Skip to main content

GP-Based Generative Adversarial Models

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XIX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 303 Accesses

Abstract

We explore the use of Artificial Neural Network (ANN)-guided Genetic Programming (GP) to generate images that the guiding network classifies as belonging to a specific class. The experimental results demonstrate the ability of GP to perform such a task but also the inadequacy of most of the generated images, which can be considered false positives. Based on these findings and following an approach analogous to Generative Adversarial Networks (GANs), we propose an generative adversarial model where GP replaces the traditional GAN’s generator. The experimental results illustrate the advantages of this approach, highlighting the expressive power of GP, its capacity to perform online learning, thus adapting to a dynamic fitness landscape, and its ability to create novel imagery that fits the target classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TensorGP repository available at https://github.com/AwardOfSky/TensorGP.

  2. 2.

    TGPGAN repository available at https://github.com/AwardOfSky/TensorGP_DCGAN.

  3. 3.

    In our case, the Discriminator has a single output neuron, and it is trained to return 1 for genuine images and 0 for fake ones. In these circumstances, fitness is equal to the activation of the output neuron.

  4. 4.

    Discriminator adapted from https://www.tensorflow.org/tutorials/generative/dcgan.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Baeta, F., Correia, J., Martins, T., Machado, P.: Speed benchmarking of genetic programming frameworks. In: GECCO, pp. 768–775. ACM (2021)

    Google Scholar 

  3. Baeta, F., Correia, J., Martins, T., Machado, P.: TensorGP - genetic programming engine in TensorFlow. In: Applications of Evolutionary Computation - 24th International Conference, Evo Applications 2021. pp, 763–778. Springer (2021)

    Google Scholar 

  4. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2–3), 325–354 (1994)

    Article  Google Scholar 

  5. Cayton, L.: Algorithms for manifold learning. University of California at San Diego Technical Report 12(1–17), 1 (2005)

    Google Scholar 

  6. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: Proceedings of the fourth International Conference on Computational Creativity (ICCC), pp. 24–31 (2013)

    Google Scholar 

  7. Correia, J., Machado, P., Romero, J., Martins, P., Cardoso, F.A.: Breaking the mould an evolutionary quest for innovation through style change. In: Computational Creativity, pp. 353–398. Springer (2019)

    Google Scholar 

  8. Correia, J., Martins, T., Machado, P.: Evolutionary data augmentation in deep face detection. In: GECCO (Companion), pp. 163–164. ACM (2019)

    Google Scholar 

  9. Correia, J., Martins, T., Martins, P., Machado, P.: X-faces: the eXploit is out there. In: ICCC, pp. 164–171. Sony CSL Paris, France (2016)

    Google Scholar 

  10. Costa, V., Lourenço, N., Correia, J., Machado, P.: COEGAN: evaluating the coevolution effect in generative adversarial networks. In: GECCO, pp. 374–382. ACM (2019)

    Google Scholar 

  11. Costa, V., Lourenço, N., Correia, J., Machado, P.: Demonstrating the evolution of GANs through t-SNE. In: EvoApplications. Lecture Notes in Computer Science, vol. 12694, pp. 618–633. Springer (2021)

    Google Scholar 

  12. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  13. Ekern, E.G., Gambäck, B.: Interactive, efficient and creative image generation using compositional pattern-producing networks. In: EvoMUSART. Lecture Notes in Computer Science, vol. 12693, pp. 131–146. Springer (2021)

    Google Scholar 

  14. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks (2017). https://doi.org/10.48550/ARXIV.1701.00160

  15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  16. Greenfield, G.R.: Evolving expressions and art by choice. Leonardo 33(2), 93–99 (2000)

    Article  Google Scholar 

  17. Greenfield, G.R.: Tilings of sequences of co-evolved images. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) Applications of Evolutionary Computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Coimbra, Portugal, April 5–7, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3005, pp. 427–436. Springer (2004). https://doi.org/10.1007/978-3-540-24653-4_44

  18. Ha, D.: The frog of CIFAR 10. blog.otoro.net (2016). https://blog.otoro.net/2016/04/06/the-frog-of-cifar-10/

  19. Ha, D.: Generating large images from latent vectors. blog.otoro.net (2016). https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

