Skip to main content

Evolving Microstructured Optical Fibres

  • Chapter
Book cover Evolutionary Computation in Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 88))

  • 580 Accesses

Optical fibres are not only one of the major components of modern optical communications systems, but are also used in other areas such as sensing, medicine and optical filtering. Silica microstructured optical fibres are a type of optical fibre where microscopic holes within the fibre result in highly tailorable optical properties, which are not possible in traditional fibres. Microstructured fibres manufactured from polymer, instead of silica, are a relatively recent development in optical fibre technology, and support a wide variety of microstructure fibre geometries, when compared to the more commonly used silica. In order to meet the automated design requirements for such complex fibres, a representation was developed which can describe radially symmetric microstructured fibres of different complexities; from simple hexagonal designs with very few holes, to large arrays of hundreds of holes. This chapter presents a genetic algorithm which uses an embryogeny representation, or a growth phase, to convert a design from its genetic encoding (genotype) to the microstructured fibre (phenotype). The work demonstrates the application of variable-complexity, evolutionary design approaches to photonic design. The inclusion of real-world constraints within the embryogeny aids in the manufacture of designs, resulting in the physical construction and experimental characterisation of both single-mode and highbandwidth multi-mode microstructured fibres, where some GA-designed fibres are currently being patented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, P. J. and Kumar, S. (1999) Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), 13–17 July 1999, Orlando, Florida, USA, pages 35–43.

    Google Scholar 

  • Birks, T. A., Knight, J. C. and Russell, P St J. (1997) Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13):961–963, July 1997.

    Article  Google Scholar 

  • Deb, K. Agrawal, S, Pratap, A and Meyarivan, T. (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI (PPSN-VI), pp. 849–858.

    Article  Google Scholar 

  • Eiben, A.E. and Smith, J.E. (2003) Introduction to Evolutionary Computing. Springer-Verlag.

    Google Scholar 

  • Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley.

    Google Scholar 

  • Ishigure, T., Nihei, E. and Koike, Y. (1996). Optimum refractive-index profile of the graded index polymer optical fiber, toward gigabit data links, Applied Optics 35(12): 2048–2053.

    Article  Google Scholar 

  • Ishigure, T., Makino, K., Tanaka, S. and Koike, Y. (2003). High-bandwidth graded-index polymer optical fiber enabling power penalty-free gigabit data transmission, Journal of Lightwave Technol. 21, 2923.

    Article  Google Scholar 

  • Issa, N. and Poladian, L. (2003) Vector wave expansion method for leaky modes of microstructured optical fibres. Journal of Lightwave Technology, 22(4):1005–1012.

    Article  Google Scholar 

  • Knight, J. C., Birks, T. A., Russell, P. St. J. and Atkin, D. M. (1996) All-silica single-mode optical fibre with photonic crystal cladding. Optics Letters, 21(19):1547–1459, October 1996.

    Article  Google Scholar 

  • Kominsky, D., Pickrell, G. and Stolen, R. (2003) Generation of random-hole optical fibers. Optics Letters 28(16), August 2003.

    Google Scholar 

  • Large, M. C. J., Ponrathnam, S., Argyros, A., Bassett, I., Punjari, N. S., Cox, F., Barton, G. W. and van ∼Eijkelenborg, M. A. (2006) Microstructured polymer optical fibres: New Opportunities and Challenges. Journal of Molecular Crystals and Liquid Crystals 446:219–231.

    Article  Google Scholar 

  • Manos, S. and Poladian, L. (2002) Optical Fibre Design with Evolutionary Strategies: Computational implementation and results. 4th Asia-Pacific Conference on Simulated Evolution and Learning, November 18–22, Singapore.

    Google Scholar 

  • Manos, S. (2006) Evolving Fibres Designing Fibre Bragg Gatings and Microstructured Optical Fibres using Genetic Algorithms. PhD Thesis, Optical Fibre Technology Centre and School of Physics, University of Sydney.

    Google Scholar 

  • Monro, T. M., Bennett, P. J., Broderick, N. G. R. and Richardson, D. J., (2000) Holey fibers with random cladding distributions. Optics Letters 25(4): 206–208.

    Article  Google Scholar 

  • Poladian, L., Issa, N.A. and Monro, T. (2002) Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry. Optics Express 10; 449–454.

    Google Scholar 

  • Poletti, F., Finazzi, V., Monro, T M., Broderick, Tse, V. and Richardson, D. J. (2005) Inverse Design and Fabrication tolerences of ultra-flattened dispersion holey fibers. Optics Express 13(10):3728–3736, May 2005.

    Article  Google Scholar 

  • Ranka, J. K., Windeler, R. S. and Stentz, A. J. (2000) Visible continuum generation in air-silica microstructure optical fibres with anomalous dispersion at 800 nm. Optics Letters 25(1):25–27, 2000.

    Article  Google Scholar 

  • Renversez, G., Kuhlmey B. and McPhedran, R. (2003) Dispersion management with microstructured optical fibres: ultraflattened chromatic dispersion with low losses. Optics Letters 28(12):989–991, June 2003.

    Article  Google Scholar 

  • Stanley, K. O. and Miikkulainen, R. (2003) A taxonomy for artificial embryogeny. Artif. Life, 9(2):93–130.

    Article  Google Scholar 

  • van Eijkelenborg, M., Large, M., Argyros, A., Zagari, J., Manos, S., Issa, N. A., Bassett, I. M., Fleming, S. C., McPhedran, R. C., de Sterke, C. M. and Nicorovici, N. A. P. (2001) Microstructured polymer optical fibre. Optics Express, 9(7):319–327, September 2001.

    Article  Google Scholar 

  • van Eijkelenborg, M. A., Poladian, L. and Zagari. J. (2001) Optimising holey fibre characteristics. In CLEO/Pacific Rim: Proceedings of the 4th Pacific Rim Conference on Lasers and Electro-Optics, volume 1, pages 436–437.

    Google Scholar 

  • van Eijkelenborg, M. A., Argyros, A., Bachmann, A., Barton, G., Large, M. C .J., Henry, G., Issa, N. A., Klein, K. F., Poisel, H. Pok, W., Poladian, L., Manos, S. and Zagari, J. (2004) Bandwidth and loss measurements of graded-index microstructured polymer optical fibre. Electronics Letters 40(10): 592–593, May 2004.

    Article  Google Scholar 

  • van Eijkelenborg, M., Argyros, A., Barton, G., Bassett, I., Fellew, M., Henry, G., Issa, N., Large, M., Manos, S., Padden, W., Poladian, L. and Zagari, J. (2003) Recent progress in microstructured polymer optical fibre fabrication and characterization. Optical Fiber Technology 9; 199–209.

    Article  Google Scholar 

  • Xue, S. C., Large, M. C. J., Barton, G. W., Tanner, R. I., Poladian, L. and Lwin, R. (2006) Role of Material Properties and Drawing Conditions in the Fabrication of Microstructured Optical Fibres. Journal of Lightwave Technolgy 24(2): 853–860.

    Article  Google Scholar 

  • Yu, T. and Bentley, P. J. (1998) Methods to evolve legal phenotypes. In PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, pages 280–291, London, UK. Springer-Verlag.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manos, S., Bentley, P.J. (2008). Evolving Microstructured Optical Fibres. In: Yu, T., Davis, L., Baydar, C., Roy, R. (eds) Evolutionary Computation in Practice. Studies in Computational Intelligence, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75771-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75771-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75770-2

  • Online ISBN: 978-3-540-75771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics