Skip to main content

Optimising Optimisers with Push GP

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12101))

Included in the following conference series:

Abstract

This work uses Push GP to automatically design both local and population-based optimisers for continuous-valued problems. The optimisers are trained on a single function optimisation landscape, using random transformations to discourage overfitting. They are then tested for generality on larger versions of the same problem, and on other continuous-valued problems. In most cases, the optimisers generalise well to the larger problems. Surprisingly, some of them also generalise very well to previously unseen problems, outperforming existing general purpose optimisers such as CMA-ES. Analysis of the behaviour of the evolved optimisers indicates a range of interesting optimisation strategies that are not found within conventional optimisers, suggesting that this approach could be useful for discovering novel and effective forms of optimisation in an automated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2005, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  3. Bogdanova, A., Junior, J.P., Aranha, C.: Franken-swarm: grammatical evolution for the automatic generation of swarm-like meta-heuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, pp. 411–412. ACM (2019)

    Google Scholar 

  4. Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation. Technical report CPM Report 98–32, Manchester Metropolitan University (1998)

    Google Scholar 

  5. Goldman, B.W., Tauritz, D.R.: Self-configuring crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2011, pp. 575–582. ACM (2011)

    Google Scholar 

  6. Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-Evolution in Graph GP. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 15–28. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48885-5_2

    Chapter  Google Scholar 

  7. Langdon, W.B.: Genetic Programming And Data Structures: Genetic Programming + Data Structures = Automatic Programming!. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-5731-9

    Book  MATH  Google Scholar 

  8. Lones, M.A.: Instruction-level design of local optimisers using push GP. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, pp. 1487–1494. ACM (2019)

    Google Scholar 

  9. Lones, M.A.: Mitigating metaphors: a comprehensible guide to recent nature-inspired algorithms. SN Comput. Sci. 1(1), 49 (2020)

    Article  Google Scholar 

  10. Martin, M.A., Tauritz, D.R.: Evolving black-box search algorithms employing genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2013, pp. 1497–1504. ACM (2013)

    Google Scholar 

  11. Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., Sohl-dickstein, J.: Learned optimizers that outperform SGD on wall-clock and test loss. In: Proceedings of the 2nd Workshop on Meta-Learning. MetaLearn 2018 (2018)

    Google Scholar 

  12. Oltean, M.: Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13(3), 387–410 (2005)

    Article  Google Scholar 

  13. Richter, S.N., Tauritz, D.R.: The automated design of probabilistic selection methods for evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 1545–1552. ACM (2018)

    Google Scholar 

  14. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2005, vol. 1, pp. 506–513. IEEE (2005)

    Google Scholar 

  15. Ryser-Welch, P., Miller, J.F., Swan, J., Trefzer, M.A.: Iterative cartesian genetic programming: creating general algorithms for solving travelling salesman problems. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 294–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_19

    Chapter  Google Scholar 

  16. Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  Google Scholar 

  17. Spector, L.: Autoconstructive evolution: push, pushGP, and pushpop. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, vol. 137 (2001)

    Google Scholar 

  18. Spector, L., Perry, C., Klein, J., Keijzer, M.: Push 3.0 programming language description. Technical report, HC-CSTR-2004-02, School of Cognitive Science, Hampshire College (2004)

    Google Scholar 

  19. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. Genet. Program Evolvable Mach. 3(1), 7–40 (2002)

    Article  Google Scholar 

  20. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL report, 2005005 (2005)

    Google Scholar 

  21. Wichrowska, O., et al.: Learned optimizers that scale and generalize. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, ICML 2017, pp. 3751–3760 (2017)

    Google Scholar 

  22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  23. Woodward, J.R., Swan, J.: The automatic generation of mutation operators for genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 67–74. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lones, M.A. (2020). Optimising Optimisers with Push GP. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44094-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44093-0

  • Online ISBN: 978-3-030-44094-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics