
Discrete Controller Synthesis Based On Genetic Programming

RAMI A. MAHER, MOHAMED J. MOHAMED

ELECTRIC ENGINEERING, CONTROL AND SYSTEMS ENGINEERING

Isra University, University of Technology

Amman, Baghdad

JORDAN, IRAQ

rami.maher@iu.edu.jo, moh62moh@yahoo.com

Abstract: - In this paper, an alternative way of a discrete controller synthesis is introduced. The synthesis is

based on a proposed genetic programming algorithm, which is named Block Diagram Oriented Genetic

Programming BDOGP. The standard GP structure tree is modified in such a way to obtain a complete block

diagram of the discrete controller that satisfies a deadbeat response in a closed-loop system. In one framework

solution, the algorithm gives both the block diagram topology and the values to the parameters within the

controller structure. A new numeric constant mutation operation is added to the algorithm to strengthen the

search for optimal parameters of the BDOGP solutions. Two examples are introduced to validate the use of the

proposed algorithm, and for the sake of completeness, the state-space approach design of a deadbeat response is

introduced briefly. For a servo system, a comparison between the results of the GP and the conventional state-

space solutions shows the accuracy of the GP approach. The second example considers a temperature control in

an HVAC system.

Key-Words: - Genetic Programming, Block Diagram Oriented Genetic Programming, Deadbeat Controller

1 Introduction
Genetic Programming (GP) is a stochastic search

method, which is based on natural selection and

natural genetic. GP can evolve models (structures as

well as parameters) for different kinds of problems

in different scientific fields such as data mining,

financial, electronic circuit design, etc. [1, 2, 3].

However, GP in its basic standard form could not be

directly used for all applications in system control

and identification. It needs to be revised according

to the applications and requirements. GP has been

recently used to synthesize optimal controllers for

linear and nonlinear plants [4, 5, 6, 7]. Another

aspect of synthesizing is the use of the block

diagram representation. For a particular, a block

diagram oriented simulated tool is used for

structural system identification [8]. For a two-lag

plant and a three-lag plant, the block diagram

oriented genetic programming approach is presented

in [9]. In [10], an indirect block oriented

representation for a genetic programming is also

explored.

The proposed BDOGP tree structure is modified

to obtain a certain controller. In the field of

automatic control theory, the term block diagram

stands for the description of controllers as well as

process models. Most of the computer-aided

modeling and controlling techniques usually adopt a

block diagram with a fixed structure as a problem

solution. Then after the parameters or coefficients

included in this structure are tuned in order to

optimize the accuracy of the model or the controller.

This paper describes how a proposed BDOGP

can be used as a general automated method for

synthesizing both the topology and parameter values

of discrete controllers for linear SISO control

systems. The proposed algorithm automatically

makes decisions concerning the total number of

processing blocks that are employed in the

controller, the type of each block, the topological

interconnections between blocks, and the parameter

values of the blocks. In other words, this approach is

a direct method to find a discrete controller that

satisfying deadbeat characteristics.

The rest of the paper discusses in the section 2

the concept and details of creating a proposed

BDOGP to synthesis a discrete controller. In section

3, a brief of the deadbeat controller is introduced.

Two numerical examples are given in section 4; the

first one is used to show the accuracy of the

proposed algorithm as compared to the theoretical

approach and the second example is used to control

the temperature in HVAC system. In section 5,

conclusions and outlines of future work are

highlighted. Used references and appendix are then

followed.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 763 Volume 10, 2015

mailto:rami.maher@iu.edu.jo
mailto:moh62moh@yahoo.com

2 The Proposed BDOGP Algorithm
The BDOGP is used here for evolution of block

diagrams, and is backed up with the use of numeric

constant mutation operation for parameters tuning.

The blocks of these block diagrams can represent

continuous (or discrete) time blocks defined in the s

(or z) domain, and linear and/or nonlinear algebraic

signal processing blocks. BDOGP implements an

iterative search for the optimum structure and

parameters. In fact, the genetic operations defined

for evolution effect only the structure of the block

diagram, while the numeric constant mutation

operation affects the parameters of the blocks. In the

following sub sections, the used genetic operations

are thoroughly handed over.

2.1 representations

There are high similarities between a control
system block diagram and a GP tree. Each block in
the block diagram represents an operation or
function that is done on time domain input signals,
so it is called a signal-processing block. A function
node in GP tree also represents a function or
operation that is done on its inputs represented by its
arguments. To make the mapping between the tree
structures and block diagrams possible, a block
diagram cannot be directly represented by a tree
without using some structural modifications and
syntactic rules of construction. To show the
similarity, Figure 1 gives an example of a signal-
processing block for a lag function and the standard
function node in GP.

Considering the simple mapping in Fig. 1, the

GP function node will represent a lag function with

a constant value of parameter τ. To increase the

flexibility of the lag function, it is required that τ

could be adapted through the process of evolution.

In this case, the above representation of an

equivalent GP function node for the signal-

processing block of the lag function asks for some

modification.

Fig. 1 Representation of signal processing block
and GP function node

Two methods can be used to modify the structure
of the tree. The first method is by using an implicit
numeric constant terminal node in the tree structure
to hold the value of τ. This type of node is
embedded (hidden) in each lag function node and
does not appear explicitly in the tree structure.
However, the values of this type of numeric
constant nodes can be fetched and optimized using
the parameter optimization methods. The second
method, which is used in this paper, is by
implementing an explicit numeric constant terminal
node in the tree structure to hold the value of τ. This
type of node is visible in the tree structure and
appears in the second argument of each lag function
node. The lag function node, in this case, has two
arguments instead of one, the first argument carries
a time-domain signal node, and the second carries a
numeric constant terminal node (which holds τ
value). The function node that is equivalent to the
lag function will be represented as shown in Fig. 2.

Fig. 2 Representation of the lag function by GP
node function

 To ensure a correct tree structure during the

creation of initial population and genetic operations,

the BDOGP applies syntactic rules to restrict the

first argument of the lag function to be of signal

node type, and the second argument to be of a

numeric constant terminal node. Many signal-

processing blocks may need one or more numerical

parameters. These parameters are represented by

numeric constant terminal nodes NCTNs [4] that are

presented in some arguments of the corresponding

function node. These NCTNs are not affected by the

genetic operation, but their setting values can be

optimized by numeric constant mutation operation

used within BDOGP.

The signal-processing functions that may be used

in the BDOGP are:

- Invertor

It is a one argument function used to negate the

time-domain signal represented by its argument.

- Differentiator

It is a one argument function used to differentiate

the time-domain signal represented by its argument.

Output

Output

signal

1

𝑠 + 𝜏

Input

signal

ƒ Input

Input ƒ

R

Output

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 764 Volume 10, 2015

That is, this function applies the transfer function s,

where s is Laplace transform variable.

- Integrator

It is a one argument function used to integrate the

time-domain signal represented by its argument.

That is, this function applies the transfer function

1/s.

- Lead term

It is a two-argument function that applies the

transfer function (1 + τ s), where τ is a real valued

numerical parameter. The first argument is the time-

domain input signal, while the second argument τ is

a numerical parameter which represents the time

constant of the lead.

- Lag term

 It is a two-argument function that applies the

transfer function, (1 + τ s)
-1

. The first argument is

the time-domain input signal, while the second

argument τ is the time constant.

- 2
nd

 order Lag term

It is a three-argument function that applies the

standard 2
nd

 order (ζ, wn) transfer function, where, ζ

is the damping ratio and wn is the natural frequency.

- Add-Signal, Sub-Signal, Multi-Signal

Each of these functions has two arguments. These

functions perform addition, subtraction and

multiplication respectively on the time-domain

signals represented by their two arguments.

- Add 3 Signals

It is a three-argument function that adds the time-

domain signals represented by its arguments.

- Abs Signal

It is a one-argument function that performs the

absolute value function on the time-domain signal

represented by its argument.

- Gain

It is a two-argument function that multiplies the

time-domain signal represented by its first argument

by a constant numerical value represented by its

second argument.

The above signal-processing functions are

suggested by the users of BDOGP; one may suggest

different functions or special functions in the

function set or may use other functions in the

discrete time domain (z-domain). However, in

general, the function and terminal nodes are divided

into three categories. These are: the time-domain

signal processing function nodes (e.g. lead, lag,

etc.), the time-domain terminal nodes (e.g. input

reference, output, etc.), and the numerical constant

terminal nodes, which are carrying the parameters

required in processing functions.

Some of these time-domain signal-processing

functions are kind of dynamic functions. Therefore,

in computing their outputs, the initial conditions of

their outputs (or states) are required. Moreover,

even if the initial conditions are assumed with

certain values, the numerical methods need to save a

certain number of previous output values (or

previous states values) of each function node to

calculate the subsequence output values through the

iterations of the numerical calculations. In other

words, the current and may be some previous values

of the output of each dynamic function node are

required to be saved in some locations of memory in

order to use them in the next time step of the

simulation.

To overcome this problem, Koza and others [11,

12] employed a block diagram software simulator

for analysing and computing the fitness value of

each candidate block diagram in the population. In

case, when GP software is linked to auxiliary

software simulators, like MATLAB, Spice, etc., the

GP sends an individual to the simulator so that the

fitness value to that individual is computed by the

simulator, and then this value of fitness is sending

back to the GP algorithm software.

This method has some disadvantages. It is

difficult since it needs an expert in software linking.

Furthermore, it needs well knowledge about the use

of auxiliary software simulators, and it requires a

mapping method to map the tree structure to the

environment that auxiliary software simulator

understands. Such auxiliary software simulators

have a big disadvantage in that they will take a long

time of calculation, because GP needs to

communicate with the software simulator each time

it needs to calculate the fitness function. So, they are

time-consuming and slow the generations of the GP.

Moreover, they need a very fast computer.

Therefore, using these simulators for the design of a

discrete controller is very unsuitable, especially for

high-order plants.

 In this paper, a new method is proposed for

calculating the fitness value of each individual

without the need to an auxiliary software simulator.

In this method, each signal function node owns a

certain amount of associated memory locations.

Referring to the example of the lag function, the

structure of the lag function node is modified as

shown in Figure 3. The square M represents an

implicit memory location associated to each

function node of type lag function. This location

saves the current output value of lag function. These

arrangements can be done with high flexibility using

object oriented languages such as C++ or alike. The

resultant procedure for calculating the fitness value

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 765 Volume 10, 2015

was found to be a very powerful and fast for small

as well as large individual structure (block diagram).

Fig. 3 The complete structure of dynamic lag

function node

This method overcomes all difficulties

mentioned before, and is so fast compared to the use

of auxiliary software. In fact, all dynamic signal

function nodes require some amount of memory

locations, which depends on the function itself.

Table 1 illustrates the type of arguments of each

function node and the memory locations that are

associated to each signal function node (where the

symbol x in the table refers to nothing, and Y refers

to yes).

2.2 initial population
The evolutionary process begins by creation of an

initial population. There are a lot of methods for the

creation of a random population [10], whatever

creation method is used; the creation operation is

restricted to start by choosing randomly a signal

function node. The syntactic rules of construction

are applied to each argument of the rooted signal

function node. The attributes of the arguments for

each signal function node are illustrated in Table 1.

The syntactic rules restrict the choice of

arguments according to that established in Table 1.

If the argument is of type numeric constant terminal

node, then the rules will restrict the choice to be the

numeric constant terminal node for that argument.

However, if it is of a signal type, a signal function

node or a signal, terminal node is chosen randomly

for this argument. If a signal terminal is chosen, this

branch will end at this depth, while if a signal

function node is chosen, the procedure will continue

in the same manner until the depth of the tree

reaches the maximum allowable depth for creation.

When the tree reaches the maximum depth minus

one, the signal arguments are restricted to carry

signal terminal nodes. This method of creation

guarantees a correct structure for all individuals in

the population.

Table 1 Detailed attributes of BDOGP signal

function nodes

Function

node

No.

of

arg.

Type of arguments

Associat

ed

memory

Arg.

No.1

Arg.

No.2

Arg.

No.3

1

M

2

M

Inverter 1 Signal x x x x

Differentia

tor
1 Signal x x Y x

Integrator 1 Signal x x Y x

Lead 2 Signal Const. x Y x

Lag 2 Signal Const. x Y x

Lag 2 3 Signal Const. Const. Y Y

Add-signal 2 Signal Signal x x x

Sub-signal 2 Signal Signal x x x

Multi-

signal
2 Signal Signal x x x

Add-3-

signal
3 Signal Signal Signal x x

Abs-signal 1 Signal x x x x

Gain 2 Signal Const. x x x

2.3 fitness computation
The signal function nodes of the BDOGP tree are

divided into two types. The first type represents

algebraic operations, where each function of this

type performs a certain algebraic operation on its

input signal represented by its arguments (e.g., Add-

signal, Sub-signal, Gain, etc.). Therefore, it does not

need initial conditions and memory locations to store

the history of the output of the signal function node.

The second type represents a transfer function in

terms of Laplace's operator s (or in terms of z
operator); in this case, the signal function node

represents a dynamic relationship between its input

signals and its output signal, so some memory

locations are needed to save the history of the output

of the signal function nodes. The number of

locations depends on the dynamic element; in this

work, either one or two locations are assigned.

Input

signal
ƒ

R

Output

signal

M

τ value

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 766 Volume 10, 2015

The output of the signal function node that

represents a continuous or impulse transfer function

can be computed using one of the available

numerical methods. The known Runge-Kutta

method is used to simulate all types of transfer

function. In each simulation step, each signal

function node calls its external routine to perform its

operation. The simulation will be stopped whenever

an unstable response is detected. In general, the data

that may be needed by these routines as inputs are:

a. The current value of the input signal to the signal

function node.

b. The NCTN values that represent some arguments

of this node (the parameters needed in the operation,

like, time constant, damping ratio, etc.).

c. The current value and may be some previous

values of the signal function node output (or states)

that are stored in the associated memory locations.

The routine will return the new value of the

signal function node output and store it in a memory

location that belongs to the corresponding calling

function node. Referring to the example of the lag

function, Fig. 4 illustrates the operation of

calculating the output of the lag function node in

each time step of simulation.

The specific routine for the lag function takes the

current input signal, the value of the τ parameter that

is represented by the NCTN value, and the current

value of the lag function node output that is stored

in memory location M. The routine calculates the

new value of the lag function node output at this

simulation step and feeds it back to replace the old

value that is stored in the memory location. The new

output signal of the lag function node will represent

an input signal to the next signal function node.

Before starting the fitness computation, the user

must specify the initial conditions for each dynamic

signal function node, the observation time Tob

(eventually, the number N for discrete

computations) for the simulation, the time duration

of the simulation step Hs, and the input signal. For

each individual, the simulation starts by setting the

initial condition values in the memory locations for

each dynamic signal function node in the individual

(normally zero initial conditions are used).

The computation of the block diagram output,

for each simulation step, starts from terminal nodes

and moves upwards to perform the operations on the

subsequent signal function nodes. This process is

continuing until the output value, which belongs to

the root node, is found. This output represents the

overall output of the individual (block diagram) at

that time step.

In each iteration, each signal function node calls

its routine to compute its output; therefore, the new

output for each dynamic signal function is stored in

the corresponding memory location and replaces the

old node output. The subsequent iterations are done

in the same way to the end of the observation time

Tob (eventually, the number N for discrete

computations). In fact, in each time step increment

during the simulation, each signal function node

calculates itself separately from other nodes in the

tree. Therefore, the simulation of each individual

can be considered as a collection of sub-simulations

of many signal-processing blocks that construct the

block diagram.

Fig. 4 The operation of calculating the output of

the dynamic lag function node

2.4 genetic operations
Like any standard GP, the main genetic operations

in BDOGP are crossover and mutation operations.

The adopted and proposed genetic operations for

BDOGP are described in what follows.

i) crossover operation: The crossover operation

starts by selecting two parental individuals using

any fitness based selection method. Then, using

uniform probability distribution, one random point

is selected in each parent to be the crossover point in

that parent. All NCTNs are excluded from the

selection as crossover points, using constrained

syntactic rules; the two crossover fragments are

exchanged to produce two offsprings. In this case,

the rules guarantee that the produced offspring has

the correct structure of a block diagram.

ii) swap mutation: All mutation operations are

performed on a single parent. The operation of a

swap mutation starts by selecting one-parent

individual from the population based on the fitness.

Then, using uniform probability distribution and

avoiding the selection of NCTNs in the tree, a signal

node is chosen randomly from the parental

Output signal

Memory

location

Current
Input signal

ƒ

M

R

τ value
Constant terminal node

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 767 Volume 10, 2015

individual. If the chosen signal node is a terminal

node, another signal terminal node is selected

randomly from the terminal set to replace signal

terminal node in the tree. If the chosen signal node

is a signal function node, the number of signal

arguments in this signal function node is checked.

Then, another new signal function node, which has a

similar number of signal arguments, is selected

randomly from the signal function set. The signal

function node in the tree and its only children of

type numeric constant terminal node is deleted and

replaced by the new selected signal function node

from the function set. If the new signal function

node has numeric constant arguments then, new

NCTNs are created and inserted in these arguments.

This operation is performed with the syntactic rules

being respected in order to produce a correct

offspring tree structure.

iii) shrink mutation: The shrink mutation operation

starts by selecting randomly one signal function

node from the parental tree. The selected signal

function node and its arguments that represent

NCTNs are deleted. Then, the argument that

represents the input signal takes the place of the

deleted parental signal function node. If the deleted

function node has more than one argument,

representing an input signal, in this case, one

argument among them is randomly selected to

replace its parent, and the other arguments of this

type are deleted. This operation eventually produces

an offspring with less depth than its parent.

iv) branch mutation: This operation starts by

choosing randomly a signal node (function or

terminal) from the parental tree, where all NCTNs

are excluded from such selection. This chosen signal

node and whatever below it are deleted and replaced

by a new randomly created sub-tree. The creation

operation of the sub-tree obeys the syntactic rules of

construction, and it respects the overall allowable

maximum depth of the offspring.

v) Inverse Shrink Mutation: The operation of

inverse shrink mutation begins by excluding the

NCTNs from being selected, and then a signal node

(terminal or function) is chosen randomly from the

parental tree. The sub-tree rooted at this node is

stored in a certain place and deleted from the tree. A

new signal function node is selected from the signal

function set and inserted in the place of that deleted

function node in the tree. The selection of a new

function node is done with no regard to the number

of arguments in the new selected signal function

node. The stored sub-tree is inserted in the first

argument that represents the input signal of the new

selected function node. If the new signal function

node has more than one argument, representing an

input signal, the remaining arguments of this type

are filled by randomly created sub-trees. Similar to

branch mutation operations, the creation operation

of those sub-trees obeys the syntactic rules of

construction and the maximum allowable depth of

the overall offspring tree. If the new function node

also has arguments representing NCTNs, new

NCTNs are created to fill those arguments. This

operation eventually increases the depth of the

overall tree.

2.4 numeric constant mutation operations

Generally, GP suffers a weakness in discovering

useful numeric constants for terminal nodes of its

program trees. This stems from the representation of

the numeric constants as tree nodes, where the

reproduction operations (including crossover and

mutation) affect only the structure of the tree, and

not, the composition of the nodes. Therefore, the

individual numeric constants are not altered by the

reproduction operations and thus cannot benefit

from them. There are several techniques to eliminate

such weakness [13, 14]. Numeric constant mutation

is a technique for facilitating the creation of useful

numeric constant node values during a GP run.

Numeric constant mutation replaces some of the

numeric constant node values with new ones for the

individual to which it is applied.

In this paper, the proposed GP algorithm makes

use of two modes of mutating the numeric constant

values. Before the GP run, and based on the

problem nature, a range and a resolution of the

numeric constant node values are specified. In this

case, the algorithm avoids the use of the default

precision of the floating constant valid in the

programming language. This gives the ability to

ignore the least significant digits in the numeric

constant values and gives more reliable values. The

number of numeric constant nodes to be mutated in

each individual is chosen randomly in the range [1,

n], where n is some positive integer. For example, if

n = 3, then this will mean that moving over the cost

surface of the numeric constant in three dimensions

will give a good probability to climb out the local

minimum. After the determination of this number,

these numeric constant nodes are chosen randomly

in the tree, and each numeric constant node value

will be mutated by either of the following two

methods that are selected randomly with equal

probability.

Method 1: The new numeric constant values are

chosen randomly from a specific uniform

distribution selecting range. The selecting range for

each numeric constant is specified as the old value

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 768 Volume 10, 2015

of the numeric constant plus or minus a specified

percentage of the total allowed range.

Method 2: This method starts by selecting randomly

the location of the digit to be mutated. The new

numeric constant value is equal to the old value plus

or minus one for selected digit. For instance, if the

old value is 5.652 and the least significant digit is

chosen as the digit to be mutated, then the new

value of the constant will be either 5.653 or 5.651

with equal probability.

The first method lets the mutation operation

explores all the search space and avoids falling in a

local minimum. The second method is useful for

fine tuning. These two methods are both used within

the framework of the standard GP parameters

optimizer to alter the numeric constant nodes.

Among several other techniques like the gradient

descent, the simulated annealing and genetic

algorithm, the numeric constant mutation operation

is properly and adequately functioning in changing

the numeric constant values.

3 Deadbeat Controller
There are many methods to carry out the design of

digital control for specified plant. However, the

method of using the state space and state transition

is preferable [15], because it represents a simple and

systematic procedure for linear discrete control

systems. The deadbeat response receives a large

amount of works for both continuous and discrete

control systems; the papers [16, 17, 18] are only a

sample. In fact, this response is the ultimate of any

design irrespective of the methodology used.

Irrespective of the system order or type, ideally it is

to obtain a zero overshoot and zero steady-state

error for a certain reference input. However, the

deadbeat response is often referred to a certain

method of design in sampled-data control systems.

The state transition approach insures that the

deadbeat response does not have inter-sampling

ripples.

It is known that the design of a controller that

characterizes a deadbeat response requires a very

accurate computation. For this reason only, it is

selected to show how accurate design can be

obtained by the GP algorithm. Therefore, a

comparison between the state transition and the

proposed BDOGP approaches to design a deadbeat

response controller will be considered. In general, in

order to design a digital controller, it is necessary to

construct the sampled-data system for the

continuous control system. A zero sample and hold

device is assumed to be sufficient to obtain a sample

data. Therefore, for the sake of completeness, next,

the deadbeat response for a sampled-data theory will

be briefly explained.

Consider the sampled-data n-order control

system that is shown in Fig. 5.

Fig. 5 A sampled-data control system

The signal h(t) is the output of the zero-order-

hold (Z.O.H), e(t) is the error signal, and r(t) is a

reference input. Since the output of the digital

controller is a train of impulses, its values at the

sampling instants are equal to the outputs at zero

order hold. Therefore, the pulse transfer function of

the discrete controller is

 ()
 ()

 ()

 () + () + + ()

 () + () + + ()
 (1)

where, H(z) and E(z) are the z-transform of the

Z.O.H output and actuating signal respectively.

The digital controller can be replaced by a

variable gain K(mT), where T is the sampling time.

It has different values during different sampling

periods, thus

 () () () 1 (2)

Next, for simplicity, K(mT) is written as Km. In
order to realize a deadbeat response, the system
error must be zero for t ≥ nT, where n is the smallest
possible positive integer (order of the plant). This
condition is realized if the following two conditions
are satisfied [17]

 () () (3)

 () () () ()() (4)

where the variables x1, x2….xn are the state variables

of the plant; next, the plant state vector is denoted

by x.

For step input, these conditions can be stated by

the output vector, x(nT) = [β 0 …0]
T
. For nonzero-

type linear systems, β is an arbitrary real number.

e(t)

Controller

r(t)

T

u(t) y(t)
 D(z) G(s)

h(t) 1 − 𝑒 𝑇𝑠

𝑠

T Z.O.H Plant

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 769 Volume 10, 2015

The design procedure for deadbeat controller
using the state transition approach can be
accomplished as follows:

1. Use the state equations for the continuous
portion of the system (A, B, C) to determine the
discrete state equation as

 [(+ 1)] () + () (5)

 () () (6)

 where the discrete system matrices F, G and H

are given by [19],

 (−) (7)

 ∫ [(−)]

 (8)

The integral in equation 8 can be computed
(exactly or approximately) as follows

 {
 (−) ()

 (+

+

()

+

()

+) ()

 (9)

 [] (10)

 Since,

 () () ()

 (() − ()) (11)

 The discrete state equation becomes

 ((+ 1)) () + (() −
 ()) (12)

2. Applying the deadbeat conditions to solve for
the n gains Km. Then using the state equations to
have the discrete values of x1(mT) and
corresponding e(mT); m = 0, 1,…n. Clearly, for
m = 0, and m = n, the error signal is equal to the
input r(0) and zero respectively.

3. The discrete values of h(mT), m = 0, 1…n can
be computed using expressions 2; eventually,
h(nT) = 0.

4. Finally, using equation 1, the discrete deadbeat
transfer function D(z) is determined.

4 Numerical Examples
In this section, we will introduce first a numerical

example, which will be solved first by the

conventional deadbeat procedure given above and

then after by the proposed BDOGP algorithm. Next,

a second example of a temperature control in an

HVAC system is selected. It is a system of a zero-

type one, where the achievement of a unity dc-gain

represents an additional constraint.

Example 1:

For a third-order servo system, the open-loop

transfer function is

 ()
1

 (+ 1)(+ 1)

The task is to have a deadbeat unit-step response

after 3 sampling periods, where T = 0.15 seconds.

Since the system is of type one, setting β equal to 1

is adequate then specifically, to have

 () 1

 () ()

The discrete state equation is

[

 (+ 1)
 (+ 1)
 (+ 1)

] [
1 1
 1 1
 − −

] [

 ()
 ()
 ()

]

+ [

 1

] [1 − ()]

The following three nonlinear algebraic

equations will be obtained if the deadbeat is to occur

after three sampling periods.

11 + 1 1 1 +

− −

− + 1

 1

 1 + +

− 1 − 1 11

− 1 1 +

− − 1 + 1

+ 1

− 1 −

+ 1

Clearly, although the above design procedure of

the deadbeat controller is straightforward, the

solution of the resultant system of nonlinear

algebraic equations is the main drawback. For high-

order systems, this could be a crucial problem.

However, a combination of known numerical

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 770 Volume 10, 2015

methods and evolutionary optimization tools relaxes

this obstacle. In [20], Newton-Raphson and genetic

algorithm are used to solve the above nonlinear

algebraic system. That found solution is used here to

check the accuracy of the solution proposed by the

BDOGP algorithm. The results were

 1 − 1 1

Consequently, using these gain values and the

discrete state equation, the discrete error and Z.O.H

output signals are determined and hence the discrete

controller.

 ()
 1 − 1 + 1

1 + + 1

An alternative evolutionary method is proposed

here to evolve such controller, where the BDOGP is

used to evolve the deadbeat controller in form of a

block diagram. The terminal set is T = {e (k), R},

while the signal function set which is described by

transfer functions form is

 (1 +) (1 +) (+

+) (+

+)

The fitness function is

 ∑[() +
 () +

 ()]

where, n = 3, and the control system is simulated for

N = 30 samples. This large number of samples (20

times the 3T value) is used to ensure a high accuracy

in computing the fitness function. To avoid

overflow, which results from some evolved unstable

controllers, simulation will be stopped whenever

each state exceeds a maximum bound of ± 10
3
. The

numeric constant terminal nodes R’s are set in range

-5 to 5 with resolution of 10
-5

.

 Table 2 lists the main control parameters of the

proposed BDOGP algorithm.

Fig. 6 shows the obtained block diagram of the

evolved deadbeat controller in generation 8200,

which has approximately 10
-9

 fitness. The transfer

function of the discrete deadbeat controller evolved

by the BDOGP is

 ()

 1 1 −

+ 1 1

1 + + 1

−1 1 1

Table 2 The main BDOGP control parameters

Population size 200

Termination criterion
Stopping the generation

manually

Creation probability 20%

Creation type Ramped-Half-and-Half

Crossover probability 48%

Maximum depth for

creation
5

Maximum depth for

crossover
8

Selection type Tournament selection

Tournament size 4

Swap mutation

probability
8%

Shrink mutation

probability
8%

Inverse shrink

mutation probability
8%

Branch mutation

probability
8%

Add best solutions to

new generation
yes

Number of best

solutions used in

elitism

50

Type of numeric

constant optimizer

Numeric constant

mutation

Number of iterations

applying in numeric

constant optimizer

10 iterations for each

individual in the

population, and additional

20 iterations for the

elected individuals by

elitism operation

The transfer function of the BDOGP deadbeat

controller has two zeros and three poles while the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 771 Volume 10, 2015

transfer function of state transition deadbeat

controller has two zeros and two poles. However,

this difference has an insignificant effect on

increasing the time of computation required for each

sample.

Fig. 6 Evolved discrete controller block diagram

In order to compare the behaviours of both

BDOGP and state transition deadbeat controllers,

table 3 illustrates the values of the control action,

and the system states from m = 1 to m = 5 for both

controllers. The results show that the response of the

BDOGP deadbeat controller is very accurate, where

the output reaches the value of input signal at 3

samples with zero overshoot and zero steady-state

error. Moreover, x2(m) and x3(m) reach nearly zero

values at sample 3, and they settle with accuracy up

to 10
-5

. The classical deadbeat controller seems a

little bit less accurate than the BDOGP controller.

The reasons belong to the rounding error

accumulated through the computations as well as

the numerical values of Km’s.

Fig. 7 shows both discrete and sampled-data

responses; the responses closeness to each other

indicates the accuracy of the GP algorithm.

Furthermore, table 4 gives all margins of both

sampled-data systems; obviously, both systems are

stable.

Example 2:

Temperature control of heating, ventilation, air-

conditioning system is a vital problem in most

institutional buildings, hospital, warehouse, etc. The

control system consists of two subsystems, one for

heating and ventilation and the other for air

conditioning. Both subsystems control the air

temperature and the air humidity. However, for

primarily design, separate design of each subsystem

is carried out. In this work, only the temperature

control model will be considered.

Table 3 Conventional controller and BDOGP

controller

m Contr. u(m) x1(m) x2(m) x3(m)

1 D(z) 1.48275

e-01

0.407608 5.78984 36.0032

DGP 1.48127

e-01

0.407201 5.78406 35.9673

2 D(z) -8.1764

e-02

0.979212 0.88169 -35.989

DGP -8.16923

e-02

0.978077 0.87857 -35.967

3 D(z) 4.01007

e-04

1.00204 9.61992

e-03

0.437914

e-02

DGP 1.94625

e-04

1 -1.345

e-05

-6.01934

e-07

4 D(z) -5.4533

e-04

1.00182 -1.47695

e-02

-1.58313

e-01

DGP -4.71856

e-08

1 -1.00494

e-05

2.12368

e-05

5 D(z) 2.15594

e-4

1.00022 -2.974

e-03

9.73946

e-02

DGP 7.04361

e-08

1 -3.05402

e-06

4.0273

e-05

Table 4 All margins of transfer function D(z) Gp(z)

Closed-loop

Parameters

With

Theoretical

Controller

With

GP Controller

Gain Margin (dB) 2.7917 2.7872

GM Frequency

(rad./sec.)

12.8162 12.8187

Phase Margin

(degree)

63.6774 63.8590

PM Frequency

(rad./sec.)

4.1956 4.1852

Delay Margin (dB) 1.7660 1.7754

DM Frequency

(rad./sec.)

4.1956 4.1852

The task is to design a discrete controller for the

temperature control in an HVAC system [21, 22]; in

the appendix, some detailed information of the

standard model is given. For a half-range air flow

rate (fs = 8.33 m
3
/min), the transfer function is

 ()

1 + 1

The delay term is approximated by second-

order lag and thus the overall transfer function

becomes

 ()

(1 + 1)(1 + + ())

where u(t) is the control signal, the controller

output, and the output is the indoor temperature.

0.99999 3.13392

0.01267

G1 (−
 𝑧 +
 1 38𝑧)

1

1 + 1 𝑧

1

1 − 𝑧
 1

1 − 1𝑧
 G2

𝑒(𝑧)

 (𝑧)

G3

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 772 Volume 10, 2015

Fig. 7 Discrete and continuous sampled-data
responses (example 1); a zooming figure is also

depicted

The error signal, the input of the controller, e(t)

is equal to the difference between the indoor

temperature y(t) and the set point temperature r(t) (a

step input). For a sampling time T equal to 5

minutes, the discrete matrices are

 [

− − 1
− − − 1

] [

 1

]

For this zero-type system, in usual state-space

approach, the normal conditions (equations 3 and 4)

of the deadbeat step response will be satisfied, but a

non-zero steady state will be resulted. However,

only for a certain value of an output magnitude β, it

is possible to have a deadbeat step response with

zero steady-state response. This is really because the

non-unity dc-gain of the closed-loop control system

is changed for every desired value of the β output,

i.e. since different deadbeat controllers are obtained

for different output magnitudes.

Analytically, for an output of a magnitude β, to

ensure a unity closed-loop dc-gain and hence a zero

steady-state error for unit-step input, it must be hold

 −

 () ()

1 + () ()
 (1)

where Gp(z) is the transfer function of the Z.O.H

and plant, and D(z), is the deadbeat controller that

is designed for unit-step reference input and an

output of β magnitude.

This will complicate the state-space approach to

obtain simultaneously the gains Km and the value of

β. Instead, some simulation runs are necessary to

find that a certain value of β. Only after that, the

closed-loop controlled system is scaled by an outer

feedforward gain equal to 1 / β to obtain a zero

steady-state response for all step input magnitudes.

This is an essential demand because the temperature

degree has to be changed during the operation

hours.

For the proposed GP algorithm, a small

modification is required in the individual tree to

include the β parameter that contributes in

minimizing the fitness function. The same terminal

node, transfer function set, fitness function with N =

50, and GP parameters (table 2) are used as in

example 1. Initially, a value of 1 is set for β. At the

end of the computation of the fitness function, all

solutions that do not satisfy the condition 13 will be

punished to exclude them.

To avoid a large number of generations and

hence a long time of computation, an accuracy of

10
-6

 is selected, and the GP generation is stopped

manually. The discrete transfer function of the obtained

deadbeat controller evolved by the proposed BDOGP is

 ()
 (1 + +)

(1 + 1 + 1)

Since the two poles are inside the unit circle,
then the deadbeat controller is stable. The
magnitude of the reference step input β is found to
be 0.6526. Therefore, to obtain zero steady-state
response, an outer feedforward gain of 1.5323 is
added.

Fig. 8 shows the unit-step response for an hour,

where as it can be seen, after 15 minutes (3T) the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 773 Volume 10, 2015

response satisfies the deadbeat response condition.

Due to the numerical accuracy, some small ripples

(maximum is about 4%) appear for time greater than

3T. However, the steady-state behaviour is quite

enough recovered at a time less than half an hour.

Furthermore, Fig. 9 shows a demand for a

temperature control profile. It is assumed that the

system was in operation over the time interval (0-

80) minutes, and the room temperature attains a

steady value of 28 degrees centigrade. Then it is

demanded for achieving 24, 20, and 16 degrees

centigrade after 80, 120 and 200 minutes

respectively. As shown, for all temperature

demands, the controlled system is regulated within

30 minutes to more than 99 % of the demands.

It is worth mention that one may argue about

decreasing the settling time by reducing the

sampling time without affecting the stability.

However, in this example, the task was only to

demonstrate the use of the proposed BDOGP to

synthesis a discrete controller, and hence further

investigation could give better results.

Fig. 8 Unit-step response (example 2)

Fig. 9 Temperature control performance (example
2)

5 Conclusion
A synthesis of a discrete controller that is based on a

proposed genetic programming algorithm has been

presented. The results demonstrate that the BDOGP

algorithm, which is assessed by the numeric

constant mutation operation, can be used to make

decisions concerning the total number of signal

processing blocks to be employed in the deadbeat

controller, the type of each block, and the values of

all parameters for all blocks. The effectiveness of

the proposed BDOGP algorithm is shown through

simulation of linear SISO plants. The numerical

results of the first example indicate that the response

of the GP algorithm is quite similar to the

theoretical deadbeat technique. The proposed

BDOGP is easily adapted for the design of a

discrete controller with zero steady-state error for a

zero-type temperature control system. The authors

are working on considering higher-order linear and

nonlinear industrial SISO systems in the near future,

and the digital implementation of the algorithm for

specific system. Furthermore, a work will be done

on reducing the long computation time that is the

big disadvantage of the method.

References:

[1] Suhail Owais, et al ,"Data Mining by Symbolic

Fuzzy Classifiers and Genetic Programming–

State of the Art and Prospective Approaches",

WSEAS Transactions on computers, Issue 3,

Vol. 12, March 2013

[2] Gabriela Prelipcean, Mircea Boscouanu,

Nicolae Popoviciu, " The Role of Predictability

of Financial Series in Emerging Market

Applications", WSEAS Transactions on

Mathematics, Issue 1, Vol. 7, January 2008

[3] S. Asha, R. Rani Hemamalini, "Synthesis of

Adder Circuit using Cartesian Genetic

programming", WSEAS Transactions on

Circuits and Systems, Vol. 14, 2015

[4] Mohamed J. Mohamed, "A proposed Genetic

Programming Applied to Controller Design and

System Identification", Unpublished Ph.D.

Thesis, University of Technology, Baghdad,

Iraq, February 2008

[5] Rami A. Maher, Mohamed J. Mohamed, "An

Enhanced Genetic Programming Algorithm for

Optimal Controller Design", Intelligent Control

and Automation, 2013, 4, 94-101

[6] Rami A. Maher, " Optimal Control Engineering

with MATLAB", Chapter 8, Nova Science, 2013

[7] Sekaj I., Perkacz J, "Genetic Programming-

based Controller Design",. Evolutionary

Computation, Ieee Congress on, CEC 2007

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 774 Volume 10, 2015

[8] Gray G. J., et al "Structural System

Identification Using Genetic Programming and

a Bloack Diagram Oriented Simulation Tool",

Electronics Letters, Vol. 32 issue 15, 1996

[9] J. R. Koza , M. A. Keane, J. YU, F. H. Bennett

III, and W. Mydlowec, "Automatic Creation of

Human-Competitive Programs and Controllers

by Means of Genetic Programming", Genetic

Programming and Evolvable Machines, 1 ,

121-164, 2000

[10] Eva Brucherscifer, et al, "An Indirect Block-

Oriented Representation for Genetic

Programming", Proceeding EuroGP 01

proceeding of the 4
th
 European Conference on

Genetic Programming, Springer-Verlag

London 2001

[11] J. R. Koza, M. A. Keane, F. H. Bennett III, J.

Yu, W. Mydlowec, and O. Stiffelman,

"Automatic Creation of Both the Topology and

Parameters for a Robust Controller by Means of

Genetic Programming", Proceeding of the 1999

IEEE. International Symposium on Intelligent

Control/Intelligent Systems and Semiotics,

Cambridge, MA, September 15-17, 1999

[12] M. A. Kean, J. R. Koza, and M. J. Streeter,

"Automatic Synthesis Using Genetic

Programming of an Improved General-Purpose

Controller for Industrially Representative

Plants", IEEE, Proceeding of the NAS/DOD

Conference on Evolvable Hardware, 2002

[13] J. R. Koza, "Genetic Programming: On the

Programming of Computers by Means of

Natural Selection", 1992, Cambridge, MA: The

MIT press

[14] M. Evett, T. Fernandez, "Numeric Mutation

Improves the Discovery of Numeric Constants

in Genetic Programming ", Proceeding of the

Third Annual Genetic Programming

Conference, Wisconsin pp. 66-71, 1998

[15] Kuo, Benjamin C. "Analysis and Synthesis of

Sampled-Data Control Systems", Prentice Hall

1963

[16] Robert Paz, Hatem Elaydi, "Optimal ripple-free

deadbeat response", Int. J. Control, Vol. 71,

No. 6, 1998

[17] Dane Baang, Dongkyoung Chwa, "Deadbeat

Control for Linear Systems with Input

Constraints", IEICE Transactions on

Fundamentals of Electronics, Communications

and Computer Sciences, Vol. E 92 A (2009)

No. 12, P3390-3393

[18] Constantine A. Karybakas, Constantine A.

Barbargires, "Explicit Conditions for Ripple-

free Dead-Beat Control", Kybernetica Vol. 32,

No. 6, 1996

[19] Vladimir Strejc, "State Space Theory of

Discrete Linear Control", Academia Prague,

1981

[20] Ahmed Salih, "Optimal Control Using Genetic

Algorithm", unpublished M.Sc. Thesis, MCE,

Baghdad, Iraq, 2002

[21] Yamakawa Y., et al, "Air-Conditioning PID

Control System with Adjusted Reset to offset

Thermal Loads Upsets", Oyama National

College of Technology, Univ. of Tokyo, pp. 209,

2010

[22] Bothaina Ali Mahasneh, "Development of

Control and Management Algorithm for

Electromechanical Subsystems of Intelligent

Building Management System in Institutional

Buildings" unpublished M.Sc. thesis, Isra

University, 2012

Appendix:

One degree of freedom controllers are denoted as a

first-order plus dead time (FOPDT) model. The

most commonly used approximate model for the

indoor temperature control in an HVAC system is

given by the FOPDT model as

 ()

 + 1

where

- Kp is the forward gain given in terms of the

system parameters by

 +

 +

- Tp is the system time constant given in terms of

the system parameters by

 +

 +

- Lp is the system time delay of the system given

in terms of the system parameters by

 +

 +

- θs is the supply air temperature in the cooling

coil; it is equal 13.1 degree centigrade.

- C is the overall heat capacity of the air-

conditioned space; it is equal 370.44 KJ/Kelvin.

- cp is the specific heat of air at the sea level, dry

and zero 1 degree centigrade; it is equal to

1.0035 KJ/m
3
 Kelvin.

- fs is the supply air flow rate; it is in the range (0

-16) m
3
/min.

- ρa is the air density at 15 degree centigrade; it is

equal to 1.225 Kg/m
2
.

- α is the overall transmittance-area factor; it is

equal to 9.69 KJ/min Kelvin.

- Lp0 is the initial heat capacity of air-conditioned

space, and it is equal to 49.4 KJ/Kelvin.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Rami A. Maher, Mohamed J. Mohamed

E-ISSN: 2224-2856 775 Volume 10, 2015

