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Abstract 
Program induction generates a computer program that can produce the desired 
behavior for a given set of situations. Two of the approaches in program induction are 
inductive logic programming (ILP) and genetic programming (GP). Since their 
formalisms are so different, these two approaches cannot be integrated easily though 
they share many common goals and functionalities. A unification will greatly enhance 
their problem solving power. Moreover, they are restricted in the computer languages 
in which programs can be induced. In this paper, we present a flexible system called 
LOGENPRO (LOgic grammar based GENetic PROgramming) that uses some of the 
techniques of GP and ILP. It is based on a formalism of logic grammars. The system 
applies logic grammars to control the evolution of programs in various programming 
languages and represent context-sensitive information and domain-dependent 
knowledge. Experiments have been performed to demonstrate that LOGENPRO can 
emulate GP and GP with ADF (Automatically Defined Functions). Moreover, 
LOGENPRO can employ knowledge such as argument types in a unified framework. 
The experiments show that LOGENPRO has superior performance to that of GP and 
GP with ADF when more domain-dependent knowledge is available. We have applied 
LOGENPRO to evolve general recursive functions for the even-n-parity problem 
from noisy training examples. A number of experiments have been performed to 
determine the impact of domain-specific knowledge and noise in training examples on 
the speed of learning. 
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1. Introduction 
 
Researchers in the field of automatic programming investigate how to automate the 
tasks of the software life cycle. In this paper, we present a flexible system that evolves 
programs automatically and overcomes some of the problems of existing automatic 
programming systems which are briefly described as follows. 
 

The users of automatic programming systems are only required to write 
specifications for what they want and the systems systematically generates programs 
satisfying these specifications. Deductive, transformational, inspection, and inductive 
methods can be employed in these systems (Rich and Waters, 1988). 

 
If the specification can be formulated as a theorem stating the relation between 

the inputs and the corresponding outputs, then a program can be obtained by finding a 
constructive proof of the satisfiability of the specification. Deductive methods search 
for an inference path from some initial states to a goal representing the specification. 
Since the search space is extremely large and the current deductive systems cannot 
control the search process effectively, these systems cannot discover complex 
programs. 

 
Transformational methods search for a sequence of transformations to convert 

a specification into a low-level implementation. The three components of a 
transformation are a pattern, a set of logical applicability conditions, and an action. 
When an instance of the pattern is found in the specification, the conditions are 
checked to determine whether the transformations can be employed. If the conditions 
are satisfied, the action is evaluated to compute a new section of code, which is used 
to replace the code matched by the pattern. At each step, a transformation is selected 
and applied to a specification to produce a modified specification. The above process 
is repeated until some condition is satisfied. However, transformational systems suffer 
from the same problem of deductive systems. 

 
Inspection methods construct a program by recognizing clichés in the 

specification and then choosing among various implementations of the identified 
cliché. The process of identifying clichés and selecting an implementation can be 
viewed as a difficult search problem. Consequently, a fully automatic, inspection 
system suffers from the same control problem in deductive and transformational 
systems (Rich and Waters, 1990). 

 
Inductive methods perform inductive inference which generalizes partial 

specifications, such as training examples, to produce programs exhibiting the desired 
behavior. Program induction systems can be classified by the kinds of information 
employed in the specifications (Olsson, 1995). Some systems use traces of 
computation or sets of positive and negative examples. Biermann (1972) 
demonstrated that flowcharts and Turing machines can be induced from example 
traces. Summers (1977), Biermann and Smith (1979) described systems that create 
programs in Lisp from examples of their behaviors. Inductive logic programming 
(ILP) systems construct logic programs from examples and background knowledge 
(Muggleton, 1992, 1994; Quinlan, 1990, 1991; Lavrac and Dzeroski, 1994; De Raedt, 
1992; De Raedt and Bruynooghe, 1992; Muggleton and De Raedt, 1994). They are 
more powerful than traditional learning systems because they use an expressive first-
order logic framework and background knowledge. On the other hand, genetic 
programming (GP) systems use specifications represented as fitness functions to drive 
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the evolution of programs in Lisp (Cramer, 1985; Koza, 1992, 1994; Koza et al., 
1996; Kinnear 1994; Angeline and Kinnear, 1996). 

 
Since the formalisms of ILP and GP are so different, these two approaches 

cannot be integrated easily although their properties and goals are similar. If they can 
be combined in a common framework, then many of the techniques and theories 
obtained in one approach can be applied in the other one. The combination can greatly 
enhance the information exchange between these fields. Moreover, they are restricted 
in the computer languages in which programs can be induced. ILP systems can only 
learn logic programs. On the other hand, programs evolved by GP systems are usually 
expressed in Lisp. 

 
This paper presents a flexible system called LOGENPRO (The LOgic 

grammar based GENetic PROgramming system) that employs some of the techniques 
of GP and ILP to learn programs in various programming languages. The system is 
also powerful enough to represent context-sensitive information and domain-
dependent knowledge. This knowledge can be used to accelerate the learning speed 
and/or improve the quality of the programs induced (Wong and Leung, 1995a, 1995b, 
1995c, 1996). 

 
The details of LOGENPRO are presented in the next section. In section three, 

we illustrate the application of LOGENPRO in learning S-expressions in Lisp. We 
demonstrate the application of various knowledge to accelerate the learning of sub-
functions in the forth section. In section five, we apply LOGENPRO to learn 
recursive functions from noisy training examples. The last section is the conclusion. 

 
2. LOGENPRO (The LOgic grammar based GENetic 

PROgramming system) 
 

Since LOGENPRO can induce programs in various programming languages such as 
Lisp and Prolog, it must be able to accept grammars of different languages to generate 
programs in them. Most modern programming languages are specified in the notation 
of BNF (Backus-Naur form) which is a kind of context-free grammars (CFGs). 
However, LOGENPRO is based on logic grammars because CFGs (Hopcroft and 
Ullman, 1979; Lewis and Rapadimitrion, 1981) are not expressive enough to 
represent context-sensitive information for some languages and domain-dependent 
knowledge of the target program being induced. The idea of using formal grammars 
to direct search for programs in the hypothesis space or to reduce the size of the space 
has also been independently studied by other researcher recently (Cohen, 1992; 
Gruau, 1996; Whigham, 1995, 1996). This section first introduces the formalism of 
logic grammars followed by the descriptions of LOGENPRO.  

 
2.1. Introduction to logic grammars 
 
Logic grammars are the generalizations of CFGs. They are more expressive than 
CFGs, but equally amenable to efficient execution. In this paper, logic grammars are 
described in a notation similar to that of definite clause grammars (Pereira and 
Warren, 1980; Pereira and Shieber, 1987; Sterling and Shapiro 1986). The logic 
grammar for some simple S-expressions in table 1 will be used throughout this 
section.  
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A logic grammar differs from a CFG in that the logic grammar symbols, 
whether terminal or non-terminal, may include arguments. The arguments can be any 
term in the grammar. A term is either a logic variable, a function, or a constant. A 
variable is represented by a question mark ? followed by a string of  letters and/or 
digits. A function is a grammar symbol followed by a bracketed n-tuple of terms and a 
constant is simply a 0-arity function. Arguments can be used in a logic grammar to 
enforce context-dependency and to represent the semantics of the program. 

 
The terminal symbols enclosed in square brackets correspond to the set of 

words of the language specified. For example, the terminal [(- ?x ?y)] creates 
the constituent (- 1.0 2.0) of a program if ?x and ?y are instantiated 
respectively to 1.0 and 2.0. Non-terminal symbols are similar to literals in Prolog, 
exp-1(?x) in table 1 is an example of non-terminal symbols. Commas denote 
concatenation and each grammar rule ends with a full stop.  

 
The right-hand side of a grammar rule may contain logic goals and grammar 

symbols. The goals are pure logical predicates for which logical definitions have been 
given. They specify the conditions that must be satisfied before the rule can be 
applied. For example, the goal member(?x, [W, Z]) in table 1 instantiates the 
variable ?x to either W or Z if ?x has not been instantiated, otherwise it checks 
whether the value of ?x is either W or Z. If the variable ?y has not been bound, the 
goal random(1, 2, ?y) instantiates ?y to a random floating point number 
between 1 and 2. Otherwise, the goal checks whether the value of ?y is between 1 
and 2.  

 
Domain-dependent knowledge can be represented in logic goals. For example, 

consider the following grammar rule: 
a-useful-program -> first-component(?X), 
     {is-useful(?X, ?Y)}, 
     second-component(?Y). 

This rule states that a useful program is composed of two components. The first 
component is generated from the non-terminal first-component(?X). The logic 
variable ?X is used to store semantic information about the first component produced. 
The logic goal then determines whether the first component is useful according to the 
semantic information stored in ?X. Domain-dependent knowledge about which 
program fragments are useful is represented in the logical definition of this predicate. 
If the first component is useful, the logic goal is-useful(?X, ?Y) is satisfied 
and some semantic information is stored into the logic variable ?Y. This information 
will be used in the non-terminal second-component(?Y) to guide the search for 
a good program fragment as the second component of a useful program. 

 
The special non-terminal start corresponds to a program of the language. In 

table 1, some grammar symbols are shown in bold-face to identify the constituents 
that cannot be manipulated by genetic operators. For example, the last terminal 
symbol [)] of the second rule is revealed in bold-face because every S-expression 
must be ended with a ')'.  The number before each rule is a label for later discussions. 
It is not part of the grammar. 

 
2.2. Representations of programs 

 
Since LOGENPRO operates on a population of programs and generates a new 
population of offspring programs by using genetic operators, it must produce the 
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initial population and guarantee that only valid offspring programs will be created. 
Moreover, it is necessary to find a universal representation of programs, because 
programs in various programming languages have different syntax and semantics. 
One of the fundamental contributions of LOGENPRO is in the representation of  
programs. This representation facilitates the generation of the initial population and 
the operations of various genetic operators such as reproduction, mutation, and 
crossover. In this sub-section, we introduce the representation and describe the 
method of generating the initial population. The genetic operators are described in 
sub-sections 2.3 and 2.4. 
 

A program can be represented as a derivation tree that shows how the program 
has been derived from the logic grammar. LOGENPRO applies deduction to 
randomly generate programs and their derivation trees in the language declared by the 
given grammar. These programs form the initial population. For example, the 
program (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can be generated by 
LOGENPRO given the logic grammar in table 1. It is derived from the following 
sequence of derivations: 

start => [(*] exp(W) exp(W) exp(W) [)] 
  => [(*] [(/ W 1.5)] exp(W) exp(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   exp(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   [(/ W 1.5)] [)] 
  => [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
 
This sequence of derivations can be represented as the derivation tree depicted 

in figure 1. In literature, the terms derivation trees and parse trees are usually used 
interchangeably. However, we will use the term derivation trees to refer to the tree 
structures in our framework and the term parse trees to refer to those in GP. The 
bindings of logic variables are shown in italic font and enclosed in a pair of braces. 
The sub-trees enclosed in a dashed rectangular are frozen. In other words, they are 
generated by bold-faced grammar symbols and they cannot be modified by genetic 
operators. 

 
An advantage of logic grammars is that they specify what is a legal program 

without any explicit reference to the process of program generation and parsing. 
Furthermore, a logic grammar can be translated into an efficient logic program that 
can generate and parse the programs in the language declared by the logic grammar 
(Pereira and Warren, 1980; Pereira and Shieber, 1987; Abramson and Dahl 1989). In 
other words, the process of program generation and parsing can be achieved by 
performing deduction using the translated logic program. Consequently, the program 
generation and analysis mechanisms of LOGENPRO can be implemented using a 
deduction mechanism based on the logic programs translated from the grammars. The 
method of implementing LOGENPRO using a Prolog like logic programming 
language is described in Appendix A. 

 
Initial programs can also be induced by other learning systems such as FOIL 

(Quinlan, 1990, 1991) or given by the user. LOGENPRO analyzes each program and 
creates the corresponding derivation tree. If the language is ambiguous, more than one 
derivation tree can represent a given program. In this case, LOGENPRO selects one 
tree from the set of possible trees to represent the program. For example, the program 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can also be derived from the 
following sequence of derivations: 
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start => {member(?x, [W, Z])} [(*] exp-1(?x)  
   exp-1(?x) exp-1(?x) [)] 
  => [(*] exp-1(W) exp-1(W) exp-1(W) [)] 
  => [(*] {random(1, 2, ?y)} [(/ W ?y)] 
   exp-1(W) exp-1(W) [)] 

=> [(*] [(/ W 1.5)] exp-1(W) exp-1(W)  
   [)] 
  => [(*] [(/ W 1.5)] {random(1, 2, ?y)}  
   [(/ W ?y)] exp-1(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   exp-1(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   {random(1, 2, ?y)} [(/ W ?y)] [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   [(/ W 1.5)] [)] 
  => [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
 
The derivation tree of this sequence of derivations is depicted in figure 2. The 

?y1, ?y2, and ?y3 in the figure are different instances of the logic variable ?y 
appearing in the same or different rules in the grammar.  
 
2.3. Crossover of programs 

 
The crossover is a sexual operation that starts with two parental programs and the 
corresponding derivation trees. One program is designated as the primary parent and 
the other one as the secondary parent. Their derivation trees are called the primary 
and secondary derivation trees respectively. The following steps are used to produce 
an offspring program: 

1. If there are sub-trees in the primary derivation tree that have not been 
selected previously, select randomly a sub-tree (primary sub-tree) from 
these sub-trees using a uniform distribution. The root of the selected sub-
tree is called the primary crossover point. Otherwise, terminate the 
algorithm without generating any offspring. 

2. Select another sub-tree (secondary sub-tree) in the secondary derivation 
tree under the constraint that the offspring produced must be valid 
according to the grammar. In Appendix B, we present the method of 
selecting sub-tree satisfying the constraint. 

3. If a sub-tree can be found in step 2, create and return the offspring, which 
is obtained by deleting the primary sub-tree and then inserting the 
secondary sub-tree at the primary crossover point. Otherwise, go to step 1. 

 
Consider two parental programs generated randomly from the grammar in 

table 1. The primary parent is (+ (- Z 3.5) (- Z 3.8) (/ Z 1.5)) and 
the secondary parent is (* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)). 
The corresponding derivation trees are depicted in figures 3 and 4 respectively. In the 
figures, the plain numbers identify the sub-trees of these derivation trees, while the 
underlined numbers indicate the grammar rules used in deducing the corresponding 
sub-trees.  

 
For example, if the primary and secondary sub-trees are respectively 2 and 15. 

The valid offspring is (* (- Z 3.5) (- Z 3.8) (/ Z 1.5)) is obtained 
and its derivation tree is shown in figure 5. It is interesting to find that the sub-tree 25 
has a label 2. This indicates that the sub-tree is generated by the second grammar rule 
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rather than the third rule applied to the primary parent. The second rule must be used 
because the terminal symbol [(/] is changed to [(*] and only the second rule can 
create the terminal [(*]. 

 
In another example, the primary and secondary sub-trees are 3 and 16 

respectively. The valid offspring (+ (/ Z 1.5) (- Z 3.8) (/ Z 1.5)) is 
produced and the derivation tree is shown in figure 6. It should be emphasized that the 
constituent from the secondary parent is changed from (/ W 1.5) to (/ Z 1.5) 
in the offspring. This must be modified because the logic variable ?x in sub-tree 41 is 
instantiated to Z in sub-tree 39. This example demonstrates the use of logic grammars 
to enforce contextual-dependency between different constituents of a program. 

 
LOGENPRO disallows the crossover between the primary sub-tree 6 and the 

secondary sub-tree 19. The sub-tree 19 requires the variable ?x to be instantiated to 
W, But, ?x must be instantiated to Z in the context of the primary parent. Since W and 
Z cannot be unified, these two sub-trees cannot be crossed over. 

 
LOGENPRO has an efficient algorithm to check these conditions before 

performing any crossover. Thus, only valid offspring are produced and this operation 
can be achieved effectively and efficiently. The detailed algorithm for implementing 
the crossover operation is discussed in Appendix B. 

 
2.4. Mutation of programs 

 
The mutation operation in LOGENPRO introduces random modifications to programs 
in the population. A program in the population is selected as the parental program. 
The selection is based on various methods such as fitness proportionate and 
tournament selections. The following steps are used to produce an offspring program: 

1. If there are sub-trees in the derivation tree of the parental program that 
have not been selected previously, select randomly a sub-tree from these 
sub-trees using a uniform distribution. The root of the selected sub-tree is 
called the mutation point. Otherwise, terminate the algorithm without 
generating any offspring. 

2. Generate a new derivation tree using the deduction mechanism produced 
by LOGENPRO. The new derivation tree is created under the constraint 
that the offspring produced must be valid according to the grammar. In 
Appendix C, we describe the method of generating derivation tree 
satisfying the constraint. 

3. If a new derivation-tree can be found in step 2, create and return the 
offspring, which is obtained by deleting the selected sub-tree and then 
inserting the new derivation tree at the mutation point. Otherwise, go to 
step 1. 

 
For example, assume that the program being mutated is (+ (- Z 3.5) (-

 Z 3.8) (/ Z 1.5)) and the corresponding derivation tree is depicted in figure 
3. If the sub-tree 3, MUTATED-SUB-TREE, is selected to be modified and the root 
of the MUTATED-SUB-TREE is designated as the MUTATE-POINT. Then a new 
derivation tree, NEW-SUB-TREE, for the S-expression (/ Z 1.9) can be obtained 
from the non-terminal symbol exp-1(Z) using the fifth rule of the grammar. The 
derivation tree is shown in figure 7. A new offspring is obtained by duplicating the 
genetic materials of its parental derivation tree, followed by deleting the MUTATED-
SUB-TREE from the duplication, and then pasting the NEW-SUB-TREE at the 
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MUTATE-POINT. The derivation tree of the offspring (+ (/ Z 1.9) (-
 Z 3.8) (/ Z 1.5)) can be found in figure 8. 

 
LOGENPRO has an efficient implementation of the mutation algorithm. 

Moreover, an inference engine has been developed for deducing derivation trees (or 
programs) from a given logic grammar. Thus, only valid mutations can be performed 
and this operation can be achieved effectively and efficiently. The mutation algorithm 
is given in Appendix C. 

 
2.5. The evolution process of LOGENPRO 

 
The problem of inducing programs can be reformulated as a search for a highly fit 
program (according to the fitness function) in the space of all possible programs in the 
language specified by  the logic grammar (Mitchell, 1982). In LOGENPRO, 
populations of programs are genetically bred (Holland, 1992; Goldberg, 1989; Davis 
1991) using the Darwinian principle of survival and reproduction of the fittest along 
with genetic operations appropriate for creating programs. LOGENPRO starts with an 
initial population of programs generated randomly, induced by other learning 
systems, or provided by the user. Logic grammars provide declarative descriptions of 
the valid programs that can appear in the initial population. A fitness function must be 
defined by the user to evaluate the fitness values of the programs. Typically, each 
program is run over a set of fitness cases and the fitness function estimates its fitness 
by performing some statistical operations (e.g. average) to the values returned by this 
program. 

 
Since each program generated in the evolution process must be executed, a 

compiler or interpreter for the corresponding programming language must be 
available. This compiler or interpreter is called by the fitness function to compile or 
interpret the created programs. LOGENPRO can only guarantee that valid programs 
in the language specified by the logic grammar will be generated. However, to ensure 
that the produced programs can be successfully compiled or interpreted, an 
appropriate compiler/interpreter must be provided. Thus, the user must be very careful 
in designing the logic grammar and the fitness function. 

 
The initial programs in generation 0 normally have poor performances. 

However, some programs in the population will be fitter than others. Fitness of each 
program in the generation is estimated and the following process is iterated over many 
generations until the termination criterion is satisfied. The reproduction, sexual 
crossover, and asexual mutation are used to create new generation of programs from 
the current one. The reproduction involves selecting a program from the current 
generation and allowing it to survive by copying it into the next generation. Either 
fitness proportionate or tournament selection can be used.  

 
The crossover is used to create a single offspring program from two parental 

programs selected. Mutation creates a modified offspring program from a parental 
program selected. Unlike crossover, the offspring program is usually similar to the 
parent program. Logic grammars are used to constraint the offspring programs that 
can be produced by these genetic operations. 

 
This algorithm will produce populations of programs which tend to exhibit 

increasing average of fitness. LOGENPRO returns the best program found in any 
generation of a run as the result.  
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3. Learning functional program 
 
In this section, we describe how to use LOGENPRO to emulate traditional GP (Koza, 
1992, 1994). GP has a limitation that all the variables, constants, arguments for 
functions, and values returned from functions must be of the same data type. This 
limitation leads to the difficulty of inducing even some rather simple and 
straightforward functional programs. For example, one of these programs calculates 
the dot product of two given numeric vectors of the same size. Let X and Y be the two 
input vectors, then the dot product is obtained by the following S-expression: 

(apply (function +)  (mapcar (function *) X Y)) 
 
Let us use this example for illustrative comparison below. To induce a 

functional program using LOGENPRO, we have to determine the logic grammar, 
fitness cases, fitness functions, and termination criterion. The logic grammar for 
learning functional programs is given in table 2. In this grammar, we employ the 
argument of the grammar symbol s-expr to designate the data type of the result 
returned by the S-expression generated from the grammar symbol. For example,  

(mapcar (function +) X (mapcar (function *) X Y)) 
is generated from the grammar symbol s-expr([list, number, n]) because 
it returns a numeric vector of size n. Similarly, the symbol s-expr(number) can 
produce (apply (function *) X) that returns a number.  

