37] Anthony Bucci and Jordan B Pollack. Order-theoretic Analysis of Coevolution Problems:

Coevolutionary Statics. In Proceedings of the GECCO-2002 Workshop on Coevolution:

Understanding Coevolution, pages 229�235, 2002.

[38] Richard L Burden and J Douglas Faires. Numerical Analysis. 2001. Brooks/Cole, USA, 2001.

[39] RL Burden and JD Faires. Numerical Analysis, Cengage Learning, 2010. Technical report, ISBN

978-0-538-73351-9, 1989.

[40] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia Schulenburg.

Hyper-heuristics: An Emerging Direction in Modern Search Technology. In Handbook of

metaheuristics, pages 457�474. Springer, 2003.

[41] Michael Buro. An Evaluation Function for Othello Based on Statistics. Technical Report 31, NEC

Research Institute, 1997.

[42] Xian-Bin Cao, Hong Qiao, and John Keane. A Low-cost Pedestrian-detection System with a Single

Optical Camera. IEEE Transactions on Intelligent Transportation Systems, 9(1):58�67, 2008.

[43] John Cartlidge and Seth Bullock. Combating Coevolutionary Disengagement by Reducing Parasite

Virulence. Evolutionary Computation, 12(2):193�222, 2004.

[44] J.P. Cartlidge. Rules of Engagement: Competitive Coevolutionary Dynamics in Computational

Systems. PhD thesis, University of Leeds, 2004.

http://www.ssbse.org/2010/fastabstracts/ ssbse2010_fastabstract_04.pdf
http://www.springer.com/west/home/default?SGWID=4-40356-22- 173660820-0

198 Bibliography

[45] Tsung-Han Chan, Wing-Kin Ma, Chong-Yung Chi, and Yue Wang. A Convex Analysis Framework

for Blind Separation of Non-negative Sources. IEEE Transactions on Signal Processing, 56(10):

5120�5134, 2008.

[46] Kumar Chellapilla and David B Fogel. Evolving Neural Networks to Play Checkers without

Relying on Expert Knowledge. IEEE Transactions on Neural Networks, 10(6):1382�1391, 1999.

[47] Kumar Chellapilla and David B. Fogel. Evolving an Expert Checkers Playing Program without

Using Human Expertise. IEEE Transactions on Evolutionary Computation, 5(4):422�428, 2001.

[48] Eric C Chi and Tamara G Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM

Journal on Matrix Analysis and Applications, 33(4):1272�1299, 2012.

[49] Siang Y Chong, Mei K Tan, and Jonathon David White. Observing the Evolution of Neural

Networks Learning to Play the Game of Othello. IEEE Transactions on Evolutionary

Computation, 9(3):240�251, 2005.

[50] Siang Yew Chong, Peter Tino, and Xin Yao. Relationship between Generalization and Diversity in

Coevolutionary Learning. IEEE Transactions on computational intelligence and AI in games, 1(3):

214�232, 2009.

[51] S.Y. Chong and X. Yao. Behavioral Diversity, Choices and Noise in the Iterated Prisoner's

Dilemma. Evolutionary Computation, IEEE Transactions on, 9(6):540�551, 2005.

[52] S.Y. Chong, P. Tiño, and X. Yao. Measuring Generalization Performance in Coevolutionary

Learning. Evolutionary Computation, IEEE Transactions on, 12(4):479�505, 2008.

[53] S.Y. Chong, P. Ti¬o, D.C. Ku, and X. Yao. Improving Generalization Performance in

Co-evolutionary Learning. Evolutionary Computation, IEEE Transactions on, (99):1�1, 2012.

[54] David M Clark. Evolution of Algebraic Terms 1: Term to Term Operation Continuity.

International Journal of Algebra and Computation, 23(05):1175�1205, 2013.

[55] Dave Cli� and Geo�rey F Miller. Tracking the Red Queen: Measurements of Adaptive Progress in

Co-evolutionary Simulations. In European Conference on Arti�cial Life, pages 200�218. Springer

Berlin Heidelberg, 1995.

[56] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. Evolutionary Algorithms

for Solving Multi-objective Problems, volume 5. Springer, 2007.

[57] Robert J Collins and David Je�erson. Antfarm: Towards Simulated Evolution. Computer Science

Department, University of California, 1990.

[58] Alison Cozad, Nikolaos V Sahinidis, and David C Miller. Learning Surrogate Models for

Simulation-based Optimization. AIChE Journal, 60(6):2211�2227, 2014.

[59] Nichael Lynn Cramer. A Representation for the Adaptive Generation of Simple Sequential

Programs. In John J. Grefenstette, editor, Proceedings of an International Conference on Genetic

Algorithms and the Applications, pages 183�187, Carnegie-Mellon University, Pittsburgh, PA, USA,

24-26 July 1985. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga1985/icga85_cramer.pdf.

[60] Matej �repin²ek, Shih-Hsi Liu, and Marjan Mernik. Exploration and Exploitation in Evolutionary

Algorithms: A Survey. ACM Computing Surveys (CSUR), 45(3):35, 2013.

[61] P. Darwen and X. Yao. On Evolving Robust Strategies for Iterated Prisoner's Dilemma. Progress

in Evolutionary Computation, pages 276�292, 1995.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga1985/ icga85_cramer.pdf

199

[62] P Darwen and X Yao. Does Extra Genetic Diversity Maintain Escalation in a Co-evolutionary

Arms Race. International Journal of Knowledge-Based Intelligent Engineering Systems, 4(3):

191�200, 2000.

[63] P.J. Darwen and X. Yao. Why More Choices Cause Less Cooperation in Iterated Prisoner's

Dilemma. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, volume 2,

pages 987�994. IEEE, 2001.

[64] P.J. Darwen and X. Yao. Co-evolution in Iterated Prisoner's Dilemma with Intermediate Levels of

Cooperation: Application to Missile Defense. International Journal of Computational Intelligence

and Applications, 2:83�108, 2002.

[65] C. Darwin. On the Origin of Species by Means of Natural Selection. 1859. Leipzig: Verlag Philipp

Reclam, 1984.

[66] Rajarshi Das, James P Crutch�eld, Melanie Mitchell, and James M Hanson. Evolving Globally

Synchronized Cellular Automata. 1995.

[67] E. de Jong. The Incremental Pareto-coevolution Archive. In Genetic and Evolutionary

Computation�GECCO 2004, pages 525�536. Springer, 2004.

[68] E. De Jong. The Maxsolve Algorithm for Coevolution. In Proceedings of the 2005 conference on

Genetic and evolutionary computation, pages 483�489. ACM, 2005.

[69] E.D. De Jong and A. Bucci. Deca: Dimension Extracting Coevolutionary Algorithm. In Proceedings

of the 8th annual conference on Genetic and evolutionary computation, pages 313�320. ACM, 2006.

[70] E.D. De Jong and J.B. Pollack. Ideal Evaluation from Coevolution. Evolutionary Computation, 12

(2):159�192, 2004.

[71] Edwin D De Jong. A Monotonic Archive for Pareto-coevolution. Evolutionary computation, 15(1):

61�93, 2007.

[72] Edwin D De Jong and Tim Oates. A Coevolutionary Approach to Representation Development. In

Proc. of the ICML-2002 Workshop on Development of Representations, 2002.

[73] Kalyanmoy Deb. Multi-objective Optimization Using Evolutionary Algorithms, volume 16. John

Wiley & Sons, 2001.

[74] Kalyanmoy Deb and Himanshu Jain. An Evolutionary Many-objective Optimization Algorithm

Using Reference-point-based Nondominated Sorting Approach, Part I: Solving Problems with Box

Constraints. IEEE Trans. Evolutionary Computation, 18(4):577�601, 2014.

[75] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A Fast and Elitist

Multiobjective Genetic Algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):

182�197, 2002.

[76] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective Optimization. In Decision

Sciences: Theory and Practice, pages 145�184. CRC Press, 2016.

[77] Karthik Devarajan. Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in

Computational Biology. PLoS computational biology, 4(7):e1000029, 2008.

[78] Wªodzisªaw Duch. What Is Computational Intelligence and Where Is It Going? In Challenges for

computational intelligence, pages 1�13. Springer, 2007.

[79] Adam Dziuk and Risto Miikkulainen. Creating Intelligent Agents through Shaping of Coevolution.

In Alice E. Smith, editor, Proceedings of the IEEE Congress on Evolutionary Computation, pages

1077�1083, New Orleans, LA, USA, 2011. IEEE Press.

200 Bibliography

[80] Agoston E Eiben, James E Smith, et al. Introduction to Evolutionary Computing. Springer, 2015.

[81] Achiya Elyasaf, Ami Hauptman, and Moshe Sipper. Evolutionary Design of FreeCell Solvers. IEEE

Transactions on Computational Intelligence and AI in Games, 4:270�281, December 2012. ISSN

1943-068X. doi: 10.1109/TCIAIG.2012.2210423. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736.

[82] A.P. Engelbrecht. Computational Intelligence: An Introduction. Wiley, 2007.

[83] Susan L. Epstein. Toward an Ideal Trainer. Machine Learning, 15(3):251�277, 1994.

[84] Cesar Estebanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Automatic Design of

Noncryptographic Hash Functions Using Genetic Programming. Computational Intelligence. ISSN

1467-8640. doi: 10.1002/coin.12033. Early View (Online Version of Record published before

inclusion in an issue).

[85] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and

Sebastian Thrun. Dermatologist-level Classi�cation of Skin Cancer with Deep Neural Networks.

Nature, 542(7639):115, 2017.

[86] S. Ficici and J. Pollack. Pareto Optimality in Coevolutionary Learning. Advances in Arti�cial Life,

pages 316�325, 2001.

[87] Sevan G Ficici. Monotonic Solution Concepts in Coevolution. In Proceedings of the 7th annual

conference on Genetic and evolutionary computation, pages 499�506. ACM, 2005.

[88] Sevan G Ficici and Jordan B Pollack. A Game-theoretic Approach to the Simple Coevolutionary

Algorithm. In International Conference on Parallel Problem Solving from Nature, pages 467�476.

Springer, 2000.

[89] Sevan Gregory Ficici. Solution Concepts in Coevolutionary Algorithms. PhD thesis, Computer

Science Department, Brandeis University, USA, May 2004. URL

http://www.demo.cs.brandeis.edu/papers/long.html#ficici_thesis_04.

[90] S.G. Ficici. Multiobjective Optimization and Coevolution. Multiobjective Problem Solving from

Nature, pages 31�52, 2008.

[91] D. Fogel and L. Fogel. An Introduction to Evolutionary Programming. In Arti�cial Evolution,

pages 21�33. Springer, 1996.

[92] David B Fogel. The Evolution of Intelligent Decision Making in Gaming. Cybernetics and Systems,

22(2):223�236, 1991.

[93] David B Fogel. Blondie24: Playing at the Edge of Ai. Morgan Kaufmann, 2001.

[94] David B Fogel, Timothy J Hays, Sarah L Hahn, James Quon, and G Kendall. Further Evolution of

a Self-learning Chess Program. In CIG. Citeseer, 2005.

[95] David B Fogel, Timothy J Hays, Sarah L Hahn, and James Quon. The Blondie25 Chess Program

Competes against Fritz 8.0 and a Human Chess Master. In Computational Intelligence and Games,

2006 IEEE Symposium on, pages 230�235. IEEE, 2006.

[96] D.B. Fogel and Z. Michalewicz. Handbook of Evolutionary Computation. Taylor & Francis, 1997.

[97] D.B. Fogel, E.C. Wasson, and E.M. Boughton. Evolving Neural Networks for Detecting Breast

Cancer. Cancer letters, 96(1):49�53, 1995.

