Skip to main content
Log in

Genetic Programming to Predict Ski-Jump Bucket Spill-Way Scour

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Researchers in the past had noticed that application of Artificial Neural Networks (ANN) in place of conventional statistics on the basis of data mining techniques predicts more accurate results in hydraulic predictions. Mostly these works pertained to applications of ANN. Recently, another tool of soft computing, namely, Genetic Programming (GP) has caught the attention of researchers in civil engineering computing. This article examines the usefulness of the GP based approach to predict the relative scour depth downstream of a common type of ski-jump bucket spillway. Actual field measurements were used to develop the GP model. The GP based estimations were found to be equally and more accurate than the ANN based ones, especially, when the underlying cause-effect relationship became more uncertain to model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. MASON P. J., ARUMUGAM K. Free jet scour below dams and ski-jump buckets[J]. Journal of Hydraulic Engineering., ASCE, 1985, 111(2): 220–235.

    Article  Google Scholar 

  2. UNITED STATES BUREAU OF RECLAMATION. Design of small dams[M]. 1987.

    Google Scholar 

  3. WU C. M. Scour at downstream end of dams in Taiwan[C]. International Symposium on River Mechanics. Bangkok, Thailand, 1973, I(A13): 1–6.

    Google Scholar 

  4. MARTINS R. B. F. Scouring of rocky river beds by free jet spillways[J]. International Water Power and Dam Construction, 1975, 27(4): 152–153.

    Google Scholar 

  5. AZAMATHULLA H. Md. Neural networks to estimate scour downstream of ski-jump bucket spillway[D]. Ph. D. Thesis, Bombay: Indian Institute of Technology, 2005.

    Google Scholar 

  6. AZAMATHULLA H. Md., DEO M. C. and DEOLALIKAR P. B. Estimation of scour below spillways using neural networks[J]. Journal of Hydraulic Research, 2006, 44(1): 61–69.

    Article  Google Scholar 

  7. LEE T. L., JENG D. S. and ZHANG G. H. et al. Neural network modeling for estimation of scour depth around bridge piers[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(3): 378–386.

    Article  Google Scholar 

  8. SINGH A. K., DEO M. C. and SANIL KUMAR V. Neural network - genetic programming for sediment transport[J]. Journal of Maritime Engineering, 2007, 160(MA3): 113–119.

    Article  Google Scholar 

  9. HOLLAND J. H. Adaptation in natural and artificial system[M]. Ann Arbor Mich.: University of Michigan Press, 1975.

    Google Scholar 

  10. JOHARI A., HABIBAGAHI G. and GHAHRAMANI A. Prediction of soil-water characteristic curve using genetic programming[J]. J. Geotechnical and Geo-environmental Engineering, ASCE, 2006, 132(5): 661–665.

    Article  Google Scholar 

  11. KOZA J. R. Genetic programming: On the programming of computers by means of natural selection[M]. A Bradford Book, MIT Press. 1992.

    MATH  Google Scholar 

  12. SOH C. K., YANG Y. Genetic programming based approach for structural optimization[J]. Journal of Computing in Civil Engineering, ASCE, 2000, 14(1): 31–37.

    Article  Google Scholar 

  13. WHIGHAM P. A., CRAPPER P. F. Modeling rainfallrunoff using genetic programming[J]. Mathematical and Computer Modeling Canberra, 2001, 33: 707–721.

    Article  Google Scholar 

  14. HONG Y. S., RAO B. Evolutionary self-organising modeling of a municipal wastewater treatment plant[J]. Water Research, 2003, 37: 1199–1212.

    Article  Google Scholar 

  15. ASHOUR A. F., ALVAREZ L. F. and TOROPOV V. V. Empirical modeling of RC deep beams by genetic programming[J]. Computers and Structures, 2003, 81: 331–338.

    Article  Google Scholar 

  16. CHEN Li. Study of applying macro-evolutionary genetic programming to concrete strength estimation[J]. Journal of Computing in Civil Engineering, ASCE, 2003, 17(4): 290–294.

    Article  Google Scholar 

  17. YANG C. X., THAM L. G. and FENG X. T. et al. Two-stepped evolutionary algorithm and its application to stability analysis of slopes[J]. Journal of Computing in Civil Engineering, ASCE, 2004,18(2): 145–153.

    Article  Google Scholar 

  18. BABOVIC V. Computer-aided knowledge discovery in hydraulic engineering[C]. Proceedings 15th Congress of the Asia-Pacific division of International Association of Hydraulic Research. Madras: Indian Institute of Technology, 2006,. IV: 65–72.

    Google Scholar 

  19. SILVA S. GPLAB, a genetic programming toolbox for Matlab, ITQB/UNL[M]. http://gplab.sourceforge.net. 2007.

    Google Scholar 

  20. AZAMATHULLA H. MD., DEO M. C. and DEOLALIKAR P. B. Neural networks for estimation of scour downstream of ski-jump bucket[J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(10): 898–908.

    Article  Google Scholar 

  21. HOFFMANS G. J. C. M., VERHEIJ H. J. Scour manual[M]. A. A. Balkema, Rotterdam/Brookfield. 1997.

    Google Scholar 

  22. VERONESE A. Erosioni de Fondo a Valle di uno Scarico[J]. Annali dei LavoriPublicci, 1937, 75(9): 717–726.

    Google Scholar 

  23. DAMLE P. M., VENKATRAMAN C. P. and DESAI S. C. Evaluation of scour below ski-jump buckets of spillways[J]. Proc. CWPRS Golde. Jubilee Symp. Poona, India, 1966, I: 154–163.

    Google Scholar 

  24. SEN P. Spillway scour and design of plunge pool[J]. J. Irrigation Power, 1984, 41(1): 51–66.

    Google Scholar 

  25. SPURR K. J. W. Energy approach to estimating scour downstream of a large dam[J]. Int. Water Power Dam Construction, 1985, 37(7): 81–89.

    Google Scholar 

  26. WANG S. Scouring of river beds below sluices and dams[C]. Design of Hydraulic structures - Proc. International Symp. on Design of Hydraulic Structures, Fort Collins, Colo.: Colorado State University, 1987, 295–304.

    Google Scholar 

  27. AKHMEDOV T. Kh. Calculation of the depth of scour in the rock downstream of a spillway[J]. Int. Water Power Dam Construction, 1988, 40(12): 25–27.

    Google Scholar 

  28. KHATSURIA R. M. State of art on computation, prediction and analysis of scour in rocky beds downstream of ski-jump spillways[C]. CWPRS, Platinum Jubilee Symp. Poona, India. 1992.

    Google Scholar 

  29. YILDIZ D., ÜZÜCEK E. Experience gained in turkey on scours occurred downstream of the spillways of high dams and protective measurements[C]. Proc. 18th IICOLD. Durban, 1994, Q.No. 71, R 9, 113–135.

    Google Scholar 

  30. YILDIZ D., ÜZÜCEK E. Prediction of scour depth from free falling ski-jump bucket jets[J]. Int. Water Power Dam Construction, 1994, 46(11): 50–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Azamathulla MD.

Additional information

Biography: Azamathulla H. MD. (1972-), Male, Ph. D., Senior Lecturer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azamathulla, H., Ghani, A., Zakaria, N.A. et al. Genetic Programming to Predict Ski-Jump Bucket Spill-Way Scour. J Hydrodyn 20, 477–484 (2008). https://doi.org/10.1016/S1001-6058(08)60083-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(08)60083-9

Key words

Navigation