 
The terminal symbols [ + ], [ - ], and [ * ] represent functions that 

perform ordinary addition, subtraction, and multiplication respectively. The symbol 
[ % ] represents function that normally returns the quotient. However, if division by 
zero is attempted, the function returns 1.0. The symbol protected-log is a 
function that calculates the logarithm of the input argument x if x is larger than zero, 
otherwise it returns 1.0. The logic goal random(-10, 10, ?a) generates a 
random floating point number between -10 and 10 and instantiates ?a to the random 
number generated. 

 
Ten random fitness cases are used for training. Each case is a 3-tuples ‹Xi, Yi, 

Zi›, where 1≤ i≤10,  Xi and Yi are vectors of size 3, and Zi is the corresponding dot 
product. The fitness function calculates the sum, taken over the ten fitness cases, of 
the absolute values of the difference between Zi and the value returned by the 
S-expression for Xi and Yi. Let S be an S-expression and S(Xi, Yi) be the value 
returned by the S-expression for Xi and Yi. The fitness function Val is defined as 
follows, 

Val(S) |S(X,Y) Z|i i i
i 1

10

= −
=
∑  

 
A fitness case is said to be covered by an S-expression if the value returned by 

it is within 0.01 of the desired value. An S-expression that covers all training cases is 
further evaluated on a testing set containing 1000 random fitness cases. LOGENPRO 
will stop if the maximum number of generations of 100 is reached or a S-expression 
that covers all testing fitness cases is found. 

 
For traditional GP, the terminal set T is {X, Y, } where  is the ephemeral 

random floating point constant.  takes on a different random floating point value 
between -10.0 and 10.0 whenever it appears in an individual program in the initial 
population (Koza 1992). The function set F is {protected+, protected-, 
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protected*, protected%, protected-log, vector+, vector-, 
vector*, vector%, vector-log, apply+, apply-, apply*, apply%}, 
taking 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, and 1 arguments respectively. 

 
The primitive functions protected+, protected-, and protected* 

respectively perform addition, subtraction, and multiplication if the two input 
arguments X and Y are both numbers. Otherwise, they return 0. The function 
protected% returns the quotient. However, if division by zero is attempted or the 
two arguments are not numbers, protected% returns 1.0. The function 
protected-log finds the logarithm of the argument X if X is a number larger than 
zero. Otherwise, protected-log returns 1.0.  

 
The functions vector+, vector-, vector*, and vector% respectively 

perform vector addition, subtract, multiplication and, division if the two input 
arguments X and Y are numeric vectors with the same size, otherwise they return zero. 
The primitive function vector-log performs the S-expression: 

(mapcar (function protected-log) X)  
if the input argument X is a numeric vector, otherwise it returns zero. The functions 
apply+, apply-, apply*, and apply% respectively perform the following 
S-expressions if the input argument X is a numeric vector: 

(apply (function protected+) X),  
(apply (function protected-) X), 
(apply (function protected*) X), and  
(apply (function protected%) X), 

otherwise they return zero. 
 
It should be emphasized that the primitive functions vector+, vector-, 

vector*, and vector% can be emulated by using the grammar rules 11, 18, 19, 20, 
and 21. The primitive funcition vector-log can be emulated by using the grammar 
rules 12 and 22. The primitive functions apply+, apply-, apply*, and apply% 
can be emulated by using the grammar rules 15, 18, 19, 20, and 21. Thus the set of 
effective functions represented by the grammar in table 2 is equivalent to the set used 
in traditional GP. The functions mapcar and apply cannot be used in traditional 
GP because the first argument of these functions must be a valid operators such as +, 
-, *, or %. But traditional GP cannot enforce this constraint, thus we have to create 
some special functions such as vector+, apply+ etc. to handle this problem. 

 
The fitness cases, the fitness function, and the termination criterion are the 

same as those used by LOGENPRO. Three experiments are performed. The first one 
evaluates the performance of LOGENPRO using a population of 100 programs. The 
other two experiments evaluate the performance of GP using respectively populations 
of 100 and 1000 programs. In each experiment, sixty trials are attempted and the 
results are summarized in figure 9. From the curves in figure 9, the lower values are 
better, thus LOGENPRO has superior performance than that of GP. 

 
The curves in figure 10(a) show the experimentally observed cumulative 

probability of success P(M, i) of solving the problem by generation i using a 
population of M programs. The curves in figure 10(b) show the number of programs 
I(M, i, z) that must be processed to produce a solution by generation i with a 
probability z. Throughout this section, the probability z is set to 0.99. The curve for 
GP with a population of 100 programs is not depicted because the values is extremely 
large. For the LOGENPRO curve, I(M, i, z) reaches a minimum value of 8800 at 
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generation 21. On the other hand, the minimum value of I(M, i, z) for GP with 
population size of 1000 is 66000 at generation 1. LOGENPRO can find a solution 
much faster than GP and the computation (i.e. I(M, i, z)) required by LOGENPRO is 
much smaller than that of GP.  

 
The performance of LOGENPRO is better because knowledge of data type has 

been encoded in the grammar. Consequent, invalid programs such as 
(+ (apply (function +) 9) 9) 

cannot be produced. On the other hand, traditional GP may create the equivalent 
invalid program (+ (apply+ 9) 9). In other words, the search space of 
traditional GP is larger than that of LOGENPRO. But, the former contains many 
invalid programs. 

 
The idea of applying knowledge of data type to accelerate learning has been 

investigated independently by Montana (1995) in his Strongly Typed Genetic 
Programming (STGP). He presents many examples involving vector and matrix 
manipulation to illustrate the operation of STGP. However, he has not compared the 
performance between traditional GP and STGP. Although it is commonly believed 
that knowledge can accelerate the speed of learning, Pazzani and Kibler (1992) 
showed that inappropriate and/or redundant knowledge can sometimes degrade the 
performance of a learning system. We show that knowledge of data type can be 
represented in a logic grammar and thus LOGENPRO can emulate the effect of STGP 
easily1. Moreover, more natural primitive functions such as mapcar and apply can 
be used in LOGENPRO, rather than using some special primitive functions such as 
vector+ and apply+ found in traditional GP. 

 
4. Learning sub-functions using LOGENPRO 

 
Automatic discovery of problem representation primitives is certainly one of the most 
challenging research areas in genetic programming. GP with ADF (Automatically 
Defined Functions) is one of the approaches that have been proposed to acquire 
problem representation primitives automatically (Koza, 1994). In this approach, each 
program in the population contains an expression, called the result producing branch, 
and definitions of one or more sub-functions which may be invoked by the result 
producing branch. The result producing branch is evaluated to produce the fitness of 
the program. A constrained syntactic structure and some modified genetic operators 
are required for the evolution of the programs. To employ GP with ADF, the user 
must provide explicit knowledge about the number of available automatically defined 
sub-functions, the number of arguments of each sub-functions, and the allowable 
terminal and function sets for each sub-function.  

In this section, we demonstrate how to use LOGENPRO to emulate GP with 
ADF. LOGENPRO is employed to learn a sub-function that calculates dot product 
and employ this sub-function in the main program. In other words, it is expected to 
induce the following S-expression: 

                                                 

1 In addition to emulating STGP, LOGENPRO can also emulate GP with ADF as described in 
section 4. 
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(progn 
  (defun ADF0 (arg0 arg1) 
     (apply (function +) 
        (mapcar (function *) arg0 arg1))) 
  (+ (ADF0 X Y) (ADF0 Y Z))) 
 
In the logic grammar for this problem (table 3), we employ the argument of 

the grammar symbol s-expr to designate the data type of the result returned by the 
S-expression generated from the grammar symbol. The terminal symbols [ + ], 
[ - ], and [ * ] represent functions that perform ordinary addition, subtraction, 
and multiplication respectively.  

 
Ten random fitness cases are used for training. Each case is a 4-tuples ‹Xi, Yi, 

Zi, Ri›, where 1≤ i≤10,  Xi, Yi and Zi are vectors of size 3, and Ri is the 
corresponding desired result. The fitness function calculates the sum, taken over the 
ten fitness cases, of the absolute values of the difference between Ri and the value 
returned by the S-expression for Xi, Yi and Zi. Let S be an S-expression and S(Xi, Yi, 
Zi) be the value returned by the S-expression for Xi, Yi and Zi. The fitness function 
Val is defined as follows, 

Val(S) |S(X,Y, Z) R|i i i i
i 1

10

= −
=
∑  

 
A fitness case is said to be covered by an S-expression if the value returned by 

it is within 0.01 of the desired value. An S-expression that covers all training cases is 
further evaluated on a testing set containing 1000 random fitness cases. LOGENPRO 
will stop if the maximum number of generations is reached or an S-expression that 
covers all testing fitness cases is found. 
 

For GP with ADF (with the modified genetic operator), the terminal set T0 for 
the automatically defined function (ADF0) is {arg0, arg1} and the function set F0 
is {protected+, protected-, protected*, vector+, vector-, 
vector*, apply+, apply-, apply*}, taking 2, 2, 2, 2, 2, 2, 1, 1, and 1 
arguments respectively. The terminal set Tr for the result producing branch is {X, Y, 
Z} and the function set Fr is {protected+, protected-, protected*, 
vector+, vector-, vector*,  apply+, apply-, apply*, ADF0}, taking 2, 2, 
2, 2, 2, 2, 1, 1, 1, and 2 arguments respectively. The primitive functions have already 
been defined in the previous section. The fitness cases, the fitness function, and the 
termination criterion are the same as the ones used by LOGENPRO. We evaluate the 
performance of LOGENPRO and the ADF using populations of 100 and 1000 
programs respectively. 

 
Thirty trials are attempted and the results are summarized in figures 11 and 12. 

Figure 11 shows, by generation, the fitness (error) of the best program in a population. 
These curves are found by averaging the results obtained in thirty different runs using 
various random number seeds and fitness cases. From these curves, LOGENPRO has 
superior performance than that of GP with ADF. The curves in figure 12(a) show the 
experimentally observed cumulative probability of success, P(M, i), of solving the 
problem by generation i using a population of M programs. The curves in figure 12(b) 
show the number of programs I(M, i, z) that must be processed to produce a solution 
by generation i with a probability z of 0.99. The curve for  LOGENPRO reaches a 
minimum value of 4900 at generation 6. On the other hand, the minimum value of 
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I(M, i, z) for GP with ADF is 5712000 at generation 41. This experiment clearly 
shows the advantage of LOGENPRO. By employing various knowledge about the 
problem being solved, LOGENPRO can find a solution much faster than GP with 
ADF and the computation (i.e. I(M, i, z)) required by LOGENPRO is much smaller 
than that of GP with ADF. Moreover, LOGENPRO can emulate the effects of STGP 
and GP with ADF simultaneously and easily. 

 
5. Learning recursive functions from noisy examples 
 
An approach to make a large problem more tractable is to discover problem 
representations automatically. Koza (1994) uses the even-n-parity problem to 
demonstrate that his approach of hierarchical Automatically Defined Functions (ADF) 
can facilitate the solving of the problem.  