[98] D.B. Fogel, E.C. Wasson III, E.M. Boughton, and V.W. Porto. Evolving Arti�cial Neural Networks

for Screening Features from Mammograms. Arti�cial Intelligence in Medicine, 14(3):317�326, 1998.

http://ieeexplore.ieee.org/xpls/abs_all.jsp? arnumber=6249736
http://www.demo.cs.brandeis.edu/papers/ long.html#ficici_thesis_04

201

[99] L.J. Fogel. On the Organization of Intellect. PhD thesis, 1964.

[100] Carlos M Fonseca, Peter J Fleming, et al. Genetic Algorithms for Multiobjective Optimization:

Formulationdiscussion and Generalization. In Icga, volume 93, pages 416�423. Citeseer, 1993.

[101] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A Genetic

Programming Approach to Automated Software Repair. In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, pages 947�954. ACM, 2009.

[102] Michael P Fourman. Compaction of Symbolic Layout Using Genetic Algorithms. In Genetic

Algorithms and Their Applications: Proc. 1st Int. Conf. Genetic Algorithms, Princeton, Lawrence

Erlbaum, NJ, 1985, 1985.

[103] M Frean. The evolution of degrees of cooperation. Journal of theoretical biology, 182(4):549�59,

October 1996. ISSN 0022-5193. doi: 10.1006/jtbi.1996.0194. URL

http://www.ncbi.nlm.nih.gov/pubmed/8944899.

[104] R. M. Friedberg. A Learning Machine: I. IBM Journal of Research and Development, 2(1):2�13,

January 1958. ISSN 0018-8646. URL

http://www.research.ibm.com/journal/rd/021/ibmrd0201B.pdf.

[105] John Fulcher. Computational Intelligence: An Introduction. In Computational intelligence: a

compendium, pages 3�78. Springer, 2008.

[106] Pablo Garcia-Sanchez, Alberto Tonda, Antonio Mora, Giovanni Squillero, and J. J. Merelo.

Towards Automatic Starcraft Strategy Generation Using Genetic Programming. In Shi-Jim Yen,

Tristan Cazenave, and Philip Hingston, editors, Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG-2015), pages 284�291, Tainan, Taiwan, August 2015.

IEEE. doi: 10.1109/CIG.2015.7317940. URL http://www.human-competitive.org/sites/

default/files/garcia-sanchez-merelo-mora-squillero-tonda-text.txt.

[107] Pablo García-Sánchez, Alberto Tonda, Giovanni Squillero, Antonio Mora, and Juan J Merelo.

Evolutionary Deckbuilding in Hearthstone. In Computational Intelligence and Games (CIG), 2016

IEEE Conference on, pages 1�8. IEEE, 2016.

[108] Renaud Gaujoux and Cathal Seoighe. A Flexible R Package for Nonnegative Matrix Factorization.

BMC Bioinformatics, 11(1):367, 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-11-367. URL

http://www.biomedcentral.com/1471-2105/11/367.

[109] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. Large-scale Matrix

Factorization with Distributed Stochastic Gradient Descent. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 69�77. ACM,

2011.

[110] Robert Gibbons. A Primer in Game Theory. Harvester Wheatsheaf, 1992.

[111] Nicolas Gillis. Sparse and Unique Nonnegative Matrix Factorization through Data Preprocessing.

Journal of Machine Learning Research, 13(Nov):3349�3386, 2012.

[112] Nicolas Gillis. The Why and How of Nonnegative Matrix Factorization. Regularization,

Optimization, Kernels, and Support Vector Machines, 12(257), 2014.

[113] Nicolas Gillis and François Glineur. Accelerated Multiplicative Updates and Hierarchical Als

Algorithms for Nonnegative Matrix Factorization. Neural computation, 24(4):1085�1105, 2012.

[114] Herbert Gintis. Game Theory Evolving: A Problem-centered Introduction to Modeling Strategic

Behavior. Princeton university press, 2000.

http://www.ncbi.nlm.nih.gov/pubmed/8944899
http://www.research.ibm.com/journal/rd/021/ibmrd0201B.pdf
http://www.human-competitive.org/sites/default/files/garcia- sanchez-merelo-mora-squillero-tonda-text.txt
http://www.human-competitive.org/sites/default/files/garcia- sanchez-merelo-mora-squillero-tonda-text.txt
http://www.biomedcentral.com/1471-2105/11/367

202 Bibliography

[115] David E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addion

wesley, 1989:102, 1989.

[116] Faustino Gomez and Risto Miikkulainen. Incremental Evolution of Complex General Behavior.

Adaptive Behavior, 5(3-4):317�342, 1997.

[117] Steven Gustafson and Leonardo Vanneschi. Crossover-based Tree Distance in Genetic

Programming. IEEE Transactions on Evolutionary Computation, 12(4):506�524, August 2008.

ISSN 1089-778X. doi: 10.1109/TEVC.2008.915993.

[118] Prabhat Hajela and C-Y Lin. Genetic Search Strategies in Multicriterion Optimal Design.

Structural optimization, 4(2):99�107, 1992.

[119] Jian Han, Lixing Han, Michael Neumann, and Upendra Prasad. On the Rate of Convergence of the

Image Space Reconstruction Algorithm. Operators and matrices, 3(1):41�58, 2009.

[120] Nikolaus Hansen. The Cma Evolution Strategy: A Comparing Review. In Towards a new

evolutionary computation, pages 75�102. Springer, 2006.

[121] Paul G Harrald and David B Fogel. Evolving Continuous Behaviors in the Iterated Prisoner's

Dilemma. Biosystems, 37(1):135�145, 1996.

[122] Inman Harvey, Philip Husbands, and David Cli�. Seeing the Light: Arti�cial Evolution, Real

Vision. School of Cognitive and Computing Sciences, University of Sussex Falmer, 1994.

[123] Ami Hauptman and Moshe Sipper. Evolution of an E�cient Search Algorithm for the Mate-in-N

Problem in Chess. In Marc Ebner, Michael O'Neill, Anikó Ekárt, Leonardo Vanneschi, and

Anna Isabel Esparcia-Alcázar, editors, Proceedings of the 10th European Conference on Genetic

Programming, volume 4445 of Lecture Notes in Computer Science, pages 78�89, Valencia, Spain,

11-13 April 2007. Springer. ISBN 3-540-71602-5. doi: 10.1007/978-3-540-71605-1_8.

[124] Ami Hauptman, Achiya Elyasaf, Moshe Sipper, and Assaf Karmon. Gp-rush: Using Genetic

Programming to Evolve Solvers for the Rush Hour Puzzle. In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, pages 955�962. ACM, 2009.

[125] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image

Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770�778, 2016.

[126] Thomas Helmuth and Lee Spector. General Program Synthesis Benchmark Suite. In Sara Silva,

Anna I Esparcia-Alcazar, Manuel Lopez-Ibanez, Sanaz Mostaghim, Jon Timmis, Christine Zarges,

Luis Correia, Terence Soule, Mario Giacobini, Ryan Urbanowicz, Youhei Akimoto, Tobias

Glasmachers, Francisco Fernandez de Vega, Amy Hoover, Pedro Larranaga, Marta Soto, Carlos

Cotta, Francisco B. Pereira, Julia Handl, Jan Koutnik, Antonio Gaspar-Cunha, Heike Trautmann,

Jean-Baptiste Mouret, Sebastian Risi, Ernesto Costa, Oliver Schuetze, Krzysztof Krawiec, Alberto

Moraglio, Julian F. Miller, Pawel Widera, Stefano Cagnoni, JJ Merelo, Emma Hart, Leonardo

Trujillo, Marouane Kessentini, Gabriela Ochoa, Francisco Chicano, and Carola Doerr, editors,

GECCO '15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, pages 1039�1046, Madrid, Spain, 11-15 July 2015. ACM. doi:

10.1145/2739480.2754769.

[127] Thomas Helmuth, Lee Spector, and James Matheson. Solving Uncompromising Problems with

Lexicase Selection. IEEE Transactions on Evolutionary Computation, 19(5):630�643, October

2015. ISSN 1089-778X. doi: 10.1109/TEVC.2014.2362729. URL

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=& arnumber=6920034

203

[128] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. The Impact of Hyperselection on

Lexicase Selection. In Tobias Friedrich, editor, GECCO '16: Proceedings of the 2016 Annual

Conference on Genetic and Evolutionary Computation, pages 717�724, Denver, USA, 20-24 July

2016. ACM. doi: 10.1145/2908812.2908851. Nominated for best paper.

[129] Thomas M. Helmuth. General Program Synthesis from Examples Using Genetic Programming with

Parent Selection Based on Random Lexicographic Orderings of Test Cases. PhD thesis, College of

Information and Computer Sciences, University of Massachusetts Amherst, USA, September 2015.

URL https://web.cs.umass.edu/publication/details.php?id=2398.

[130] Michael Hemesath. Survey Article: Cooperate or Defect? Russian and American Students in a

Prisoner's Dilemma. Comparative Economic Studies, 36(1):83�93, 1994.

[131] Torsten Hildebrandt and Juergen Branke. On Using Surrogates with Genetic Programming.

Evolutionary Computation, 23(3):343�367, Fall 2015. ISSN 1063-6560. doi:

10.1162/EVCO_a_00133.

[132] W Daniel Hillis. Co-evolving Parasites Improve Simulated Evolution As an Optimization

Procedure. Physica D: Nonlinear Phenomena, 42(1-3):228�234, 1990.

[133] Geo�rey E Hinton and Richard S Zemel. Autoencoders, Minimum Description Length and

Helmholtz Free Energy. In Advances in neural information processing systems, pages 3�10, 1994.

[134] John H. Holland. Adaptation in Natural and Arti�cial Systems. 1975.

[135] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric Statistical Methods, volume

751. John Wiley & Sons, 2013.

[136] Ting Hu, Joshua Payne, Jason Moore, and Wolfgang Banzhaf. Robustness, Evolvability, and

Accessibility in Linear Genetic Programming. In Sara Silva, James A. Foster, Miguel Nicolau,

Mario Giacobini, and Penousal Machado, editors, Proceedings of the 14th European Conference on

Genetic Programming, EuroGP 2011, volume 6621 of LNCS, pages 13�24, Turin, Italy, 27-29 April

2011. Springer Verlag. doi: 10.1007/978-3-642-20407-4_2.

[137] Kejun Huang, Nicholas D Sidiropoulos, and Ananthram Swami. Non-negative Matrix Factorization

Revisited: Uniqueness and Algorithm for Symmetric Decomposition. IEEE Transactions on Signal

Processing, 62(1):211�224, 2014.

[138] Phil Husbands and Frank Mill. Simulated Co-evolution As the Mechanism for Emergent Planning

and Scheduling. In ICGA, pages 264�270, 1991.

[139] Hisao Ishibuchi and Tadahiko Murata. Multi-objective Genetic Local Search Algorithm. In

Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, pages

119�124. IEEE, 1996.

[140] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. Performance Comparison of

Nsga-ii and Nsga-iii on Various Many-objective Test Problems. In Evolutionary Computation

(CEC), 2016 IEEE Congress on, pages 3045�3052. IEEE, 2016.

[141] Wojciech Jaskowski. Algorithms for Test-based Problems. PhD thesis, Institute of Computing

Science, Poznan University of Technology, Poznan, Poland, May 2011. URL

http://www.cs.put.poznan.pl/wjaskowski/pub/papers/jaskowski11algorithms.pdf.

[142] Wojciech Ja±kowski. Systematic N-tuple Networks for Othello Position Evaluation. ICGA Journal,

37(2):85�96, 2014.