  20. Hemberg, E., Toutouh, J., Al-Dujaili, A., Schmiedlechner, T., O’Reilly, U.M.: Spatial coevolution for generative adversarial network training. ACM Trans. Evol. Learn. Optim. 1(2) (2021). https://doi.org/10.1145/3458845

  21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  22. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art And Music, pp. 3–37. Springer (2008)

    Google Scholar 

  23. Machado, P., Cardoso, A.: NEvAr - the assessment of an evolutionary art tool. In: Wiggins, G. (ed.) AISB’00 Symposium on Creative and Cultural Aspects and Applications of AI and Cognitive Science. Birmingham, UK (2000)

    Google Scholar 

  24. Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002)

    Article  MATH  Google Scholar 

  25. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Evolutionary and Biologically Inspired Music, Sound, Art and Design - First International Conference, EvoMUSART 2012, Málaga, Spain, April 11–13, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7247, pp. 187–198. Springer (2012). https://doi.org/10.1007/978-3-642-29142-5_17

  26. Machado, P., Correia, J., Romero, J.: Improving face detection. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) Genetic Programming - 15th European Conference, EuroGP 2012, Málaga, Spain, April 11–13, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7244, pp. 73–84. Springer (2012). https://doi.org/10.1007/978-3-642-29139-5_7

  27. Machado, P., Romero, J., Greenfield, G.: Artificial Intelligence and the Arts - Computational Creativity, Artistic Behavior, and Tools for Creatives. Springer (2021). https://doi.org/10.1007/978-3-030-59475-6

  28. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72877-1_18

  29. Machado, P., Vinhas, A., Correia, J., Ekárt, A.: Evolving ambiguous images. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 2473–2479. AAAI Press (2015). http://ijcai.org/papers15/Abstracts/IJCAI15-350.html

  30. Martins, T., Correia, J., Costa, E., Machado, P.: Evolving stencils for typefaces: combining machine learning, user’s preferences and novelty. Complexity 2019 (2019). https://doi.org/10.1155/2019/3509263

  31. Metz, L., Gulrajani, I.: Compositional pattern producing GAN. In: NeurIPS Workshops, vol. 1 (2017)

    Google Scholar 

  32. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 427–436. IEEE Computer Society (2015)

    Google Scholar 

  33. Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer (2008)

    Google Scholar 

  34. Rooke, S.: Eons of genetically evolved algorithmic images. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 339–365. Morgan Kaufmann (2002)

    Google Scholar 

  35. Secretan, J., Beato, N.: Picbreeder: evolving pictures collaboratively online. In: Czerwinski, M., Lund, A.M., Tan, D.S. (eds.) Proceedings of the 2008 Conference on Human Factors in Computing Systems, CHI 2008, 2008, Florence, Italy, April 5–10, 2008, pp. 1759–1768. ACM (2008). https://doi.org/10.1145/1357054.1357328

  36. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  37. Sims, K.: Artificial evolution for computer graphics. In: SIGGRAPH ’91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 319–328. ACM, New York (1991). https://doi.org/10.1145/122718.122752

  38. Spector, L., Alpern, A.: Criticism, culture and the automatic generation of artworks. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 3–8. AAAI Press, Menlo Park (1994)

    Google Scholar 

  39. Staats, K., Pantridge, E., Cavaglia, M., Milovanov, I., Aniyan, A.: TensorFlow enabled genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. pp. 1872–1879. ACM (2017)

    Google Scholar 

  40. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  41. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  42. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic (1992)

    Google Scholar 

  43. Unemi, T.: SBART 2.4: breeding 2D CG images and movies and creating a type of collage. In: Knowledge-Based Intelligent Information Engineering Systems, 1999. Third International Conference, pp. 288–291. IEEE (1999)

    Google Scholar 

  44. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 23(6), 921–934 (2019)

    Article  Google Scholar 

  45. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017). arXiv preprint arXiv:1708.07747

  46. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is funded by national funds through the FCT—Foundation for Science and Technology, I.P./MCTES through national funds (PIDDAC), within the scope of CISUC R &D Unit—UIDB/00326/2020 or project code UIDP/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020, under the FCT grant SFRH/BD/08254/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penousal Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Machado, P., Baeta, F., Martins, T., Correia, J. (2023). GP-Based Generative Adversarial Models. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-19-8460-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8460-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8459-4

  • Online ISBN: 978-981-19-8460-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics