
This is a repository copy of On the time and space complexity of genetic programming for
evolving Boolean conjunctions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/154159/

Version: Published Version

Article:

Lissovoi, A. and Oliveto, P.S. (2019) On the time and space complexity of genetic
programming for evolving Boolean conjunctions. Journal of Artificial Intelligence Research,
66. pp. 655-689. ISSN 1076-9757

https://doi.org/10.1613/jair.1.11821

© 2019 AI Access Foundation. Reproduced in accordance with the publisher's
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Journal of Artificial Intelligence Research 66 (2019) 655-689 Submitted 09/2018; published 11/2019

On the Time and Space Complexity of Genetic
Programming for Evolving Boolean Conjunctions

Andrei Lissovoi a.lissovoi@sheffield.ac.uk

Pietro S. Oliveto p.oliveto@sheffield.ac.uk

Department of Computer Science, University of Sheffield

Sheffield S1 4DP, United Kingdom

Abstract

Genetic programming (GP) is a general purpose bio-inspired meta-heuristic for the
evolution of computer programs. In contrast to the several successful applications, there
is little understanding of the working principles behind GP. In this paper we present a
performance analysis that sheds light on the behaviour of simple GP systems for evolving
conjunctions of n variables (ANDn). The analysis of a random local search GP system
with minimal terminal and function sets reveals the relationship between the number of
iterations and the progress the GP makes toward finding the target function. Afterwards
we consider a more realistic GP system equipped with a global mutation operator and
prove that it can efficiently solve ANDn by producing programs of linear size that fit
a training set to optimality and with high probability generalise well. Additionally, we
consider more general problems which extend the terminal set with undesired variables
or negated variables. In the presence of undesired variables, we prove that, if non-strict
selection is used, then the algorithm fits the complete training set efficiently while the
strict selection algorithm may fail with high probability unless the substitution operator
is switched off. If negations are allowed, we show that while the algorithms fail to fit the
complete training set, the constructed solutions generalise well. Finally, from a problem
hardness perspective, we reveal the existence of small training sets that allow the evolution
of the exact conjunctions even with access to negations or undesired variables.

1. Introduction

Genetic Programming refers to a class of evolutionary algorithms introduced by Koza (1992)
to evolve computer programs. Traditionally syntax trees have been used to represent pro-
grams. Their quality is evaluated by executing the trees on a set of inputs and their
output is compared with that of a target function (the function to be evolved). The set
of input/output test cases is usually referred to as the training set. New programs are
created by applying variation operators, and natural selection principles are used to evolve
a population of programs with the aim of eventually identifying a program with the desired
functionality. Although during the evolution the quality of programs is measured using
a training set of inputs, the goal is to evolve a program that works well on all possible
inputs. In this case the program is said to have good generalisation. GP can be applied to
problems for which no efficient problem-specific algorithms are available, aiming to produce
reasonable, if not optimal, solutions without requiring problem-specific algorithm design.

While there are many examples of successful applications of GP to practical problems
(see Koza, 2010; Schuh, Angryk, & Sheppard, 2012; Liu & Shao, 2013; Al-Sahaf, Al-Sahaf,
Xue, Johnston, & Zhang, 2017 for some recent examples), there is a limited understanding

c©2019 AI Access Foundation. All rights reserved.

Lissovoi & Oliveto

of what problem characteristics make GP successful, how the multiple parameters should
be set for optimal results, and how common failures could be avoided (O’Neill, Vanneschi,
Gustafson, & Banzhaf, 2010; Poli, Langdon, & McPhee, 2008). A solid theoretical founda-
tion is necessary to answer these questions and could be used to guide the design of future
GP algorithms, as well as the choice of parameters in their applications.

A performance analysis of GP should focus on two different aspects of algorithmic be-
haviour: 1) the ability of the algorithm to fit a complete training set, and 2) whether the
solutions evolved using a smaller training set (which would allow solution quality to be eval-
uated in polynomial time) generalise well. If the number of available variables n is small, it
may be possible to evaluate the candidate solutions on all of its 2n rows in every iteration.
In that case, the complete training set could be used to evaluate program quality, and fitting
the training set is sufficient for efficient optimisation. If n is larger, running the candidate
programs on 2n inputs in every iteration may be computationally infeasible, in which case
the generalisation capabilities when using a polynomially-sized training set are crucial. In
any case, an analysis of the performance of a GP system using the complete set serves as a
best-case model of its behaviour: if the system is unable to produce a reasonable solution
while working with a complete training set, it is unlikely to perform well in practice.

Most previous theoretical work on the analysis of GP aimed at understanding the per-
formance of simple GP systems for evolving trees with particular structures rather than
programs with a given functionality (Lissovoi & Oliveto, 2019). In such settings, the evolved
tree structures would not accept variable inputs, and their fitness would be based on the
structure of the produced tree rather than on its execution (Langdon & Poli, 2002; Durrett,
Neumann, & O’Reilly, 2011; Wagner, Neumann, & Urli, 2015; Doerr, Kötzing, Lagodzinski,
& Lengler, 2017; Kötzing, Lagodzinski, Lengler, & Melnichenko, 2018). The analysis of the
MAX problem (Kötzing, Sutton, Neumann, & O’Reilly, 2014) is one exception to this, where
trees are used to represent arithmetic expressions which are evaluated; however, this prob-
lem still includes no input variables. Only recently, Mambrini and Oliveto (2016) analysed
the same simple GP algorithms for the ANDn and XORn problems that represent actual
logical functions with proper inputs and logically-defined outputs. The goal of the problems
is to evolve respectively conjunction and parity functions of n variables using a function
set consisting solely of a binary AND (XOR, respectively) operator, and a terminal set
consisting of n input variables. These functions were chosen to highlight the performance
and behaviour of the GP system respectively for evolving an easy and a hard function,
since ANDn is known to be evolvable in the PAC learning framework while XORn is not
(Valiant, 2009). Note that there are learnable problems for which no GP system will be effi-
cient because, compared to the more general concept of learnability, additional restrictions
are imposed on the actions the GP is allowed to perform. In Valiant’s Evolvability Theory,
which is a restricted case of PAC learning, the aim is to evaluate what functionalities can
be acquired by an evolutionary process that learns from examples. A function is evolvable
if there exists an evolution algorithm that evolves it. The aim of GP is to evolve a function
automatically, without the need of a human-designed evolution algorithm. The question is
what classes of functions may be evolved efficiently via GP, and which actually require a
human-designed evolution algorithm (given that they are evolvable). Mambrini and Oliveto
(2016) proved that a simple GP system using a random local search operator, which may
either add, delete or substitute a node in the current solution, can efficiently evolve the

656

Time and Space Complexity Analysis of Genetic Programming

conjunction of n variables, while it requires exponential time with overwhelming probabil-
ity to evolve a parity function of n variables. While the latter result is a consequence of
XOR not being PAC-learnable (Valiant, 2009), the analysis provided mathematical tools to
prove exponential runtimes for GP in cases where the algorithm is inefficient.

Compared to previous runtime analyses, ANDn and XORn are indeed proper functions
with input/output behaviour: they accept a number of variables as input and produce an
output value based on the values of the inputs. However, the settings considered in the
paper are still far from realistic applications of GP. One drawback of the work is that the
random local search operator used by the GP system is considerably different from the
typical mutation operators used in evolutionary computation and GP, which allow to make
larger changes to the current solution with some positive probability. More importantly, the
function and terminal sets were limited to contain exactly the “right” ingredients, instead
of analysing whether the GP system could learn to select the right functions and terminals
from larger sets during the evolution.

In this paper, we analyse the performance and behaviour of GP for evolving Boolean
conjunctions in these more realistic settings. The presented analysis reveals how and why
small changes in the problem setting can hugely affect the performance of GP. We start
by presenting a fixed budget computation analysis that provides a relationship between
the number of iterations that the GP system is allowed to run and the expected number
of distinct variables in the evolved program for the same random local search GP system
(which we call RLS-GP) and settings considered by Mambrini and Oliveto (2016).

Afterwards, we generalise the results to more realistic GP systems using more sophis-
ticated mutation operations with larger neighbourhoods. Apart from deriving time com-
plexity results we also perform a space complexity analysis that delivers precise asymptotic
bounds on the size of the evolved programs. The size of the produced tree allows us to
derive precise statements on the generalisation ability of the produced solutions. In par-
ticular, for realistic training sets of polynomial size, the GP systems evolve programs of
logarithmic size in the number of variables. These solutions generalise well with arbitrarily
high probability.

We then consider more challenging versions of the conjunction problem that allow to
highlight how slight differences in the problem structure may lead to great differences in
GP behaviour, hence of GP performance. We first extend the function set to not only
contain the required AND operators but also an unnecessary negation operator (i.e., NOT).
This setting was already used to show that by adding an unnecessary operator the RLS-GP
becomes inefficient with overwhelming probability1 on ANDn (Mambrini & Oliveto, 2016).
Our analysis shows that allowing mutation to insert, delete or substitute multiple variables
at once does not help the GP. Nevertheless, the produced solutions generalise well. We
also extend the terminal set such that it contains both necessary and unnecessary variables
(i.e., the target conjunction is a subset of the terminal set). This generalised version of
the conjunction problem, which we call ANDn,m, is an interesting benchmark problem as it
has been proven to be efficiently evolvable according to the PAC learning framework notion

1. We analyse this issue in the framework of the (1 + 1) GP algorithms and HVL-Prime mutation by
introducing negated literals into the training set. GP systems using a NOT function are similarly
inefficient, as the issue stems from the way solution fitness is computed for some locally-optimal solutions
that are representable in both settings.

657

Lissovoi & Oliveto

(Valiant, 2009). Our results show that the non-strict selection algorithm RLS-GP is able
to find the optimal solution efficiently when using the complete truth table as the training
set, while the strict selection algorithm RLS-GP∗ may fail with high probability unless the
substitution operator is switched off. When program quality is evaluated by sampling a
polynomial number of inputs uniformly at random from the complete truth table in each
iteration, we show that RLS-GP is able to construct solutions with polynomially-small
generalisation errors in polynomial time if a limit on the maximum tree size is in place as
is common in GP applications.

We conclude by presenting a problem hardness analysis that shows that for all the
settings considered in the paper there exist training sets of linear size which allow the GP
systems to efficiently produce solutions which generalise perfectly (i.e. are equivalent to the
target function).

The rest of the paper is structured as follows. In the next section, we will introduce the
RLS-GP and (1 + 1) GP algorithms, precisely define the learning problems and measures
of generalisation ability, and introduce the mathematical tools that will be used in our
analyses. In Section 3, we present the fixed budget analysis of the RLS-GP for the ANDn

problem. In Section 4 we present the analysis of the (1 + 1) GP for the ANDn problem,
proving that the algorithms evolve the conjunctions efficiently and that they generalise
well. In Section 5 we present the analysis of the GP systems for the more difficult problem
where also negations of variables are allowed. In Section 6 we extend the terminal set to
also contain unnecessary terminals. In Section 7 we prove the existence of linear training
sets which allow the GP algorithms to evolve exact solutions to the ANDn and ANDn,m

problems, also if the negated variables are included in the terminal set. Finally, we conclude
the paper by providing a summary of the results and discussing directions for future work.

2. Preliminaries

The following sections present results for a total of four simple GP algorithms in various
settings. All four algorithms evolve programs using a syntax tree representation, and use the
HVL-Prime mutation operator defined in Figure 1 (first proposed by O’Reilly & Oppacher,
1996) to construct offspring solutions in each iteration (Durrett et al., 2011; Kötzing et al.,
2014; Mambrini & Oliveto, 2016). Figure 3 illustrates the three possible HVL-Prime sub-
operations. Figure 2 shows the general pseudocode for all four algorithm variants.

The RLS-GP and RLS-GP∗ algorithms maintain a single solution, and apply a single
instance of the HVL-Prime mutation operator to produce an offspring solution in each
iteration. The performance of these algorithms on ANDn and XORn problems has been
formally analysed by Mambrini and Oliveto (2016). We note that previous work has referred
to these algorithms as the (1 + 1) GP; throughout this paper, we use the RLS-GP name
to emphasise the local search nature of the mutation operator, and use (1 + 1) GP to refer
to an algorithm using a global mutation operator, which is also known as the (1+1) GP-
multi (Durrett et al., 2011). Our notation matches the conventions of runtime analysis of
evolutionary algorithms (Oliveto & Yao, 2011; Jansen, 2013).

We also consider the (1 + 1) GP and (1 + 1) GP∗ algorithms, which perform k = 1 +
Poisson(1) iterative HVL-Prime mutations to produce an offspring solution in each iteration.

658

Time and Space Complexity Analysis of Genetic Programming

1: Choose sub-operation op ∈ {INSERT, DELETE, SUBSTITUTE} uniformly at random
2: if X is an empty tree then

3: Choose a literal l ∈ L uniformly at random
4: Set l to be the root of X.
5: else if op = INSERT then

6: Choose a node x ∈ X uniformly at random
7: Choose f ∈ F, l ∈ L uniformly at random
8: Replace x with f
9: Set the children of f to be x and l, order chosen u.a.r.

10: else if op = DELETE then

11: Choose a leaf node x ∈ X uniformly at random
12: Replace x’s parent in X with x’s sibling in X
13: else if op = SUBSTITUTE then

14: Choose a leaf node x ∈ X uniformly at random
15: Choose a literal l ∈ L uniformly at random
16: Replace x with l.

Figure 1: The HVL-Prime mutation operator on a tree X.

1: Initialise an empty tree X
2: for t← 1, 2, . . . do
3: X ′ ← X
4: k ← 1 + Poisson(1) ⊲ k ← 1 in RLS-GP
5: for i← 1, . . . , k do

6: X ′ ← HVL-Prime(X ′)

7: if ft(X
′) ≤ ft(X) then ⊲ Strict < in ∗ variants

8: X ← X ′

Figure 2: The (1 + 1) GP and RLS-GP algorithms (in RLS-GP and RLS-GP∗, k is always
set to 1). In (1 + 1) GP∗ and RLS-GP∗, line 7 instead uses a strict comparison.

The extended mutation operator has been previously considered on other problems (Kötzing
et al., 2014; Durrett et al., 2011).

Recall that the probability density function of a Poisson-distributed variable with pa-
rameter λ = 1 is:

Pr(X = x) = λxe−λ/(x!) = 1/(e x!).

The (1 + 1) GP and (1 + 1) GP∗ algorithms perform x+ 1 HVL-Prime sub-operations.
In each iteration, they perform a single HVL-Prime sub-operation with probability 1/e,
two sub-operations with probability 1/e, three with probability 1/(2e), and so on. In
expectation, two HVL-Prime sub-operations are performed in each iteration.

In the following sections we will consider problem instances based on the AND function:
the objective of the GP systems will be to evolve a tree which computes the conjunction
x1∧ . . .∧xn (the ANDn problem), or a conjunction of a subset of m < n available variables
(the ANDn,m problem). For Boolean functions of n variables, the complete training set is

659

Lissovoi & Oliveto

AND

x2 OR

x3 x4

SUBSTITUTE
⇐

AND

x1 OR

x3 x4

INSERT
⇒

AND

OR

x5 x1

OR

x3 x4

⇓ DELETE

OR

x3 x4

Figure 3: HVL-Prime sub-operations: substitution, insertion, and deletion.

a truth table with 2n rows. Solution quality is measured by the number of inputs (either
among all possible inputs, or among a subset that possibly depends on the iteration t) for
which the output of the current solution and the target function differs.

Definition 1. The error ǫ of a solution h compared to ĥ is defined as the probability that
h and ĥ differ on a truth table row r selected uniformly at random:

error(h) = Pr(h(r) 6= ĥ(r)) = ǫ.

Equivalently, error(h) can be thought of as the ratio of the rows of the complete truth
table on which the solution h returns a different value from the target function ĥ.

When using the complete truth table as the training set, the fitness of a solution h is
the number of inputs on which its output differs from the target function ĥ, i.e., ft(h) =
2n · error(h). In this formulation, lower ft(h) values are better, and an optimal solution has
a fitness value of 0.

For ANDn and ANDn,m, when h(x) is a conjunction of any subset of variables x1, . . . , xn,
it is possible to quickly calculate error(h) without evaluating the full 2n rows of the truth
table (per Propositions 2 and 18). This might not be possible when using GP for more
practical problems. To model this difficulty, we also present analyses for GP algorithms
using incomplete training sets, where the fitness function does not provide an accurate
value of error(h), but is instead based on a small sample of truth table rows. In such
settings, we consider the generalisation ability of GP systems in terms of the expected error
of the solution over the complete truth table, i.e. based on samples taken uniformly at
random from the complete truth table.

We consider two ways of randomly selecting the training set of size s from the complete
truth table of the target function: 1) static training set : a set of inputs is chosen at the
beginning of the optimisation process and used for all fitness evaluations (thus making all
ft(X) functions equivalent), or 2) dynamic training set : a new sample is taken at every
iteration of the GP algorithm, and used for fitness evaluations within that iteration only
(allowing ft(X) to change with t). This reflects the scenarios where only a limited amount of
information about the target function is available (such as in medical applications, Archetti,
Lanzeni, Messina, & Vanneschi, 2007), and where a prohibitively large amount of informa-
tion is available to be used in every fitness evaluation (such as for problems involving large
data sets, Song, Heywood, & Zincir-Heywood, 2005).

660

Time and Space Complexity Analysis of Genetic Programming

For some of our results, we additionally impose a limit on the maximum acceptable
tree size Tmax, and reject any offspring that contain more than Tmax leaf nodes. Tree size
limits are typically applied in practice to avoid issues arising from bloat, a common problem
where the size of the solution tends to increase without a corresponding increase in solution
quality (Koza, 1992; Poli et al., 2008).

Note that the class of AND functions (in particular, ANDn,m) is evolvable under the
uniform distribution (Valiant, 2009). However, it is not distribution-free evolvable using
a Boolean loss function (Feldman, 2008). This is of little concern to our aims, since all
rows of the truth table are of equal importance for evaluating the correctness of the evolved
function. Ideally all 2n rows should be sampled to evaluate the exact quality of a candidate
solution. However, since this becomes computationally prohibitive for large problem sizes
we also consider whether efficient evolution is possible when solution quality is evaluated
by sampling a polynomial number of possible inputs instead.

For our analysis, we will rely on the following observation concerning the fitness values
of solutions of ANDn: as the number of distinct variables used by a candidate solution
increases, its error relative to the target function decreases.

Proposition 2. Every conjunction of v distinct variables differs from the target function
ANDn(x1, . . . , xn) on fv = 2n−v − 1 rows.

Proof. The conjunction evaluates to true on the 2n−v rows where all v present variables are
true, while the target function evaluates to false on all but one of these truth table rows
(the single row where all variables are true).

2.1 Runtime Analysis Tools

The following theorems are useful mathematical tools that will be used in the analyses
presented in this paper. The drift analysis results presented in this subsection are based
on the excellent overview by Lengler (2019), which also includes proofs and application
examples.

We use three drift analysis results in particular: the additive drift theorem (Theorem 3)
concerns processes which progress toward their goal at a constant expected pace, the mul-
tiplicative drift theorem (Theorem 4) concerns processes which slow down their expected
rate of progress as they approach the goal, and the negative drift theorem (Theorem 5)
concerns processes which in expectation do not make progress toward the goal.

Theorem 3 (Additive drift, He & Yao, 2001, 2004). Let (Xt)t≥0 be a sequence of non-
negative random variables with a finite state space S ⊆ R

+
0 such that 0 ∈ S. Let T :=

inf{t ≥ 0 | Xt = 0}.

If there exists δ > 0 such that for all s ∈ S\{0} and for all t ≥ 0, ∆t(s) := E(Xt−Xt+1 |
Xt = s) ≥ δ, then

E(T) ≤
E(X0)

δ
.

If there exists δ > 0 such that for all s ∈ S\{0} and for all t ≥ 0, ∆t(s) := E(Xt−Xt+1 |
Xt = s) ≤ δ, then

E(T) ≥
E(X0)

δ
.

661

Lissovoi & Oliveto

Theorem 4 (Multiplicative drift, Doerr & Goldberg, 2010; Doerr, Johannsen, & Winzen,
2012). Let (Xt)t≥0 be a sequence of non-negative random variables with a finite state space
S ⊆ R

+
0 such that 0 ∈ S. Let smin := min(S \ {0}), let T := inf{t ≥ 0 | Xt = 0}, and for

t ≥ 0 let ∆t(s) := E(Xt −Xt+1 | Xt = s).
Suppose there exists δ > 0 such that for all s ∈ S \ {0} and all t ≥ 0 the drift is

∆t(s) ≥ δs. Then,

E(T) ≤
1 + E(ln(X0/smin))

δ
.

Moreover, for any r > 0, it holds that

Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r.

Theorem 5 (Negative drift, Oliveto & Witt, 2011, 2012; Rowe & Sudholt, 2014). For all
a, b, δ, η, r > 0, with a < b, there is c > 0, n0 ∈ N such that the following holds for all n ≥ n0.
Suppose (Xt)t≥0 is a sequence of random variables with a finite state space S ⊆ R

+
0 , and

with associated filtration Ft. Assume X0 ≥ bn, and let Ta := min{t ≥ 0 | Xt ≤ an} be the
hitting time of S ∩ [0, an]. Assume further that for all s ∈ S with s > an, for all j ∈ N0,
and for all t ≥ 0, the following conditions hold:

E(Xt −Xt+1 | Ft, Xt = s) ≤ −δ,

Pr(|Xt −Xt+1| ≥ j | Ft, Xt = s) ≤
r

(1 + η)j
.

Then,
Pr(Ta ≤ ecn) < e−cn.

Additionally, results concerning the coupon collector process are useful when bounding
the time for a GP system to insert a certain number of distinct variables into its solution.
The theorem below is based on the formulation by Doerr (2019).

Theorem 6 (Coupon collector process, Feller, 1968; Doerr, 2019). Assume that there are
n types of coupons available, and one coupon of a type chosen uniformly at random from
the n types is acquired each time step. Let Tn be the expected number of time steps before
at least one coupon of each type has been collected. Then,

E(Tn) =

n−1
∑

k=0

n

n− k
= n

n
∑

k=1

1

k
= (1 + o(1))n lnn,

and, for all ε ≥ 0,
Pr(Tn ≤ (1− ε)(n− 1) lnn) ≤ e−nε

.

3. Fixed Budget Analysis of RLS-GP on ANDn

In this section we consider ANDn, the problem of evolving a conjunction of n variables, using
minimal function and terminal sets. In this setting, the GP algorithms need to construct
a tree which includes each variable at least once. This problem has been considered for
the RLS-GP and RLS-GP∗ algorithms by Mambrini and Oliveto (2016), who have shown

662

Time and Space Complexity Analysis of Genetic Programming

that the algorithms find an exact solution in expected O(n log n) iterations. For a deeper
understanding of the performance of RLS-GP, we present a fixed budget analysis, providing
a relationship between the expected number of distinct variables present in the solution,
and the time the algorithms are allowed to run. The proofs follow the techniques used by
Jansen and Zarges (2014) to analyse Randomised Local Search for the OneMax problem.

Theorem 7. For all budgets b, the expected number of distinct variables in the solution pro-
duced by the RLS-GP∗ using F = {AND} and L = {x1, . . . , xn} on ANDn when initialised
with an empty tree is: E(v(xb)) = n− n(1− 1/(3n))b.

Proof. We note that RLS-GP∗ does not accept insertions of variables which are already
present in its current solution, as such mutations do not change the behaviour of that
solution, and hence do not result in a fitness improvement. Therefore, the solution contains
no duplicate variables, and thus neither deletions nor substitutions can be accepted, as
reducing (or, in the best case for substitution, not affecting) the number of distinct variables
in the current solution does not improve fitness.

A variable xi is inserted into the current solution with probability 1/(3n) in each itera-
tion; the probability that it has not been inserted within t iterations is (1 − 1/(3n))t. Let
Xi,t ∈ {0, 1} be random variables such that Xi,t = 0 if and only if xi is in the solution at
time t; then, by linearity of expectation and symmetry, the expected number of variables
still missing from the solution at time t is:

E(v(xt)) = n− E

(

n
∑

i=1

Xi,t

)

= n−
n
∑

i=1

E(Xi,t) = n− n(1− 1/(3n))t,

which proves the theorem.

The RLS-GP will accept mutations inserting additional copies of variables already
present in the tree (as these mutations do not affect the solution’s fitness value). When
the tree contains multiple copies of a single variable, the substitution sub-operator of HVL-
Prime can also increase the number of distinct variables in the tree (by substituting a copy
with a new variable). In this setting, we can provide upper and lower bounds on the per-
formance of the RLS-GP: the result of Theorem 7 provides a lower bound on the number of
distinct variables in the solution at time t, and Theorem 8 provides an upper bound based
on the substitution operator always selecting a redundant variable for substitution.

Theorem 8. For all budgets b, the expected number of distinct variables in the solution
produced by the RLS-GP using F = {AND} and L = {x1, . . . , xn} on ANDn when initialised
with an empty tree is:

n− n(1− 1/(3n))b ≤ E(v(xb)) ≤ n− n(1− 2/(3n))b.

Proof. We note that unlike the RLS-GP∗, the RLS-GP algorithm accepts mutations which
add further copies of variables already present in the current solution, which allow it to also
accept deletions and substitutions targeting variables which appear in the current solution
more than once. We disregard substitutions targeting variables which appear in the solution
exactly once, as these would either be rejected (if the replacement variable already appears

663

Lissovoi & Oliveto

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

20

40

60

80

100

Iteration

E
(D

is
ti
n
ct

va
ri
ab

le
s
in

so
lu
ti
on

)

RLS-GP∗

RLS-GP (upper bound)

Figure 4: Expected number of distinct variables in the solutions constructed by the RLS-GP
algorithms as a function of the number of iterations, for n = 100.

in the solution), or have no effect on the progress of the GP (if the replacement variable
was not present in the current solution).

Thus, the probability p that a new variable xi is added into the current solution depends
on the probability that substitution manages to find a suitable terminal to replace, leading
to:

(1− 1/(3n))b ≤ p ≤ (1− 2/(3n))b

and hence, in a manner similar to Theorem 7,

n− n(1− 1/(3n))b ≤ E(v(xb)) ≤ n− n(1− 2/(3n))b.

Figure 4 provides an illustration of the bounds from Theorem 7 and Theorem 8.

4. (1+1) GP on ANDn

In this section we present a runtime analysis of the (1 + 1) GP and (1 + 1) GP∗ algorithms,
which apply the HVL-Prime mutation operator k = 1+Poisson(1) times before evaluating
the quality of the offspring solution. We initially analyse these algorithms using the complete
truth table as the training set, and then using training sets of polynomial size chosen
uniformly at random either at the beginning of the optimisation process, or independently
in each iteration.

4.1 Complete Training Set

With minimal literal and function sets, both the (1 + 1) GP and the (1 + 1) GP∗ algorithms
are able to fit the complete training set efficiently.

664

Time and Space Complexity Analysis of Genetic Programming

Theorem 9. The (1 + 1) GP and the (1 + 1) GP∗ using F = {AND} and L = {x1, . . . , xn}
solve ANDn using the complete truth table as the training set in time Θ(n log n).

Proof. Neither algorithm will accept mutations which decrease the number of distinct vari-
ables in the current solution.

We divide the search space into fitness levels A1, . . . , An such that each level Ai con-
tains all the conjunctions with i distinct variables. To advance to fitness level Ai+1, a
single-insertion mutation introducing a new distinct variable is sufficient, and occurs with
probability pi ≥

n−i
3ne . By the artificial fitness level method (Oliveto & Yao, 2011), the

expected runtime is E(T) ≤
∑n

i=1 1/pi = 3en
∑n

i=1
1
i = O(n log n).

For a lower bound on the expected runtime, using a lower tail bound on the coupon
collector process (Theorem 6) yields that with probability at least 1−e−

√
n, there is at least

one variable which has never been added to the solution within 1/2 · (n − 1) log n HVL-
Prime sub-operations (pessimistically assuming that every sub-operation adds a variable
chosen uniformly at random). The number of HVL-Prime sub-operations the (1 + 1) GP
performs within t iterations can be bounded by applying Feige’s inequality (Doerr, 2019,
Lemma 10.19) to bound the sum of t independent Poisson(1)-distributed random variables;
doing so yields that with probability at least 1/13, the (1 + 1) GP will perform at most
1/2·(n−1) log n HVL-Prime sub-operations within 1/4·(n−1) log n−1 iterations. Thus, with
at least constant probability, the (1 + 1) GP requires more than this number of iterations
to find the optimal solution, and by the law of total expectation, the expected number of
iterations before an optimal solution is found is therefore at least Ω(n log n).

We additionally prove that the expected number of leaf nodes in the solutions produced
is Θ(n).

Theorem 10. The (1 + 1) GP and the (1 + 1) GP∗ using F = {AND} and L = {x1, . . . , xn}
solve ANDn using the complete truth table as the training set. The expected number of ter-
minals in the produced solution is Θ(n).

Proof. We first remark that any solution which fits the complete training set must contain all
n variables at least once, and thus contains at least Ω(n) terminals. In the remainder of the
proof, we focus on deriving upper bounds on the number of terminals in trees constructed
by the (1 + 1) GP∗ and (1 + 1) GP algorithms.

To bound the size of the solution for the (1 + 1) GP∗, we note that only mutations
introducing new distinct variables are accepted, and these can occur at most n times. The
size of the resulting tree is the sum of the changes in the size of the tree over the at-most
n accepted mutations. Let pi be the probability that an HVL-Prime sub-operation inserts
a missing variable, and Pi,k be the probability that a mutation performs k sub-operations
and at least one of these is an insertion of a missing variable:

Pi,k =
1− (1− pi)

k

e(k − 1)!
,

where the numerator reflects the probability of inserting at least one missing variable in k
HVL-Prime sub-operations, and the denominator reflects the probability of performing k
sub-operations i.e. that k is chosen using the Poisson distribution.

665

Lissovoi & Oliveto

Let X be a random variable denoting the number of HVL-Prime sub-operations in a
mutation which inserts a missing variable. In expectation,

E(X) =

∞
∑

k=1

k
Pi,k

∑∞
j=1 Pi,j

=
2epi + 3pi − p2i − 2

epi + pi − 1

We note that dE(X)
dx =

−1+2pi−pi
2+epi (1−3pi+p2i)

(epi+pi−1)2
< 0 for all 0 < pi ≤ 1, and thus E(X) is

monotonically decreasing with respect to pi. Furthermore, limpi→ 0E(X) = 5/2, and hence
we can conclude that E(X) ≤ 2.5. We use this as an upper bound on the expected change
in the tree size caused by an accepted mutation, pessimistically assuming that all performed
sub-operations are insertions. Thus, the expected size of the tree after all distinct variables
have been added to it is at most 2.5n = O(n) by linearity of expectation.

To bound the size of the solution for the (1 + 1) GP, we need a more complicated
argument, as the algorithm is able to accept solutions which increase the size of the tree
without a corresponding fitness improvement. To produce a bound, we will argue that
within the time required to construct the optimal solution, the GP system will be able to
use the deletion sub-operations to keep the size of the tree within a constant factor of n.

Let S be the number of terminals in the solution which fits the complete training set,
and let Mz be the event that no single mutation inserts more than z copies of any variable
before an optimal solution is found, where z is a sufficiently large constant. We apply the
law of total expectation:

E(S) = Pr(Mz)E(S |Mz) + (1− Pr(Mz)) · E(S |Mz),

and picking e.g. z ≥ 4 to bound (1 − Pr(Mz)) = O(n−2), and E(S | Mz) = O(n log n) (as
the expected number of HVL-Prime sub-operations performed before finding the optimal
solution is O(n log n), and each sub-operation can add at most one terminal), we bound the
second term by o(n). In the remainder of the proof, we focus on bounding E(S |Mz) = O(n)
to show E(S) = O(n).

In order for the tree to contain more than (2z + 1)n terminals, a mutation must cause
at least one variable to exceed 2z + 1 copies, and at the time this mutation occurred, the
solution must already contain at least z + 1 copies of the variable. In that case, both
mutations which delete i ≤ z or insert i ≤ z copies of such variables will be accepted, as
neither would affect the fitness value of the current solution. When a mutation is accepted,
we consider the HVL-Prime sub-operations which affect variables with at least 2z+1 copies
in the tree. Suppose there are j such variables, so the probability that a sub-operation is an
insertion of an additional copy is exactly j/(3n), and the probability that a sub-operation
is a deletion of an existing copy is at least j/(3n) (as the remaining n − j variables each
have fewer than 2z + 1 copies in the tree, the probability that deletion selects one of the j
variables with at least 2z + 1 copies is at least j/n); thus, each sub-operation is at least as
likely to delete a terminal of a variable with at least 2z + 1 copies as it is to insert such a
terminal.

The size of the solution at any time is therefore dominated by (2z + 1)n (i.e. assuming
that each variable has 2z + 1 copies in the tree) plus a contribution from a fair random
walk with a reflecting lower boundary, where every mutation accepted by the (1 + 1) GP

666

Time and Space Complexity Analysis of Genetic Programming

causes the walk to perform an expected O(1) steps (one for each performed HVL-Prime
sub-operation affecting a variable with at least 2z + 1 copies in the tree at the time the
sub-operation occurred; which for some mutations may be 0).

All that remains to be proven is that in the O(n log n) iterations required to add all
distinct variables to the tree, the random walk contribution remains below n with probability
1− o(1). This can be shown by applying Gambler’s Ruin (Feller, 1968; Oliveto, He, & Yao,
2007) repeatedly: each time the contribution of the random walk becomes positive, we
apply Gambler’s Ruin to show that in expected n iterations, the game will end, and with
probability 1 − 1/n, the contribution from the walk will return to 0 (rather than reach
n). In O(n log n) iterations, O(log n) Gambler’s Ruin games will occur in expectation by
an application of the additive drift theorem (Theorem 3), using O(n log n) as the initial
distance, and Ω(n), i.e. the expected duration of a single game, as the drift to bound the
expected number of games within the time budget. Markov’s inequality can then be used
to show that no more than O(log2 n) games occur with probability 1− 1/(log n) = 1− o(1).
Finally, a union bound over the O(log2 n) games each having a 1/n probability of reaching
a contribution of n, and the Markov bound, yields the desired result: with probability at
least 1− log(n)2/n− 1/(log n) = 1− o(1), the random walk contribution never reaches n in
the time required to find the optimal solution.

Thus, the expected number of terminals in the solution constructed by the (1 + 1) GP
is at most (2z + 2)n = O(n).

4.2 Static Polynomial-Size Training Sets

Since the efficient evaluation of all 2n truth table rows for the target function is not possible
without problem-specific insight, in practice GP algorithms are run on a smaller training set
of rows selected from the complete truth table. In this subsection, we consider the training
set to remain fixed throughout the process, to reflect a situation where only a limited
amount of information about the target function’s input/output behaviour is available. We
show that the (1 + 1) GP∗ and (1 + 1) GP algorithms easily fit polynomially-sized training
sets in polynomial time and provide solutions with good generalisation ability.

To begin with, we prove that in O(log n) iterations, both of the (1 + 1) GP algorithms
are able to find a solution that fits a polynomially-sized training set for the ANDn problem.

Theorem 11. Let a training set of s = poly(n) rows be drawn uniformly at random with
replacement from the complete truth table of ANDn at the beginning of the run. The
(1 + 1) GP∗ and (1 + 1) GP algorithms, with F = {AND} and L = {x1, . . . , xn}, will
fit the training set in expected O(log n) iterations. Additionally, for any c > 0, a solution
fitting the training set is constructed within O((c + 1) log n) iterations with probability at
least 1− n−c.

Proof. When a row is drawn uniformly at random from the complete truth table of ANDn,
variables in it are false independently with probability 1/2, making the number of variables
set to false within the row binomially distributed with parameters n and 1/2. Using a
Chernoff bound, we conclude that the probability that such a row sets fewer than n/4
variables to false is at most e−n/8; and, using a union bound, the probability that all of the
polynomially many rows in the training set contain at least n/4 variables set to false is at
least 1− poly(n)e−n/8 = 1− e−Ω(n).

667

Lissovoi & Oliveto

Suppose each row of the training set contains at least n/4 variables set to false. We
can then apply the multiplicative drift theorem (Theorem 4) to bound the expected time it
takes the (1 + 1) GP∗ and (1 + 1) GP algorithms to fit the training set.

Let Xt be the fitness value (i.e. the number of training set rows on which the current
solution does not match the target function) at iteration t. Given that Xt > 0, there exists
at least one row on which the current solution evaluates to true, while the target function
evaluates to false. As each row sets at least n/4 variables to false, there must exist at least
n/4 variables not yet present in the current solution, which, if added, would improve the
solution’s fitness value. As training set rows are sampled from the complete truth table
uniformly at random with replacement, the probability that any particular variable is set
to false in any particular row is 1/2, and in expectation, when a new distinct variable is
added to the current solution, the number of rows on which the solution does not match
the target function is halved. Therefore, there exists a multiplicative drift toward Xt = 0
via single-variable additions:

E(Xt −Xt+1 | Xt > 0) ≥
Xt

2 · 4 · 3 · e

where the multiplicative constants stem respectively from the probability that adding a new
variable causes a row to fit the target function (1/2), the probability of inserting one of the
at least n/4 still-missing variables ((n/4)/n = 1/4), the probability of HVL-Prime selecting
an insertion operator (1/3), and the probability of the mutation operator performing a
single HVL-Prime sub-operation (1/e). As neither the (1 + 1) GP∗ nor the (1 + 1) GP
accept mutations which reduce the quality of the current solution, this serves as a lower
bound on the multiplicative drift.

Initially, X0 ≤ poly(n) ≤ nk for some sufficiently-large constant k. Applying Theorem 4,
the expected first-hitting time T := inf{t ≥ 0 | Xt = 0} is, for any starting point X0 ≤ nk:

E(T) ≤
1 + log(nk)

1/(24e)
= 24e (1 + k log(n)) = O(log n).

If some training set row sets fewer than n/4 variables to false, we note that the hardest
training set to fit has exactly one variable set to false in each row, requiring the solution
to accumulate all of the up to n distinct variables. Applying Theorem 6, we conclude that
the (1 + 1) GP∗ and (1 + 1) GP algorithms fit such a training set in time O(n log n).

Combining the two cases, the expected number of iterations required by the (1 + 1) GP∗

and (1 + 1) GP algorithms to fit a polynomially large training set drawn with replacement
from the complete truth table of ANDn is:

E(T) ≤ (1− e−Ω(n))O(log n) + e−Ω(n)O(n log n)

= O(log n).

For the high-probability bound, we use the tail bounds of Theorem 4: the probability
that the optimisation time exceeds δ−1(lnn + c lnn) = 24e(lnn + c lnn) = O(log n) is at
most n−c for any choice of c > 0.

668

Time and Space Complexity Analysis of Genetic Programming

4.2.1 Generalisation Ability

Mambrini and Oliveto (2016) proved that a solution with O(log n) variables will fit a
polynomially-sized training set with high probability; this will be reflected in Observa-
tion 13. However, our Theorem 11 only provides an upper bound on the number of itera-
tions it takes to construct a solution fitting the training set, which does not guarantee that
this solution will have Ω(log n) variables as in expectation the algorithms will attempt as
many deletions as insertions. The following theorem shows that the constructed solution
will indeed contain at least Ω(log n) distinct variables.

Theorem 12. Let a training set of s = poly(n) rows, s ≥ nc′, where c′ > 0 is an arbitrary
constant, be drawn uniformly at random with replacement from the complete truth table of
ANDn at the beginning of the run. The solution produced by the (1 + 1) GP∗ and (1 + 1) GP
algorithms, with F = {AND} and L = {x1, . . . , xn} in expectation contains Ω(log n) distinct
literals.

Proof. We will show that it is unlikely that the GP algorithms are able to find a solution
that fits a training set of nc′ rows, where c′ > 0 is a constant, using fewer than c′ log n
distinct variables in the time it takes to find a solution that fits the training set. Thus the
expected number of variables present in the solution produced by the GP algorithms is at
least logarithmic.

Consider the probability that a solution with v distinct literals produces the correct
solution on all s training set rows. If the target function evaluates to 0 on a truth table
row (which holds for all but one complete truth table row, and hence with overwhelming
probability for all rows of a polynomially large training set), a candidate solution matches
the target function if at least one of its v distinct variables is set to 0 in this row, which
occurs with probability 1− 2−v. Thus, a solution with v distinct literals matches the target
function on all s training set rows with probability (1− 2−v)s.

From Theorem 11, we know that the GP algorithms find a solution that fits the training
set in O(log n) iterations with high probability. We can then use a union bound to upper-
bound the probability that the GP finds a solution with v ≤ c′ log n distinct literals that fits
the training set during the c log n iterations it takes to find a solution with high probability:

1− (1− (1− 2−v)s)c logn ≤ c log n(1− 2−v)s

≤ c log(n)e−s/2v ≤ c log(n)e−sn−c′ log 2

≤ e−sn−c′ log 2+log(c logn)

which is at most e−nΩ(1)
when s ∈ Ω(nc′).

Thus, the probability of a fitting solution with fewer than c′ log n distinct variables
being found is close to 0, and hence the expected number of distinct variables in a solution
constructed by the GP algorithms is at least Ω(log n). More formally, if S is the number
of distinct variables in the solution that fits the entire training set, and T is the event that
GP finds a solution within c log n iterations for some constant c > 0, we apply the law of

669

Lissovoi & Oliveto

total expectation:

E(S) ≥ E(S | T) · Pr(T)

≥ c′ log n · (1− Pr(S ≤ c′ log n | T)) Pr(T)

≥ c′ log n(1− e−nΩ(1)
)(1− n−Ω(1))

which is in Ω(log n) for s ≥ nc′ .

Having shown that the expected number of distinct variables in the solution that fits the
training set is Ω(log n), we can now state the generalisation ability of the GP algorithms.

Observation 13. A conjunction of c log n distinct variables, where c > 0 is a constant,
matches the ANDn function on a row drawn uniformly at random from the complete truth
table of ANDn with probability at least 1− n−c.

Proof. Recall that, per Proposition 2, the fitness of such a conjunction of v = c log n distinct
variables is 2n−v−1, i.e. the conjunction does not match the target function on 2n−c logn−1
rows.

The probability that a row selected uniformly at random from the complete truth table
of ANDn is a row on which the conjunction does not match the target function is

2n−c logn − 1

2n
≤ 2−c logn = n−c

Thus, a conjunction of c log n variables is with polynomially high probability going
to produce a correct output on a randomly sampled row of the complete truth table of
ANDn.

In Section 7, we will show that if the training set is chosen arbitrarily, using just n specific
rows of the complete truth table is sufficient for any of the considered GP algorithms using
minimal function and terminal sets to evolve a solution with a generalisation error of 0.

4.3 Dynamic Polynomial-Size Training Sets

We now consider the behaviour of the GP algorithms when a smaller training set is chosen
independently at random from the complete truth table of the target function in each itera-
tion. The use of small training sets reduces the computational cost of evaluating the quality
of the candidate solutions when the number of available input/output examples describing
the behaviour of the target function is too large to be practical. This models practical GP
systems that periodically update a training set of reasonable size used to evaluate solution
quality by sampling from a larger pool of examples. Examples of such systems are Random
Subset Selection (Gathercole & Ross, 1994) where each example is selected to be in the cur-
rent subset of training cases independently with equal probability in each iteration. Also
more sophisticated GP systems exist that attempt to learn which subsets of the complete
data set should be preferred for inclusion in the training set. Examples of this include
Dynamic Subset Selection and Historical Subset Selection (Gathercole & Ross, 1994; Song
et al., 2005; Curry, Lichodzijewski, & Heywood, 2007).

670

Time and Space Complexity Analysis of Genetic Programming

Theorem 14. Let n2c+ǫ rows be sampled from the complete truth table in each itera-
tion (where c > 0 and ǫ > 0 are any constants) for ANDn with F = {AND} and
L = {x1, . . . , xn}. The RLS-GP and the (1 + 1) GP will terminate in expected O(log2 n)
iterations. With overwhelming probability, the generalisation error will be at most n−c. The
RLS-GP∗ and the (1 + 1) GP∗ will find a solution with a generalisation error of at most
n−c within an expected O(log n) iterations.

Proof. Let S = nk rows, where k > 0 is a sufficiently large constant depending on c, be
sampled from the complete truth table in each iteration. A solution which contains k log2 n
distinct variables, achieves an error of 0 on a sampled training set of size nk with at least
constant probability, as in order for a row to be wrong, it must set all k log2 n present
variables to 1 and at least one other variable to 0. The probability that no such row is
sampled from the complete truth table in a given iteration is at least:

(1− 2−k log2 n)S = (1− n−k)n
k

> 1/(2e)

for n ≥ 2. Thus, after an expected constant number of iterations with solutions containing
at least k log2 n distinct variables, a training set will be found on which a solution reports
an error of 0.

We note that the probability that a mutation increasing the number of distinct variables
in a solution is accepted is at least as high as the probability that a mutation decreasing
the number of distinct variables is accepted, since there is a higher probability of sampling
rows on which the increasing mutation is correct. Additionally, while the current solution
contains at most 2k log2 n distinct variables, the probability that insertion or substitution
sub-operations choose to insert a variable that is already present in the solution (leading
to either failing to increase or decreasing the number of distinct variables respectively) is
at most 2k log2(n)/n. If this does not occur, insertion operations will increase the number
of distinct variables, substitution operations will pessimistically not alter the number of
distinct variables, and deletion operations will decrease the number of distinct variables in
the current solution.

Conditioning on insertion and substitution not failing to insert a new variable each time,
the number of distinct variables in the solution is at least as likely to increase as it is to
decrease, and can thus be modelled as performing a fair random walk. For RLS-GP, the
number of distinct variables in the solution always changes by 1; we also use this as a
pessimistic upper bound on the changes by (1 + 1) GP. Recall that the expected number of
steps for a fair random walk on natural numbers with a reflecting boundary at 0 to reach a
value of t is t2 (Feller, 1968; Mitzenmacher & Upfal, 2005). The expected number of changes
before the number of distinct variables in the solution increases from 0 to k log2 n is thus
(k log2 n)

2. A step of this process in expectation takes at most 6 iterations of the RLS-GP,
e.g. by requiring that an insertion (occurs with probability 1/3) of a new distinct variable
(conditioned on never inserting a non-distinct variable) is accepted (with probability at
least 1/2 for non-strictly elitist GPs). For the (1 + 1) GP, such a step of this process in
expectation takes at most 6e iterations (as with probability 1/e, (1 + 1) GP performs a
single HVL-Prime sub-operation in an iteration).

We note that the probability that insertion or substitution fail to insert a distinct variable
at least once over t = c′(k log2 n)

2 mutations (where c′ > 0 is a constant) is at most

671

Lissovoi & Oliveto

t · (2k log2(n)/n) = O(log3 n/n) = o(1). Thus, after expected O((k log2 n)
2) iterations,

the RLS-GP has found a solution with k log2 n distinct variables, and after an additional
constant number of iterations, will also find a training set on which this solution (or one of
its offspring) evaluates to an error of 0.

5. Extended Function Set: Adding Negations

In this section we consider the effect of allowing the GP algorithms to access additional
functions when constructing solutions for ANDn. More specifically, we introduce the nega-
tion (unary NOT) operator. To avoid having to modify the HVL-Prime mutation operator
to support unary functions, we introduce negation by extending the literal set rather than
the function set, i.e. L = {x1, . . . , xn, x1, . . . , xn}. While this is not exactly equivalent in
expressive power to having NOT in the function set, the issues encountered by the GP
algorithms in the simplified setting might also occur when NOT is added to the function
set.

In particular, we show that, similarly to the results for the RLS-GP algorithms with
local-search mutation (Mambrini & Oliveto, 2016), the (1 + 1) GP algorithms are also
unable to find the optimal solution using the complete truth table in polynomial time, due
to constructing a solution containing a contradiction (i.e., xi ∧ xi ∧ . . . for some variable
xi). However, such solutions have an almost-perfect generalisation ability on ANDn, being
wrong on only one input. Additionally, we will show in Corollary 17 that the generalisation
performance of the (1 + 1) GP when using a realistic training set of polynomial size is
unaffected by the inclusion of the negated variables, and the GP system is still able to
produce solutions with any polynomially-small error probability in polynomial time.

Theorem 15. The (1 + 1) GP∗ using F = {AND} and L = {x1, . . . , xn, x1, . . . , xn},
using the complete truth table as the training set, does not fit the training set for ANDn in
polynomial time with overwhelming probability.

Proof. It is important to note that despite being incorrect with respect to the target func-
tion, adding negations to a non-optimal solution will generally improve the fitness of that
solution. This occurs as a consequence of the complete truth table of ANDn and the use of
conjunction operators within the tree: the target function evaluates to false on all but one
of the 2n rows of the truth table; adding a negated variable will cause the solution to not
match the target function on the all-true row, but will cause it to match the target function
on half of the previously-wrong rows (where the variable is set to 1). Thus, the (1 + 1) GP
will accept mutations adding negations unless the current solution is already optimal, and
the (1 + 1) GP∗ will accept mutations adding negations unless the current solution already
contains (n− 1) distinct non-negations.

Suppose the tree contains n/2 distinct terminals; the probability that it does not contain
a contradiction (that is, both xi and xi for some i) is then

n/2−1
∏

i=1

2n− 2i

2n− i
<

n/2−1
∏

i=n/3

2n− 2n/3

2n− n/2
< (8/9)n/6−1

as each time a new distinct terminal is added to the tree, both that terminal and its negation
can no longer be inserted into the tree to increase the number of distinct variables without

672

Time and Space Complexity Analysis of Genetic Programming

introducing a contradiction. This means that with overwhelming probability, the tree does
contain both xi and xi for some i upon reaching n/2 distinct terminals. The fitness of such
a tree is exactly 1: it evaluates to false on all rows, while the target function evaluates to
false on all but the one all-true row.

Once the tree contains a contradiction, the (1 + 1) GP∗ will only accept mutations
which produce an optimal solution. As the tree with n/2 or more distinct terminals is
overwhelmingly likely to contain a contradiction, and the last mutation before the tree
reaches n/2 or more distinct terminals is overwhelmingly unlikely to insert n/4 or more
distinct literals, to produce the optimum, a mutation must simultaneously add all of the at
least n/4 missing variables, and remove any negations present in the tree. The probability
that a mutation with at least n/4 operations occurs is at most 2

e(n/4)! ≤ 2−Ω(n); thus, the

(1 + 1) GP∗ requires an exponential amount of time to find the optimum after finding a
contradiction.

The analysis for the (1 + 1) GP is more complex, as the algorithm allows the current
solution to mutate almost freely after a contradiction has been obtained, since all solutions
containing a contradiction are wrong on exactly one row (where all variables are set to true).

Theorem 16. The (1 + 1) GP using F = {AND} and L = {x1, . . . , xn, x1, . . . , xn}, us-
ing the complete truth table as the training set, does not fit the training set for ANDn in
polynomial time with overwhelming probability.

Proof. As in the proof of Theorem 15, the current solution will with overwhelming proba-
bility contain a contradiction before it contains n/2 distinct terminals.

After constructing a tree with a contradiction, the (1 + 1) GP will accept any mutation
which does not remove the last remaining contradiction, as well as any mutation which
produces an optimal solution. We note that the drift on the size of the tree is at least
0 (as insertions are at least as likely as deletions, and deletions which remove the last
contradiction while the tree does not contain all the positive literals are rejected), and so,
using a Gambler’s Ruin argument, it will reach size t in expected O(t2) iterations for any
value of t.

While the tree is able to grow to an arbitrary size through a random walk, and thus
will in expected polynomial time contain all positive literals with high probability, at least
a constant fraction of the terminals in the tree at any time will be negations with high
probability. In order to find the optimal solution, all negated literals must be removed from
the tree, which becomes increasingly difficult as the fraction of negated literals in the tree
decreases, providing a strong negative drift that cannot be overcome in polynomial time
with high probability.

Suppose that at some point during the optimisation process, the tree contains at least
X ≥ n not necessarily unique positive literals. As insertions of positive and negated literals
occur and are accepted at the same rate, and deletions remove positive literals at least as
often as negated literals while the tree contains at most (1− 1/n) negated literals for every
positive literal in the tree (as a single positive literal may be exempt from deletion by being
a part of the only remaining contradiction), the tree will also with high probability contain
at least Y > X(1 − 1/n)/2 > X/3 negated literals. While X ≥ n positive literals remain
in the tree, we apply the negative drift theorem (Theorem 5) to show that it takes an

673

Lissovoi & Oliveto

exponential number of HVL-Prime sub-operations to reduce the number of negated literals
from Y ≥ n/3 to Y ≤ n/4, as there is a strong negative drift to overcome:

E(Yt+1 − Yt | n/3 ≥ Yt ≥ n/4, Xt ≥ n)

=
1

3 · 2
−

Yt
3(Yt +Xt)

+
1

3

(

Xt

2 · (Yt +Xt)
−

Yt
2 · (Yt +Xt)

)

>
1

6
−

4

45
−

4

90
=

3

90

using Yt ≤ n/3 and Xt + Yt ≥ 5n/4 in negative terms.
The large jump condition is trivially satisfied as we are considering the drift in terms of

HVL-Prime sub-operations rather than iterations of the algorithm, and each sub-operation
can only change the number of negated literals present in the tree by at most 1.

If the number of positive literals in the tree drops below n, we know that the current
solution is not optimal, and can apply the initial argument showing that more than X/3
negated literals exist in the tree the next time the tree contains X ≥ n positive literals.

Contradictions are also not the only problem the GP systems face when negations can be
added to the solution. Even if the solutions including a contradiction were never accepted,
non-optimal solutions which contain all n distinct variables in either positive or negative
form have the same fitness value (i.e., they are wrong on two rows: the all-true row, and the
row including setting all positive literals to true and all negative literals in the solution to
false). Since inserting both negative and positive literals improves the fitness of the mutated
offspring, it is unlikely that the first solution with all n distinct variables produced by the
GP has significantly more positive literals than negative ones. As replacing negative literals
with positive literals becomes increasingly unlikely the fewer negative literals remain in the
solution, it would be overwhelmingly unlikely that a solution with no negative literals is
encountered in polynomial time.

We note that a solution containing a contradiction matches the output of ANDn on
all but one row of the complete truth table, and thus has a generalisation error of just
2−n. Hence, while introducing negations prevents the GP algorithms from constructing
the optimal solution in polynomial time, it does not harm the generalisation ability of the
current-best solution, including the cases where an incomplete training set is used: if the
optimisation process ends by introducing a contradiction, then the resulting solution will
achieve a much lower error than the solutions produced in section 4.2.1 using minimal ter-
minal and function sets, while the presence of negated variables in the current solution does
not significantly affect the generalisation error on ANDn. Thus, the results of Theorems 12
(and the analysis of the generalisation ability of RLS-GP by Mambrini & Oliveto, 2016)
and 14 can be adapted to yield the following corollary.

Corollary 17 (of Theorems 12 and 14). For any desired generalisation error n−c, where
c > 0 is a constant, there exists a polynomial training set size s such that if s rows are
sampled with replacement from the complete truth table of ANDn either at the beginning of
the run, or independently in every iteration, then the (1 + 1) GP and the RLS-GP algorithms
using F = {AND} and L = {x1, . . . , xn, x1, . . . , xn} are able to find a solution with a
generalisation error of at most n−c in expectation after O(log n) (for a static training set)
or O(log2 n) iterations (for a dynamic training set).

674

Time and Space Complexity Analysis of Genetic Programming

This follows from a symmetry argument: for ANDn, a non-contradiction conjunction
containing at least one negated variable, and v distinct variables in total, is wrong on
at most two more inputs than a solution containing v distinct variables in positive form
(namely, the all-true input, and the input setting only the variables present in the solution
as positive literals to true). This also implies that the same result would hold for any target
function that is a conjunction of all n variables, each variable appearing in either positive
or negative form.

In Section 7, we will show that there exists a training set of 2n + 1 rows (or, if a
population with a diversity mechanism is used, just n+ 1 rows), that is sufficient to allow
the GP algorithms to evolve a solution with a generalisation error of 0 even when negations
are present in the terminal set.

6. Extended Terminal Set: ANDn,m

In general, when evolving a program it is not necessarily known in advance which distinct
terminals will be required. Valiant (2009) considered a setting where target functions are
a conjunction of an unknown subset of n variables, modelling an uncertainty over which
inputs are actually used in e.g. a classification problem. In this section we tackle a similar
setting by considering the ANDn,m problem, where the target function is a conjunction
of m < n variables in the terminal set – and thus the GP algorithm has to contend with
variables which are ultimately ignored by the target function. We point out that, differently
from Valiant’s work, the GP systems we consider are not especially designed to solve the
problem. Throughout this section we consider local search mutation operators to simplify
the analysis.

6.1 Complete Training Set

Similarly to Proposition 2, the error of a candidate solution on the ANDn,m problem can
also be calculated without explicitly evaluating all 2n rows of the truth table.

Proposition 18. Let ĥ be a conjunction of m distinct variables, m ≤ n. Any conjunction
containing a ≤ m distinct variables in ĥ, and b ≤ n − m distinct variables not in ĥ will
differ from ĥ on fa,b = 2n−a−b + 2n−m − 2n+1−m−b rows of the n-variable truth table for ĥ.

Proof. A conjunction of a ≤ m distinct variables would differ from ĥ when all a variables
are set to 1, but at least one of m− a variables is set to 0; this occurs in 2m−a − 1 rows of
the truth table for the m variables in ĥ.

If a conjunction additionally contains b distinct variables not in ĥ, it differs from ĥ both
on 2m−a− 1 rows (where a+ b variables are set to 1, and at least one other variable in ĥ to
0), and on 2b − 1 rows (where all m variables are set to 1, and at least one of b variables is
set to 0) of the truth table for the m+ b variables.

Let c = n −m − b be the number of distinct variables neither in the conjunction nor
in ĥ: each such variable effectively doubles the number of truth table rows on which the
conjunction and ĥ differ.

675

Lissovoi & Oliveto

Thus, a conjunction with a ≤ m distinct variables in ĥ, b ≤ n−m distinct variables not
in ĥ, and c = n−m− b variables in neither ĥ nor the conjunction, would differ from ĥ on

fa,b = 2c
(

2m−a − 1 + 2b − 1
)

= 2n−m−b
(

2m−a + 2b − 2
)

= 2n−a−b + 2n−m − 2n+1−m−b

rows of the n-variable truth table for ĥ.

The following observation specifies exactly when adding and removing variables ignored
by the target function improves the fitness value of a candidate solution.

Observation 19. Suppose ĥ is a conjunction of m ≤ n distinct variables. For a conjunction
with a ≤ m distinct variables in ĥ, and b ≤ n−m distinct variables not in ĥ, adding a new
distinct variable in ĥ to the conjunction always decreases fa,b, while adding a new distinct

variable not in ĥ to the conjunction decreases fa,b if and only if a < m − 1, and increases
fa,b if and only if a = m.

Proof. Substituting a = m− i yields fa,b = 2n−m−b(2i − 21) + 2n−m.

We will show that the HVL-Prime SUBSTITUTE operation prevents the RLS-GP∗ algo-
rithm from finding an optimal solution when using the complete truth table as the training
set, while the RLS-GP is able to do so in a polynomial number of iterations. To illustrate
the former behaviour, we set m to be linear with respect to n in the following theorem.

Theorem 20. The RLS-GP∗ algorithm with F = {AND} and L = {x1, . . . , xn} will with
high probability fail to find the optimum of ANDn,m in finite time when m = cn for any
constant 0 < c < 1 when using the complete truth table as the training set.

Proof. While the current solution contains fewer thanm−1 distinct variables of ĥ, mutations
which add new distinct variables not in ĥ will improve fitness (per Observation 19), and
therefore be accepted by the RLS-GP∗. Once all m ĥ variables have been added to the tree,
mutations which remove non-ĥ variables (or substitute them with a variable already present
in the current solution) will improve fitness, and therefore be accepted by the RLS-GP∗.
If a substitution replacing a non-ĥ variable with another non-ĥ variable, which is already
present in the tree, is ever accepted, the RLS-GP∗ will not be able to reach the global
optimum, as no HVL-Prime mutation removing or replacing a non-final copy of a non-ĥ
variable can improve fitness.

It remains to show that a problematic substitution is likely to occur during the opti-
misation process. In expectation, it takes

∑m−2
i=0

n
m−i = O(n logm) HVL-Prime insertions

for the RLS-GP∗ to collect m− 1 distinct ĥ variables. During this time, mutations adding
non-ĥ variables may also be accepted. Let w = (1− c)n be the number of distinct variables
not in ĥ. While there are fewer than h = w/2 such variables in the solution, the probability
that an addition selects a new non-ĥ variable is at least a constant: (w− h)/n = (1− c)/2.
Applying Chernoff bounds (Mitzenmacher & Upfal, 2005), the probability that after n addi-
tions occurring prior to the m−1’th ĥ-variable being added to the tree, fewer than (1−c)n/4
distinct non-ĥ variables have been added is at most e−Ω(n).

676

Time and Space Complexity Analysis of Genetic Programming

Thus, with overwhelming probability, the tree will contain at least (1 − c)n/4 = c′n
(where c′ > 0 is a constant) non-ĥ variables upon adding the final ĥ-variable. Non-ĥ
variables can be removed either through deletion or through substitution. While at least
c′n/2 + 1 distinct non-ĥ variables remain in the tree, the probability that substitution
choses one of the remaining non-ĥ variables as the replacement is at least c′/2, i.e., a
constant. Thus, the probability that when a non-ĥ variable is removed, it is through sub-
stitution adding a copy of another non-ĥ variable is at least a constant. The probability
that substitution introduces a copy of a non-ĥ variable over the course of c′n/2 removals is
overwhelmingly high: 1− (1− c′/2)c

′n/2.

We note that the quality of the solution produced by the RLS-GP∗ when it gets stuck
with multiple copies of an undesired variable is not prohibitively bad: such a solution
would still contain all m desired variables, and, in expectation, at most (n −m)/2 non-ĥ
variables (as in expectation at least half of the non-ĥ variables would be removed rather
than substituted out). Recalling Proposition 18, and setting a = m = cn, b = (n − cn)/2,
we get an error on fa,b = 2n(1−c) − 2n(1−c)/2 rows; and hence error(h∗) < 2−cn.

Without the SUBSTITUTE sub-operation of HVL-Prime, the RLS-GP∗ is able to fit the
complete training set in polynomial time, since mutations which insert additional copies of
any variable into the tree would never improve the fitness of the current solution, and hence
would never be accepted.

Theorem 21. The RLS-GP∗ algorithm, using the HVL-Prime mutation operator without
the SUBSTITUTE operation, with F = {AND} and L = {x1, . . . , xn}, and using the complete
truth table as the training set, will find the optimum of ANDn,m in expected O(n log n)
iterations.

Proof. Without substitution, HVL-Prime mutation can only introduce copies of variables
into the tree through insertions, and as such mutations would not change the fitness value
of the solution, they would not be accepted by the RLS-GP∗.

Applying Theorem 6, we conclude that the expected number of iterations required for the
RLS-GP∗ algorithm to add all m variables in ĥ to the current solution is at most O(n logm).
During this time, up to n−m variables not in ĥ may also be added, producing a tree of size
at most n. Once all ĥ variables have been added, it would take up to an expected O(n log n)
iterations to remove the variables not found in ĥ via HVL-Prime deletion mutations, since
per Observation 19 mutations removing such variables improve fitness.

We now show that the non-strictly elitist RLS-GP algorithm is able to fit the complete
training set in polynomial time even with the full HVL-Prime mutation operator. Since the
RLS-GP is able to accept solutions with identical fitness, it can reduce the number of copies
of undesired variables via random walks, eventually allowing it to remove the last copy of
each of the undesired variables. We begin by observing that the current solution does not
increase beyond a certain size in the time required to fit the training set.

Lemma 22. The number of terminals in the current solution of the RLS-GP algorithm, us-
ing the HVL-Prime mutation operator with F = {AND} and L = {x1, . . . , xn} on ANDn,m,
and using the complete truth table as the training set, remains below 3n during the first
O(n log n) iterations with probability at least 1− o(1).

677

Lissovoi & Oliveto

Proof. Let Xt be the number of terminals in the current solution tree. If the size of the
tree is to exceed 2n, some variables must appear in the tree more than twice; however, if
the tree contains at least n terminals, an accepted mutation is at least as likely to delete
an existing copy of such a variable as it is to insert an additional copy. Consider ∆2, the
expected change in the size of the tree due to addition or deletion of variables which appear
at least twice in the solution at time t; and let Xt be the total number of terminals in the
tree at time t, and Yt and Zt be the number of variables which appear in the tree at time t
exactly once or exactly zero times respectively; then ∆2 is:

n− Zt − Yt
n

−
Xt − Yt

Xt
≤

n− Yt
n
−

Xt − Yt
Xt

−
Zt

n
≤ 0

with the final inequality requiring that Xt ≥ n.
We can upper-bound the number of terminals in the tree at time t as 2n plus a contri-

bution from a fair random walk on N starting at 0. Every time the contribution from the
fair random walk increases from 0 to 1, we apply a Gambler’s Ruin argument (Feller, 1968),
concluding that with probability 1− 1/n, the walk returns to 0 before reaching n; this re-
turn takes an expected O(n) steps. By the additive drift theorem (Theorem 3) and Markov
bounds (as in the proof of Theorem 10), no more than O(log2 n) such games occur with
high probability. Taking a union bound, the probability that all games result in returning
to 0 is at least (1 − 1/n)log

2 n ≥ 1 − (log2 n)/n ≥ 1 − o(1). Thus, with high probability,
Xt ≤ 3n for the first O(n log n) iterations.

Having established a bound on the maximum size of the tree during the first O(n log n)
iterations of the RLS-GP on ANDn,m, we can proceed to bound its runtime.

Theorem 23. The RLS-GP algorithm, using the HVL-Prime mutation operator with F =
{AND} and L = {x1, . . . , xn}, and using the complete truth table as the training set, will
find the optimum of ANDn,m in O(n log n) iterations with probability 1− o(1).

Proof. We will show that within the O(n log n) iterations during which, per Lemma 22, the
current solution tree does not grow beyond 3n terminals, the RLS-GP constructs a solution
containing all ĥ variables and no non-ĥ variables.

In O(n logm) iterations, with high probability, the current solution tree will contain at
least one copy of every ĥ variable. Once this occurs, the RLS-GP will accept removals of the
last instance of non-ĥ variables, and will not accept mutations which increase the number
of distinct non-ĥ variables in the current solution.

Without loss of generality, let x1 6∈ ĥ, Ct be the number of copies of x1 in the tree at
time t, and Xt be the total number of terminals in the tree at time t. Consider the expected
change of Ct in a single iteration:

E(Ct+1 − Ct | Ct) =
1

3n
−

Ct

3Xt
+

2

3

Xt − Ct − Ct(n− 1)

nXt

=
1

3n
−

Ct

3Xt
+

2

3n
−

2Ct

3Xt
=

1

n
−

Ct

Xt

Given that Xt ≤ 3n, when Ct > 3, there is a negative drift on Ct:

E(Ct+1 − Ct | Ct > 3, Xt ≤ 3n) ≤
1

n
−

4

3n
≤ −

1

3n
.

678

Time and Space Complexity Analysis of Genetic Programming

Thus, by applying Theorem 5, we can conclude that the probability that Ct first exceeds
c′ log n, where c′ > 0 is an appropriately-chosen constant, within 2Ω(logn) = nΩ(1) iterations
is at most 2−Ω(logn) = n−Ω(1).

So Ct ≤ c′ log n when the m variables in ĥ have been added to the tree. Applying the
additive drift theorem (Theorem 3), Ct is reduced to 3 within at most O(n log n) iterations.

Consider the probabilities that the next operation to affect Ct will increase or decrease
it, recalling that Xt is the number of terminals in the tree at time t:

Pr(Ct+1 > Ct) =
1 + (n− 1)/n

3n
=

2− 1/n

3n

Pr(Ct+1 < Ct) =
Ct

3Xt
+

Ct(n− 1)

3Xtn
=

(2− 1/n)Ct

3Xt

which can be used to bound the probability that the next change will be a decrease, with
notation omitting the Ct 6= Ct+1 condition for formatting reasons:

Pr(Ct+1 < Ct | . . .) =
Pr(Ct+1 < Ct)

Pr(Ct+1 < Ct) + Pr(Ct+1 > Ct)

=
(2− 1/n)Ct

(2− 1/n)Ct + (2− 1/n)(Xt/n)

=
Ct

Ct +Xt/n

noting that when Xt ≤ 3n, this probability is at least 1/2, 2/5, and 1/4, for Ct = 3, Ct = 2,
and Ct = 1 respectively.

Assume Ct = 3. If the next three operations affecting Ct are all deletions, the variable
is removed entirely. With combined probability 1/2 · 2/5 · 1/4 = 1/20, the next three
changes in Ct decrease it, and the sum of their waiting times is at most 2n+3n+6n = 11n
(upper-bounded using Pr(Ct+1 < Ct) ≥ Ct/(2Xt), which holds for n ≥ 2). If instead Ct

increases beyond 3 then, by the additive drift theorem, it will return to 3 in expected cn
steps for some constant c > 0. Thus, in expectation, the variable is removed 20(c + 11)n
iterations after first hitting Ct = 3. Doubling this and applying Markov’s inequality, x1 is
removed completely after 40(c+11)n iterations with probability at least 1/2; and in c′ log(n)
repetitions of 40(c+11)n iterations, it is removed with probability 1− 2−c′ logn = 1− n−c′ .

Applying a union bound, with probability 1 − n−c′+1, all non-ĥ variables are removed
from the tree in time O(n log n) with probability at least 1− n−c′+1 = 1− o(1).

Note that even if Xt exceeds 3n, a random walk will return to Xt = 2n in expected
O(n2) iterations.

6.2 Dynamic Polynomial-Size Training Sets

A polynomially-sized training set can be used to produce a solution with a polynomially
small generalisation error. For the analysis, we restrict the maximum size of the tree the
RLS-GP algorithm will accept (as is common in applications of GP to avoid the rapid
increase of program size without significant return in fitness, i.e., bloat, Koza, 1992; Poli
et al., 2008), and compare the fitness of two solutions by sampling s rows from the complete
truth table independently at random in each iteration. We leave whether this tree size limit

679

Lissovoi & Oliveto

is necessary at all, or whether it could be replaced by a bloat control mechanism as open
questions.

Theorem 24. For any desired generalisation error n−c, where c > 0 is a constant, the RLS-
GP∗ (without the substitution sub-operation of HVL-Prime) and RLS-GP algorithms, with
F = {AND} and L = {x1, . . . , xn}, using a tree size limit Tmax = 1.25c log2 n, and sampling
s ∈ Ω(n5c+1) rows from the complete truth table uniformly at random in each iteration will
construct a solution with the desired generalisation error on the ANDn,m problem within
O(cn log(n) log(m)) iterations in expectation.

Proof. For any s ∈ Ω(nc+ǫ), and any positive constant ǫ, the expected number of rows on
which a solution with a generalisation error of more than n−c is wrong on in a training set
of size s is Ω(nǫ). By a Chernoff bound, the probability that such a solution is wrong on at
least nǫ/2 rows is at least e−Ω(nǫ), and by a union bound, this event does not occur in any
polynomial number of iterations with overwhelming probability as ǫ is at least a constant
greater than zero. Thus, if s ∈ Ω(nc+ǫ), and the GP algorithms terminate in polynomial
time, the generalisation error of the returned solution will be less than n−c.

We set Tmax such that a solution consisting of any Tmax distinct variables will achieve
the desired generalisation error when m > Tmax. For this purpose, Tmax = 1.25 log2 n is
sufficient: using Proposition 18, the generalisation error of a solution with a + b = Tmax

distinct variables is maximised when b = Tmax, and hence is at most 2n−1.25c−2n−2.5c < n−c.
It remains to be shown that when m ≤ Tmax, the GP algorithms can construct a solution

with exactly m distinct correct variables in polynomial time. Typically, the algorithms will
proceed by adding random variables to the tree until it is at the size limit, substituting in-
correct variables for correct variables, and finally removing any excessive incorrect variables
that remain. Throughout this, we need to show that the fitness function evaluation based
on sampling s rows of the complete truth table independently uniformly at random in each
iteration correctly identifies mutations following this pattern as beneficial, and mutations
opposing this pattern as detrimental.

Suppose two solutions are being compared on a training set of size s. If one of the
solutions is correct on D more complete truth table rows than the other, the expected result
of the evaluation is the better solution will be favoured by (D/2n)s sampled rows. We can
apply Azuma’s inequality (Doerr, 2011) to bound the probability that the better solution
is not identified correctly. Let X be the net number of rows favouring the better solution
in the sampled training set of s rows; then, E(X) = (D/2n)s and letting λ = (D/2n)s/2,

Pr(X ≤ E(X)− λ) ≤ exp

(

−2λ2/

s
∑

i=1

c2i

)

≤ exp(−(D/2n)2s/2)

by Azuma’s inequality. Hence, the better solution is identified correctly with high proba-
bility if (D/2n)2s ∈ Ω(log n).

We will show that by picking a large-enough s, the RLS-GP variants will with high
probability accept mutations which increase the number of distinct correct variables in the
solution, and will with high probably reject solutions which decrease this number. Recall
that per Proposition 18 a solution with a distinct correct variables, and b distinct wrong

680

Time and Space Complexity Analysis of Genetic Programming

variables differs from the target function on fa,b = 2n(2−a−b + 2−m − 21−m−b) rows of the
complete truth table.

There are two types of RLS-GP mutations which increase the number of distinct correct
variables in the solution: a correct variable may be inserted or substituted for a duplicate
copy of another variable, or it may be substituted for the last copy of an incorrect variable.
Let D+1,0 and D+1,−1 be the difference in the number of correct complete truth table rows
between the parent and the offspring affected by the two respective mutation types:

D+1,0 := fa,b − fa+1,b = 2n · 2−a−b−1

D+1,−1 := fa,b − fa+1,b−1 = 2n · 21−m−b

and using (a+ b) ≤ Tmax and m ≤ Tmax, we note that min(D+1,0, D+1,−1) > 2n · 2−2Tmax ≥
2n · n−2.5c.

Similarly, decreasing the number of distinct correct variables might happen with or
without simultaneously increasing the number of incorrect variables in the offspring. Let
D−1,0 and D−1,+1 be the difference in the number of correct complete truth table rows
between the parent and the offspring affected by a mutation which does not (and does,
respectively) increase the number of distinct incorrect variables in the solution:

D−1,0 := fa−1,b − fa,b = 2n · 2−a−b

D−1,+1 := fa−1,b+1 − fa,b = 2n · 2−m−b

and as before, we note that min(D−1,0, D−1,+1) ≥ 2n · 2−2Tmax ≥ 2n · n−2.5c.
Thus, with s ∈ Ω(n5c+1), the RLS-GP algorithms will accept each mutation increasing

the number of distinct correct variables, and reject each mutation decreasing the number
of distinct correct variables with probability exp

(

−(D/2n)2s/2
)

= e−Ω(n). By a straight-
forward union bound, the GP algorithms will with high probability not deviate from this
behaviour in any polynomial number of fitness evaluations.

We note that while the current solution contains fewer than min(Tmax,m) distinct correct
variables, there is always an RLS-GP mutation available which increases the number of
distinct correct variables in the solution (either through insertion or substitution), and hence
will be accepted with high probability by the above arguments. Pessimistically assuming
that all such increases must be made by specific substitution operations, which occur with
probability at least 1/3 · (1/Tmax) · (n − i)/n, where i is the number of correct variables
already present in the current solution, the expected number of iterations before RLS-
GP algorithms collect the m distinct correct variables in the current solution is at most
3Tmaxn log(m) (similarly to the result of Theorem 6).

If m < Tmax, it may be the case that some wrong variables still remain in the solution
when all m distinct correct variables have been inserted. Removing the last copy of each
such variable improves fitness by D∗

0,−1 rows, and inserting a new distinct wrong variable
decreases fitness by D∗

0,+1 rows; using that a = m, this yields:

D∗
0,−1 := fa,b − fa,b−1 = 2n · 2−b−m

D∗
0,+1 := fa,b+1 − fa,b = 2n · 2−b−m/2

and as b ≤ Tmax, both of these are at least 2n · 2−2Tmax/2 = 2n · n−2.5c/2.

681

Lissovoi & Oliveto

To make sure that the RLS-GP correctly accepts mutations that reduce the number of
distinct wrong variables, and rejects mutations that increase this number, once all correct
variables have been collected in the solution, s ∈ Ω(n5c+1) is sufficient. As selecting these
variables for deletion is much easier than inserting a new copy (at least i/(3 Tmax) probability
of deleting one of these variables while i copies remain, and only at most i/n probability of
inserting or substituting another copy of one of these variables into the tree), by the additive
drift theorem (Theorem 3), in expected O(Tmax

2) = o(n) iterations all wrong variables will
be removed from the tree.

Thus, after an expected O(cn log(n) log(m)) iterations, each sampling s ∈ Ω(n5c+1) rows
from the complete truth table, a solution with the desired generalisation error, i.e., at most
n−c, is constructed.

7. Evolving Exact Solutions Efficiently

For the AND family of problems analysed in the previous sections, we have shown that using
randomly-selected polynomially-sized training sets yields solutions which, despite generalis-
ing well, are not equivalent to the target function. The problem of identifying small training
sets that allow for efficient evolution is considered in practical applications of GP (e.g., via
the Dynamic or Historical Subset Selection mechanisms, Gathercole & Ross, 1994). Hence,
identifying problems for which such subsets exist is an important research question. In this
section, we show that for the conjunction problem, training sets of linear size which do allow
efficient evolution exist. Evaluating whether the methods used in practice are capable of
efficiently constructing such training sets is an interesting avenue for future work.

Consider a minimal training set M consisting of n rows, where the i’th row sets xi to
false and all other input variables to true. We will show that using a static training set
M (or a training set based on M) will allow the GP algorithms to construct an optimal
solution efficiently.

Theorem 25. The RLS-GP and (1 + 1) GP algorithms using the training set M are able
to find the optimal solution of ANDn with F = {AND} and L = {x1, . . . , xn} in expected
O(n log n) fitness evaluations (or O(n2 log n) training set row evaluations).

Proof. OnM , the fitness of a solution reflects the number of distinct literals in that solution:
thus, mutations increasing the number of distinct literals are always accepted, and mutations
reducing the number of distinct literals are never accepted. Using this observation, we can
apply the same reasoning as used in the proof of Theorem 9.

With probability Ω(i/n), where i is the number of missing variables in the current
solution, a mutation will increase the number of distinct literals in the current solution (by
inserting a new distinct literal). As no mutation which decreases the number of distinct
literals is ever accepted, all n variables will be present in the solution after an expected
O(n log n) mutations by Theorem 6.

The minimal training set M can also be used for the RLS-GP when the target function
is a conjunction of m < n variables, as is the case in the ANDn,m problem.

Theorem 26. The RLS-GP and RLS-GP∗ algorithms using the training set M are able to
find the optimal solution on ANDn,m with F = {AND} and L = {x1, . . . , xn} in expected
O(n log n) fitness evaluations (or O(n2 log n) training set row evaluations).

682

Time and Space Complexity Analysis of Genetic Programming

Proof. On M , inserting a variable xi not present in the target function ĥ will increase the
error: the row setting xi to false will now be wrong, and no rows will be rendered correct
(as no other row sets xi to false). Neither the RLS-GP nor RLS-GP∗ will thus accept a
solution with any wrong variables. Similarly, no mutations which decrease the number of
distinct correct variables in the solution can be accepted.

As mutations which insert new distinct correct variables are accepted, applying Theo-
rem 6 yields that the RLS-GP and RLS-GP∗ algorithms will produce the optimal solution
in expected O(n log n) iterations.

We expect that a similar result would also hold for the (1 + 1) GP algorithms. However,
since mutations which simultaneously insert both correct and undesired variables can occur
and be accepted, and inserting copies of already-present undesired variables does not affect
fitness, proving this would require a more complex random walk argument following the
style of Theorem 23.

As it does not appear to be possible for the (1+1) GP to evolve the exact conjunction
of n variables if their negations are also present in the terminal set (even when using the
complete truth table, per Theorems 15 and 16), we show how a more careful choice of the
training set can be beneficial.

Theorem 27. Using a training set consisting of the n rows of the M training set and n+1
copies of the row setting all variables to true, F = {AND} and L = {x1, . . . , xn, x1, . . . , xn},
the RLS-GP and (1 + 1) GP algorithms are able to construct the optimal solution for ANDn

in O(n log n) iterations.

Proof. We note that any solution containing any negated variable will be wrong on at least
n+ 1 copies of the all-true truth table row, making it worse than any solution which does
not contain a negation (and is therefore wrong on at most n rows). Thus, mutations which
introduce negated literals are never accepted by the (1+1) GP algorithms.

If a solution and its offspring contain no negated literals, mutations which increase
the number of distinct positive literals will improve the offspring’s fitness. Conversely,
decreasing the number of distinct positive literals will reduce the offspring’s fitness.

Thus, the GP algorithms’ behaviour can be modelled by the coupon collector problem:
with at least constant probability, they will insert a single variable chosen uniformly at
random from the terminal set, and after O(n log n) such insertions, will have inserted each
positive terminal at least once. As the number of distinct positive terminals in the solution
cannot decrease (without decreasing fitness), the optimal solution will have been found after
at most O(n log n) iterations in expectation.

A similar effect can be achieved by using a population with an explicit diversity mech-
anism (as employed in evolutionary algorithms to support global exploration of the search
space, Friedrich, Oliveto, Sudholt, & Witt, 2009; Oliveto, Sudholt, & Zarges, 2019), rather
than adding n additional copies of the all-true row. To the best of our knowledge this is
the first time the benefits of using a population in GP systems have been rigorously proved.
We consider the (µ + 1) GP algorithm, which maintains a population of µ trees. In each
iteration, an offspring is produced by selecting an ancestor uniformly at random from the
current population and applying HVL-Prime k = 1 + Poisson(1) times. If the fitness of

683

Lissovoi & Oliveto

the offspring is at least that of the worst individual in the population, it replaces that in-
dividual. With the phenotype diversity mechanism, offspring which exactly replicate the
training set behaviour of any individual already present in the population are not accepted,
even if their fitness is better than that of the worst individual in the population. Note
that this mechanism is different from the fitness diversity mechanism often considered in
evolutionary computation literature (Friedrich et al., 2009; Oliveto & Zarges, 2015), which
does not accept individuals with a fitness value already present in the population, even if
their phenotypes differ.

Theorem 28. Using a training set consisting of the n rows of the M training set and a single
copy of the row setting all variables to true, F = {AND} and L = {x1, . . . , xn, x1, . . . , xn},
the (µ + 1) GP algorithm, with µ ≥ n + 2 and using phenotype diversity, when initialised
with µ empty solutions, construct the optimal solution for ANDn in expected O(µn log n)
iterations.

Proof. The phenotype diversity mechanism will reject any mutation which exactly replicates
the training set behaviour of any solution already present in the population.

A solution containing a negation xi and either the positive literal xi or any other negation
xj (j 6= i) will evaluate to 0 on all rows of the training set, and hence be wrong on only the
all-true row.

A solution containing a single negation xi, and lacking the positive literal xi, will evaluate
to 0 on all but one of the training set rows, and is wrong on two rows: the all-true row, and
the row that sets xi to false while all remaining variables are true.

Hence, there are a total of n + 1 distinct evaluations of solutions containing negative
literals on the considered training set. Once a solution evaluating to each of these evaluation
profiles is present in the population, no offspring containing negative literals will be accepted.
Thus, at least one individual in the population will never contain negative literals, and hence
can increase in fitness by accumulating positive literals. Applying Theorem 6 using i/(µn)
as the probability of acquiring a new coupon in a single iteration, we conclude that after an
expected O(µn log n) iterations, mutations which select this individual as an ancestor will
have added all n distinct positive literals to it, producing the optimal solution.

Thus, we have shown that there exist training sets containing just O(n) rows which
allow the GP algorithms to construct the exact target function in polynomial time on the
AND family of problems, even when the terminal set L contains negated literals or extra
variables.

8. Conclusion

In this paper, a considerable step has been made towards the understanding of the working
principles of general purpose GP systems for evolving programs with a given functionality.
Our analysis shows how changing even slightly the parameters of the GP system may
drastically affect its performance for evolving Boolean conjunctions. In particular, we have
shown how the results are affected by modifying mutation and selection operators and the
influence of different function and terminal sets.

We first presented a time and space complexity analysis of the RLS-GP and the (1 + 1) GP
algorithms for evolving Boolean conjunctions (i.e., the ANDn problem). A fixed budget

684

Time and Space Complexity Analysis of Genetic Programming

Problem RLS-GP (1 + 1) GP

ANDn with F = {AND}, L = {x1, . . . , xn}
Complete Θ(n log n)§ Θ(n log n) (Th. 9)
Static O(log n)§ O(log n) (Th. 11)
Dynamic O(log2 n) (Th. 14) O(log2 n) (Th. 14)

ANDn with F = {AND}, L = {x1, . . . , xn, x1, . . . , xn}
Complete ω(poly(n))§, ∞∗,§ ω(poly(n)), ∞∗ (Th. 15, 16)
Static O(log n) (Cor. 17) O(log n) (Cor. 17)
Dynamic O(log2 n) (Cor. 17) O(log2 n) (Cor. 17)

ANDn,m with F = {AND}, L = {x1, . . . , xn}
Complete O(n log n) w.p. 1− o(1) (Th. 23), ?

∞∗, O(n log n)† (Th. 20, 21)
Dynamic O(cn log(n) log(m))‡ (Th. 24) ?

∗ Applies for RLS-GP∗ or (1 + 1) GP∗ respectively.
† Applies for RLS-GP∗ (without SUBSTITUTE).
‡ Applies for RLS-GP with tree size limit Tmax = c log2 n.
§ Proved by Mambrini and Oliveto (2016).

Table 1: A summary of the known bounds on the expected number of iterations required by
the (1 + 1) GP and RLS-GP algorithms to produce a solution fitting the complete
truth table (denoted Complete), or polynomially-sized training sets sampled from
the complete truth table uniformly at random either at the beginning of the run
(denoted Static) or independently in every iteration (denoted Dynamic).

analysis for ANDn provided a relationship between the number of variables in the evolved
program and the time the algorithm is allowed for the optimisation when local mutations
are used. We made a considerable step forward towards the analysis of realistic GP systems
by equipping the algorithms with more realistic mutation operators with large neighbour-
hoods, and by extending the function and terminal sets with more than just the minimal
elements. Our analysis highlights the impact of parameters such as the mutation rate, func-
tion and terminal sets, and strict elitism of the selection operator on the performance of
the GP system.

For ANDn with minimal function and terminal sets we show that the (1 + 1) GP and
(1 + 1) GP∗ algorithms produce a solution that fits the complete training set in Θ(n log n)
iterations and prove that this solution is of size Θ(n). When the size of the training set
is limited to a polynomial of n, these GP systems produce logarithmically-sized solutions
which generalise well.

Concerning the extended function set, when negated variables are also included in the
terminal set for ANDn, the algorithms encounter great difficulties in fitting the complete
training set. Nevertheless, the solutions have overwhelmingly good generalisation capabil-
ities over the training set under uniform distribution. On the other hand, for extended
terminal sets when the set of variables used by the target function is not known (i.e. the
ANDn,m setting), we have demonstrated that the non-strictly elitist RLS-GP has an advan-

685

Lissovoi & Oliveto

tage over the RLS-GP∗ when using the complete truth table as the training set. RLS-GP
is also able to achieve polynomially-small generalisation errors in this setting when eval-
uating program fitness using a polynomially-large training set sampled in each iteration,
while RLS-GP∗ may require the substitution sub-operation of HVL-Prime to be switched
off to achieve this. For both algorithms, a limit on the size of the accepted trees may be
required if the target conjunction consists of a (sub-)logarithmic number variables; whether
this limit is necessary or whether it could be replaced by a bloat control mechanism remain
open questions. Recent work has considered the more complicated setting of evolving con-
junctions using F = {AND,OR}, albeit only for the ANDn problem (Doerr, Lissovoi, &
Oliveto, 2019).

Overall, interesting characteristics of the considered benchmark function may be derived
from the presented work. When using the minimal sets and the complete truth table, the
problem is very similar to the OneMax coupon collecting benchmark problem used in
evolutionary optimisation (Droste, Jansen, & Wegener, 2002; Oliveto & Yao, 2011). Hence,
it is ideal as an easy benchmark function to evaluate the hillclimbing characteristics of GP
systems.

When smaller training sets are used, the problem characteristics change considerably.
In a training set of polynomial size drawn uniformly at random from the complete truth
table of ANDn, all the training set points return 0 in output with overwhelming probability
(w.o.p.). We see this in our analysis where, with minimal terminal and function sets,
a logarithmic number of conjunctions suffice to fit the polynomial training sets. These
solutions are somewhat similar to those evolved by Valiant (2009). However, when negated
variables are also allowed, then constant functions that always return 0 are easily evolved.
While these functions are trap points from which it is hard to escape on the complete
training set, they fit a polynomial size training set (w.o.p.). In both cases the programs will
return the correct output (w.o.p.) over randomly drawn rows from the complete training
set. It is fair, though, to assume that in many practical applications of ANDn circuits,
the only input returning a true value occurs far more often than any other single input.
An interesting future research direction is to consider such a scenario for the evolution of
conjunctions.

Overall, defining an “easy” benchmark function to evaluate the generalisation capabil-
ities of GP systems still remains an open problem. Benchmark functions where problems
such as bloat and overfitting (Koza, 1992) can be studied in further detail also need to
be devised. Further directions for future work are to consider analyses of algorithms with
more comprehensive terminal and function sets, along the way towards the analysis of more
sophisticated population based GP systems, as is possible nowadays for standard genetic
algorithms (Dang et al., 2018; Corus, Dang, Eremeev, & Lehre, 2018; Corus & Oliveto,
2018, 2019).

Acknowledgements

An extended abstract of this paper has been published at the 32nd AAAI Conference on
Artificial Intelligence (Lissovoi & Oliveto, 2018). Financial support by the Engineering
and Physical Sciences Research Council (EPSRC Grant No. EP/M004252/1) is gratefully
acknowledged.

686

Time and Space Complexity Analysis of Genetic Programming

References

Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., & Zhang, M. (2017). Automatically
evolving rotation-invariant texture image descriptors by genetic programming. IEEE
Transactions on Evolutionary Computation, 21 (1), 83–101.

Archetti, F., Lanzeni, S., Messina, E., & Vanneschi, L. (2007). Genetic programming for
computational pharmacokinetics in drug discovery and development. Genetic Pro-
gramming and Evolvable Machines, 8 (4), 413–432.

Corus, D., Dang, D., Eremeev, A. V., & Lehre, P. K. (2018). Level-based analysis of genetic
algorithms and other search processes. IEEE Trans. Evolutionary Computation, 22 (5),
707–719.

Corus, D., & Oliveto, P. S. (2018). Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. IEEE Transactions on Evolution-
ary Computation, 22 (5), 720–732.

Corus, D., & Oliveto, P. S. (2019). On the benefits of populations for the exploitation
speed of standard steady-state genetic algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2019), pp. 1452–1460.

Curry, R., Lichodzijewski, P., & Heywood, M. I. (2007). Scaling genetic programming to
large datasets using hierarchical dynamic subset selection. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 37 (4), 1065–1073.

Dang, D., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt,
D., & Sutton, A. M. (2018). Escaping local optima using crossover with emergent
diversity. IEEE Transactions on Evolutionary Computation, 22 (3), 484–497.

Doerr, B. (2011). Analyzing randomized search heuristics: Tools from probability theory. In
Auger, A., & Doerr, B. (Eds.), Theory of Randomized Search Heuristics: Foundations
and Recent Developments, chap. 1, pp. 1–20. World Scientific.

Doerr, B. (2019). Probabilistic tools for the analysis of randomized optimization heuristics.
In Doerr, B., & Neumann, F. (Eds.), Theory of Evolutionary Computation (to appear).
Springer. CoRR, abs/1801.06733.

Doerr, B., & Goldberg, L. A. (2010). Drift analysis with tail bounds. In Proceedings of the
Parallel Problem Solving from Nature conference (PPSN XI), pp. 174–183.

Doerr, B., Johannsen, D., & Winzen, C. (2012). Multiplicative drift analysis. Algorithmica,
64 (4), 673–697.

Doerr, B., Kötzing, T., Lagodzinski, J. A. G., & Lengler, J. (2017). Bounding bloat in
genetic programming. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2017), pp. 921–928.

Doerr, B., Lissovoi, A., & Oliveto, P. S. (2019). Evolving Boolean functions with conjunc-
tions and disjunctions via genetic programming. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2019), pp. 1003–1011.

Droste, S., Jansen, T., & Wegener, I. (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276 (1-2), 51–81.

687

Lissovoi & Oliveto

Durrett, G., Neumann, F., & O’Reilly, U. M. (2011). Computational complexity analysis of
simple genetic programming on two problems modeling isolated program semantics.
In Proceedings of the Foundations of Genetic Algorithms workshop (FOGA 2011), pp.
69–80.

Feldman, V. (2008). Evolvability from learning algorithms. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 619–628.

Feller, W. (1968). An introduction to probability theory and its applications. Wiley.

Friedrich, T., Oliveto, P. S., Sudholt, D., & Witt, C. (2009). Analysis of diversity-preserving
mechanisms for global exploration. Evolutionary Computation, 17 (4), 455–476.

Gathercole, C., & Ross, P. (1994). Dynamic training subset selection for supervised learning
in genetic programming. In Proceedings of the 3rd Parallel Problem Solving from
Nature Conference (PPSN III), pp. 312–321.

He, J., & Yao, X. (2001). Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence, 127 (1), 57–85.

He, J., & Yao, X. (2004). A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3 (1), 21–35.

Jansen, T. (2013). Analyzing Evolutionary Algorithms - The Computer Science Perspective.
Natural Computing Series. Springer.

Jansen, T., & Zarges, C. (2014). Performance analysis of randomised search heuristics
operating with a fixed budget. Theoretical Computer Science, 545, 39–58.

Kötzing, T., Lagodzinski, J. A. G., Lengler, J., & Melnichenko, A. (2018). Destructiveness
of lexicographic parsimony pressure and alleviation by a concatenation crossover in
genetic programming. In Proceedings of the 15th Parallel Problem Solving from Nature
Conference (PPSN XV), Part II, pp. 42–54.

Kötzing, T., Sutton, A. M., Neumann, F., & O’Reilly, U. M. (2014). The MAX problem
revisited: The importance of mutation in genetic programming. Theoretical Computer
Science, 545, 94–107.

Koza, J. R. (1992). Genetic programming - on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press.

Koza, J. R. (2010). Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines, 11 (3-4), 251–284.

Langdon, W. B., & Poli, R. (2002). Foundations of genetic programming. Springer.

Lengler, J. (2019). Drift analysis. In Doerr, B., & Neumann, F. (Eds.), Theory of Evolu-
tionary Computation (to appear). Springer. CoRR, abs/1712.00964.

Lissovoi, A., & Oliveto, P. (2019). Computational complexity analysis of genetic program-
ming. In Doerr, B., & Neumann, F. (Eds.), Theory of Evolutionary Computation (to
appear). Springer. CoRR, abs/1811.04465.

Lissovoi, A., & Oliveto, P. S. (2018). On the time and space complexity of genetic program-
ming for evolving Boolean conjunctions. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 1363–1370. AAAI Press.

688

Time and Space Complexity Analysis of Genetic Programming

Liu, L., & Shao, L. (2013). Learning discriminative representations from RGB-D video data.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), pp. 1493–1500.

Mambrini, A., & Oliveto, P. S. (2016). On the analysis of simple genetic programming for
evolving Boolean functions. In Proceedings of Genetic Programming - 19th European
Conference (EuroGP 2016), pp. 99–114.

Mitzenmacher, M., & Upfal, E. (2005). Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press.

Oliveto, P. S., He, J., & Yao, X. (2007). Time complexity of evolutionary algorithms for
combinatorial optimization: A decade of results. International Journal of Automation
and Computing, 4 (3), 281–293.

Oliveto, P. S., & Witt, C. (2011). Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica, 59 (3), 369–386.

Oliveto, P. S., & Witt, C. (2012). Erratum: Simplified drift analysis for proving lower
bounds in evolutionary computation. CoRR, abs/1211.7184.

Oliveto, P. S., & Yao, X. (2011). Runtime analysis of evolutionary algorithms for discrete
optimization. In Auger, A., & Doerr, B. (Eds.), Theory of Randomized Search Heuris-
tics: Foundations and Recent Developments, chap. 2, pp. 21–52. World Scientific.

Oliveto, P. S., Sudholt, D., & Zarges, C. (2019). On the benefits and risks of using fitness
sharing for multimodal optimisation. Theoretical Computer Science, 773, 53–70.

Oliveto, P. S., & Zarges, C. (2015). Analysis of diversity mechanisms for optimisation in
dynamic environments with low frequencies of change. Theoretical Computer Science,
561, 37–56.

O’Neill, M., Vanneschi, L., Gustafson, S. M., & Banzhaf, W. (2010). Open issues in genetic
programming. Genetic Programming and Evolvable Machines, 11 (3-4), 339–363.

O’Reilly, U. M., & Oppacher, F. (1996). A comparative analysis of GP. In Advances in
Genetic Programming 2, pp. 23–44. MIT Press.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic Programming.
http://lulu.com.

Rowe, J. E., & Sudholt, D. (2014). The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoretical Computer Science, 545, 20–38.

Schuh, M. A., Angryk, R. A., & Sheppard, J. W. (2012). Evolving kernel functions with
particle swarms and genetic programming. In Proceedings of the Twenty-Fifth Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS 2012).

Song, D., Heywood, M. I., & Zincir-Heywood, A. N. (2005). Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Transactions
on Evolutionary Computation, 9 (3), 225–239.

Valiant, L. G. (2009). Evolvability. Journal of the ACM, 56 (1).

Wagner, M., Neumann, F., & Urli, T. (2015). On the performance of different genetic
programming approaches for the SORTING problem. Evolutionary Computation,
23 (4), 583–609.

689