[143] Wojciech Ja±kowski and Krzysztof Krawiec. Coordinate System Archive for Coevolution. In

Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1�10. IEEE, 2010.

https://web.cs.umass.edu/publication/details.php?id=2398
http://www.cs.put.poznan.pl/wjaskowski/pub/papers/ jaskowski11algorithms.pdf

204 Bibliography

[144] Wojciech Ja±kowski and Krzysztof Krawiec. Formal Analysis, Hardness, and Algorithms for

Extracting Internal Structure of Test-based Problems. Evolutionary computation, 19(4):639�671,

2011.

[145] Wojciech Jaskowski and Krzysztof Krawiec. How Many Dimensions in Co-optimization. In

Proceedings of the 13th annual conference companion on Genetic and evolutionary computation,

pages 829�830. ACM, 2011.

[146] Wojciech Ja±kowski and Marcin Szubert. Coevolutionary CMA-ES for Knowledge-free Learning of

Game Position Evaluation. IEEE Transactions on Computational Intelligence and AI in Games, 8

(4):389�401, 2016. ISSN 1943-0698. doi: 10.1109/TCIAIG.2015.2464711. URL

http://www.cs.put.poznan.pl/wjaskowski/pub/papers/Jaskowski2015CoCMAES.pdf.

[147] Wojciech Ja±kowski, Krzysztof Krawiec, and Bartosz Wieloch. Evolving Strategy for a Probabilistic

Game of Imperfect Information Using Genetic Programming. Genetic Programming and Evolvable

Machines, 9(4):281�294, December 2008. ISSN 1389-2576. doi: 10.1007/s10710-008-9062-1.

[148] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch. Winning Ant Wars: Evolving a

Human-competitive Game Strategy Using Fitnessless Selection. In Michael O'Neill, Leonardo

Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcazar, Ivanoe De Falco, Antonio Della

Cioppa, and Ernesto Tarantino, editors, Proceedings of the 11th European Conference on Genetic

Programming, EuroGP 2008, volume 4971 of Lecture Notes in Computer Science, pages 13�24,

Naples, 26-28 March 2008. Springer. doi: 10.1007/978-3-540-78671-9_2.

[149] Wojciech Ja±kowski, Paweª Liskowski, Marcin Szubert, and Krzysztof Krawiec. Improving

Coevolution by Random Sampling. In Christian Blum, editor, GECCO'13: Proceedings of the 15th

annual conference on Genetic and Evolutionary Computation, pages 1141�1148, Amsterdam, The

Netherlands, July 2013. ACM. URL

http://www.cs.put.poznan.pl/mszubert/pub/jaskowski2013gecco.pdf.

[150] Wojciech Ja±kowski, Marcin Szubert, and Paweª Liskowski. Multi-criteria Comparison of

Coevolution and Temporal Di�erence Learning on Othello. In A. I. Esparcia-Alcazar and A. M.

Mora, editors, EvoApplications 2014, volume 8602 of Lecture Notes in Computer Science, pages

301�312. Springer, 2014.

[151] Wojciech Ja±kowski, Paweª Liskowski, Marcin Szubert, and Krzysztof Krawiec. Performance

Pro�le: A Multi-criteria Performance Evaluation Method for Test-based Problems. International

Journal of Applied Mathematics and Computer Science, 26(1):215�229, 2016. doi:

10.1515/amcs-2016-0015.

[152] Mikkel T Jensen. Helper-objectives: Using Multi-objective Evolutionary Algorithms for

Single-objective Optimisation. Journal of Mathematical Modelling and Algorithms, 3(4):323�347,

2004.

[153] Yaochu Jin. Surrogate-assisted Evolutionary Computation: Recent Advances and Future

Challenges. Swarm and Evolutionary Computation, 1(2):61�70, 2011.

[154] Yaochu Jin and J. Branke. Evolutionary Optimization in Uncertain Environments-a Survey.

Evolutionary Computation, IEEE Transactions on, 9(3):303�317, 2005. ISSN 1089-778X. doi:

10.1109/TEVC.2005.846356. Survey of noisy environments.

[155] Donald R Jones, Matthias Schonlau, and William J Welch. E�cient Global Optimization of

Expensive Black-box Functions. Journal of Global optimization, 13(4):455�492, 1998.

[156] Hugues Juillé. Methods for Statistical Inference: Extending the Evolutionary Computation

Paradigm. PhD thesis, Waltham, MA, USA, 1999.

http://www.cs.put.poznan.pl/wjaskowski/pub/papers/ Jaskowski2015CoCMAES.pdf
http://www.cs.put.poznan.pl/mszubert/pub/ jaskowski2013gecco.pdf

205

[157] Hugues Juille and Jordan B. Pollack. Coevolving the Ideal Trainer: Application to the Discovery of

Cellular Automata Rules. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick

Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages

519�527, University of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

URL http://www.demo.cs.brandeis.edu/papers/gp98.pdf.

[158] Uday Kamath, Jack Compton, Rezarta Islamaj-Do§an, Kenneth A De Jong, and Amarda Shehu.

An Evolutionary Algorithm Approach for Feature Generation from Sequence Data and Its

Application to Dna Splice Site Prediction. IEEE/ACM transactions on computational biology and

bioinformatics, 9(5):1387�1398, 2012.

[159] Gopal K Kanji. 100 Statistical Tests. Sage, 2006.

[160] Frédéric Kaplan and Verena V Hafner. Information-theoretic Framework for Unsupervised Activity

Classi�cation. Advanced Robotics, 20(10):1087�1103, 2006.

[161] Jan Karasek, Radim Burget, and Ondrej Morsky. Towards an Automatic Design of

Non-cryptographic Hash Function. In 34th International Conference on Telecommunications and

Signal Processing (TSP 2011), pages 19�23, Budapest, 18-20 August 2011. doi:

10.1109/TSP.2011.6043785.

[162] Vineet Khare, Xin Yao, and Kalyanmoy Deb. Performance Scaling of Multi-objective Evolutionary

Algorithms. In Evolutionary Multi-Criterion Optimization, pages 376�390. Springer, 2003.

[163] Lemont B Kier, Paul G Seybold, and Chao-Kun Cheng. Modeling Chemical Systems Using Cellular

Automata, volume 1. Springer Science & Business Media, 2005.

[164] Jae Yun Kim, Yeo Keun Kim, and Yeongho Kim. Tournament Competition and Its Merits for

Coevolutionary Algorithms. Journal of Heuristics, 9(3):249�268, 2003.

[165] Kenneth E Kinnear. Fitness Landscapes and Di�culty in Genetic Programming. In Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First

IEEE Conference on, pages 142�147. IEEE, 1994.

[166] Joshua Knowles and David Corne. Quantifying the E�ects of Objective Space Dimension in

Evolutionary Multiobjective Optimization. In Evolutionary Multi-Criterion Optimization, pages

757�771. Springer, 2007.

[167] Joshua D Knowles and David W Corne. Approximating the Nondominated Front Using the Pareto

Archived Evolution Strategy. Evolutionary computation, 8(2):149�172, 2000.

[168] Joshua D Knowles, Richard A Watson, and David W Corne. Reducing Local Optima in

Single-objective Problems by Multi-objectivization. In International Conference on Evolutionary

Multi-Criterion Optimization, pages 269�283. Springer, 2001.

[169] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques for

Recommender Systems. Computer, 42(8), 2009.

[170] Derrick G Kourie and Bruce W Watson. The Correctness-by-construction Approach to

Programming. Springer Science & Business Media, 2012.

[171] J. Koza. Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer

Programs to Solve Problems. Technical Report STAN-CS-90-1314, Dept. of Computer Science,

Stanford University, June 1990. URL http://www.genetic-programming.com/jkpdf/tr1314.pdf.

http://www.demo.cs.brandeis.edu/papers/gp98.pdf
http://www.genetic-programming.com/jkpdf/tr1314.pdf

206 Bibliography

[172] J. R. Koza. Hierarchical Genetic Algorithms Operating on Populations of Computer Programs. In

N. S. Sridharan, editor, Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence IJCAI-89, volume 1, pages 768�774, Detroit, MI, USA, 20-25 August 1989. Morgan

Kaufmann. URL http://www.genetic-programming.com/jkpdf/ijcai1989.pdf.

[173] John R. Koza. A Hierarchical Approach to Learning the Boolean Multiplexer Function. In Gregory

J. E. Rawlins, editor, Foundations of genetic algorithms, pages 171�192. Morgan Kaufmann,

Indiana University, 15-18 July 1990 1991. URL

http://www.genetic-programming.com/jkpdf/foga1990.pdf.

[174] John R. Koza. Concept Formation and Decision Tree Induction Using the Genetic Programming

Paradigm. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature -

Proceedings of 1st Workshop, PPSN 1, volume 496 of Lecture Notes in Computer Science, pages

124�128, Dortmund, Germany, 1-3 October 1991. Springer-Verlag. URL

http://www.genetic-programming.com/jkpdf/ppsn1990.pdf.

[175] John R. Koza. Genetic Evolution and Co-evolution of Game Strategies. In The International

Conference on Game Theory and Its Applications, Stony Brook, New York, July 1992. URL

http://www.genetic-programming.com/jkpdf/icgt1992.pdf.

[176] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-11170-5. URL

http://mitpress.mit.edu/books/genetic-programming.

[177] John R. Koza and David Andre. Automatic Discovery of Protein Motifs Using Genetic

Programming. In Xin Yao, editor, Evolutionary Computation: Theory and Applications, chapter 5,

pages 171�197. World Scienti�c, Singapore, 1999. ISBN 981-02-2306-4. URL

http://www.genetic-programming.com/jkpdf/ecta1999.pdf.

[178] John R. Koza and James P. Rice. Genetic Generation of Both the Weights and Architecture for a

Neural Network. In International Joint Conference on Neural Networks, IJCNN-91, volume II,

pages 397�404, Washington State Convention and Trade Center, Seattle, WA, USA, 8-12 July

1991. IEEE Computer Society Press. ISBN 0-7803-0164-1. doi: 10.1109/IJCNN.1991.155366. URL

http://www.genetic-programming.com/jkpdf/ijcnn1991.pdf.

[179] John R. Koza, Forrest H Bennett III, David Andre, and Martin A. Keane. Four Problems for

Which a Computer Program Evolved by Genetic Programming Is Competitive with Human

Performance. In Proceedings of the 1996 IEEE International Conference on Evolutionary

Computation, volume 1, pages 1�10. IEEE Press, 1996. URL

http://www.genetic-programming.com/jkpdf/icec1996.pdf.

[180] John R. Koza, Forrest H Bennett III, David Andre, and Martin A Keane. Automated Design of

Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming. In John S.

Gero and Fay Sudweeks, editors, Arti�cial Intelligence in Design '96, pages 151�170, Dordrecht,

1996. Kluwer Academic. URL http://www.genetic-programming.com/jkpdf/aid1996.pdf.

[181] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido

Lanza. Genetic Programming IV: Routine Human-competitive Machine Intelligence. Kluwer

Academic Publishers, 2003. ISBN 1-4020-7446-8. URL

http://www.genetic-programming.org/gpbook4toc.html.

[182] Krzysztof Krawiec. Genetic Programming-based Construction of Features for Machine Learning

and Knowledge Discovery Tasks. Genetic Programming and Evolvable Machines, 3(4):329�343,

December 2002. ISSN 1389-2576. doi: 10.1023/A:1020984725014.

http://www.genetic-programming.com/jkpdf/ijcai1989.pdf
http://www.genetic-programming.com/jkpdf/foga1990.pdf
http://www.genetic-programming.com/jkpdf/ppsn1990.pdf
http://www.genetic-programming.com/jkpdf/icgt1992.pdf
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.com/jkpdf/ecta1999.pdf
http://www.genetic-programming.com/jkpdf/ijcnn1991.pdf
http://www.genetic-programming.com/jkpdf/icec1996.pdf
http://www.genetic-programming.com/jkpdf/aid1996.pdf
http://www.genetic-programming.org/gpbook4toc.html

207

[183] Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Programming, volume 618 of

Studies in Computational Intelligence. Springer International Publishing, 2016. ISBN

978-3-319-27563-5. doi: 10.1007/978-3-319-27565-9. URL

http://www.springer.com/gp/book/9783319275635.

[184] Krzysztof Krawiec and Bir Bhanu. Visual Learning by Coevolutionary Feature Synthesis. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(3):409�425, 2005.

[185] Krzysztof Krawiec and Paweª Lichocki. Using Co-solvability to Model and Exploit Synergetic

E�ects in Evolution. In Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Guenter Rudolph,

editors, PPSN 2010 11th International Conference on Parallel Problem Solving From Nature,

volume 6239 of Lecture Notes in Computer Science, pages 492�501, Krakow, Poland, 11-15

September 2010. Springer. doi: 10.1007/978-3-642-15871-1_50.

[186] Krzysztof Krawiec and Paweª Liskowski. Automatic Derivation of Search Objectives for Test-based

Genetic Programming. In Penousal Machado, Malcolm I. Heywood, James McDermott, Mauro

Castelli, Pablo Garcia-Sanchez, Paolo Burelli, Sebastian Risi, and Kevin Sim, editors, 18th

European Conference on Genetic Programming, volume 9025 of LNCS, pages 53�65, Copenhagen,

8-10 April 2015. Springer. doi: 10.1007/978-3-319-16501-1_5.

[187] Krzysztof Krawiec and Una-May O'Reilly. Behavioral Programming: A Broader and More

Detailed Take on Semantic GP. In Christian Igel, Dirk V. Arnold, Christian Gagne, Elena

Popovici, Anne Auger, Jaume Bacardit, Dimo Brockho�, Stefano Cagnoni, Kalyanmoy Deb,

Benjamin Doerr, James Foster, Tobias Glasmachers, Emma Hart, Malcolm I. Heywood, Hitoshi

Iba, Christian Jacob, Thomas Jansen, Yaochu Jin, Marouane Kessentini, Joshua D. Knowles,

William B. Langdon, Pedro Larranaga, Sean Luke, Gabriel Luque, John A. W. McCall, Marco A.

Montes de Oca, Alison Motsinger-Reif, Yew Soon Ong, Michael Palmer, Konstantinos E.

Parsopoulos, Guenther Raidl, Sebastian Risi, Guenther Ruhe, Tom Schaul, Thomas Schmickl,

Bernhard Sendho�, Kenneth O. Stanley, Thomas Stuetzle, Dirk Thierens, Julian Togelius, Carsten

Witt, and Christine Zarges, editors, GECCO '14: Proceedings of the 2014 conference on Genetic

and evolutionary computation, pages 935�942, Vancouver, BC, Canada, 12-16 July 2014. ACM.

doi: 10.1145/2576768.2598288. Best paper.

[188] Krzysztof Krawiec and Una-May O'Reilly. Behavioral Search Drivers for Genetic Programing. In

Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo Garcia-Sanchez,

Juan J. Merelo, Victor M. Rivas Santos, and Kevin Sim, editors, 17th European Conference on

Genetic Programming, volume 8599 of LNCS, pages 210�221, Granada, Spain, 23-25 April 2014.

Springer. doi: 10.1007/978-3-662-44303-3_18.

[189] Krzysztof Krawiec and Mikolaj Pawlak. Genetic Programming with Alternative Search Drivers for

Detection of Retinal Blood Vessels. In Antonio M. Mora and Giovanni Squillero, editors, 18th

European Conference on the Applications of Evolutionary Computation, volume 9028 of LNCS,

pages 554�566, Copenhagen, 8-10 April 2015. Springer. doi: 10.1007/978-3-319-16549-3_45.

[190] Krzysztof Krawiec and Tomasz Pawlak. Locally Geometric Semantic Crossover. In Terry Soule,

Anne Auger, Jason Moore, David Pelta, Christine Solnon, Mike Preuss, Alan Dorin, Yew-Soon

Ong, Christian Blum, Dario Landa Silva, Frank Neumann, Tina Yu, Aniko Ekart, Will Browne,

Tim Kovacs, Man-Leung Wong, Clara Pizzuti, Jon Rowe, Tobias Friedrich, Giovanni Squillero,

Nicolas Bredeche, Stephen L. Smith, Alison Motsinger-Reif, Jose Lozano, Martin Pelikan, Silja

Meyer-Nienberg, Christian Igel, Greg Hornby, Rene Doursat, Steve Gustafson, Gustavo Olague,

Shin Yoo, John Clark, Gabriela Ochoa, Gisele Pappa, Fernando Lobo, Daniel Tauritz, Jurgen

Branke, and Kalyanmoy Deb, editors, GECCO Companion '12: Proceedings of the fourteenth

international conference on Genetic and evolutionary computation conference companion, pages

1487�1488, Philadelphia, Pennsylvania, USA, 7-11 July 2012. ACM. doi: 10.1145/2330784.2331005.

http://www.springer.com/gp/book/9783319275635

208 Bibliography

[191] Krzysztof Krawiec and Armando Solar-Lezama. Improving Genetic Programming with Behavioral

Consistency Measure. In Thomas Bartz-Beielstein, Juergen Branke, Bogdan Filipic, and Jim

Smith, editors, 13th International Conference on Parallel Problem Solving from Nature, volume

8672 of Lecture Notes in Computer Science, pages 434�443, Ljubljana, Slovenia, 13-17 September

2014. Springer. doi: 10.1007/978-3-319-10762-2_43.

[192] Krzysztof Krawiec and Jerry Swan. Pattern-guided Genetic Programming. In Christian Blum,

Enrique Alba, Anne Auger, Jaume Bacardit, Josh Bongard, Juergen Branke, Nicolas Bredeche,

Dimo Brockho�, Francisco Chicano, Alan Dorin, Rene Doursat, Aniko Ekart, Tobias Friedrich,

Mario Giacobini, Mark Harman, Hitoshi Iba, Christian Igel, Thomas Jansen, Tim Kovacs, Taras

Kowaliw, Manuel Lopez-Ibanez, Jose A. Lozano, Gabriel Luque, John McCall, Alberto Moraglio,

Alison Motsinger-Reif, Frank Neumann, Gabriela Ochoa, Gustavo Olague, Yew-Soon Ong,

Michael E. Palmer, Gisele Lobo Pappa, Konstantinos E. Parsopoulos, Thomas Schmickl,

Stephen L. Smith, Christine Solnon, Thomas Stuetzle, El-Ghazali Talbi, Daniel Tauritz, and

Leonardo Vanneschi, editors, GECCO '13: Proceeding of the �fteenth annual conference on Genetic

and evolutionary computation conference, pages 949�956, Amsterdam, The Netherlands, 6-10 July

2013. ACM. doi: 10.1145/2463372.2463496.

[193] Krzysztof Krawiec, Wojciech Ja±kowski, and Marcin Szubert. Evolving Small-board Go Players

Using Coevolutionary Temporal Di�erence Learning with Archive. International Journal of

Applied Mathematics and Computer Science, 21(4):717�731, 2011.

[194] Krzysztof Krawiec, Jerry Swan, and Una-May O'Reilly. Behavioral Program Synthesis: Insights

and Prospects. In Genetic Programming Theory and Practice XIII, pages 169�183. Springer, 2016.

[195] Frank Kursawe. A Variant of Evolution Strategies for Vector Optimization. In International

Conference on Parallel Problem Solving from Nature, pages 193�197. Springer, 1990.

[196] Ray Kurzweil. How to Create a Mind: The Secret of Human Thought Revealed. Penguin, 2013.

[197] William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase Selection for Regression. In

Tobias Friedrich, editor, GECCO '16: Proceedings of the 2016 Annual Conference on Genetic and

Evolutionary Computation, pages 741�748, Denver, USA, 20-24 July 2016. ACM. doi:

10.1145/2908812.2908898.

[198] W. B. Langdon. Quadratic Bloat in Genetic Programming. In Darrell Whitley, David Goldberg,

Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, editors, Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2000), pages 451�458, Las Vegas,

Nevada, USA, 10-12 July 2000. Morgan Kaufmann. ISBN 1-55860-708-0. URL

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GA069.pdf.

[199] W. B. Langdon and S. M. Gustafson. Genetic Programming and Evolvable Machines: Ten Years of

Reviews. Genetic Programming and Evolvable Machines, 11(3/4):321�338, September 2010. ISSN

1389-2576. doi: 10.1007/s10710-010-9111-4. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gppubs10.pdf. Tenth Anniversary

Issue: Progress in Genetic Programming and Evolvable Machines.

[200] W. B. Langdon and J. P. Nordin. Seeding GP Populations. In Riccardo Poli, Wolfgang Banzhaf,

William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic

Programming, Proceedings of EuroGP'2000, volume 1802 of LNCS, pages 304�315, Edinburgh,

15-16 April 2000. Springer-Verlag. ISBN 3-540-67339-3. doi: 10.1007/978-3-540-46239-2_23. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.pdf.

[201] William B. Langdon and Mark Harman. Genetically Improved CUDA C++ Software. In Miguel

Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo Garcia-Sanchez, Juan J.

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GA069.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ gppubs10.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ WBL_eurogp2000_seed.pdf

209

Merelo, Victor M. Rivas Santos, and Kevin Sim, editors, 17th European Conference on Genetic

Programming, volume 8599 of LNCS, pages 87�99, Granada, Spain, 23-25 April 2014. Springer.

doi: 10.1007/978-3-662-44303-3_8. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2014_EuroGP.pdf.

[202] William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. Improving 3D Medical

Image Registration CUDA Software with Genetic Programming. In Christian Igel, Dirk V. Arnold,

Christian Gagne, Elena Popovici, Anne Auger, Jaume Bacardit, Dimo Brockho�, Stefano Cagnoni,

Kalyanmoy Deb, Benjamin Doerr, James Foster, Tobias Glasmachers, Emma Hart, Malcolm I.

Heywood, Hitoshi Iba, Christian Jacob, Thomas Jansen, Yaochu Jin, Marouane Kessentini,

Joshua D. Knowles, William B. Langdon, Pedro Larranaga, Sean Luke, Gabriel Luque, John A. W.

McCall, Marco A. Montes de Oca, Alison Motsinger-Reif, Yew Soon Ong, Michael Palmer,

Konstantinos E. Parsopoulos, Guenther Raidl, Sebastian Risi, Guenther Ruhe, Tom Schaul,

Thomas Schmickl, Bernhard Sendho�, Kenneth O. Stanley, Thomas Stuetzle, Dirk Thierens, Julian

Togelius, Carsten Witt, and Christine Zarges, editors, GECCO '14: Proceeding of the sixteenth

annual conference on genetic and evolutionary computation conference, pages 951�958, Vancouver,

BC, Canada, 12-15 July 2014. ACM. doi: 10.1145/2576768.2598244. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2014_GECCO.pdf.

[203] Christian W. G. Lasarczyk, Peter Dittrich, and Wolfgang Banzhaf. Dynamic Subset Selection

Based on a Fitness Case Topology. Evolutionary Computation, 12(2):223�242, Summer 2004. doi:

10.1162/106365604773955157. URL http://ls11-www.cs.uni-dortmund.de/people/lasar/

publication/LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf.

[204] Hans Laurberg, Mads Græsbøll Christensen, Mark D Plumbley, Lars Kai Hansen, and Søren Holdt

Jensen. Theorems on Positive Data: On the Uniqueness of Nmf. Computational intelligence and

neuroscience, 2008, 2008.

[205] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A Systematic

Study of Automated Program Repair: Fixing 55 Out of 105 Bugs for $8 Each. In Martin Glinz,

editor, 34th International Conference on Software Engineering (ICSE 2012), pages 3�13, Zurich,

June 2012. doi: 10.1109/ICSE.2012.6227211. URL

http://dijkstra.cs.virginia.edu/genprog/papers/weimer-icse2012-genprog-preprint.pdf.

[206] Daniel D Lee and H Sebastian Seung. Learning the Parts of Objects by Non-negative Matrix

Factorization. Nature, 401(6755):788�791, 1999.

[207] Daniel D Lee and H Sebastian Seung. Algorithms for Non-negative Matrix Factorization. In

Advances in neural information processing systems, pages 556�562, 2001.

[208] Joel Lehman and Kenneth O Stanley. Abandoning Objectives: Evolution through the Search for

Novelty Alone. Evolutionary computation, 19(2):189�223, 2011.

[209] Douglas B Lenat. The Role of Heuristics in Learning by Discovery: Three Case Studies. In

Machine learning, pages 243�306. Springer, 1983.

[210] Paweª Liskowski and Wojciech Ja±kowski. Accelerating Coevolution with Adaptive Matrix

Factorization, (nominated to Best-paper Award). In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO '17, pages 457�464, New York, NY, USA, 2017. ACM. ISBN

978-1-4503-4920-8. doi: 10.1145/3071178.3071320.

[211] Paweª Liskowski and Krzysztof Krawiec. Discovery of Implicit Objectives by Compression of

Interaction Matrix in Test-based Problems. In Parallel Problem Solving from Nature�PPSN XIII,

pages 611�620. Springer International Publishing, 2014.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ langdon_2014_EuroGP.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ Langdon_2014_GECCO.pdf
http://ls11-www.cs.uni-dortmund.de/people/lasar/publication/ LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf
http://ls11-www.cs.uni-dortmund.de/people/lasar/publication/ LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf
http://dijkstra.cs.virginia.edu/genprog/papers/weimer- icse2012-genprog-preprint.pdf

210 Bibliography

[212] Paweª Liskowski and Krzysztof Krawiec. Surrogate Fitness Via Factorization of Interaction Matrix

(Best-paper Award winner). In Malcolm I. Heywood, James McDermott, Mauro Castelli, and

Ernesto Costa, editors, EuroGP 2016: Proceedings of the 19th European Conference on Genetic

Programming, volume 9594 of LNCS, pages 65�79, Porto, Portugal, 30 March�1 April 2016.

Springer Verlag.

[213] Paweª Liskowski and Krzysztof Krawiec. Non-negative Matrix Factorization for Unsupervised

Derivation of Search Objectives in Genetic Programming. In Tobias Friedrich, editor, GECCO '16:

Proceedings of the 2016 Annual Conference on Genetic and Evolutionary Computation, pages

749�756, Denver, USA, 20-24 July 2016. ACM. doi: 10.1145/2908812.2908888.

[214] Paweª Liskowski and Krzysztof Krawiec. Online Discovery of Search Objectives for Test-based

Problems. Evolutionary Computation, 25(3):375�406, 2016.

[215] Paweª Liskowski and Krzysztof Krawiec. Segmenting Retinal Blood Vessels with Deep Neural

Networks. IEEE transactions on medical imaging, 35(11):2369�2380, 2016.

[216] Paweª Liskowski and Krzysztof Krawiec. Discovery of Search Objectives in Continuous Domains. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '17, pages 969�976,

New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4920-8. doi: 10.1145/3071178.3071344.

[217] Paweª Liskowski and Krzysztof Krawiec. Adaptive Test Selection for Factorization-based Surrogate

Fitness in Genetic Programming. Foundations of Computing and Decision Sciences, 42(4):339�358,

2017.

[218] Paweª Liskowski, Krzysztof Krawiec, Thomas Helmuth, and Lee Spector. Comparison of

Semantic-aware Selection Methods in Genetic Programming. In Colin Johnson, Krzysztof Krawiec,

Alberto Moraglio, and Michael O'Neill, editors, GECCO 2015 Semantic Methods in Genetic

Programming (SMGP'15) Workshop, pages 1301�1307, Madrid, Spain, 11-15 July 2015. ACM. doi:

10.1145/2739482.2768505.

[219] Paweª Liskowski, Wojciech Ja±kowski, and Krzysztof Krawiec. Learning to Play Othello with Deep

Neural Networks. IEEE Transactions on Games, 2018.

[220] Darrell F Lochtefeld and Frank W Ciarallo. Helper-objective Optimization Strategies for the

Job-shop Scheduling Problem. Applied Soft Computing, 11(6):4161�4174, 2011.

[221] Jason Lohn, Gregory Hornby, and Derek Linden. An Evolved Antenna for Deployment on Nasa's

Space Technology 5 Mission. In Una-May O'Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel,

editors, Genetic Programming Theory and Practice II, chapter 18, pages 301�315. Springer, Ann

Arbor, 13-15 May 2004. ISBN 0-387-23253-2. doi: 10.1007/0-387-23254-0_18.

[222] Antonio López Jaimes, Carlos A Coello Coello, and Debrup Chakraborty. Objective Reduction

Using a Feature Selection Technique. In Proceedings of the 10th annual conference on Genetic and

evolutionary computation, pages 673�680. ACM, 2008.

[223] Sushil J Louis and Gregory JE Rawlins. Pareto Optimality, Ga-easiness and Deception. In

Proceedings of the 5th International Conference on Genetic Algorithms, pages 118�123. Morgan

Kaufmann Publishers Inc., 1993.

[224] Ada Lovelace. Notes on L. Menabre's Sketch of the Analytical Engine Invented by Charles

Babbage. 1843.

[225] Alex Lubberts and Risto Miikkulainen. Co-evolving a Go-playing Neural Network. In Proceedings

of the GECCO-01 Workshop on Coevolution: Turning Adaptive Algorithms upon Themselves, pages

14�19, 2001.

211

[226] Simon M Lucas and Thomas P Runarsson. Temporal Di�erence Learning Versus Co-evolution for

Acquiring Othello Position Evaluation. In Computational Intelligence and Games, 2006 IEEE

Symposium on, pages 52�59. IEEE, 2006.

[227] S.M. Lucas. Learning to Play Othello with N-tuple Systems. Australian Journal of Intelligent

Information Processing, 4:1�20, 2008.

[228] Sean Luke. Genetic Programming Produced Competitive Soccer softbot teams for RoboCup97. In

John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B.

Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic

Programming 1998: Proceedings of the Third Annual Conference, pages 214�222, University of

Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann. ISBN 1-55860-548-7.

URL http://www.cs.gmu.edu/~sean/papers/robocupgp98.pdf.

[229] Sean Luke. Two Fast Tree-creation Algorithms for Genetic Programming. IEEE Transactions on

Evolutionary Computation, 4(3):274�283, September 2000. URL

http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf.

[230] Sean Luke and Liviu Panait. A Survey and Comparison of Tree Generation algorithms. In Lee

Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip

Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 81�88, San

Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann. ISBN 1-55860-774-9. URL

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf.

[231] Sean Luke and Liviu Panait. Lexicographic Parsimony Pressure. In W. B. Langdon, E. Cantú-Paz,

K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,

L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002:

Proceedings of the Genetic and Evolutionary Computation Conference, pages 829�836, New York,

9-13 July 2002. Morgan Kaufmann Publishers. ISBN 1-55860-878-8. URL

http://cs.gmu.edu/~sean/papers/lexicographic.pdf.

[232] Sean Luke and R. Paul Wiegand. Guaranteeing Coevolutionary Objective Measures. In

Kenneth A. de Jong, Riccardo Poli, and Jonathan E. Rowe, editors, Foundations of Genetic

Algorithms VII, pages 237�251, Torremolinos, Spain, 2002. Morgan Kaufman.

[233] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-evolving Soccer

Softbot Team Coordination with genetic programming. In Proceedings of the First International

Workshop on RoboCup, at the International Joint Conference on Arti�cial Intelligence, Nagoya,

Japan, 1997. URL http://www.cs.gmu.edu/~sean/papers/robocupc.pdf.

[234] Jacek Mandziuk. Knowledge-free and Learning-based Methods in Intelligent Game Playing, volume

276. Springer, 2010.

[235] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthesis. ACM

Transactions on Programming Languages and Systems (TOPLAS), 2(1):90�121, 1980.

[236] Edward P Manning. Coevolution in a Large Search Space Using Resource-limited Nash Memory.

In Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages

999�1006. ACM, 2010.

[237] Edward P Manning. Using Resource-limited Nash Memory to Improve an Othello Evaluation

Function. IEEE Transactions on Computational Intelligence and AI in Games, 2(1):40�53, 2010.

[238] James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo

Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, and

http://www.cs.gmu.edu/~sean/papers/robocupgp98.pdf
http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf
http://cs.gmu.edu/~sean/papers/lexicographic.pdf
http://www.cs.gmu.edu/~sean/papers/robocupc.pdf

212 Bibliography

Una-May O'Reilly. Genetic Programming Needs Better Benchmarks. In Terry Soule, Anne Auger,

Jason Moore, David Pelta, Christine Solnon, Mike Preuss, Alan Dorin, Yew-Soon Ong, Christian

Blum, Dario Landa Silva, Frank Neumann, Tina Yu, Aniko Ekart, Will Browne, Tim Kovacs,

Man-Leung Wong, Clara Pizzuti, Jon Rowe, Tobias Friedrich, Giovanni Squillero, Nicolas

Bredeche, Stephen L. Smith, Alison Motsinger-Reif, Jose Lozano, Martin Pelikan, Silja

Meyer-Nienberg, Christian Igel, Greg Hornby, Rene Doursat, Steve Gustafson, Gustavo Olague,

Shin Yoo, John Clark, Gabriela Ochoa, Gisele Pappa, Fernando Lobo, Daniel Tauritz, Jurgen

Branke, and Kalyanmoy Deb, editors, GECCO '12: Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference, pages 791�798, Philadelphia,

Pennsylvania, USA, 7-11 July 2012. ACM. doi: 10.1145/2330163.2330273.

[239] Ben McKay, Mark J Willis, and Geo�rey W Barton. Using a Tree Structured Genetic Algorithm to

Perform Symbolic Regression. In Genetic Algorithms in Engineering Systems: Innovations and

Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414), pages

487�492. IET, 1995.

[240] R. I. (Bob) McKay. Committee Learning of Partial Functions in Fitness-shared Genetic

Programming. In Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of

the IEEE Third Asia-Paci�c Conference on Simulated Evolution and Learning 2000, volume 4,

pages 2861�2866, Nagoya, Japan, October 2000. IEEE Press. ISBN 0-7803-6456-2. doi:

10.1109/IECON.2000.972452. URL http://sc.snu.ac.kr/PAPERS/committee.pdf.

[241] R I (Bob) McKay. Fitness Sharing in Genetic Programming. In Darrell Whitley, David Goldberg,

Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, editors, Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2000), pages 435�442, Las Vegas,

Nevada, USA, 10-12 July 2000. Morgan Kaufmann. ISBN 1-55860-708-0. URL

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf.

[242] Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic Building Blocks in Genetic

Programming. In Michael O'Neill, Leonardo Vanneschi, Steven Gustafson, Anna Isabel Esparcia

Alcazar, Ivanoe De Falco, Antonio Della Cioppa, and Ernesto Tarantino, editors, Proceedings of the

11th European Conference on Genetic Programming, EuroGP 2008, volume 4971 of Lecture Notes

in Computer Science, pages 134�145, Naples, 26-28 March 2008. Springer. doi:

10.1007/978-3-540-78671-9_12.

[243] Zbigniew Michalewicz. Genetic Algorithms+ Data Structures= Evolution Programs. Springer, 1996.

[244] Ryszard S Michalski. A Theory and Methodology of Inductive Learning. Arti�cial intelligence, 20

(2):111�161, 1983.

[245] John H Miller. The Coevolution of Automata in the Repeated Prisoner's Dilemma. Journal of

Economic Behavior & Organization, 29(1):87�112, 1996.

[246] Julian F. Miller, editor. Cartesian Genetic Programming. Natural Computing Series. Springer,

2011. doi: 10.1007/978-3-642-17310-3. URL

http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7.

[247] Marvin Minsky. Steps toward Arti�cial Intelligence. Proceedings of the IRE, 49(1):8�30, 1961.

[248] Tom M Mitchell. Machine Learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870�877, 1997.

[249] Tom M Mitchell, Paul E Utgo�, and Ranan Banerji. Learning by Experimentation: Acquiring and

Re�ning Problem-solving Heuristics. In Machine Learning, pages 163�190. Springer, 1983.

[250] David J. Montana. Strongly Typed Genetic Programming. Evolutionary Computation, 3(2):

199�230, 1995. doi: 10.1162/evco.1995.3.2.199. URL http://vishnu.bbn.com/papers/stgp.pdf.

http://sc.snu.ac.kr/PAPERS/committee.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf
http://www.springer.com/computer/ theoretical+computer+science/book/978-3-642-17309-7
http://vishnu.bbn.com/papers/stgp.pdf

213

[251] Alberto Moraglio and Krzysztof Krawiec. Semantic Genetic Programming. In Anabela Simoes,

editor, GECCO 2015 Advanced Tutorials, pages 603�627, Madrid, Spain, 11-15 July 2015. ACM.

doi: 10.1145/2739482.2756587.

[252] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric Semantic Genetic

Programming. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest,

Giuseppe Nicosia, and Mario Pavone, editors, Parallel Problem Solving from Nature, PPSN XII

(part 1), volume 7491 of Lecture Notes in Computer Science, pages 21�31, Taormina, Italy,

September 2012. Springer. doi: 10.1007/978-3-642-32937-1_3.

[253] David E Moriarty and Risto Miikkulainen. Discovering Complex Othello Strategies through

Evolutionary Neural Networks. Connection Science, 7(3-1):195�210, 1995.

[254] J-B Mouret and Stéphane Doncieux. Encouraging Behavioral Diversity in Evolutionary Robotics:

An Empirical Study. Evolutionary computation, 20(1):91�133, 2012.

[255] Jean-Baptiste Mouret and Stéphane Doncieux. Incremental Evolution of Animats' Behaviors As a

Multi-objective Optimization. In International Conference on Simulation of Adaptive Behavior,

pages 210�219. Springer, 2008.

[256] Jason Noble. Finding Robust Texas Hold'em Poker Strategies Using Pareto Coevolution and

Deterministic Crowding. 2002.

[257] Jason Noble and Richard A Watson. Pareto Coevolution: Using Performance against Coevolved

Opponents in a Game As Dimensions for Pareto Selection. In Proceedings of the 3rd Annual

Conference on Genetic and Evolutionary Computation, pages 493�500. Morgan Kaufmann

Publishers Inc., 2001.

[258] S. Nol� and D. Floreano. Coevolving Predator and Prey Robots: Do "arms Races" Arise in

Arti�cial Evolution? Arti�cial Life, 4(4):311�335, 1998.

[259] Martin A Nowak and Karl Sigmund. Evolutionary Dynamics of Biological Games. science, 303

(5659):793�799, 2004.

[260] Björn Olsson. Evaluation of a Simple Host-parasite Genetic Algorithm. In Evolutionary

Programming VII, pages 53�62. Springer, 1998.

[261] Björn Olsson. Co-evolutionary Search in Asymmetric Spaces. Information Sciences, 133(3):

103�125, 2001.

[262] Una-May O'Reilly. Using a Distance Metric on Genetic Programs to understand genetic operators.

In IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics

and Simulation, volume 5, pages 4092�4097, Orlando, Florida, USA, 12-15 October 1997. ISBN

0-7803-4053-1. URL http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf.

[263] Michael Orlov and Moshe Sipper. Flight of the FINCH through the Java Wilderness. IEEE

Transactions on Evolutionary Computation, 15(2):166�182, April 2011. ISSN 1089-778X. doi:

10.1109/TEVC.2010.2052622.

[264] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT press, 1994.

[265] P-Y Oudeyer, Frédéric Kaplan, and Verena Vanessa Hafner. Intrinsic Motivation Systems for

Autonomous Mental Development. Evolutionary Computation, IEEE Transactions on, 11(2):

265�286, 2007.

[266] Ovid and Charles Martin. Metamorphoses. W.W. Norton, 2004.

http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf

214 Bibliography

[267] Pentti Paatero and Unto Tapper. Positive Matrix Factorization: A Non-negative Factor Model

with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5(2):111�126, 1994.

[268] Liviu Panait and Sean Luke. A Comparison of Two Competitive Fitness Functions. In Proceedings

of the 4th Annual Conference on Genetic and Evolutionary Computation, pages 503�511. Morgan

Kaufmann Publishers Inc., 2002.

[269] BK Panigrahi, V Ravikumar Pandi, Sanjoy Das, and Swagatam Das. Multiobjective Fuzzy

Dominance Based Bacterial Foraging Algorithm to Solve Economic Emission Dispatch Problem.

Energy, 35(12):4761�4770, 2010.

[270] Jan Paredis. Co-evolutionary Constraint Satisfaction. Parallel Problem Solving from Nature -

PPSN III, pages 46�55, 1994.

[271] Jan Paredis. Steps Towards Co-evolutionary Classi�cation Neural Networks. In Proceedings of the

Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 102�108,

1994.

[272] Jan Paredis. Coevolutionary Computation. Arti�cial life, 2(4):355�375, 1995.

[273] Jan Paredis. Coevolving Cellular Automata: Be Aware of the Red Queen!. In ICGA, pages

393�400. Citeseer, 1997.

[274] V Paul Pauca, Farial Shahnaz, Michael W Berry, and Robert J Plemmons. Text Mining Using

Non-negative Matrix Factorizations. In SDM, volume 4, pages 452�456. SIAM, 2004.

[275] Tomasz P. Pawlak. Competent Algorithms for Geometric Semantic Genetic Programming. PhD

thesis, Poznan University of Technology, Poznan, Poland, 21 September 2015. URL

http://www.cs.put.poznan.pl/tpawlak/link/?PhD.

[276] Tomasz P. Pawlak and Krzysztof Krawiec. Semantic Geometric Initialization. In Malcolm I.

Heywood, James McDermott, Mauro Castelli, Ernesto Costa, and Kevin Sim, editors, EuroGP

2016: Proceedings of the 19th European Conference on Genetic Programming, volume 9594 of

LNCS, pages 261�277, Porto, Portugal, 30 March�1 April 2016. Springer Verlag. doi:

10.1007/978-3-319-30668-1_17.

[277] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Semantic Backpropagation for

Designing Search Operators in Genetic Programming. IEEE Transactions on Evolutionary

Computation, 19(3):326�340, June 2015. ISSN 1089-778X. doi: 10.1109/TEVC.2014.2321259.

[278] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Review and Comparative Analysis of

Geometric Semantic Crossovers. Genetic Programming and Evolvable Machines, 16(3):351�386,

September 2015. ISSN 1389-2576. doi: 10.1007/s10710-014-9239-8.

[279] Michael Pazzani and Dennis Kibler. The Utility of Knowledge in Inductive Learning. Machine

learning, 9(1):57�94, 1992.

[280] Dan Pelleg, Andrew W Moore, et al. X-means: Extending K-means with E�cient Estimation of

the Number of Clusters. In ICML, pages 727�734, 2000.

[281] Justyna Petke, William B. Langdon, and Mark Harman. Applying Genetic Improvement to

MiniSAT. In Guenther Ruhe and Yuanyuan Zhang, editors, Symposium on Search-Based Software

Engineering, volume 8084 of Lecture Notes in Computer Science, pages 257�262, Leningrad,

August 2013. Springer. doi: 10.1007/978-3-642-39742-4_21. URL

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Petke_2013_SSBSE.pdf. Short Papers.

http://www.cs.put.poznan.pl/tpawlak/link/?PhD
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ Petke_2013_SSBSE.pdf

215

[282] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. Using Genetic

Improvement and Code Transplants to Specialise a C++ Program to a Problem Class. In Miguel

Nicolau, Krzysztof Krawiec, Malcolm I. Heywood, Mauro Castelli, Pablo Garcia-Sanchez, Juan J.

Merelo, Victor M. Rivas Santos, and Kevin Sim, editors, 17th European Conference on Genetic

Programming, volume 8599 of LNCS, pages 137�149, Granada, Spain, 23-25 April 2014. Springer.

doi: 10.1007/978-3-662-44303-3_12. URL

http://www0.cs.ucl.ac.uk/staff/J.Petke/papers/Petke_2014_EuroGP.pdf.

[283] Gordon Plotkin. Automatic Methods of Inductive Inference. 1972.

[284] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide to Genetic

Programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. URL http://www.gp-field-guide.org.uk. (With

contributions by J. R. Koza).

[285] J.B. Pollack, A.D. Blair, and M. Land. Coevolution of a Backgammon Player. In Arti�cial Life V:

Proc. of the Fifth Int. Workshop on the Synthesis and Simulation of Living Systems, pages 92�98.

Cambridge, MA: The MIT Press, 1997.

[286] Jordan B Pollack and Alan D Blair. Co-evolution in the Successful Learning of Backgammon

Strategy. Machine learning, 32(3):225�240, 1998.

[287] E. Popovici and K. De Jong. Understanding Competitive Co-evolutionary Dynamics Via Fitness

Landscapes. In Arti�cial Multiagent Symposium. Part of the 2004 AAAI Fall Symposium on

Arti�cial Intelligence, 2004.

[288] E. Popovici and K. De Jong. Relationships between Internal and External Metrics in Co-evolution.

In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages 2800�2807.

IEEE, 2005.

[289] E. Popovici, A. Bucci, R.P. Wiegand, and E.D. De Jong. Coevolutionary Principles. Handbook of

Natural Computing, 2010.

[290] Elena Popovici. Bridging Supervised Learning and Test-based Co-optimization. Journal of

Machine Learning Research, 18(38):1�39, 2017.

[291] Elena Popovici and Kenneth De Jong. Monotonicity Versus Performance in Co-optimization. In

Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, pages

151�170. ACM, 2009.

[292] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong. Coevolutionary

Principles. In Handbook of Natural Computing, pages 987�1033. Springer, 2012.

[293] Mitchell A Potter and Kenneth A De Jong. Cooperative Coevolution: An Architecture for

Evolving Coadapted Subcomponents. Evolutionary computation, 8(1):1�29, 2000.

[294] William Poundstone. Prisoner's Dilemma: John Von Neuman, Game Theory, and the Puzzle of

the Bomb. Doubleday, New York, 1992.

[295] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.

[296] Ingo Rechenberg. Evolutionsstrategie Optimierung Technischer Systeme Nach Prinzipien Der

Biologischen Evolution. 1973.

[297] Craig Reynolds. Competition, Coevolution and the Game of Tag. In R. A. Brooks and P. Maes,

editors, Arti�cial Life IV, Proceedings of the fourth International Workshop on the Synthesis and

Simulation of Living Systems, pages 59�69, MIT, Cambridge, MA, USA, 1994. MIT Press.

http://www0.cs.ucl.ac.uk/staff/J.Petke/papers/ Petke_2014_EuroGP.pdf
http://www.gp-field-guide.org.uk

216 Bibliography

[298] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems

Handbook. In Recommender systems handbook, pages 1�35. Springer, 2011.

[299] Jon T Richardson, Mark R Palmer, Gunar E Liepins, and Mike R Hilliard. Some Guidelines for

Genetic Algorithms with Penalty Functions. In Proceedings of the 3rd international conference on

genetic algorithms, pages 191�197. Morgan Kaufmann Publishers Inc., 1989.

[300] Jose L. Risco-Martin, David Atienza, J. Manuel Colmenar, and Oscar Garnica. A Parallel

Evolutionary Algorithm to Optimize Dynamic Memory Managers in Embedded Systems. Parallel

Computing, 36(10-11):572�590, 2010. ISSN 0167-8191. doi: 10.1016/j.parco.2010.07.001. URL

http://www.sciencedirect.com/science/article/B6V12-50J9GPR-1/2/

e049c72f4c9e284bd1c2bdbf7c09f3aa. Parallel Architectures and Bioinspired Algorithms.

[301] Jorma Rissanen. Modeling by Shortest Data Description. Automatica, 14(5):465�471, 1978.

[302] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A Survey of

Multi-objective Sequential Decision-making. Journal of Arti�cial Intelligence Research, 48:67�113,

2013.

[303] Christopher D Rosin and Richard K Belew. Methods for Competitive Co-evolution: Finding

Opponents Worth Beating. In ICGA, pages 373�381, 1995.

[304] Christopher D Rosin and Richard K Belew. New Methods for Competitive Coevolution.

Evolutionary computation, 5(1):1�29, 1997.

[305] Duncan Roy. Learning and the Theory of Games. Journal of Theoretical Biology, 204(3):409�414,

2000.

[306] Thomas Runarsson and Simon Lucas. Preference Learning for Move Prediction and Evaluation

Function Approximation in Othello. Computational Intelligence and AI in Games, IEEE

Transactions on, 6(3):300�313, 2014. ISSN 1943-068X. doi: 10.1109/TCIAIG.2014.2307272.

[307] Thomas Philip Runarsson and Simon M Lucas. Coevolution Versus Self-play Temporal Di�erence

Learning for Acquiring Position Evaluation in Small-board Go. IEEE Transactions on

Evolutionary Computation, 9(6):628�640, 2005.

[308] Carl Runge. Über Empirische Funktionen Und Die Interpolation Zwischen äquidistanten

Ordinaten. Zeitschrift für Mathematik und Physik, 46(224-243):20, 1901.

[309] Spyridon Samothrakis, Simon Lucas, ThomasPhilip Runarsson, and David Robles. Coevolving

Game-playing Agents: Measuring Performance and Intransitivities. IEEE Transactions on

Evolutionary Computation, 17(2):213�226, 2013.

[310] Arthur L Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of

research and development, 3(3):210�229, 1959.

[311] Tatsuya Sato and Takaya Arita. Competitive Co-evolutionary Algorithms Can Solve Function

Optimization Problems. Arti�cial Life and Robotics, 14(3):440�443, 2009.

[312] Dhish Kumar Saxena, Joao A Duro, Ashutosh Tiwari, Kalyanmoy Deb, and Qingfu Zhang.

Objective Reduction in Many-objective Optimization: Linear and Nonlinear Algorithms.

Evolutionary Computation, IEEE Transactions on, 17(1):77�99, 2013.

[313] J David Scha�er. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In

Proceedings of the First International Conference on Genetic Algorithms and Their Applications,

1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.

http://www.sciencedirect.com/science/article/B6V12-50J9GPR- 1/2/e049c72f4c9e284bd1c2bdbf7c09f3aa
http://www.sciencedirect.com/science/article/B6V12-50J9GPR- 1/2/e049c72f4c9e284bd1c2bdbf7c09f3aa

217

[314] James David Scha�er. Some Experiments in Machine Learning Using Vector Evaluated Genetic

Algorithms (arti�cial Intelligence, Optimization, Adaptation, Pattern Recognition). PhD thesis,

Nashville, TN, USA, 1984. AAI8522492.

[315] Robert E Schapire. The Strength of Weak Learnability. Machine learning, 5(2):197�227, 1990.

[316] Michael Schmidt and Hod Lipson. Age-�tness Pareto Optimization. In Rick Riolo, Trent

McConaghy, and Ekaterina Vladislavleva, editors, Genetic Programming Theory and Practice VIII,

volume 8 of Genetic and Evolutionary Computation, chapter 8, pages 129�146. Springer, Ann

Arbor, USA, 20-22 May 2010. URL

http://www.springer.com/computer/ai/book/978-1-4419-7746-5.

[317] Michael D. Schmidt and Hod Lipson. Coevolution of Fitness Predictors. IEEE Transactions on

Evolutionary Computation, 12(6):736�749, December 2008. ISSN 1089-778X. doi:

10.1109/TEVC.2008.919006.

[318] Eric Schulte, Stephanie Forrest, and Westley Weimer. Automated Program Repair through the

Evolution of Assembly Code. In Proceedings of the IEEE/ACM International Conference on

Automated Software Engineering, pages 313�316, Antwerp, 20-24 September 2010. ACM. doi:

10.1145/1858996.1859059. URL

http://www.cs.unm.edu/~eschulte/data/ase2010-asm-preprint.pdf.

[319] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Inc., 1981.

[320] Travis C. Service and Daniel R. Tauritz. Co-optimization Algorithms. In GECCO '08: Proceedings

of the 10th annual conference on Genetic and evolutionary computation, pages 387�388, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-130-9. doi: 10.1145/1389095.1389166.

[321] C. E. Shannon. A Mathematical Theory of Communication. Bell Systems Technical Journal, 27:

623�656, 1948.

[322] Ehud Y Shapiro. Inductive Inference of Theories from Facts. Yale University, Department of

Computer Science, 1981.

[323] Ehud Y Shapiro. Algorithmic Program Debugging. MIT press, 1983.

[324] J Shapiro. Does Data-model Co-evolution Improve Generalization Performance of Evolving

Learners? In Parallel Problem Solving from Nature - PPSN V, pages 540�549. Springer, 1998.

[325] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587):

484�489, 2016.

[326] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the Game of Go

without Human Knowledge. Nature, 550(7676):354, 2017.

[327] Karl Sims. Evolving 3d Morphology and Behavior by Competition. Arti�cial life, 1(4):353�372,

1994.

[328] Hemant Kumar Singh, Amitay Isaacs, and Tapabrata Ray. A Pareto Corner Search Evolutionary

Algorithm and Dimensionality Reduction in Many-objective Optimization Problems. Evolutionary

Computation, IEEE Transactions on, 15(4):539�556, 2011.

[329] Moshe Sipper and Eytan Ruppin. Co-evolving Architectures for Cellular Machines. Physica D:

Nonlinear Phenomena, 99(4):428�441, 1997.

http://www.springer.com/computer/ai/book/978-1-4419-7746-5
http://www.cs.unm.edu/~eschulte/data/ase2010-asm- preprint.pdf

218 Bibliography

[330] Burrhus F. Skinner. The behavior of organisms: An experimental analysis. Appleton-Century, 1938.

[331] Robert E Smith, Stephanie Forrest, and Alan S Perelson. Searching for Diverse, Cooperative

Populations with Genetic Algorithms. Evolutionary computation, 1(2):127�149, 1993.

[332] Lee Spector. Automatic Quantum Computer Programming: A Genetic Programming Approach,

volume 7. Springer Science & Business Media, 2006.

[333] Lee Spector. Assessment of Problem Modality by Di�erential Performance of Lexicase Selection in

Genetic Programming: A Preliminary Report. In Kent McClymont and Ed Keedwell, editors, 1st

workshop on Understanding Problems (GECCO-UP), pages 401�408, Philadelphia, Pennsylvania,

USA, 7-11 July 2012. ACM. doi: 10.1145/2330784.2330846. URL

http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf.

[334] Lee Spector and Alan Robinson. Genetic Programming and Autoconstructive Evolution with the

Push Programming Language. Genetic Programming and Evolvable Machines, 3(1):7�40, March

2002. ISSN 1389-2576. doi: 10.1023/A:1014538503543. URL

http://hampshire.edu/lspector/pubs/push-gpem-final.pdf.

[335] Lee Spector, David M. Clark, Ian Lindsay, Bradford Barr, and Jon Klein. Genetic Programming

for Finite Algebras. In Maarten Keijzer, Giuliano Antoniol, Clare Bates Congdon, Kalyanmoy Deb,

Benjamin Doerr, Nikolaus Hansen, John H. Holmes, Gregory S. Hornby, Daniel Howard, James

Kennedy, Sanjeev Kumar, Fernando G. Lobo, Julian Francis Miller, Jason Moore, Frank Neumann,

Martin Pelikan, Jordan Pollack, Kumara Sastry, Kenneth Stanley, Adrian Stoica, El-Ghazali Talbi,

and Ingo Wegener, editors, GECCO '08: Proceedings of the 10th annual conference on Genetic and

evolutionary computation, pages 1291�1298, Atlanta, GA, USA, 12-16 July 2008. ACM. doi:

10.1145/1389095.1389343. URL

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p1291.pdf.

[336] Matej Sprogar. A Study of GP's Division Operators for Symbolic Regression. In Seventh

International Conference on Machine Learning and Applications, ICMLA '08, pages 286�291, La

Jolla, San Diego, USA, 11-13 December 2008. IEEE. doi: 10.1109/ICMLA.2008.84.

[337] Kenneth O Stanley and Risto Miikkulainen. Competitive Coevolution through Evolutionary

Complexi�cation. Journal of Arti�cial Intelligence Research, 21:63�100, 2004.

[338] M. Szubert, W. Ja±kowski, and K. Krawiec. Learning Board Evaluation Function for Othello by

Hybridizing Coevolution with Temporal Di�erence Learning. Control and Cybernetics, 40(3), 2011.

[339] Marcin Szubert. Coevolutionary Shaping for Reinforcement Learning. PhD thesis, Poznan

University of Technology, 2014. URL

http://www.cs.put.poznan.pl/mszubert/pub/phdthesis.pdf.

[340] Marcin Szubert, Wojciech Ja±kowski, and Krzysztof Krawiec. Coevolutionary Temporal Di�erence

Learning for Othello. In Computational Intelligence and Games, 2009. CIG 2009. IEEE

Symposium on, pages 104�111. IEEE, 2009.

[341] Marcin Szubert, Wojciech Ja±kowski, and Krzysztof Krawiec. On Scalability, Generalization, and

Hybridization of Coevolutionary Learning: A Case Study for Othello. IEEE Transactions on

Computational Intelligence and AI in Games, 5(3):214�226, 2013. doi:

10.1109/TCIAIG.2013.2258919. URL

http://www.cs.put.poznan.pl/mszubert/pub/szubert2013tciaig.pdf.

[342] Marcin Szubert, Wojciech Ja±kowski, Paweª Liskowski, and Krzysztof Krawiec. The Role of

Behavioral Diversity and Di�culty of Opponents in Coevolving Game-playing Agents. In

EvoApplications 2015, volume 9028 of Lecture Notes in Computer Science, pages 394�405.

Springer, 2015.

http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/ p1291.pdf
http://www.cs.put.poznan.pl/mszubert/pub/phdthesis.pdf
http://www.cs.put.poznan.pl/mszubert/pub/ szubert2013tciaig.pdf

219

[343] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the Gap to

Human-level Performance in Face Veri�cation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1701�1708, 2014.

[344] Julian Togelius, Peter Burrow, and Simon M Lucas. Multi-population Competitive Co-evolution of

Car Racing Controllers. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages

4043�4050. IEEE, 2007.

[345] Marco Tomassini, Leonardo Vanneschi, Philippe Collard, and Manuel Clergue. A Study of Fitness

Distance Correlation As a Di�culty Measure in Genetic Programming. Evolutionary Computation,

13(2):213�239, Summer 2005. ISSN 1063-6560. doi: 10.1162/1063656054088549.

[346] Alan Mathison Turing. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London mathematical society, 2(1):230�265, 1937.

[347] Joseba Urzelai, Dario Floreano, Marco Dorigo, and Marco Colombetti. Incremental Robot

Shaping. Connection Science, 10(3-4):341�360, 1998.

[348] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O'Neill, R. I. McKay, and Edgar Galvan-Lopez.

Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic

Regression. Genetic Programming and Evolvable Machines, 12(2):91�119, June 2011. ISSN

1389-2576. doi: 10.1007/s10710-010-9121-2.

[349] David Allen Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classi�cations, Analyses,

and New Innovations. PhD thesis, Wright Patterson AFB, OH, USA, 1999. AAI9928483.

[350] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. A Survey of Semantic Methods in Genetic

Programming. Genetic Programming and Evolvable Machines, 15(2):195�214, June 2014. ISSN

1389-2576. doi: 10.1007/s10710-013-9210-0.

[351] Stephen A Vavasis. On the Complexity of Nonnegative Matrix Factorization. SIAM Journal on

Optimization, 20(3):1364�1377, 2009.

[352] S. Viswanathan and J.B. Pollack. On the Coevolutionary Construction of Learnable Gradients. In

Proceedings of the 2005 AAAI Fall Symposium on Coevolutionary and Coadaptive Systems. AAAI

Press, 2005.

[353] R.A. Watson and J.B. Pollack. Coevolutionary Dynamics in a Minimal Substrate. In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2001), pages 702�709. Morgan

Kaufmann, 2001.

[354] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Automatically

Finding Patches Using Genetic Programming. In Stephen Fickas, editor, International Conference

on Software Engineering (ICSE) 2009, pages 364�374, Vancouver, May 2009. doi:

10.1109/ICSE.2009.5070536. URL http://www.cs.unm.edu/~tnguyen/papers/genprog.pdf.

[355] David R. White, Andrea Arcuri, and John A. Clark. Evolutionary Improvement of Programs.

IEEE Transactions on Evolutionary Computation, 15(4):515�538, August 2011. ISSN 1089-778X.

doi: 10.1109/TEVC.2010.2083669.

[356] Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolving Soccer Keepaway

Players through Task Decomposition. Machine Learning, 59(1):5�30, 2005.

[357] Paweª Widera, Jonathan M. Garibaldi, and Natalio Krasnogor. Evolutionary Design of the Energy

Function for Protein Structure Prediction. In Andy Tyrrell, editor, 2009 IEEE Congress on

Evolutionary Computation, pages 1305�1312, Trondheim, Norway, 18-21 May 2009. IEEE

Computational Intelligence Society, IEEE Press. doi: 10.1109/CEC.2009.4983095.

http://www.cs.unm.edu/~tnguyen/papers/genprog.pdf

220 Bibliography

[358] R Paul Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis, PhD thesis,

George Mason University, Fairfax, Virginia, 2003.

[359] R Paul Wiegand, William C Liles, and Kenneth A De Jong. An Empirical Analysis of

Collaboration Methods in Cooperative Coevolutionary Algorithms. In Proceedings of the 3rd

Annual Conference on Genetic and Evolutionary Computation, pages 1235�1242. Morgan

Kaufmann Publishers Inc., 2001.

[360] Josh L. Wilkerson and Daniel Tauritz. Coevolutionary Automated Software Correction. In Juergen

Branke, Martin Pelikan, Enrique Alba, Dirk V. Arnold, Josh Bongard, Anthony Brabazon, Juergen

Branke, Martin V. Butz, Je� Clune, Myra Cohen, Kalyanmoy Deb, Andries P Engelbrecht, Natalio

Krasnogor, Julian F. Miller, Michael O'Neill, Kumara Sastry, Dirk Thierens, Jano van Hemert,

Leonardo Vanneschi, and Carsten Witt, editors, GECCO '10: Proceedings of the 12th annual

conference on Genetic and evolutionary computation, pages 1391�1392, Portland, Oregon, USA,

7-11 July 2010. ACM. doi: 10.1145/1830483.1830739.

[361] Stephen Wolfram. A New Kind of Science, volume 5. Wolfram media Champaign, 2002.

[362] Stephen Wolfram et al. Theory and Applications of Cellular Automata, volume 1. World Scienti�c

Singapore, 1986.

[363] David H Wolpert and William G Macready. No Free Lunch Theorems for Optimization. IEEE

transactions on evolutionary computation, 1(1):67�82, 1997.

[364] David H Wolpert, William G Macready, et al. No Free Lunch Theorems for Search. Technical

report, Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[365] Dietmar Wolz and Pedro PB De Oliveira. Very E�ective Evolutionary Techniques for Searching

Cellular Automata Rule Spaces. J. Cellular Automata, 3(4):289�312, 2008.

[366] Sewall Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution.

Proceedings of the Sixth International Congress on Genetics, 1(6):356�366, 1932.

[367] Zhenyu Yang, Ke Tang, and Xin Yao. Large Scale Evolutionary Optimization Using Cooperative

Coevolution. Information Sciences, 178(15):2985�2999, 2008.

[368] Taku Yoshioka, Shin Ishii, and Minoru Ito. Strategy Acquisition for the Game. Strategy Acquisition

for the Game "Othello" Based on Reinforcement Learning, 82(12):1618�1626, 1999.

[369] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case

Study and the Strength Pareto Approach. IEEE transactions on Evolutionary Computation, 3(4):

257�271, 1999.

[370] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the Strength Pareto

Evolutionary Algorithm. TIK-report, 103, 2001.

c© 2018 Paweª Liskowski

Poznan University of Technology
Faculty of Computing Science
Institute of Computing Science

Typeset using LATEX in Latin Modern.

BibTEX:

@PHDTHESIS{LiskowskiPhd2018,
author = {Paweª Liskowski},
title = {Heuristic Algorithms for Discovery of Search Objectives in Test-based Problems},
school = {Poznan University of Technology},
address = {Poznan, Poland},
year = {2018}

}

	Title
	Dedication
	Acknowledgments
	Abstract
	Publications
	Contents
	1 Introduction
	1.1 Problem Setting and Motivation
	1.2 Aims and Scope
	1.3 Thesis Outline

	2 Evolutionary Computation
	2.1 Evolutionary algorithms
	2.2 Evolutionary search
	2.3 Pareto optimality and multiple objectives
	2.4 Evaluation issues in EC

	3 Coevolutionary Algorithms
	3.1 Origins
	3.2 Coevolution in Computing
	3.3 One- and multi-population coevolution
	3.4 Differences between coevolutionary and evolutionary approach
	3.5 Interaction patterns
	3.6 Applications of coevolution
	3.7 Challenges in coevolutionary algorithms

	4 Genetic Programming
	4.1 Introduction
	4.2 Representation
	4.3 Population initialization
	4.4 Evaluation and selection
	4.5 Mutation and crossover
	4.6 Applications of genetic programming
	4.7 Challenges in genetic programming

	5 Test-Based Problems
	5.1 Definition
	5.2 Extensions and related concepts
	5.3 Solution concepts
	5.4 Examples of test-based problems
	5.4.1 Othello
	5.4.2 Numbers Games
	5.4.3 Iterated Prisoner's Dillema
	5.4.4 Density Classification Task
	5.4.5 Symbolic regression

	5.5 Algorithms for test-based problems
	5.5.1 Competitive coevolution
	5.5.2 Test-based genetic programming

	5.6 Chapter summary

	6 The pitfalls of scalar evaluation
	6.1 Evaluation bottleneck
	6.2 Compensation of interaction outcomes
	6.3 Loss of gradient
	6.4 Search bias
	6.5 Chapter summary

	7 Multi-Criteria Evaluation in Test-Based Problems
	7.1 Motivation
	7.2 Test difficulty
	7.3 Performance profile
	7.4 Test sampling methods
	7.4.1 Random sampling
	7.4.2 Evolutionary sampling

	7.5 Experimental evaluation
	7.6 Experimental analysis of the Iterated Prisoner Dilemma
	7.6.1 Experimental setup
	7.6.2 Results for expected utility
	7.6.3 Analysis with performance profiles

	7.7 Experimental analysis of 1-ply Othello
	7.7.1 Experimental setup
	7.7.2 Results for expected utility
	7.7.3 Analysis with performance profiles
	7.7.4 Round-robin tournament
	7.7.5 Performance profiles explain round-robin tournament and expected utility
	7.7.6 Performance profiles of selected Othello players

	7.8 The bias of evolutionary sampling
	7.9 Chapter summary

	8 Automatic Discovery of Search Objectives
	8.1 Motivation
	8.2 Interaction matrix
	8.3 Searching for structure in interaction matrices
	8.3.1 Implicit fitness sharing and related methods
	8.3.2 Pareto-coevolution
	8.3.3 Coordinate systems
	8.3.4 Other approaches
	8.3.5 Summary

	8.4 Heuristic Discovery of Search Objectives
	8.4.1 Rationale
	8.4.2 Search Objectives
	8.4.3 Deriving Search Objectives
	8.4.4 Taxonomy
	8.4.5 Desired properties

	8.5 Selection under search objectives
	8.5.1 Aggregation
	8.5.2 Switching objectives
	8.5.3 Lexicographic ordering and lexicase selection
	8.5.4 Multi-objective selection

	8.6 Related concepts
	8.7 Chapter summary

	9 Discovery of Search Objectives by Clustering
	9.1 DOC
	9.2 Properties of DOC
	9.3 Preservation of dominance
	9.4 Experimental analysis in the domain of CoEAs
	9.4.1 Basic coevolutionary configurations
	9.4.2 Additional control configurations
	9.4.3 Extensions of DOC
	9.4.4 Test problems
	9.4.5 Performance
	9.4.6 Number of derived objectives
	9.4.7 Correlation of objectives
	9.4.8 Intra- and inter-cluster variance
	9.4.9 Visualization of the search objectives

	9.5 Experimental analysis in the domain of GP
	9.5.1 Methods
	9.5.2 Benchmark problems
	9.5.3 Results

	9.6 Discussion
	9.7 Computational overhead
	9.8 Chapter summary

	10 Discovery of Search Objectives by Factorization
	10.1 Non-negative Matrix Factorization
	10.2 DOF
	10.3 Properties
	10.4 Analysis of dominance relation
	10.5 Experimental evaluation
	10.5.1 Methods and benchmarks
	10.5.2 Success rate
	10.5.3 Program size
	10.5.4 Behavioral diversity and search gradient
	10.5.5 Visualization of search objectives
	10.5.6 Computational overhead

	10.6 Discussion
	10.7 Chapter summary

	11 Discovery of Search Objectives in Continuous Domains
	11.1 Mapping continuous errors to interaction outcomes
	11.2 Experiments
	11.2.1 Compared algorithms
	11.2.2 Benchmark problems
	11.2.3 Results

	11.3 Discussion
	11.4 Chapter summary

	12 Surrogate Fitness via Factorization of Interaction Matrix
	12.1 Factorization of G with missing interaction outcomes
	12.2 SFIMX
	12.3 Properties of SFIMX
	12.4 Experiment
	12.4.1 Compared algorithms
	12.4.2 Success rates
	12.4.3 Results for increased population size
	12.4.4 Results for increased runtime

	12.5 Adaptive test selection in SFIMX
	12.5.1 Methods
	12.5.2 Experimental setup
	12.5.3 Success rates
	12.5.4 Visualization of measures of test difficulty
	12.5.5 Summary

	12.6 Automatic tunning of in SFIMX
	12.6.1 ADASFIMX
	12.6.2 Position evaluation in Othello with n-tuple networks
	12.6.3 Experimental setup
	12.6.4 Experimental verification

	12.7 Chapter summary

	13 Conclusions
	13.1 Summary
	13.2 Contributions
	13.3 Future work

	 Bibliography