 
Koza shows that the even-7-parity problem can be solved using GP with 

hierarchical ADF. He finds that about 1440000 functions, I(M, i, z), should be 
evaluated to obtain at least one solution with 99% probability. In each fitness 
calculation, 128 fitness cases must be evaluated. Thus, 1440000*128 = 184320000 
fitness cases should be processed. Unfortunately, the solutions found can only solve 
the even-n-parity problem with a particular value of n. If a different value of n is used, 
GP with hierarchical ADF must be applied again to find other programs that can solve 
the new even-n-parity problem.  

 
Clearly, the solution found is not general enough to solve all instances of the 

even-n-parity problem for all n ≥ 0. In this section, we use LOGENPRO to evolve 
general recursive functions for the even-n-parity problem from noisy training 
examples.  

 
The even-n-parity problem is first presented in sub-section 5.1, followed by 

the sub-section describing the difficulties of learning recursive functions for the 
problem. The method of representing domain-specific knowledge using logic 
grammars is discussed in sub-section 5.3. Next, we describe a number of experiments 
that evaluate the impact of knowledge and noise in examples on the rate of inducing 
general recursive functions. The last sub-section is a discussion. 

 
5.1. The even-n-parity problem 
 
The boolean even-n-parity function of n boolean input arguments returns true (T) if an 
even number of the arguments are true, otherwise it returns false (nil). Koza (1994) 
used GP with hierarchical ADF to induce the function. The training set contains all 2

n
 

combinations of the n boolean input arguments. The standardized fitness of an S-
expression is the sum of the error between the value returned by the S-expression and 
the correct value of the even-n-parity function. The maximum number of generations 
is 51. The population sizes for the even-3-, 4-, 5-, and 6-parity problems are 16000. 
On the other hand, the population size for the even-7-parity problem is 4000. 

 
5.2. The recursive even-n-parity function 
 
Since all 2

n
 fitness cases, for a particular value of n, are used as the training examples, 

it is unclear whether GP can discover the regularities of the even-n-parity problem 
and induce a general function. A more general recursive function which can solve all 
instances of the problem for all n ≥ 0 is shown in table 4. 
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The recursive function is composed of two components. The first component 

is the base statement:  
if (null L) T 

specifying that the function must return true (T) if the input argument L is an empty 
list. The second component is the recursive statement: 

(AND (OR (first L) (parity (rest L))) 
     (NAND (first L) (parity (rest L)))) 
 
In general, a recursive function consists of one or more base statements and a 

number of recursive statements. It is difficult to evolve a recursive function because 
appropriate base and recursive statements and correct ordering of them must be 
evolved simultaneously. 

 
For example, the following function: 
(defun parity (L) 
  (AND (or (first L) (parity (rest L))) 
       (if (null L) T 
        (AND (OR (first L) (parity (rest L))) 
             (NAND (first L) (parity (rest L))))))) 

is incorrect, although the second component of the outermost AND function is the 
target recursive function to be evolved.  
 

Moreover, consider the problem of inducing a function from all fitness cases 
of the even-3-parity problem, the standardized fitness value of the function: 

(defun parity (L) 
  (if (null L) T (first L))) 

is only 4, although its base statement is correct. The standardized fitness value of the 
function: 

(defun parity (L) 
  (if (null L) nil 
    (AND (OR (first L) (parity (rest L))) 
    (NAND (first L) (parity (rest L)))))) 

is 8 (the worst value), although its recursive statement is correct. These examples 
illustrate that the problem of inducing recursive functions is difficult, because the 
properties of the problem obstruct the construction and combination of good building 
blocks and it is hard to design fitness functions that are able to assign partial credit. 

 
5.3. Representing knowledge using logic grammars 
 
To evolve recursive functions using LOGENPRO, we have to determine the 
terminals, the primitive functions, the fitness cases, the fitness function, and the 
termination criterion. The terminal set is {L, T, nil} where L is the input argument 
of the recursive function to be learned, T and nil are boolean truth values. The 
argument L is a list of boolean values and any number of boolean values can exist in 
the list L. The set of primitive functions is {AND, OR, NAND, NOR, ifnil, first, 
rest, parity} 

 
The boolean functions AND, OR, NAND, and NOR take two boolean input 

arguments and return one boolean value. The function ifnil takes three arguments. 
The first argument must be an S-expression that returns a list of boolean values. The 
last two arguments must be S-expressions that produce boolean output values. The 
function ifnil checks whether the first input argument returns an empty list. If the 
list is empty, ifnil returns the boolean value passed into the second S-expression as 
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the output value of the function, otherwise it returns the boolean value of the third 
S-expression. 

 
The primitive function first takes a list of boolean values as its argument 

and returns the first boolean value of the list if the list is not empty. Otherwise, the 
function generates an exception signal to indicate that an illegal operation has been 
attempted to get the first element from an empty list. The primitive function rest 
must take a list of n boolean values, for any value of n ≥ 0, as its argument. If the 
input list is not empty, it returns a list containing the last n-1 elements of the input list, 
otherwise, the function generates an exception signal to indicate an illegal action has 
been tried. The primitive function parity takes a list of boolean values as its input 
and returns a boolean value. This function recursively calls the recursive function 
being evolved by LOGENPRO. 

 
There are three data types: BOOLEAN, LIST, and SMALLER-LIST, that can 

be used to specify the primitive functions. The data type LIST contains lists of n 
boolean values, for any value of n ≥ 0. The data type SMALLER-LIST contains lists 
of m boolean values for any value of m < n. The arities, the data types of the input 
arguments, and the data types of the output values of all primitive functions are 
summarized in table 5. 

 
It can be observed from table 5 and the function in table 4 that three kinds of 

knowledge can be used to facilitate the learning of recursive functions. They are: 
• Knowledge_1: data types of input arguments and output value, 
• Knowledge_2: the recursive function to be evolved must return T if the input 

argument L is an empty list, and 
• Knowledge_3: the outermost statement of the recursive function to be evolved 

must be the base statement, i.e. if (null L) t. 
 
The terminal set, the primitive functions, and different kinds of knowledge can 

be represented easily using logic grammars. Three logic grammars: Grammar_1, 
Grammar_2, and Grammar_3; have been developed to encode different amounts of 
knowledge. The kinds of knowledge represented in the three grammars are 
summarized as follows: 
 Knowledge_1 Knowledge_2 Knowledge_3 
Grammar_1 yes yes yes 
Grammar_2 yes yes no 
Grammar_3 yes no no 

 

The rules of Grammar_1 are given in table 6. As described in section 3, we 
employ the argument of the non-terminal grammar symbol s-expr to designate the 
data type of the result returned by the S-expression generated from the grammar 
symbol.  

 
The terminal grammar symbols [ T ], [ nil ], and [ L ] in rules 32, 

33, and 37 of Grammar_1 form the terminal set of the problem. The terminal grammar 
symbols [ AND ], [ OR ], [ NAND ], and [ NOR ] in rules 40, 41, 42, and 43 
represent primitive functions that perform ordinary boolean operations. Rule 34 of 
Grammar_1 specifies that these primitive functions take two boolean input arguments 
and return one boolean value. 
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The terminal symbol [ first ] in rule 36 represents the primitive function 
that returns the first element of a list of boolean values. Rule 36 also specifies that the 
primitive function takes a list of boolean values as its argument and returns a boolean 
value. The terminal symbol [ rest ] in rule 39 represents the primitive function 
that takes a list of n boolean values as its argument and returns a list containing the 
last n - 1 elements of the input list. Rule 39 also declares the arity of the function and 
the data types of its argument and output value. 

 
Since an item of the SMALLER-LIST data type is also a list of boolean 

values, it should belong to the LIST data type. This fact is specified in rule 38. This 
example shows that a hierarchy of data types can be declared easily using grammar 
rules. 

 
The primitive function represented by the terminal symbol [ parity ] in 

rule 35 must take a list of the SMALLER-LIST data type. This rule avoids a non-
terminating recursive function such as: 

(defun parity (L) (ifnil L T (parity L))) 
to be evolved by LOGENPRO. 

 
The first rule of Grammar_1 represents the domain-specific knowledge that 

the recursive function to be evolved must return T if the input argument L is an empty 
list, and the outermost statement of the function must be the correct base statement. 

 
Grammar_2 is similar to Grammar_1, the main difference between them is 

that rule 31 of Grammar_1 has been changed to rule 51: 
51: start -> [ (defun parity (L) ],  
    s-expr(boolean), [ ) ]. 

Moreover, Grammar_2 has one additional rule (rule 52): 
52: s-expr(BOOLEAN) -> [ ( ], [ ifnil L T ], 
      s-expr(BOOLEAN), [ ) ]. 

representing the domain-specific knowledge that the recursive function to be evolved 
should return T if the input argument L is an empty list. 
 

Grammar_3 is similar to Grammar_2, the difference between them is that rule 
52 of Grammar_2 has been changed to rule 53 of Grammar_3: 

53: s-expr(BOOLEAN) -> [ ( ], [ ifnil ],  
      s-expr(LIST), 
     s-expr(BOOLEAN), 
      s-expr(BOOLEAN), [ ) ]. 
 
To determine the impact of domain-specific knowledge on the speed of 

learning, a number of experiments have been performed using different grammars. In 
this section, LOGENRPO with Grammar_1, Grammar_2, and Grammar_3 are 
designated as LOGENPRO_1, LOGENPRO_2, and LOGENPRO_3 respectively. The 
results of the experiments are discussed in the next sub-section. 
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5.4. Experiments 
 
Two series of experiments have been done. They differ in the fitness functions and the 
fitness cases used. In each experiment, the population size is 500 and the maximum 
number of generations is 50. The probabilities of performing crossover and mutation 
are respectively 0.7 and 0.1. The maximum depth of derivation trees generated in the 
initial population is 12. The maximum depth of trees produced by crossover and 
mutation is also 12. The two series of experiments are presented in sub-sections 5.4.1 
and 5.4.2 respectively. 
 
5.4.1. The first series of experiments 
 
Three experiments have been performed repeatedly for 60 times to evaluate the 
abilities of LOGENPRO_1, LOGENPRO_2, and LOGENPRO_3 in inducing 
recursive functions for the even-n-parity problem. In these experiments, the even-0, 2, 
and 3- parity problems are used in the training process. The training set contains all 
13 fitness cases from these even-parity problems. The standardized fitness value of an 
evolved function is the total number of misclassifications on the 13 fitness cases. The 
evolution terminates if the maximum number of generations of 50 is reached or a 
function that classifies all fitness cases correctly is found. In order to avoid the 
problem caused by an inefficient recursive function, an execution time limit is 
enforced. After executing 100 primitive functions, if the evolved function fails to find 
a result for a fitness case, it will be terminated. In this case, it is assumed that the 
function will misclassify the corresponding fitness case. 
 

It is possible that an evolved function will generate exceptions during its 
execution for some fitness cases, because it is illegal to perform the first/rest 
operation on an empty list. If the function produces an exception, it is assumed that it 
will misclassify the corresponding fitness cases. 

 
In the 60 trials, LOGENPRO_1 successfully evolves 16 functions that classify 

all fitness cases correctly. The generated functions are then tested on the even-i-parity 
problems, where i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10}. All of them can successfully solve 
all the problems. They are further analyzed manually and it is found that these 16 
functions are correct recursive functions for the general even-n-parity problem. 

 
The I(M, i, z) for z of 99% reaches a minimum value of 335000 at generation 

9 (Koza 1992). Since there are only 13 fitness cases, 335000*13 = 4355000 fitness 
cases should be processed. Thus, LOGENPRO can find a general, recursive function 
for the even-n-parity problem very efficiently. On the other hand, GP with 
hierarchical ADF evaluates 184320000 fitness cases to find a function that solves the 
even-7-parity problem only. In other words, LOGENPRO_1 can solve the even-7-
parity problem about 42 times faster. 

 
LOGENPRO_2 successfully evolves 16 functions that classify all fitness cases 

correctly. All of them are correct recursive functions for the general even-n-parity 
problem. The I(M, i, z) for z of 99% reaches a minimum value of 287500 at 
generation 24, and 287500*13 = 3737500 fitness cases should be processed. It is 
found that LOGENPRO_2 can solve the even-7-parity problem about 49.3 times 
faster than GP with hierarchical ADF. By comparing the performance of 
LOGENPRO_1 and LOGENPRO_2, it is interesting to find that LOGENPRO_2 can 
solve the problem using less computation effort than LOGENPRO_1. This 
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observation implies that Knowledge_3 is not very effective in accelerate the learning 
if the training examples are not noisy2. 

 
LOGENPRO_3 successfully evolves 5 functions that classify all fitness cases 

correctly. All of them are correct recursive functions for the general even-n-parity 
problem. The I(M, i, z) for z of 99% reaches a minimum value of 1272000 at 
generation 47, and 1272000*13 = 16536000 fitness cases should be processed. It is 
found that LOGENPRO_3 can solve the even-7-parity problem about 11 times faster 
than GP with hierarchical ADF. By comparing the performance of LOGENPRO_1 
and LOGENPRO_3, a 3.8 times speedup is observed. 

 
5.4.2. The second series of experiments 
 
Three experiments have been performed repeatedly for 60 times to evaluate the 
abilities of LOGENPRO_1, LOGENPRO_2, and LOGENPRO_3 in inducing 
recursive functions for the even-n-parity problem from noisy training examples. The 
even-0-, 2-, and 3- parity problems are used in the training process. The training set 
contains all 13 fitness cases from these even-parity problems. To introduce noise into 
the training examples, one of them is randomly selected and the result of the selected 
example is modified from T to nil or from nil to T.  The fitness function and the 
termination criterion are the same as those of the first series of experiments.  
 

LOGENPRO_1 successfully evolves 10 correct recursive functions for the 
general even-n-parity problem3. The I(M, i, z) for z of 99% reaches a minimum value 
of 450000 at generation 9. Since there are 13 fitness cases in the training set, 
450000*13 = 5850000 fitness cases should be processed. It is found that 1.34 times 
effort must be used if a noisy training set is employed compared to the corresponding 
experiment in the first series. On the other hand, LOGENPRO_1 can solve the even-
7-parity problem about 32 times faster than GP with hierarchical ADF. 

 
LOGENPRO_2 successfully evolves 5 correct recursive functions for the 

general even-n-parity problem. The I(M, i, z) for z of 99% reaches a minimum value 
of 1215000 at generation 26, and 1215000*13 = 15795000 fitness cases should be 
processed. It is found that LOGENPRO_2 can solve the even-7-parity problem about 
12 times faster than GP with hierarchical ADF. However, about 4 times effort must be 
used if a noisy training set is employed. By comparing the performance of 
LOGENPRO_1 and LOGENPRO_2, it can be observed that a 2.7 times speedup is 
achieved if knowledge_3 is available. This observation implies that knowledge_3 is 
effective in handling noisy training examples.  

 
LOGENPRO_3 successfully evolves 2 correct recursive functions for the 

general even-n-parity problem. The I(M, i, z) for z of 99% reaches a minimum value 
of 2475000 at generation 47, and 2475000*13 = 32175000 fitness cases should be 
processed. It is found that LOGENPRO_3 can solve the even-7-parity problem about 
6 times faster than GP with hierarchical ADF. By comparing the performance of 

                                                 

2 One possible explanation is that the search space of LOGENPRO_1 is too restrictive to 
hinder the evolution of good recursive programs such as (defun parity (L) (AND (ifnil L 
t (ifnil L t (OR (first L) (parity (rest L))))) (ifnil L t (NAND 
(first L) (parity (rest L)))))). 

3 To determine whether a recursive function is correct, a number of even-i-parity problems 
without introduced noise, where i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10}, are used to test the function. If the 
function can pass the test, it is further analyzed manually to confirm its correctness. 
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LOGENPRO_1 and LOGENPRO_3, a 5.5 times speedup is observed. However, 
about 2 times effort must be used if a noisy training set is employed.  
 
5.5. Discussion 
 
In this section, we employ LOGENPRO to evolve recursive functions for the general 
even-n-parity problem from training examples with or without noise. Two series of 
experiments have been performed to study the impact of domain-specific knowledge 
and noise in the training examples on the speed of learning recursive functions. The 
numbers of fitness cases processed to induce general recursive functions with 99% 
probability for the two series of experiments are summarized in table 7. These 
experiments demonstrate that knowledge may accelerate the speed of learning while 
more computation effort may be required if noisy training examples are employed. 
Moreover, LOGENPRO can solve the even-7-parity problem much faster than GP 
with hierarchical ADF. 
 
6. Conclusion 
 
We have presented a flexible system called LOGENPRO (The LOgic grammar based 
GENetic PROgramming system) that uses some of the techniques of genetic 
programming and inductive logic programming. It is based on a formalism of logic 
grammars. The system can learn programs in various programming languages and 
represent context-sensitive information and domain-dependent knowledge. An 
experiment that employs LOGENPRO to induce an S-expression for calculating dot 
product has been performed. This experiment illustrates that LOGENPRO, when used 
with domain knowledge, accelerates the learning of programs.  

 
Automatic discovery of sub-functions is one of the most important research 

areas in genetic programming. In GP with ADF, the user must provide explicit 
knowledge about the number of available sub-functions, the number of arguments of 
each sub-functions, and the allowable terminal and function sets for each sub-
function. An experiment has been performed to demonstrate that LOGENPRO can 
emulate GP with ADF and represent the knowledge easily. Moreover, LOGENPRO 
can employ other knowledge such as argument types in a unified framework. This 
experiment shows that LOGENPRO has superior performance to that of GP with 
ADF when more domain-dependent knowledge is available.  

 
We have applied LOGENPRO to evolve general recursive functions for the 

even-n-parity problem. Two series of experiments have been performed to study the 
impact of domain-specific knowledge and noise in the training examples on the speed 
of learning recursive functions. These experiments show that knowledge may 
accelerate the speed of learning. But more computation effort may be required if 
noisy training sets were employed in the training process. 

 
For future work, we plan to evolve hierarchical recursive functions for the 

even-n-parity problem. There are many inductive learning systems such as THESYS 
(Summers, 1977) and ADATE (Olsson, 1995) that can induce recursive functional 
programs efficiently. Therefore, we will implement these techniques on LOGENPRO. 
Moreover, reusable templates of logic grammars could be provided to eliminate the 
potential difficulties in developing the right grammar for a given problem. 
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Appendix A 
 
In this appendix, we discuss the method of implementing LOGENPRO using a 
Prolog-like logic programming language. The differences between the logic 
programming language used and Prolog are listed as follows: 

• A variable is represented by a question mark ? followed by a string of  
letters and/or digits. 

• The elements of a list can be separated by either commas or spaces. For 
example, [a b c] and [a, b, c] are equivalent. 

• A pair of '|' is used to represent a frozen terminal symbol. For example, 
the symbol [)] in the second rule of the grammar in table 1 is translated 
into |)|. 

• A pair of braces encloses a sequence of logic goals appearing in a logic 
grammar. 

• If there are a number of clauses C1, C2, ..., Cn that match a goal G, the 
ordering of evaluating these clauses is determined randomly. 

Using the difference list approach (Sterling and Shapiro, 1986), a grammar 
rule of the form: 

A0 -> A1, A2, ..., An. 
is translated into a logic program clause of the form: 

A0' :- A1', A2', ..., An'. 
in the logic programming language. Here, if Ai , for some i between 0 and n, is a 
non-terminal with M arguments, then Ai' is a literal with M+3 arguments. The 
predicate symbols of Ai and Ai' are the same. For example, Ai is translated into 
exp(?X, ?Tree, ?Sj, ?Sj+1), for some j,  if Ai is exp(?X). The literal 
exp(?X, ?Tree, ?Sj, ?Sj+1) states that the sequence of symbols between 
?Sj and ?Sj+1 is a sentence of the category represented by the non-terminal symbol 
exp(?X). The derivation tree of the sentence is stored in the logic variable ?Tree. 

 
A terminal symbol such as [a b c] is translated to a literal with 3 

arguments: connect([a b c], ?Sj, ?Sj+1), for some j. The predicate 
connect is defined as: 

connect(?A, ?S0, ?S1) :- append(?A, ?S1, ?S0). 
This predicate declares that the list of symbols stored in the logic variable ?A can be 
found in the sequence of symbols between ?S0 and ?S1.  

 
If Ak, for some k between 1 and n, is a sequence of pure logic goals enclosed 

by a pair of braces, i.e., Ak has the form of {G0, G1, ...., Gm}, then Ak' is 
obtained from Ak by removing the pair of braces. 

 
For example, the grammar depicted in table 1 can be translated into the logic 

program presented in table 8. In the clause 1' of the logic program shown in table 8, 
the compound term 
tree(start, [(*], ?E1, ?E2, frozen(?E3), |)|) indicates that it is 
a tree with a root labeled as start. The children of the root include the terminal 
symbol [(*], a tree created from the non-terminal exp(W), another tree created 
from the non-terminal exp(W), a frozen tree generated from the non-terminal 
exp(W), and the frozen terminal |)|. 
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Thus, a derivation tree can be generated randomly by issuing the following 
query: 

?- start(?T, ?S, []). 
This goal can be satisfied by deducing a sentence that is in the language specified by 
the grammar. One of the solutions is: 

?S = [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
and the corresponding derivation tree is: 

?T = tree(start, [(*],  
  tree(exp(W), [(/ W 1.5)]), 
  tree(exp(W), [(/ W 1.5)]), 
  frozen(tree(exp(W), [(/ W 1.5)])),  
  |)|) 
 
This is exactly a representation of the derivation tree shown in figure 1. In 

fact, the bindings of all logic variables and other information are also maintained in  
the derivation trees to facilitate the genetic operations that will be performed on the 
derivation trees.  
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Appendix B. 
 
The crossover algorithm is described in tables 9, 10, and 11. 

 
Consider two parental programs generated randomly from the grammar in 

table 1. The primary parent is (+ (- Z 3.5) (- Z 3.8) (/ Z 1.5)) and 
the secondary parent is (* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)). 
The corresponding derivation trees are depicted in figures 3 and 4 respectively.  

 
In step 1 of the crossover algorithm in table 9, the global variable PRIMARY-

SUB-TREES contains the sub-trees 2, 3, 5, 6, and 8. The primary derivation tree (i.e. 
the sub-tree 0), the sub-trees 1, 4, 7, 10 that contain logic goals, and the frozen sub-
trees 9, 10, 11, and 12 are excluded. The whole primary derivation tree cannot be 
mated because it must be generated from the grammar symbol start. If the symbol 
start is not recursive (i.e. start does not appear on the right hand side of a rule), 
the whole secondary derivation tree must be chosen for crossover. Thus, the offspring 
program must be a copy of the secondary parental program. In fact, the same effect 
can be obtained by reproducing the secondary parental program. 

 
The sub-trees containing logic goals are excluded from crossover operations 

for two reasons. Firstly, the crossover algorithm can be greatly simplified if logic 
goals are prevented from performing crossover. Secondly, logic goals specify the 
conditions that must be satisfied before the rule can be applied and/or the 
computations that should be done. Hence, from the viewpoint of natural selection and 
reproduction, the interpretation of crossover between logic goals is unclear and 
unnatural. Thus this kind of operations is avoided. 

 
Similarly,  the sub-trees 13, 15, 16, 18, 19, and 20 are assigned to the global 

variable SECONDARY-SUB-TREES in step 2. In the next step, a sub-tree in the 
variable PRIMARY-SUB-TREES is selected randomly using a uniform distribution if 
the variable is not empty. Assume that the sub-tree 2 is selected as the SEL-
PRIMARY-SUB-TREE. Thus, it is removed from the variable PRIMARY-SUB-
TREES in step 4. A copy of the variable SECONDARY-SUB-TREES is made and 
stored into the global variable TEMP-SECONDARY-SUB-TREES in step 5.  

 
Steps 6 to 8 form a loop that finds an appropriate sub-tree from the variable 

TEMP-SECONDARY-SUB-TREES. A sub-tree, SEL-SECONDARY-SUB-TREE, is 
appropriate if a valid offspring can be obtained by executing crossover between the 
SEL-PRIMARY-SUB-TREE and the SEL-SECONDARY-SUB-TREE. If no 
appropriate sub-tree can be found in this loop, the algorithm returns back to step 3 to 
find another SEL-PRIMARY-SUB-TREE. Assume that the sub-tree 15 is chosen as 
the SEL-SECONDARY-SUB-TREE. Step 8 determines whether a valid offspring can 
be obtained. It is the most complicate procedure in this algorithm and it is delineated 
in table 10 and explained in the following paragraphs. 

 
In step 11 of the algorithm shown in table 10, the sub-trees 1, 3, 6, 9, and 12 

are found to be the siblings of the SEL-PRIMARY-SUB-TREE 2 and stored into the 
global variable SIBLINGS. The SIBLINGS can be thought as the context around the 
PRIMARY-CROSSOVER-POINT and the context's consistency has to be checked 
and computed. The purpose of step 12 is to remove the bindings established solely by 
the SEL-PRIMARY-SUB-TREE which will be deleted by the crossover operation. To 
achieve this goal, the bindings of each sub-tree in the variable SIBLINGS is modified 
so that only the bindings established by itself is retained. The bindings instantiated by 
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a sub-tree can be found easily using the techniques of explanation-based learning 
(DeJong, 1993; Mitchell et al., 1986; DeJong and Mooney, 1986). For example, the 
bindings {?x/Z} of the sub-tree 1 need not be modified because the logic variable 
?x is instantiated to the value Z by the logic goal member(?x, [W, Z]). The 
bindings {?x/Z} of the sub-tree 3 is changed to an empty list because the logic 
variable ?x is bound to the value Z by the sub-tree 1. Similarly, the bindings 
{?x/Z} of the sub-trees 6 and 9 are changed to empty lists. The bindings of the sub-
tree 12 is not changed because it is already empty. 

 
In step 13, the bindings of the SEL-SECONDARY-SUB-TREE is modified so 

that only the bindings established by itself is retained. The purpose is to identify the 
effect of the sub-tree on the logic variables. In this example, since the grammar 
symbol of the SEL-SECONDARY-SUB-TREE 15 has no argument, its bindings is 
empty. In fact, the primary and secondary derivation trees are pre-processed by 
LOGENPRO using an algorithm based on the techniques of Explanation-Based 
Learning (EBL). The algorithm finds the bindings established solely by the 
corresponding sub-trees of the derivation trees. The results are stored in the sub-trees 
so that they can be retrieved in constant time Cr. Thus the time complexity of step 12 
is O(n) where n is the number of sub-trees in the global variable SIBLINGS. 
Similarly, the time complexity of step 13 is O(1). 

 
In step 14, the second grammar rule is satisfied by the sub-trees in SIBLINGS 

and the SEL-SECONDARY-SUB-TREE. Moreover, this rule reaches the conclusion 
start which is consistent with the requirement of the sub-tree 0, the parent of the 
SEL-PRIMARY-SUB-TREE. Thus, the offspring generated is valid. The procedure 
that checks whether a conclusion is consistent is presented in table 11. 

 
In step 9 of the crossover algorithm in table 9, the offspring is generated. In 

the next step, it is returned as the solution after some house-keeping tasks have been 
performed. The house-keeping tasks update the bindings and the rule numbers of the 
sub-trees of the offspring. The offspring program of this example is (* (-
 Z 3.5) (- Z 3.8) (/ Z 1.5)) and its derivation tree is shown in figure 5. 
It is interesting to find that the sub-tree 25 has the rule number 2. This indicates that 
the sub-tree is generated by the second grammar rule rather than the third rule applied 
to the primary parent. The second rule must be used because the terminal symbol 
[(+] is changed to [(*] and only the second rule can create the terminal [(*]. In 
fact, this situation is identified in step 14 of the function is-valid and a record is 
maintained so that the rule number can be changed to 2 by the house-keeping 
procedure. 

 
In another example, the same primary and secondary parents are used. 

Assume that the SEL-PRIMARY-SUB-TREE 3 is selected in step 3 and the SEL-
SECONDARY-SUB-TREE 16 is chosen in step 7 of the crossover algorithm. Now, 
the siblings of the SEL-PRIMARY-SUB-TREE 3 are the sub-trees 1, 2, 6, 9, and 12. 
Although the SEL-PRIMARY-SUB-TREE has the bindings {?x/Z}, the 
instantiation of the logic variable ?x to value Z is done by the sub-tree 1. In other 
words, the SEL-PRIMARY-SUB-TREE has not established any binding. In step 12 of 
the function is-valid, the bindings {?x/Z} of the sub-tree 1 is not modified 
because the logic variable ?x is instantiated to the value Z by the logic goal 
member(?x, [W, Z]). The bindings of the sub-trees 2 and 12 are not changed 
because they are already empty. The bindings {?x/Z} of the sub-trees 6 is changed 
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to an empty list because the logic variable ?x is bound to the value Z by the sub-tree 
1. Similarly, the bindings {?x/Z} of the sub-tree 9 is changed to an empty list. 

 
The SEL-SECONDARY-SUB-TREE has the bindings {?x/W}, but the 

instantiation of ?x is performed by the sub-tree 14. Thus, the bindings of the SEL-
SECONDARY-SUB-TREE is changed in step 13 to an empty list (i.e. the logic 
variable ?x is not instantiated). In step 14, since the third rule satisfies all 
requirements, a valid offspring (+ (/ Z 1.5) (- Z 3.8) (/ Z 1.5)) as 
depicted in figure 6 is created. 

 
As a further example, the same primary and secondary parents are used. 

Assume that the SEL-PRIMARY-SUB-TREE 6 is selected in step 3 of the crossover 
algorithm and the SEL-SECONDARY-SUB-TREE 19 is chosen in step 7. The 
variable SIBLINGS contains the sub-trees 1, 2, 3, 9, and 12. In step 12 of the function 
is-valid (table 10), the bindings {?x/Z} of the sub-tree 1 is not modified. The 
bindings of the sub-trees 2 and 12 are not modified because they are already empty. 
The bindings {?x/Z} of the sub-trees 3 and 9 are changed to empty lists because the 
logic variable ?x is bound to the value Z by the sub-tree 1. 

 
The SEL-SECONDARY-SUB-TREE 19 has the bindings {?x/W}. This sub-

tree is generated from the rule 7 and the application of this rule will instantiate the 
logic variable ?x to the value W. In other words, the SEL-SECONDARY-SUB-TREE 
performs the instantiation of ?x to W. Thus, the bindings of the SEL-SECONDARY-
SUB-TREE is not changed in step 13. It must be mentioned that the sub-tree 14 also 
instantiates ?x to W. Since the two sub-trees bind ?x to the same value W, this 
situation is valid. In step 14, no rule can be satisfied by the sub-trees in the variable 
SIBLINGS and the SEL-SECONDARY-SUB-TREE. Thus, the two sub-trees 6 and 
19 cannot be mated. The reason is that the same logic variable ?x must be 
instantiated to different values Z and W: the sub-tree 19 requires the variable ?x to be 
instantiated to W while ?x must be instantiated to Z in the context of the primary 
parent. The function is-valid can determine this situation and avoid the crossover 
algorithm from generating an offspring. 

 
The crossover algorithm guarantees that only valid offspring can be produced 

and this operation can be achieved effectively. It has been estimated that the worst 
case time complexity of the crossover algorithm is O(Np*Ns*Dp), where Np and Ns 
are respectively the numbers of sub-trees in the global variables PRIMARY-SUB-
TREES and SECONDARY-SUB-TREES, Dp is the depth of the primary derivation 
tree (Depth starts from 0). 

 
Since the computation time consumed by performing crossover is insignificant 

when compare with the time used in evaluating the fitness of each program in the 
population. The issue of computational complexities of various crossover algorithms 
has not been addressed by other researchers in the field of Genetic Programming. In 
fact, it is easy to calculate that the worst case time complexity of the structure-
preserving crossover algorithm of GP (Koza 1994) is O(Np1*Np2), where Np1 and 
Np2 are respectively the sizes of the parental parse trees. Similarly, the crossover 
algorithm of STGP (Montana 1995) has the same complexity. Although the crossover 
algorithm of LOGENPRO is slightly slower than other algorithms by O(Dp), it is 
more general and powerful than other algorithms. 
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Appendix C. 
 
The algorithm in table 12 is used to produce an offspring program by mutation. For 
example, assume that the program being mutated is (+ (- Z 3.5) (-
 Z 3.8) (/ Z 1.5)) and the corresponding derivation tree is depicted in figure 
3. In step 1 of the mutation algorithm, the global variable SUB-TREES contains the 
sub-trees 0, 3, and 6. The frozen sub-trees 9, 10, 11, and 12 are excluded. The sub-
trees 1, 4, and 7 are also excluded because they contain logic goals of the grammar 
and thus should not be modified by genetic operations. The sub-trees 2, 5, and 8 
containing terminal symbols are eliminated for two reasons. First, the mutation 
algorithm is significantly simplified if terminal symbol need not be modified. Second, 
the effect of mutating terminal symbols can be emulated by the crossover operation. 
Recalling the example described in Appendix B, the primary sub-tree 2 are crossed 
with the secondary sub-tree 15 to generate the offspring (* (- Z 3.5) (-
 Z 3.8) (/ Z 1.5)). This offspring can be seen as the result of mutating the 
terminal symbol [(+] to the [(*].  

 
In step 2, a sub-tree in the variable SUB-TREES is selected randomly using a 

uniform distribution if the SUB-TREES is not empty. Otherwise, the mutation 
algorithm terminates without generating any modified program because no valid 
mutation can be found. In normal situation, this should not occur because it is almost 
always possible to select the whole derivation tree as the one to be mutated. The 
whole tree cannot be chosen only if it is frozen. The effect of mutating the whole tree, 
the sub-tree 0 in this example, is equivalent to generating a new program from 
scratch. A new program can be created successfully if the language specified by the 
grammar contains at least one program (this must be true for a grammar to be useful). 
Thus, the algorithm will fail to find a mutation only if the whole derivation tree is 
frozen. 

 
Assume that the sub-tree 33 is selected as the MUTATED-SUB-TREE in step 

2. In the next step, the sub-tree 33 is removed from the variable SUB-TREES. The 
NON-TERMINAL and the ARGS are exp-1(?x) and {?x} respectively. Since the 
logic variable ?x is instantiated to Z in the sub-tree 1 by the logic goal 
member(?x, [W, Z]), the bindings {?x/Z} are stored into the variable 
NEW-BINDINGS in step 4.  

 
In step 5, the new non-terminal NEW-NON-TERMINAL exp-1(Z) is 

created. Using this mechanism, contextual-dependent information can be exchanged 
amongst different parts of a program. In step 6, a new derivation tree for the 
S-expression (/ Z 1.9) can be obtained from the non-terminal symbol 
exp-1(Z) using the fifth rule of the grammar. This derivation tree is displayed in 
figure 7. 

 
Since the NEW-SUB-TREE can be found, a new offspring is obtained by  

duplicating the genetic materials of its parental derivation tree, followed by deleting 
the MUTATED-SUB-TREE from the duplication, and then pasting the NEW-SUB-
TREE at the MUTATE-POINT. The derivation tree of the offspring 
(+ (/ Z 1.9) (- Z 3.8) (/ Z 1.5)) can be found in figure 8. 
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TABLES 
 

 
1: start  -> [(*], exp(W), exp(W), exp(W), [)]. 
2: start  -> {member(?x,[W, Z])}, [(*], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
3: start  -> {member(?x,[W, Z])}, [(+], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
4: exp(?x) -> [(/ ?x 1.5)]. 
5: exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)]. 
6: exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)]. 
7: exp-1(W) -> [(+ (- W 11) 12)]. 
 

Table 1: A logic grammar 
 

 
10: start  -> s-expr(number). 
11: s-expr([list, number, ?n]) ->  
    [ (mapcar (function ] ,op2, [ ) ] , 
    s-expr([list, number, ?n]), 
    s-expr([list, number, ?n]),[)]. 
12: s-expr([list, number, ?n]) ->  
    [ (mapcar (function ], op1, [ ) ] , 
    s-expr([list, number, ?n]),[)]. 
13: s-expr([list, number, ?n]) -> term([list, number, ?n]). 
14: s-expr(number)  -> term(number). 
15: s-expr(number)  -> [(apply (function ], op2, [)] , 
     s-expr([list, number, ?n]),[)]. 
16: s-expr(number)  -> [ ( ], op2, s-expr(number),  
     s-expr(number), [ ) ]. 
17: s-expr(number)  -> [ ( ],op1,s-expr(number), [)]. 
18: op2    -> [ + ]. 
19: op2    -> [ - ]. 
20: op2    -> [ * ]. 
21: op2    -> [ % ]. 
22: op1    -> [ protected-log ]. 
23: term( [list, number, n] )  -> X. 
24: term( [list, number, n] )  -> Y. 
25: term( number ) -> { random(-10, 10, ?a) }, [?a ]. 
 

Table 2: The logic grammar for the Dot Product problem 
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start    -> [(progn (defun ADF0 (arg0 arg1)], 
     s-expr2(number), [)], 
     s-expr(number), [)]. 
s-expr([list, number, ?n])->  [ (mapcar (function ], op2, [ ) ] ,  
     s-expr([list, number, ?n]), 
     s-expr([list, number, ?n]),[ ) ]. 
s-expr([list, number, ?n])-> term([list, number, ?n]). 
s-expr(number)   -> [ (apply (function ], op2, [ ) ] , 
     s-expr([list, number, ?n]),[ ) ]. 
s-expr(number)   -> [ ( ], op2, s-expr(number),  
     s-expr(number), [ ) ]. 
s-expr(number)   -> [ (ADF0 ], s-expr([list, number, ?n]), 
     s-expr([list, number, ?n]), [ ) ]. 
term([list, number, n]) -> X. 
term([list, number, n]) -> Y. 
term([list, number, n]) -> Z. 
s-expr2([list, number, ?n])-> [ (mapcar (function ], op2, [ ) ],  
     s-expr2([list, number, ?n]), 
     s-expr2([list, number, ?n]),[ ) ]. 
s-expr2([list, number, ?n])-> term2([list, number, ?n]). 
s-expr2(number)   -> [ (apply (function ], op2, [ ) ] , 
     s-expr2([list, number, ?n]),[ ) ]. 
s-expr2(number)   -> [ ( ], op2, s-expr2(number),  
     s-expr2(number), [ ) ]. 
term2([list, number, n])-> arg0. 
term2([list, number, n])-> arg1. 
op2     -> [ + ]. 
op2     -> [ - ]. 
op2     -> [ * ]. 
 
Table 3: Logic grammar for the sub-function problem 

 
 

 
(defun parity (L) 
  (if (null L) T 
    (AND (OR (first L) (parity (rest L))) 
    (NAND (first L) (parity (rest L)))))) 
 
Table 4: A recursive function for the even-n-parity problem 
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 Arity Data types of input arguments Data type of the output value 
AND 2 BOOLEAN    BOOLEAN BOOLEAN 
OR 2 BOOLEAN    BOOLEAN BOOLEAN 
NAND 2 BOOLEAN    BOOLEAN BOOLEAN 
NOR 2 BOOLEAN    BOOLEAN BOOLEAN 
ifnil 3 LIST    BOOLEAN    BOOLEAN BOOLEAN 
first 1 LIST BOOLEAN 
rest 1 LIST SMALLER-LIST 
parity 1 LIST BOOLEAN 

Table 5: The arities, the data types of the input arguments, and the data 
types of the output value of all primitive functions 

 
 
31: start   -> [ (defun parity (L) ],  
     [ (ifnil L T ], 
     s-expr(boolean), [ )) ]. 
32: s-expr(BOOLEAN) -> [ T ]. 
33: s-expr(BOOLEAN) -> [ nil ]. 
34: s-expr(BOOLEAN) -> [ ( ], op, s-expr(BOOLEAN), 
     s-expr(BOOLEAN), [ ) ]. 
35: s-expr(BOOLEAN) -> [ ( ], [ parity ],  
     s-expr(SMALLER-LIST), [ ) ]. 
36: s-expr(BOOLEAN) -> [ ( ], [ first ],  
     s-expr(LIST), [ ) ]. 
37: s-expr(LIST) -> [ L ]. 
38: s-expr(LIST) -> s-expr(SMALLER-LIST). 
39: s-expr(SMALLER-LIST)-> [ ( ],[ rest ], s-expr(LIST),[)]. 
40: op   -> [ AND ]. 
41: op   -> [ OR ]. 
42: op   -> [ NAND ]. 
43: op   -> [ NOR ]. 
 
Table 6: The grammar rules of Grammar_1 

 
 LOGENPRO_1 LOGENPRO_2 LOGENPRO_3 
The 1st series of experiments 4355000 3737500 16536000 
The 2nd series of experiments 5850000 15795000 32175000 

Table 7: The numbers of fitness cases processed to induce general recursive 
functions with 99% probability 
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1': start(tree(start, [(*], ?E1, ?E2, frozen(?E3), |)|), ?S0, ?S5) 
  :- connect([(*], ?S0, ?S1), exp(W, ?E1, ?S1, ?S2), 
   exp(W, ?E2, ?S2, ?S3), exp(W, ?E3, ?S3, ?S4), 
   connect([)], ?S4, ?S5). 
 
2': start(tree(start, {member(?x, [W, Z])}, [(*], ?E1, ?E2,  
                 frozen(?E3), |)|),?S0, ?S5) 
  :- member(?x, [W, Z]), connect([(*], ?S0, ?S1), 
   exp-1(?x, ?E1, ?S1, ?S2), exp-1(?x, ?E2, ?S2, ?S3), 
   exp-1(?x, ?E3, ?S3, ?S4), connect([)], ?S4, ?S5). 
 
3': start(tree(start, {member(?x, [W, Z])}, [(+], ?E1, ?E2,  
                 frozen(?E3), |)|),?S0, ?S5) 
  :- member(?x, [W, Z]), connect([(+], ?S0, ?S1), 
   exp-1(?x, ?E1, ?S1, ?S2), exp-1(?x, ?E2, ?S2, ?S3), 
   exp-1(?x, ?E3, ?S3, ?S4), connect([)], ?S4, ?S5). 
 
4': exp(?x, tree(exp(?x), [(/ ?x 1.5)]),?S0, ?S1) 
  :- connect([(/ ?x 1.5)], ?S0, ?S1). 
 
5': exp-1(?x, tree(exp-1(?x), {random(1,2,?y)}, [(/ ?x ?y)]),?S0,  
                     ?S1) 
  :- random(1, 2, ?y), connect([(/ ?x ?y)], ?S0, ?S1). 
 
6': exp-1(?x, tree(exp-1(?x), {random(3,4,?y)}, [(- ?x ?y)]),?S0,  
                     ?S1) 
  :- random(3, 4, ?y), connect([(- ?x ?y)], ?S0, ?S1). 
 
7': exp-1(W, tree(exp-1(W), [(+ (- W 11) 12)]),?S0, ?S1) 
  :- connect([(+ (- W 11) 12)], ?S0, ?S1). 
 

Table 8: A logic program obtained from translating the logic grammar 
presented in table 1 
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Input: 
P: The primary derivation tree. 
S: The secondary derivation tree. 

 
Output: 

Return a new derivation tree if a valid offspring can be obtained 
by performing crossover, otherwise return false. 

 
Function crossover(P, S) 
{ 

 
1. Find all sub-trees of the primary derivation tree P and 

store them into a global variable PRIMARY-SUB-TREES, 
excluding the primary derivation tree, all logic goals, 
and frozen sub-trees. 

2. Find all sub-trees of the secondary derivation tree S and 
store them into a global variable SECONDARY-SUB-TREES, 
excluding all logic goals and frozen sub-trees. 

3. If  the variable PRIMARY-SUB-TREES is not empty, select 
randomly a sub-tree from it using a uniform distribution. 
Otherwise, terminate the algorithm without generating any 
offspring program. 

4. Designate the sub-tree selected as the SEL-PRIMARY-SUB-
TREE and the root of it as the PRIMARY-CROSSOVER-POINT. 
Remove the SEL-PRIMARY-SUB-TREE from the variable 
PRIMARY-SUB-TREES. 

5. Copy the variable SECONDARY-SUB-TREES to the temporary 
variable TEMP-SECONDARY-SUB-TREES. 

6 If the variable TEMP-SECONDARY-SUB-TREES is not empty, 
select randomly a sub-tree from it using a uniform 
distribution. Otherwise, go to step 3. 

7. Designate the sub-tree selected in step 6 as the SEL-
SECONDARY-SUB-TREE. Remove it from the variable TEMP-
SECONDARY-SUB-TREES. 

8. If the offspring produced by performing crossover between 
the SEL-PRIMARY-SUB-TREE and the SEL-SECONDARY-SUB-TREE 
is invalid according to the grammar or the depth of it 
exceeds the maximum depth of trees produced by crossover, 
go to step 6. The validity of the offspring generated can 
be checked by the procedure is-valid(P, SEL-PRIMARY-SUB-
TREE, SEL-SECONDARY-SUB-TREE). 

9. Copy the genetic materials of the primary parent P to the 
offspring, remove the SEL-PRIMARY-SUB-TREE from it and 
then impregnating a copy of the SEL-SECONDARY-SUB-TREE at 
the PRIMARY-CROSSOVER-POINT. 

10. Perform some house-keeping tasks and return the 
offspring program. 

} 
Table 9: The crossover algorithm of LOGENPRO 
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Input: 
P: The primary derivation tree 
P-sub-tree: The sub-tree in the primary derivation tree that is 

selected to be crossed over. 
S-sub-tree: The sub-tree in the secondary derivation tree that 

is selected to be crossed over. 
 

Output: 
Return true if the offspring generated is valid, otherwise return 
false. 

 
Function is-valid(P, P-sub-tree, S-sub-tree) 
{ 

11. Find all siblings of the P-sub-tree in P and store them 
into the global variable SIBLINGS. 

12. For each sub-tree in the variable SIBLINGS, perform the 
following sub-steps: 

• Store the bindings of the sub-tree to the global 
variable BINDINGS. 

• For each logic variable in the variable BINDINGS 
that is not instantiated by the sub-tree,  remove 
it from the variable BINDINGS. 

• Modify the bindings of the sub-tree. 
13. Modify the bindings of the S-sub-tree. A logic variable 

is retained only if it is instantiated in the S-sub-tree. 
14. If there is a rule in the grammar such that: 

• it is satisfied by the sub-trees in the variable 
SIBLINGS and the S-sub-tree, 

• the sub-trees in the variable SIBLINGS and the S-
sub-tree are used exactly once, 

• the sub-trees are applied in the same order as that 
in the original rule of the primary derivation 
tree, and 

• a consistent conclusion C is deduced from the rule. 
The conclusion is consistent if the function 
is-consistent(P, PARENT, C) returns true where 
PARENT is the parent of the P-sub-tree. The 
function is-consistent is presented in table 11. 
then the offspring generated will be valid. 

Otherwise, the offspring will be invalid. 
} 
 
Table 10: The algorithm that checks whether the offspring produced by 

LOGENPRO is valid. 
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Input: 

P: The primary derivation tree. 
PARENT: The parent of the primary sub-tree. 
C: The conclusion. 

 
Output: 

Return true if the conclusion C is consistent, otherwise return false. 
 

Comment: 
This operation can be viewed as performing a tentative crossover between 
PARENT and C and then determining whether the tentative offspring 
produced is valid. Here, PARENT is treated as the primary sub-tree while 
C is treated as the secondary sub-tree of the tentative crossover 
operation. The main difference between this algorithm and that in table 
10 is that all rule applications in all ancestors of PARENT must be 
maintained. 

 
Function is-consistent(P, PARENT, C) 
{ 

15. If PARENT is the root of P then 
 if C is labeled with the symbol start then 
  return true 
 else false. 

16. Find all siblings of PARENT in P and store them into the global 
variable SIBLINGS. 

17. For each sub-tree in the variable SIBLINGS, perform the 
following sub-steps: 

• Store the bindings of the sub-tree to the global 
variable BINDINGS. 

• For each logic variable in the variable BINDINGS that is 
not instantiated by the sub-tree,  remove it from the 
variable BINDINGS. 

• Modify the bindings of the sub-tree. 
18. Let the grammar rule applied in the parent node of PARENT as 

RULE. 
If the following conditions are satisfied: 

• RULE is satisfied by the sub-trees in the variable 
SIBLINGS and C, 

• the sub-trees in SIBLINGS and C are used exactly once 
and the ordering of applications is maintained, and 

• a consistent conclusion C' is deduced from RULE. The 
conclusion is consistent if the function 
is-consistent(P, GRANDPARENT, C') returns true where 
GRANDPARENT is the parent node of PARENT. 
then  
 return true 
else 
 return false. 

} 
 

Table 11: The algorithm that checks whether a conclusion deduced from a 
rule is consistent with the direct parent of the primary sub-tree. 
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Input: 

P: The derivation tree of the parental program 
 

Output: 
Return a new derivation tree if a valid offspring can be obtained 
by performing mutation, otherwise return false. 

 
Function mutation(P) 
{ 

1. Find all sub-trees of the derivation tree P of the 
parental program and store them into a global variable 
SUB-TREES, excluding all frozen sub-trees, logic goals, 
and terminal symbols 

2. If SUB-TREES is not empty, select randomly a sub-tree 
from the SUB-TREES using a uniform distribution. 
Otherwise, terminate the algorithm without generating any 
offspring. 

3. Designate the sub-tree selected as MUTATED-SUB-TREE. The 
root of the MUTATED-SUB-TREE is called the MUTATE-POINT. 
Remove the MUTATED-SUB-TREE from the variable SUB-TREES. 
The MUTATED-SUB-TREE must be generated from a non-
terminal symbol of the grammar. Designate this non-
terminal symbol as NON-TERMINAL. The NON-TERMINAL may 
have a list of arguments called ARGS. 

4. For each argument in the ARGS, if it contains some logic 
variables, determine whether these variables are 
instantiated by other constituent of the derivation tree. 
If they are, bind the instantiated value to the variable. 
Otherwise, the variable is unbounded. Store the modified 
bindings to a global variable NEW-BINDINGS. 

5. Create a new non-terminal symbol NEW-NON-TERMINAL from 
the NON-TERMINAL and the bindings in the variable NEW-
BINDINGS. 

6. Try to generate a new derivation tree NEW-SUB-TREE from 
the NEW-NON-TERMINAL using the deduction mechanism 
provided by LOGENPRO. The depth of the new derivation 
tree NEW-SUB-TREE is restricted so that the depth of the 
mutated derivation tree created in step 7 does not exceed 
the maximum depth of trees produced by mutation. 

7. If a new derivation tree can be successfully created, the 
offspring is obtained by deleting the MUTATED-SUB-TREE 
from a copy of the parental derivation tree P and then 
impregnating the NEW-SUB-TREE at the MUTATE-POINT. 
Otherwise, go to step 3. 

} 
 
Table 12: The mutation algorithm 
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[(*] exp(W) exp(W) exp(W) [)]
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[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

 
 

Figure 1: A derivation tree of the S-expression in Lisp 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 

 

{member(?x, [W,Z])} 
{?x/W}

[(*] exp-1(?x) 
{?x/W}

[)]

start

[(/ ?x ?y1)] 
{?x/W, ?y1/1.5}

exp-1(?x) 
{?x/W}

exp-1(?x) 
{?x/W}

{random(1, 2, ?y1)} 
{?y1/1.5}

[(/ ?x ?y3)] 
{?x/W, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(1, 2, ?y2)} 

{?y2/1.5}

[(/ ?x ?y2)] 
{?x/W, ?y2/1.5}

 
Figure 2: Another derivation tree of the S-expression in Lisp 

(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 
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Figure 3: The derivations tree of the primary parental program (+ (-

 Z 3.5) (- Z 3.8) (/ Z 1.5)). 



Page 39 
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Figure 4: The derivations tree of the secondary parental program 

(* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)). 



Page 40 
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Figure 5: A derivation tree of the offspring produced by performing 

crossover between the primary sub-tree 22 of the tree in figure 3 
and the secondary sub-tree 1155 of the tree in figure 4. 
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Figure 6: A derivation tree of the offspring produced by performing 

crossover between the primary sub-tree 33 of the tree in figure 3 
and the secondary sub-tree 1166 of the tree in figure 4. 

 
 

exp-1(?x) 
{?x/Z}

[(/ ?x ?y1)] 
{?x/Z, ?y1/1.9}

{random(1, 2, ?y1)} 
{?y1/1.9}  

 
Figure 7: A derivation tree generated from the non-terminal exp-1(Z) 
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{member(?x, [W,Z])} 
{?x/Z}

[(+] exp-1(?x) 
{?x/Z}

[)]

start

[(/ ?x ?y1)] 
{?x/Z, ?y1/1.9}

exp-1(?x) 
{?x/Z}

exp-1(?x) 
{?x/Z}

{random(1, 2, ?y1)} 
{?y1/9}

[(/ ?x ?y3)] 
{?x/Z, ?y3/1.5}

{random(1, 2, ?y3)} 
{?y3/1.5}{random(3, 4, ?y2)} 

{?y2/3.8}

[(- ?x ?y2)] 
{?x/Z, ?y2/3.8}

51

52

53 54

55

56

57

58

59

60

61

62

63

3

5 6 5

 
Figure 8: A derivation tree of the offspring produced by performing 

mutation of the tree in figure 3 at the sub-tree 33 
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Figure 9: Fitness curves showing best fitness for the Dot Product problem 
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Figure 10: The performance curves showing (a) cumulative probability of 

success P(M, i) and (b) I(M, i, z) for the DOT PRODUCT problem. 
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Figure 11: Fitness curves showing best fitness for the sub-function problem 
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Figure 12: Performance curves showing (a) cumulative probability of success 
P(M, i) and (b) I(M, i, z) for the sub-function problem 


