Skip to main content

Symbolic Regression on Network Properties

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10196))

Included in the following conference series:

Abstract

Networks are continuously growing in complexity, which creates challenges for determining their most important characteristics. While analytical bounds are often too conservative, the computational effort of algorithmic approaches does not scale well with network size. This work uses Cartesian Genetic Programming for symbolic regression to evolve mathematical equations that relate network properties directly to the eigenvalues of network adjacency and Laplacian matrices. In particular, we show that these eigenvalues are powerful features to evolve approximate equations for the network diameter and the isoperimetric number, which are hard to compute algorithmically. Our experiments indicate a good performance of the evolved equations for several real-world networks and we demonstrate how the generalization power can be influenced by the selection of training networks and feature sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cartesiangp.co.uk/resources.html.

References

  1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford University, Stanford, CA (1998)

    Google Scholar 

  2. Van Mieghem, P.: Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. arXiv preprint arXiv:1401.4580 (2014)

  3. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  4. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Press, Boulder (2014)

    MATH  Google Scholar 

  5. Schmidt, M., Lipson, H.: Solving iterated functions using genetic programming. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2149–2154. ACM (2009)

    Google Scholar 

  6. Menezes, T., Roth, C.: Symbolic regression of generative network models. Sci. Rep. 4 (2014). Article No. 6284, doi:10.1038/srep06284

  7. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX, pp. 235–260. Springer, New York (2011)

    Chapter  Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  9. McConaghy, T., Eeckelaert, T., Gielen, G.: CAFFEINE: template-free symbolic model generation of analog circuits via canonical form functions and genetic programming. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol. 2, pp. 1082–1087. IEEE Computer Society (2005)

    Google Scholar 

  10. Augusto, D.A., Barbosa, H.J.: Symbolic regression via genetic programming. In: 6th Brazilian Symposium on Neural Networks, pp. 173–178. IEEE (2000)

    Google Scholar 

  11. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  12. Harding, S., Miller, J.F.: Evolution of robot controller using cartesian genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 62–73. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31989-4_6

    Chapter  Google Scholar 

  13. Khan, M.M., Khan, G.M.: A novel neuroevolutionary algorithm: cartesian genetic programming evolved artificial neural network (CGPANN). In: Proceedings of the 8th International Conference on Frontiers of Information Technology, p. 48. ACM (2010)

    Google Scholar 

  14. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type cartesian genetic programming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 751–758. ACM (2012)

    Google Scholar 

  15. Miller, J.F.: Evolution of digital filters using a gate array model. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds.) EvoWorkshops 1999. LNCS, vol. 1596, pp. 17–30. Springer, Heidelberg (1999). doi:10.1007/10704703_2

    Chapter  Google Scholar 

  16. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE Trans. Evol. Comput. 19(3), 432–444 (2015)

    Article  Google Scholar 

  17. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 139–150. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16501-1_12

    Google Scholar 

  18. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

    Article  Google Scholar 

  19. Turner, A.J., Miller, J.F.: Cartesian genetic programming: why no bloat? In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 222–233. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44303-3_19

    Google Scholar 

  20. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  21. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  22. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  23. Alon, N., Milman, V.D.: \(\lambda \)1, isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohar, B.: Eigenvalues, diameter, and mean distance in graphs. Graphs Comb. 7(1), 53–64 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chung, F.R., Faber, V., Manteuffel, T.A.: An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian. SIAM J. Discret. Math. 7(3), 443–457 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Dam, E.R., Haemers, W.H.: Eigenvalues and the diameter of graphs. Linear Multilinear Algebra 39(1–2), 33–44 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Mohar, B.: Isoperimetric numbers of graphs. J. Comb. Theory Ser. B 47(3), 274–291 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bollobás, B.: Random Graphs. Springer, New York (1998)

    Book  MATH  Google Scholar 

  29. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolutionary mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

    Article  Google Scholar 

  30. Rossi, R.A., Ahmed, N.K.: An interactive data repository with visual analytics. SIGKDD Explor. 17(2), 37–41 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Märtens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Märtens, M., Kuipers, F., Van Mieghem, P. (2017). Symbolic Regression on Network Properties. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55696-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55695-6

  • Online ISBN: 978-3-319-55696-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics