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Abstract

Wind power forecasting is essential for the integration of large amounts

of wind power into the electric grid, especially during large rapid

changes of wind generation. These changes, known as ramp events,

may cause instability in the power grid. Therefore, detailed infor-

mation of future ramp events could potentially improve the back-

up allocation process during the Day Ahead (DA) market (12 to 36

hours before the actual operation), allowing the reduction of resources

needed, costs and environmental impact.

It is well established in the literature that meteorological models

are necessary when forecasting more than six hours into the future.

Most state-of-the-art forecasting tools use a combination of Numerical

Weather Prediction (NWP) forecasts and observations to estimate the

power output of a single wind turbine or a whole wind farm. Although

NWP systems can model meteorological processes that are related to

large changes in wind power, these might be misplaced i.e. in the

wrong physical position. A standard way to quantify such errors is

by the use of NWP ensembles. However, these are computationally

expensive. Here, an alternative is to use spatial fields, which are used

to explore different numerical grid points to quantify variability. This

strategy can achieve comparable results to typical numerical ensem-

bles, which makes it a potential candidate for ramp characterisation.

A major disadvantage of most ramp events studies is that they are

based on a binary classification, which specifies a percentage of change

in power within a defined time window. This may produce artifacts,

as ramp detection tools might miss potential changes due to errors in

the forecasts. Moreover, a change just below the threshold could be



equally damaging as a change that meets the definition. The novel

contribution of this project is the application of computational intel-

ligence techniques for wind power forecasting and ramp event char-

acterisation. To achieve this, two stages are required. In the first

stage, Genetic Programming (GP) is used to generate an ensemble of

wind power forecasts based on the idea of spatial fields. This in its

own is an important contribution as the approach will allow the de-

velopment of computationally cheap wind speed-to-power conversion

models, without making any assumptions of their shape or proper-

ties. In the second stage, wind power forecasts are converted into a

set of filtered signals in order to study ramp events at different time

scales. These signals, when applied to a set of Fuzzy Logic rules, indi-

cate the probabilities of a ramp event happening, avoiding the binary

classification, which is another important contribution of this work.

The observation data used for this investigation was obtained from

a real wind park in Galicia, Spain and some observation points in

Illinois, USA. The numerical data was obtained by running locally

a Mesoscale model. Experiments showed that the accuracy of wind

power forecasts obtained using GP as a downscaling/conversion method

are comparable to traditional forecasting tools as it is able to achieve

an 87% of accuracy. At the same time the computational effort was

significantly reduced. The novel ramp detection approach that is in-

troduced here, is able to outperform a basic binary-based detection

algorithm. In addition, the fuzzy rules can provide a probability of

other events happening; events that might not meet the crisp defi-

nition. Using colour maps, which are easier to interpret by human

non-experts, it is possible to show how an event is developing in dif-

ferent time windows. Finally, it is shown how neighbouring points

can help modelling events that might not be detected using only the

closest point of the grid. Having a detailed characterisation of future

ramp events can help grid operators to make more informed decisions

on the scheduling of back-up units needed and hence to potentially

reduce costs and the environmental impact.
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Chapter 1

Introduction

1.1 General Context

Ever since the discovery of fire, we have learnt to improve our quality of life

making use of our natural resources as the energy supply. Before the Industrial

Revolution in the 18th Century, human and animal force, wind and water were

our energy sources, while firewood was our source of heat and light. With the

invention of the steam engine, the development of electricity and the internal

combustion engine, a historical transition was made in the way we use energy.

Nowadays, our manufacturing, transportation, home commodities and lighting

rely on the constant supply of energy and, as the population continues to increase,

so does the demand for energy (Schobert, 2002).

In the last decades, renewable energy sources have attracted special attention

due to a global concern over issues such as global warming and fossil fuel depletion.

Wind power has had the strongest growth in the electricity markets over the recent

years (World Wind Energy Association, 2012). With international agreements,

such as the Kyoto Protocol (United Nations, 1997), industrialized countries and

the European Union have committed to supply a certain percentage of their

energy demand with renewable sources. In a first stage of the agreement, 37

countries committed to reduce green house gas (GHG) emissions to an average of

five percent against 1990 levels. In a second commitment period, a higher number

of countries joined the agreement and the reduction was set to 18 percent below
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1990 levels from 2013 to 2020. With this target, there has been an important

increase in the amount of installed wind energy capacity in Europe. Countries

such as Germany, Denmark and Spain have successfully integrated large amounts

of wind power generation. In 2013, the total installed capacity in Europe reached

117 GW, which in a normal wind year would produce 257 TWh of electricity.

This is enough to cover 8% of the EU's electricity consumption.

To meet the 20% target of renewable generation by 2020, Europe is increasing

its offshore installations. More than 90% of the world's offshore wind power

is currently installed off northern Europe, in the North, Baltic and Irish Seas,

and the English Channel. The potential of offshore wind is enormous and is

generally greater than onshore wind, generating more energy with fewer turbines.

Although offshore wind is often the most talked about part of the wind sector,

today it represents only about 2% of global installed capacity (Global Wind

Energy Council, 2013).

Regardless of the type of installation, offshore or onshore, the power gener-

ation of wind farms is intermittent, which is directly correlated to the natural

variability of wind. The capacity factor (actual energy output) of a wind farm is

between 25 and 40% of its total installed capacity, making this source of energy

unreliable in the eye of the utilities. With the increasing growth in wind energy

capacity, there is a major concern about the imbalances that high levels of wind

power could create in the grid. For this reason, different solutions have been

studied and are still in development to mitigate these.

One alternative for smoothing intermittent wind power is to distribute wind

farms in a large area with different wind flows (Cochran et al., 2012). Another

alternative is the use of energy storage devices (Dı́az-González et al., 2012) which,

until now, appear not to be feasible for large scale wind generation. A recent

alternative is the demand response which can potentially help to manage the

unexpected deviations of wind generation (Kowli and Meyn, 2011). Another

alternative is the use of operating reserves, which are generation units that are

flexible enough to be adapted to the variations of load and supply. The use

of reserves is currently the most common way to mitigate the problem. This,

however, implies additional costs and emissions.

The scheduling of operating reserves is a current practice of grid operators
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to balance the electric grid whenever there is a disruption in the supply. The

main challenge when integrating larger amounts of wind power into the grid

(more than 10%) is during the commitment of these reserve units. If the power

output of a wind farm could be predicted accurately, then it could be treated

as a conventional power plant where the operating reserve could be estimated

and units could be committed according to that prediction. However, the lack

of accurate forecasts adds further uncertainty to the commitment decision and

could result in the commitment of unnecessary reserves.

Meanwhile, several studies have been performed to understand the technical

and financial difficulties that a high penetration of wind energy will bring to the

electricity market (Australian Energy Market Operator, 2011; Cochran et al.,

2012; Energinet, 2010). As a result, it has been suggested that the electricity

market must change its practices in order to increase power systems flexibility.

Practices such as moving to sub-hourly dispatch and reducing gate closure times

in order to bid when more accurate forecasts are available have been recommended

as they have been successfully applied in some markets. An example of this is the

Danish market. This power market achieved more flexibility by joining the Nord

Pool market, as well as by the use of a fast market design, combined heat and

power (CHP) plants and negative prices. This has allowed the Danish market

to develop equitable rules for curtailment during periods of excess renewable

generation (Cochran et al., 2012).

The adjustment of market rules is a difficult process as stakeholders may have

different economic interests. In this context, there is an important interest in

improving wind power forecasts and quantifying their uncertainty as part of an

important measure to integrate wind power into the grid, avoiding imbalances and

reducing curtailment. Nowadays, there is an increasing demand in the develop-

ment of forecasting tools that can meet the needs of end users such as transmission

system operators (TSO), energy traders, power producers and utilities.

One of the major issues that the wind power generation industry is dealing

with is ramp events, which are sudden and large changes in wind power that are

particularly difficult to forecast. An unforeseen ramp event can leave a grid oper-

ator scrambling to balance supply and demand. The demand from grid operators

is clear:“there is a need to produce forecasts designed to predict significant swings
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in wind power generation and give operators better tools to aid in balancing these

swings in the real-time market or scheduling reserves in the day-ahead market”

(Francis, 2008).

The aim of this research is to investigate potential approaches to improving

the characterisation of wind power ramp events. This is done by the integration

of numerical weather prediction (NWP) models with computational intelligence

techniques. This thesis explores various weaknesses of NWP models and studies

how these can be addressed to improve ramp characterisation. The rest of the

chapter is organised as follows: Section 1.2 presents an overview of the thesis; in

section 1.3, the aims of this research and the proposed objectives are presented;

the main contributions of this work are presented in Section 1.4 and, finally,

Section 1.5 outlines the remaining chapters.

1.2 Overview of the Research

In our modern times, predictions are essential for making decisions in our every

day life. However, predictions are not useful if they are not specially tailored to

the application. Having said this, in order to provide a wind power forecast of

good value, we need to consider the specific needs of grid operators and power

producers. Short-term forecasts (from 6 to 48 hours into the future) have been of

great interest in the last decades as the process of deciding the sources that will

supply the demand takes place one day before the actual grid operation. There

has already been great progress achieved in the development of forecasting tools.

For the short-term, the majority of them would require two major steps: one

meteorological stage where wind speed is predicted at a specific location and a

second step where the wind speed prediction is converted to a power prediction.

State-of-the-art forecasting tools are able to provide not only a point forecast,

which is an exact numerical value of the power output at a point in time, but an

estimation of the uncertainty of that forecast. This is specially of great use as

probabilistic forecasts are being proved to be more useful than point forecasts.

Most state-of-the-art forecasting tools are based on combinations of NWP models

and statistical methods, as it has been demonstrated that, for horizons larger than

6 hours, the modeling of the atmospheric flow is essential. These NWP models
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run at either very high spatial resolutions to provide forecasts very close to specific

locations or run in “ensemble” mode at a much lower resolution. In both cases,

this process is highly demanding of computational resources. In addition, NWP

models may have “misplacement” errors, which are errors in the physical location

of meteorological events. This leads to the question of whether a neighbourhood

approach (considering a set of locations surrounding the point of study) could

improve power forecasts and the characterisation of large changes.

In addition, wind power ramp prediction is a research area which is still in

its infancy. One of the major problems for ramp detection and characterisation

is that there is no strict definition of what a ramp event is. It is usually referred

to as a large change in wind power in a short period of time. The amount

of change and period of time would need to be defined by the end user (grid

operator) according to the characteristics of the power system. For this reason,

most studies that have been published work on an arbitrary fixed percentage

and time window. This can potentially lead to the omission of ramp events that

did not meet the criteria, but that were close enough to be considered potential

events, and that could be equally damaging as those that do meet the definition.

There is an evident necessity for new approaches to the definition of ramp events

and their characterisation.

The main research question that is to be answered in this thesis is how could

numerical models be used and their weaknesses addressed to improve the char-

acterisation of ramp events. In particular, this study is trying to answer the

following questions:

- Is it feasible to use a bio-inspired heuristic to develop models to downscale

numerical wind speed predictions to exact locations?

- Can the same approach be used to model the relationship between numerical

predictions and actual power output of a wind farm?

- Could misplacement errors of numerical models be addressed with a neigh-

bourhood approach?

- Are there other ways to improve the detection of ramp events using the

binary definition (ramp or not a ramp based on a percentage)?

5



1. Introduction

- How could the crisp definition of ramp event be avoided in order to identify

potential events that do not meet the binary definition but that could be

equally dangerous to the stability of the grid?

To answer the above questions, the aims and objectives are outlined below.

1.3 Aims and Objectives

The aim of the work in this thesis is to investigate potential ways to improve

the characterisation of wind power ramp events by means of computational in-

telligence techniques. The main idea is to be able to provide not only detail of

duration, rate and timing of events, but to be able to identify those events that

might be omitted by common ramp detection tools. This information could al-

low the grid operator to take informed decisions of what type of backup units

are needed according to the characteristics of the ramp. This could bring several

benefits, such as the adequate allocation of backup units to avoid blackouts and

cost reductions by avoiding the allocation of unnecessary reserves.

In order to accomplish the aim of this research, the following objectives are

identified:

- Use mesoscale NWP models as the main source of information in order to

predict wind speed at specific locations.

- Study the feasibility of applying Genetic Programming (GP) as a means

to model the relationship between wind speed predictions and wind power

predictions of a wind park. The main idea of using GP as a regression

tool is that this technique does not make any assumptions about how the

model should be, making it site independent in that sense. Also, it provides

a mathematical representation of the model, providing information that

could improve the understanding of what is happening at the location of

the study.

- Investigate the possibility of applying the GP algorithm at different neigh-

bour locations and create “ensembles” in these set of forecasts. The idea
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behind this is that, if there is a misplacement error in the numerical fore-

cast, by looking at different neighbour points, one could estimate the pos-

sible power outcomes as if the location of the park was in each of these

neighbour points.

- Study a probabilistic approach to define ramp events by means of how they

develop in short windows of time.

1.4 Major Contributions of the Thesis

The main contributions of this thesis are:

- The development of a novel approach for wind power forecasting based on

Genetic Programming and NWP models.

- The creation of ensembles using GP in a neighbourhood approach to help

determine the possible outcomes of wind power output of the farm and also

to estimate the timing of ramp events.

- Investigate and determine wind power prediction intervals by using Quantile

Regression Forests and numerical predictions as explanatory variables.

- Determine if the consideration of the distribution of the error of wind power

predictions could improve ramp detection when using a binary definition.

- Provide a probabilistic prediction of possible ramp events and present these

results in a way that could be easily interpreted.

1.5 Thesis Outline

This thesis consists of eight chapters that are summarized as follows:

Chapter 2: Literature Review

This chapter provides an overview of the most relevant existing techniques used

for wind power forecasting and ramp characterisation and their relevance in the
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integration of high levels of wind power into the electric grid. The chapter be-

gins by presenting the two main approaches to wind power forecasting. Then, it

introduces different techniques used specifically for short term wind power fore-

casting and discusses their benefits and limitations. A review of ramp forecasting

methods and uncertainty estimation is given and, finally, a discussion on the open

problems arising due to the integration of wind power as an intermittent resource

into the electric grid is presented.

Chapter 3: Data Collection

This chapter introduces the mesoscale numerical weather prediction model used

for forecasting atmospheric variables at different locations and heights. The model

has several steps and settings in order to produce a weather forecast. These set-

tings are presented in detail. Once the model is configured, forecasts can be

produced at any location using input data from a global model. With a weather

forecast, variables such as wind speed, wind direction and temperature are ex-

tracted, processed and used as the main input for wind power forecasting and

ramp characterisation.

Chapter 4: Genetic Programming: an Approach for Symbolic Regression

This chapter introduces genetic programming and how it can be applied for sym-

bolic regression. Details about the algorithm and how genetic operators are im-

plemented are given. Then, in order to validate the implementation, the approach

is tested using a simple regression problem. The results obtained are presented

and discussed.

Chapter 5: A GP Approach for Wind Speed Downscaling

In this chapter, the GP approach is used as a means to obtaining a wind speed

forecast at a specific location from numerical wind speed predictions. The algo-

rithm performs a “downscaling” process to refine the resolution of the mesoscale

model grid to the exact location of the observation point. Different sets of exper-

iments were designed to find the best settings of the algorithm to achieve a wind

speed forecast with the smallest error possible.
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Chapter 6: Wind Power Forecasting with Genetic Programming

This chapter presents two approaches to wind power forecasting. The first one

consists in taking the raw wind speed forecasts from the mesoscale model grid

directly to predict the power output of the farm in one step. The second one is

a two step approach which consists in first forecasting wind speed at a specific

location (downscaling) and then feeding the downscaled wind speed forecasts into

a wind farm power curve model, which is also found by GP. Finally, both strate-

gies are compared and the results are discussed.

Chapter 7: Identifying Large Variations in Wind Power

In this chapter, an approach to the characterisation of wind power ramp events

is proposed. First, a benchmark algorithm is presented using the typical binary

definition. This basic detection algorithm is improved by taking into account the

forecasting errors. Furthermore, using a filtering process and fuzzy rules, changes

at different time scales are analysed and characterised, providing a probabilistic

forecast of the potential ramps. The results are presented and discussed.

Chapter 8: Conclusions and Future Work

This chapter provides the conclusions that arise from this thesis and formulates

some future research for the integration of wind power forecasts into the decision

making problems in the electricity market.
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Chapter 2

Literature Review

2.1 Introduction

Renewable energy (RE) has become an attractive topic for politicians and re-

searchers as they look for options to reduce CO2 emissions which are contributing

to issues such as global warming. Emissions produced by conventional power gen-

eration (e.g. coal-fired power plants) account for about one quarter of the total

CO2 emissions that are released into the atmosphere (Cassedy and Grossman,

1998; of Global Development, 2007). Wind power has had the strongest growth

over the recent years (World Wind Energy Association, 2012) compared to other

renewable sources. This might be motivated by various factors. This energy re-

source has no fuel cost as it depends basically on the wind. In addition, the main

mechanism to create electricity with wind is a rotor turning a generator, which

is a relatively mature and well understood technology. The amount of installed

capacity is increasing and researchers, private companies and electricity market

policy makers have made a great effort to understand what are the impacts in

terms of security and reliability of introducing large quantities of this RE into

the grid and how this integration can be carried out.

As with any other power generation process, wind power generation has its

disadvantages. The inherent intermittency and variability of wind generates un-

certainty about the real production of a wind farm. This chapter will present

an overview of the different aspects that have been studied and technologies that
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have been developed as an attempt to integrate wind power into the electricity

market. The first section presents the concept of wind power in more detail and

its challenges. Then an overview of the different aspects that need to be ad-

dressed in order to achieve integration is presented, followed by the background

to the first solutions and current solutions under development. Throughout this

overview, different areas that need further study are highlighted to introduce the

reader to the main points that will be addressed in this thesis.

2.2 Wind Power and Its Challenges

In order to understand what the challenges of wind power are, it is important

to establish first how wind power is obtained. The main energy source of wind

power is the wind energy flux. Wind is derived from the sun, which heats the

Earth unevenly, creating pressure differences in the atmosphere. These pressure

differences cause the air to move in an attempt to restore equilibrium in the

pressure, moving from places with high pressure to places with low pressure. At

the same time, the air experiences forces from other sources such as the coriolis

force (Metoffice, 2014).

The movement of the air can be on a small or large scale. Small scale winds,

like sea breezes, happen due to the difference in air temperature on land and sea.

As the sun heats both land and sea, the sea is able to absorb some of the heat,

keeping the air at a lower temperature and higher density, in contrast with the

land, which warms up, heating the air, and hence decreasing the pressure. Large

scale winds occur due to the difference in temperature between the poles and

the equator. The heated air rises at the equator while the cold air in the poles

sinks. This difference in pressure sets up a global wind circulation as the cold air

from the poles tend to move to the equator. These winds are also affected by the

rotation of the earth, pulling them to left or right depending on the side of the

hemisphere they are heading to.

Wind exists everywhere on the Earth and has been widely used in the past

for mechanical power and transportation, so the potential of this source of energy

has been well known for years. Some examples of this are the use of sails in ves-

sels which goes back to the the ancient Egypt and Mesopotamia, and windmills,
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which were used mainly for milling grain and pumping water for consumption.

These uses started to decline with the invention of the internal combustion en-

gine. However, technological development also brought a new conception of the

windmill, which is the wind turbine. Some early electricity-generating wind tur-

bines had some features of windmills incorporated into them. The wind turbine

can extract power from the wind in the same way as a traditional windmill but

uses this to produce electricity. As in traditional windmills, wind turbines can

only produce energy in response to the resource that is immediately available.

Wind cannot be stored to be used at a later time. The output of a wind turbine

is thus inherently fluctuating and non-dispatchable, making this source of energy

unreliable for the electricity market (Manwell et al., 2010).

It was not until several factors were put together that wind power started to

emerge as a potential source of renewable energy. The awareness of the possible

depletion of fossil fuels, the availability of technology, and finally, the emerging

political support, which started in the United States, Denmark, Germany and

exists now in much of the rest of the world (Manwell et al., 2010), led to the

current development of this industry, which is now a reality. Wind turbines are

nowadays installed mainly in large conglomerates or wind farms, as larger wind

turbines are more cost effective, providing bulk power to the electrical grid.

While conventional power plants, such as thermal and nuclear power stations,

have a reliable production capacity per hour (except when exceptional break-

downs happen), a wind farm will only work at its maximum capacity if certain

wind conditions are met. Wind turbines need a minimum wind speed to start

power production. This minimum wind speed could be different for different tur-

bine models. As wind speed increases, so does the power output of the turbine.

In most wind turbines, there is a range where the power output can remain con-

stant. Outside that range, a higher speed could damage the turbine, leading to

having to turn it off and halting the power generation process. This speed is

referred to as the cut-off speed, and is usually at 25 m/s for most modern turbine

models. This relationship between wind speed and power output can be repre-

sented with a power curve (Figure 2.1). Different turbine models have different

power curves, based on an idealised installation which may not be reproduced in

practice. It has been found that turbines might not work entirely at their capac-
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ities due to a correlation with the roughness and orography of the terrain where

the turbine is located (Kariniotakis et al., 2004). This means that if one needs to

quantify the generation capacity of a turbine/wind farm, a site-dependent model

would be preferable. This requires a considerable amount of effort for tuning the

models, and here the experience of who performs the installation always makes a

difference (Giebel et al., 2011).
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Figure 2.1: Example of a power curve from turbine model Izar-Bonus 1.3 MW.

Utility grids operate at a constant frequency to allow stability and intercon-

nection with other utilities. This frequency is achieved if the total amount of

power generated is equal to the amount of power consumed. The sudden halt of

a wind turbine and the continuous fluctuations of the wind speed would trans-

late into power output fluctuations, which can impact the frequency of the power

system the turbine is connected to, as well as the interconnection tie-line sched-

ules. As wind turbines are usually installed in conglomerates, a sudden change

in wind speed can affect a large number of turbines, hence affecting considerably

the power output. Frequency that is too high or too low from its nominal level

can cause varying issues and in the most drastic instance lead to load shedding

(intentional power shutdowns) or instability in the grid (Ela and Kemper, 2009).
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In current electricity markets, fluctuations are addressed already as random

changes in demand may occur. Fluctuations are managed by using backup gener-

ating units which can be started quickly and synchronised to the grid to balance

the fluctuations. Different back up units respond to different speeds and the type

of backup to use will depend on the type of fluctuation. Adding the wind power

fluctuations raises the level of complexity of the balancing task. If an increase in

demand happens at the same time as an increase in wind power, then the change

in power output could be easily fed-in to compensate the demand. However, when

these two events do not complement each other, either wind power is curtailed

or, in a shortage of wind power, backup resources need to be quickly started up.

With the inherent variability and intermittency of the wind, it is not possible

for an independent system operator/transmission operator (ISO/TSO) to treat

this source of energy as a conventional power plant. If this source is to be inte-

grated into the electric grid as any other source, it would need to be considered

during the operational procedures of the electricity market. These procedures

require taking decisions based on future demand and production. In order to

provide information about the future production of a wind farm, a forecast is

needed. Being able to predict how much power can be produced at a wind farm

has become more important as the level of wind power penetration on the grid

increases. With higher levels of wind power in the grid, there is a higher risk

of intermittency and instability due to large forecasting errors. These large fore-

casting errors are likely to occur during the so-called ramp events, which are

large changes of power output (increase or decrease), if these were not well fore-

casted.The more accurate and detailed the forecast and characterisation of future

ramp events, the more prepared the ISO/TSO will be as the real time operation

approaches.

2.3 Electricity Market Operations

Most electricity markets are designed to perform a set of procedures as part of

the short-term operation of the grid. These procedures, also called Day-Ahead

operations (DA), will allow the TSO to prepare for the real-time operation (RT)

and to successfully supply the power demand (Monteiro et al., 2009). The fol-
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lowing sections present the current state of the electricity market practices and

the current developments in the integration of wind power into these practices.

2.3.1 Reserve Requirements

In order to run a power system in a reliable and secure manner, it is necessary

to maintain a certain amount of operating reserves that can be used when there

is an eventual outage of a generating unit (Monteiro et al., 2009). Part of the

DA procedures include the allocation of these reserves, also known as ancillary

services, and the amount will depend on the regulations of each market. Oper-

ating reserves are typically categorised depending on how quickly they respond.

Regulating reserves, for example, respond immediately to generation adjustment

needs. Contingency reserves need to respond within 10 minutes and are used

to respond to contingencies such as forced outages of generators or transmission

lines. These contingency reserves can be either spinning reserves, which are ob-

tained by increasing the power output of generators that are already connected to

the power system, and non-spinning reserves, which is extra generating capacity

that is not currently connected. Figure 2.2 shows the time frame of use of reserves

by type. For example, regulation reserves can be started within 1 minute but are

also used for a short period of time. If the reserve needs to respond for a longer

period, then spinning or non-spinning reserves would be used. It will depend on

the rules of the market and the operator to decide when these reserves would

need to be replaced by supplemental reserves or by ordinary power suppliers.

The type of reserves to allocate will not only depend on the time of response

but on the availability of these types of units in the system. The more flexible the

system is, the more variable generation (VG) like wind and solar power can be

integrated into the grid. Pumped storage (PS) power plants are the most respon-

sive technology and can generate electricity almost instantaneously (Eurelectric,

2011). Their load gradient (nominal output change rate in a given timeframe)

is the fastest, as they can ramp up and down by more than 40% of the nominal

output per minute. Nuclear power plants (NPP) have the second fastest load

gradient, which make them a good option to perform load-following operations

(units that can adapt to the power fluctuations) if they are already in operation.
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Figure 2.2: Ancillary services (reserves) by time frame of use.

However, they cannot be brought online from a cold or warm start as quickly as

PS. Combined cycle-gas power plants (CCG) are also suitable for load-following

operations as they have fast load gradients (4%/min) and can be brought online

fairly quickly (less than 1.5 hours from warm conditions). Coal-fired power plants

are less responsive than the previously mentioned technologies, although newer

plants are more flexible than older units. Hard coal-fired and lignite-fired plants

have similar load gradients, but the former are faster to respond to load changes

from cold and warm start-up conditions. Hydroelectric power plants can operate

as base load, load following or peaking power plants (plants used only during peak

times). These plants can be started within minutes, and in some cases in seconds.

The way the power plant is operated will depend on the amount of water that is

available. Gas turbine power plants are very flexible units as their power level can

be adjusted very quickly; however, they are the most expensive to operate. This

is one of the reasons this kind of plant is used as a peaking unit. Figures 2.3 and

2.4 show the flexibility of these technologies in terms of start-up times and load

gradient. Start-up times are presented for both cold and warm starts. Figure 2.4

shows the load gradient once the unit is already in operation. Operating units

that provide load-following would not be at a 0% load as shown in the Figure,

but the purpose of the figure is to show how quickly they can potentially get to

a 100% load.
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(a) Start-up time on “cold” conditions
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(b) Start-up time on “warm” conditions

Figure 2.3: Start-up times on cold and warm initial conditions for different tech-
nologies: nuclear power plants (NPP), hard coal-fired power plats (HC), lignite-
fired power plants (LIGN), combined cycle gas-fired power plants (CCG) and
pumped storage power plants (PS).

These types of ancillary services are currently used to cope with the demand-

driven fluctuations. The problem with generation-driven fluctuations (such as

those from wind energy) is that, during times of ramp events, the velocity of the

fluctuations is so high that only storage facilities such as pumped storage and

hydro storage schemes with peak generation can cope.

Over the recent years, the integration of intermittent renewable energy has

prompted additional demand for reserve and response operations. Power markets
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Figure 2.4: Load gradient for both upward and downward directions of different
technologies once they are in operation. Figure based on the data reported by
EURELECTRIC on the EU generation mix (Eurelectric, 2011).

that are unable to adapt to power inttermitency during the day need large volumes

of real-time balancing reserves. This results in additional costs due to increased

start-up and part-load costs to provide balancing power (Borggrefe and Neuhoff,

2011; Energinet, 2010). The better the changes in wind power are characterised,

the better the selection of the appropriate back up generation will be. That is

why it is not enough to only predict the changes, but to characterise how these

events will develop, especially if the changes are rapid and large.

2.3.2 Unit Commitment and Economic Dispatch

As part of the DA procedures, market participants, from both the demand and

supply side, submit their bids to the ISO/TSO by a certain deadline. This dead-

line varies according to the market. The bids will provide information about

how much energy and operating reserves they can provide for the following day,

as well as their constraints (ramping rates, start-up cost/times, minimum down-
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time, etc.) (Monteiro et al., 2009). The clearing of the DA market will then

consist of two procedures. The first step is a unit commitment (UC), which will

commit resources of different providers, trying to minimise the operating costs,

while meeting the total bidded demand and constraints. The second step is to

run an economic dispatch (ED) algorithm. This procedure consists in determin-

ing the amount of power each of the scheduled generating units will produce at

each hour, taking into consideration constraints of the transmission lines. After

the generating units are dispatched and as the operating day approaches, the

ISO/TSO will perform a re-commitment procedure in case of any forced outage

and will take into consideration the forecasted load.

2.3.3 Wind Power Forecasting in the Market Operations

In most markets, intermittent resources are not bidding in the DA market, they

are bidding only in the RT market, leading to large curtailments of wind power

(Bessa et al., 2014). Wind power forecasting can provide important information

to several of the grid operation procedures. As mentioned previously, the alloca-

tion of reserves has increased as a result of the high uncertainty of wind energy.

A wind power forecast and uncertainty estimation could potentially be used to

improve the process of determining the operating reserve requirements. The Elec-

tric Reliability Council of Texas (ERCOT) was one of the first markets in the

USA to consider wind power uncertainty forecasts in its reserves determination

process. ERCOT defines the non-spinning reserve as the 95th percentile of the

observed hourly net load error from the previous 30 days, plus the size of the

largest generation unit. The Spanish system operator Red Eléctrica de España

(REE) defines the balancing reserve requirements as the sum of the generation

shortage/surplus due to load and wind generation historical forecast errors and

unplanned outages (Bessa et al., 2014).

Doherty and O’Malley (2005) presented an analytical approach to quantify

reserve demand. In order to determine the required amount of system reserves,

the authors take into consideration the generator outages and load and wind

forecasting errors. This study finds that the amount of reserve must be increased

if the wind power capacity increases in the system. Ortega-Vazquez and Kirschen
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described a method for minimising the sum of the expected cost of energy not

served and the operating cost (Ortega-Vazquez and Kirschen, 2009). Wind power

and load forecast uncertainty is assumed to follow a normal distribution, which is

highly questionable as several studies have demonstrated the high skewness and

kurtosis of wind power forecast errors (Pinson, 2006). Matos and Bessa (2011)

developed a reserve management tool to support the TSO in the online definition

of operating reserve needs. Their probabilistic method does not assume normal

distribution of the errors and is able to calculate risk/reserve and risk/cost curves

that allow the TSO to make decisions on the amount of reserves. However, the

authors rely on the quality of the probabilistic forecasts (obtained with prediction

intervals), which, as is stressed in their work, is not evaluated. As later addressed

in detail, large sudden changes in power output might not be placed on the correct

physical position. The uncertainty estimation could be potentially improved by

taking into consideration numerical weather prediction spatial fields (Cutler et al.,

2009).

There has been some work on integrating wind power forecasting and uncer-

tainty into the UC as well. Barth et al. (2006) proposed a stochastic model of

the unit commitment problem, where the uncertainty of wind power is taken into

account, to study the impact of large amounts of wind penetration on electricity

prices in the area covering the following countries: Denmark, Finland, Germany,

Norway and Sweden. They concluded that the integration of wind power has im-

pacts on the resulting prices in the electricity markets. Generally, the electricity

prices decline during hours with high wind power feed-in. During the hours where

the wind power is able to cover the total electricity demand and the transmission

capacities are working at full load, the prices become equal to zero.

Wang et al. (2008) propose a Security Constrained Unit Commitment model

where the intermittence of individual wind farms is considered in order to ensure

that prevailing constraints are satisfied. The authors found that iterating between

the master unit commitment problem and wind power scenarios, used to model

uncertainty, could identify a robust unit commitment and dispatch solution for

accommodating this volatility.

Tuohy et al. (2009) did a more exhaustive study of the advantages of using a

stochastic model over a deterministic model. They concluded that more frequent

20



2. Literature Review

scheduling of the system means wind and load forecasts are being updated more

often and more of the uncertainty of the wind is captured in the model. This

means that more of the costs caused by uncertainty will be minimised, leading to

more optimal results and better performing schedules.

None of these previous stochastic optimisation studies present details on the

wind power forecasting model and uncertainty used to support their conclusions.

Constantinescu et al. (2011) developed a computational framework to integrate

the state-of-the-art NWP model Weather Research and Forecasting (WRF) to

incorporate wind uncertainty in stochastic unit commitment and economic dis-

patch procedures. The use of physical models is desirable because consistent and

accurate uncertainty information can be obtained (Monteiro et al., 2009). On

the other hand, one of the major limiting factors of using NWP is their compu-

tational complexity. The studies done in Constantinescu et al. (2011) indicated

that using WRF forecasts and uncertainty information is critical to achieve high

adoption levels with minimum reserves.

In general, most methods model uncertainty by using a set of scenarios. Ac-

cording to Bouffard and Galiana (2008), the reserves in the UC are defined in-

ternally and there is no need to specify a priori a reserve requirement. However,

there are other studies which include constraints related to reserve requirements

to model uncertainty explicitly in a deterministic UC problem (Restrepo and

Galiana, 2011; Ruiz et al., 2009). Wang et al. (2011) compared different de-

terministic and stochastic UC strategies that deal with wind power uncertainty.

Results showed that when wind power forecasts were not considered in a deter-

ministic UC, the algorithm tends to overcommit conventional units. Results also

showed that when point forecasts were included, the commitment led to the high-

est cost and load curtailment. It was also found that stochastic UC had relatively

low cost, but deterministic UC with a reserve rule obtained a similar cost. Al-

though the deterministic UC yielded to similar results when incorporating reserve

rules, the use of scenarios on the stochastic UC could capture with more detail

the ramps between hours and consequently compute a suitable reserve for deal-

ing with temporal variability. The problem with scenarios is that solving the UC

with these is expensive so the number of scenarios need to be reduced. In general,

both constrained UC and stochastic UC have their advantages; however, there
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is still a gap between what has been proposed in research and what is actually

implemented in the electricity markets.

In order to incorporate probabilistic approaches for reserve requirements and

UC, the electricity market must be redesigned. The smart grid project, which

is looking to improve the reliability, security and efficiency of the grid, could

incorporate these approaches in order to improve the integration of wind power,

as well as other intermittent resources.

The need for wind power forecasts is a reality now. As has been noted,

an integration on the DA market needs a forecast to be provided 36 to 48 hours

before the RT operation. This forecast horizon is commonly referred as the short-

term horizon. There has been a significant development in short-term forecasting

over the last decade. The following section presents this in detail as well as the

challenging open areas which are still under development.

2.4 Short-term Wind Power Forecasting

A wind power forecast made at time t for the look-ahead time t+k is the average

power pt+k|t the wind farm is expected to generate during a period of time (e.g. 1

hour) if it would operate under constant wind (Monteiro et al., 2009). The time

resolution of a forecast is denoted by the time step k. Usually for horizons from

24 to 72 hours into the future, the time step is hourly. An exact amount of power

at time t+ k is referred to as a point forecast and is denoted as p̂t+k|t.

A wind power forecast is characterised by the time horizon, which is the future

time period for which the wind generation will be predicted. This horizon can be

separated into three categories: very short-term, which ranges between a couple

of hours up to 4/9 hours (depending on the market); short-term, which ranges

from the very-short term up to 48/72 hours into the future; and medium-term,

which ranges from the short-term up to 7 days (Monteiro et al., 2009).The short-

term horizon is mainly interesting for trading in the day-ahead market, and is

the horizon of interest in this research.
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2.4.1 Single Time-Series Forecasts

Time-series forecasts are predictions containing a sequence of point forecasts that

describe one possible future scenario. This scenario is treated as the most likely

scenario or the one that minimises certain error metrics. The time-series forecast

is the most common way to present forecast information and the most frequently

used in the literature (Ernst et al., 2007). There are also other ways of represent-

ing forecasts, which are mostly complementary, such as the time-series forecast

of a risk-index related to the likelihood of large instantaneous errors (Pinson and

Kariniotakis, 2004), prediction intervals, ensembles (Pinson, 2006) and scenarios

(Wang et al., 2011). These will be addressed in detail in the following sections.

A typical time-series power forecast is presented in Figure 2.5.
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Figure 2.5: Example of single time-series forecast.

A single time-series forecast can be evaluated for its ability to minimize a

certain metric if the evaluation is made over a period of time that is long enough

to ensure that the most likely scenario actually occurs sufficiently often. None

of them actually evaluate the forecast for its ability to predict the more likely

scenario, which is a very difficult task as the most likely scenario is not known.
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In general, a prediction error for look ahead t+ k is defined as:

e(t+ k|t) = P (t+ k)− P̂ (t+ k|t) (2.1)

where P̂ is the predicted power at time t and P is the actual power output. This

error is often normalised when compared among different wind farms.

The model bias (BIAS), one of the common error measures used in the liter-

ature, corresponds to the systematic error and it is estimated as an average error

over the whole evaluation period. Its formula is presented in Equation 2.2.

BIAS(k) =
1

N

N∑
t=1

(e(t+ k|t)) (2.2)

The Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE)

are the two basic criteria for illustrating the performance of a prediction method

(Equations 2.3 and 2.4). Both systematic and random errors contribute to these

criteria.

MAE(k) =
1

N

N∑
t=1

(|e(t+ k|t)|) (2.3)

RMSE(k) =

(
1

N

N∑
t=1

(e2(t+ k|t))
) 1

2

(2.4)

Another error measure is the Standard Deviation of Errors (SDE), which deals

with the random part of the error. The SDE is expressed as follows:

SDE(k) =

(
1

N − (p+ 1)

N∑
t=1

((e(t+ k|t)− ēk)2)
) 1

2

(2.5)

where p is the number of estimated parameters using the considered data and ēk

is the bias or systematic error. For the test data, p = 0.

Madsen et al. (2005b) studied the use of different error measures to analyse

the performance of predictions. They found that the accuracy of a forecasting

method was influenced by the characteristics of the site and the time covered by

the test set. They suggested that, in order to measure performance, a minimum
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of three measures should be used (normalised BIAS, MAE and RMSE) and that

a base performance evaluation should be done on the test set only.

There has been a substantial amount of work to improve time-series forecasts,

which will be addressed later in this chapter. According to Giebel et al., there are

two main types of errors in a time-series forecast, the amplitude errors and the

timing (phase) errors (Giebel et al., 2011). A study presented in AWS Truewind

(2008) shows how timing errors can occur in a time-series forecast for several

hours. A current strategy to overcome errors is to estimate the uncertainty of a

forecast. Most of the work published for handling the timing and amplitude errors

use probabilistic forecasts, such as scenarios and prediction intervals, generated

either by the error distribution of the point forecast or by the use of ensembles.

2.4.2 Reference Models

Due to the high influence of the location of the wind farm on its actual power

production (flat, complex terrain, offshore), it is not possible to compare predic-

tion systems based on available results. Some reasons for this is that a standard

form of measure is still not adopted and it is very important that the data is

exactly the same (Costa et al., 2008). Persistence is one of the models that has

been widely used as a benchmark or reference. Its key features are:

• It is simple. It assumes that the wind (speed and direction) or power at a

certain future time will be the same as it is when the forecast was made.

• It performs very well in the first 6 hours.

• It is difficult to beat in the very short term.

Persistence can be expressed as p̂t+k|t = pt. Any method that outperforms

Persistence is worth implementing (Monteiro et al., 2009).

Another typical model used for comparison is Climatology, which has been

designed to capture the average hourly diurnal cycle for present weather regimes.

This method has the following features:

• It is a simple approach, similar to Persistence.
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• It is used for day-ahead prediction.

• The method involves using the average of weather statistics accumulated

over past years.

The Climatology method only works when the weather pattern is similar to

that expected for

2.4.3 Probabilistic Forecasts

Probabilistic forecasts have been developed as a means to address the estimation

of uncertainty around point forecasts. They provide a level of confidence in a given

forecast scenario and may provide multiple possible scenarios with associated

probabilities. A probabilistic forecast can be either calculated from a single time-

series forecast by understanding the error of the forecast model in past data, or

can be obtained using ensemble forecasts, which will be addressed in more detail

later in this chapter.

There are three main representations of the uncertainty of wind power fore-

casts; probabilistic forecasting, risk index and scenario forecasting (Zhang et al.,

2014). A probabilistic forecast is the most commonly used uncertainty represen-

tation. It can be expressed by probability measures such as probability density

functions (PDF) (Juban et al., 2007), quantiles and intervals (Khosravi and Naha-

vandi, 2013; Wan et al., 2013), discrete probabilities and moments of probability

distribution (e.g. mean, variance and skewness). The probabilistic forecast is

often visually presented as time-series prediction intervals around a single-time

series forecast (Bremnes and Villanger, 2002; Lange et al., 2006; Pinson, 2006;

WEPROG, 2007). An example of a time-series probabilistic forecast in shown in

Figure 2.6.

In order to assess the quality of a probabilistic forecasts, there are three basic

measures used in the literature. The first one is reliability, which measures the

agreement between the probability of a forecast and the mean observed frequency

of an event. The second one is sharpness, which is defined by Pinson (2006) as how

narrow the probabilistic distribution is. The narrower the distribution, the more

valuable the prediction in a decision-making context. The third one is resolution,
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Figure 2.6: Example of a probabilistic forecast from the work of Lange et al.
(Lange et al., 2006). Permission to reproduce this image has been granted by the
author.

which is defined as the ability of providing situation-dependent assessment of the

uncertainty. Pinson suggests the use of a unique measure that could give all the

information on a given method performance. This is called the unique skill score,

which rewards tight intervals and gives a penalty if an observation does not lie

inside the estimated interval.

An example of a reliability diagram is presented in Figure 2.7. Deviations from

the “perfect reliability”, which is the case when the empirical coverage equals the

nominal one, are given as a function of the quantile nominal proportions. The

deviations shown in the figure are less than 2%, which is considered a good

calibration.

2.4.4 Approaches to Short-term Forecasting

In order to design a wind power forecasting system, one needs to have a clear

idea of what the end application will be, as this defines the type of output that

is required. Each end user may have a different set of detailed requirements and

these may be defined by the features of the power system, e.g. type of generating

units and ramp rates, and market rules. It is also important to have knowledge
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Figure 2.7: Example of a reliability diagram.

of the limitations, e.g. data availability, as these have a direct impact on the

accuracy quality of the system.

There are two main approaches for wind power forecasting: those that involve

a Numerical Weather Prediction model and those that do not. NWP models

represent the atmospheric flow by a set of physical equations, which model the

dynamics and thermodynamics of the atmosphere. Variables such as temperature,

pressure, wind speed, wind direction, among others, are modeled. These models

can be classified into three types: global, mesoscale and local models. Global

models, such as the Global Forecasting System (GFS) from the National Oceanic

and Atmospheric Administration (NOAA) in the USA (Kanamitsu et al., 1991),

produce low space resolution predictions of the complete globe. Mesoscale models,

such as the Weather Research and Forecasting (WRF) (Skamarock et al., 2001),

improve the time and space resolution of a global model within a specific area

down to 1km x 1km. Finally, local models produce the highest space resolution in

a limited area. Whether their inclusion is worthwhile depends on the horizon to

be predicted. Typically, prediction models using NWP forecasts outperform time

series approaches after 3-6 hours look-ahead time (Giebel et al., 2011). Most

utilities need a short-term forecast, meaning that they need a method that is

based on NWP forecasts.

The are two main schools of thought in terms of short-term prediction: the

physical and the statistical approaches. The physical approach focuses on the

description of the wind flow around and inside the wind farm. This approach
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commonly uses the manufacturer’s power curve to estimate the power output.

The statistical approach emulates the relation between meteorological predictions,

historical measurements and generation output (obtained by monitoring systems

i.e. SCADA) through statistical models whose parameters have to be estimated

from data without taking into account any physical phenomena.

Whatever the approach, the main steps for short-term power prediction are

three: downscaling, conversion to power and upscaling. Variables such as wind

speed and direction are obtained from NWP models for the geographical point of

the wind farm or for a grid of surrounding points. This involves finding the best

NWP level, which might be the wind speed at 10 m or one of the lowest model

pressure levels. Once the variables are obtained from the model, they are scaled

to the hub height and interpolated to the exact location of the turbine. This

downscaling step is different in physical and statistical methods. The physical

approach uses a meso- or microscale model, which is able to resolve scales down

to tens of meters. After the downscaling process, wind is converted to power

with a power curve. The easiest way is to use the manufacturer’s power curve;

however, it has been shown in some studies that it is advantageous to estimate

the power curve from the forecasted wind speed and the measured power. Finally,

if only one farm is to be predicted, the prediction process ends here. However,

since most utilities need a prediction for a total area, the upscaling process is the

last step. This step could involve simple summation or the use of representative

farms which are then upscaled using a factor. Usually the error of distributed

farms is reduced compared to the error of a single farm (Costa et al., 2008).

2.4.4.1 The Physical Approach

The physical approach, shown in Figure 2.8, consists of the use of several sub-

models which all together are able to provide a wind speed profile at the location

of the farm. It usually starts with a global model providing a forecast at several

grid points covering an area. These forecasts are then extrapolated to higher res-

olution grids by the use of submodels that contain the mathematical description

of the physical processes relevant to the translation. The refinement of NWPs is

done by considering the physical aspects of the terrain such as roughness, orog-
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raphy and obstacles. A common way to do this is by using Computational Fluid

Dynamics (CDF), which enables the accurate computation of the wind field at

the farm location considering the terrain (Magnusson and Wern, 2001).

Figure 2.8: Structure of the Physical Approach.

Several NWP models have been applied for short-term forecasting. One of

the first commercially available forecasting systems based on NWP was eWind,

from the American Society TrueWind (Bailey et al., 1999). This system uses a

numerical weather model called ForeWind, which produces accurate near-surface

wind forecasts on a fine grid, using boundary conditions from a regional weather

prediction model. The system uses adaptive statistics to correct the systematic

errors of the wind forecasts. Prediktor is another NWP based method, developed

at the Risø Laboratory in Denmark (Landberg, 1999, 2001). The predictions

of this system are post-processed using MOS techniques to reduce the related

error. Jørgensen et al. (2002) studied the coupling of a NWP model to wind

power forecasts and examined especially badly forecasted days. He found that in

all cases the error came from the NWP model and that higher resolutions using
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HIRLAM did not improve. Enomoto et al. used the Local Circulation Assessment

and Prediction System (LOCALS) to forecast the power production of a wind

farm in Japan (Enemoto et al., 2001). Despite the model being used at a 500-m

grid resolution, the RMSE was still at 15% of the installed capacity. The authors

pointed out that the turbulence intensity between turbines was not modelled

correctly. Other models have also been applied for wind speed forecasting, such

as the ETA model, which has been applied for wind speed forecasting in Sweden

(Lazić et al., 2010). Yamaguchi et al. (2007) compared 1km resolution Regional

Atmospheric Modeling System (RAMS) model wind speeds to a lower resolution

of the same model coupled with a simple transfer coefficient method. The authors

were able to get the same accuracy in their results as that obtained with the high

resolution RAMS model, decreasing the computational effort. Dierer et al. (2005)

also found in a study using the MM5 model (Grell et al., 1994) that an increase in

the horizontal resolution from 10km to 1km did not bring any large improvements.

It is clear that in order for numerical models to improve their accuracy at very

high resolutions, they need to be provided with the appropriate data, such as high

resolution topographic data; otherwise, the physical downscaling process could

be potentially replaced by some type of statistical method.

There is a chaotic nature in the atmosphere, and modeling it without any un-

certainty is not possible as there is a strong sensitivity to small perturbations in

the initial conditions. The way to overcome this issue is by the use of probabilistic

weather forecasts. It has been suggested in the literature that the computational

effort used for running high resolution models could be instead used to produce en-

semble forecasts at lower resolution to address the uncertainty of point forecasts.

Ensemble predictions correspond to multiple runs of a NWP model under slightly

different initial conditions (Bourke, 2004; Toth and Kalnay, 1993), different phys-

ical parameterisations (Arribas et al., 2005) or from different time origins in the

past (Giebel et al., 2003). The initial differences between the ensemble members

are small, and consistent with the uncertainties in the observations. However,

for several days ahead, ensemble forecasts can be quite different. If the ensemble

members vary significantly, then this means there is a high uncertainty about

what the weather will actually do. If the members agree significantly, then there

is more confidence in modeling an event. Ensembles can be used to improve single
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time-series forecasts in several ways. The simplest way is to use the mean of the

NWP ensemble. It has been shown that this strategy reduces the average error

compared to using a single time-series forecast (Möhrlen, 2004). More sophisti-

cated methods use weighting to combine ensemble members. The Multi-Scheme

Ensemble Prediction Model (MSEPS) is a NWP ensemble based on different phys-

ical parameterisations. MSEPS, developed by the Danish company Weprog, uses

a probabilistic filter which combines long-term statistics with classical clustering

methods to give a dynamic weighted combination of the ensemble members. The

weightings change according to the weather conditions. Previento is another wind

energy forecasting system based on ensembles and weightings developed by the

German company Energy and Meteo Systems (Ernst et al., 2007). The system

uses input from NWP models run by different institutions. The weighting is ad-

justed according to the models, which perform differently under different weather

situations. NWP ensembles can also be converted to scenarios of wind power and

these can be used for UC decisions (Nielsen et al., 2005). Each scenario can be

treated as a sample following a predictive distribution. To convert NWP ensem-

bles to wind power probabilistic forecasts, there are two crucial issues: first, how

to estimate a wind to power curve, and second, how to estimate the PDF from

the wind power ensembles. Taylor et al. (2009) applied a single and deterministic

wind power curve. Nielsen proposed the logistical-shaped wind power curve based

on non-linear regression (Nielsen et al., 2006). There has also been a significant

effort in studying the use of Kernel Density Estimation (KDE)(Pinson and Mad-

sen, 2009) and Bayesian Model Averaging (BMA) (Bao et al., 2010; Sloughter

et al., 2010) for wind power curve estimation. Wind turbine/farm power curves

are site dependent and, as for downscaling methods, power conversion methods

could make use of non-parametric approaches so no assumptions of the relation-

ship between wind speed predictions, wind power and terrain conditions need to

be done, unless there is a complete understanding and mathematical representa-

tion of how the terrain and meteorological processes affect the power production

of the farm.
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2.4.4.2 The Statistical Approach

With the use of different linear and non-linear models, the statistical approach

is able to provide a wind power forecast in a single step, also referred to as

statistical block (Monteiro et al., 2009). This block, shown in Figure 2.9, combines

NWP data such as wind speed, direction, temperature, pressure, and others from

different model levels together with online measurements at the farm.

Figure 2.9: Structure of the Statistical Approach.

Not all short-term prediction models involve all steps or all types of inputs per-

formed by physical approaches. In the early 70s, when the NWP were not widely

available, the first approaches were done with time series analysis techniques.

These used recently observed values of wind and other values to predict future

wind speed. One of the first works published which applied time series forecasting

for wind power applications was Brown et al. in 1984 (Brown et al., 1984). The

authors used an autoregressive (AR) process for wind speed prediction and then
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used a measured power curve to convert the predictions to power. Since then,

different studies for very-short term prediction using time-series models have been

developed. The most common approaches use Kalman Filters (Bossanyi, 1985),

Autoregressive Moving Average (ARMA) models (Balouktsis et al., 1986; Kamal

and Jafri, 1997; Kavasseri and Seetharaman, 2009; Schwartz and Milligan, 2002;

Tantareanu, 1992; Torres et al., 2005), adaptive fuzzy logic and wavelet models

(Kariniotakis et al., 1997, 1999), among others. Most of the methods developed

were able to outperform Persistence. Nielsen et al. (1998) tried to introduce a

new reference model based on a time-series model. Basically, it predicts the power

p(t) using the power p(t − n) (being n time steps back) and the mean µ of the

time series. The model is expressed as:

p(t) = a(n) ∗ p(t− n) + (1− a(n)) ∗ µ (2.6)

where a(n) is the autocorrelation of the time series n steps back. This simple

model can improve by 10% the error of Persistence.

Artificial intelligence (AI) based models have also been used for time series

modeling. These include methods such as artificial neural networks (ANN) (Bil-

gili et al., 2007; Ripley, 1996; Sideratos and Hatziargyriou, 2007), fuzzy systems

(Haque et al., 2012) and support vector machines (SVM) (Mohandes et al., 2004;

Zeng and Qiao, 2012). Beyer et al. used a neural network for next-step forecasting

of 1minute or 10 minute averages (Beyer et al., 1994). They were able to improve

Persistence by 10% with a very simple network topology. Sfetsos (2001) compared

different methods to forecast hourly mean wind speeds, such as the Box-Jenkins

model, feed forward NN, radial basis function Networks, Adaptive Network based

Fuzzy Inference Systems (ANFIS), among others. All non-linear models showed

a comparable error which was better than any of the linear methods. Although

ANN have been widely used by research groups as a time-series forecasting tool,

the level of improvement over Persistence is not enough of a tradeoff for the effort

of training such networks. Cadenas and Rivera (2007) used a NN approach to

forecast monthly wind speeds at Oaxaca, México. The results were compared

to a seasonal ARIMA model, the latter achieving better results. The authors

suggested that an increase in the number of training vectors could improve the
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results of the ANN approach. Flores et al. (2005) used a GP based strategy to

perform a symbolic regression in the time series prediction problem, where the

genetic program represents a combination of past wind speed data to calculate

the wind speed in the near future (t + 1). The authors presented different ex-

periments varying the function set and found that the best results were obtained

using basic operators, logarithmic, sine and cosine functions. The approach was

able to improve the results obtained with an ARIMA model. Vladislavleva et al.

(2013) proposed a GP based technique to predict the energy output of a wind

farm from weather measurements taken at a close point. The forecast horizon

was half an hour after the last measurements. The proposed approach was able to

obtain 85.5% accuracy in unseen data using measurements of wind gust and dew

point. Although the results look promising, these are only on the very short-term.

In general, a purely statistical approach has proven to outperform the Per-

sistence model for up to 6-10 hours into the future. However, for larger time

horizons, the accumulated prediction error increases. Therefore, meteorological

models have to be taken into account. The atmospheric dynamics are a key piece

of information when it comes to 48 hour horizon forecasts (Giebel et al., 2011).

Some of the most widely used prediction tools are based on a combination of

physical and statistical methods. A classical model used in many studies is the

Wind Power Prediction Tool (WPPT) (Madsen et al., 2005a). Based on advanced

statistical models, this forecasting system is quite flexible as it can provide both

single-farm and regional forecasts. WPPT uses self-adaptive models: this means

that it is capable of adapting to changes such as the surroundings of the park,

NWP model changes, even the number of turbines at the farm, disregarding old

information as new information becomes available. The main inputs to the system

are NWP predictions for a region and reference wind farms, power generation

measurements, as well as measurements of climate variables at the farm. The

meteorological forecasts used as input are not updated very frequently and the

NWP models do not run at very high resolutions. Instead, the system uses

interpolation methods to avoid high computational costs. In order to predict the

power output of a region, the system divides the region into subareas and applies

two different approaches to calculate the power output of those subareas. One

approach is to select representative wind farms of each subarea and apply a model
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that uses inputs from the wind farm power output as well as numerical weather

predictions at the farm. The power output of the representative wind farms is

calculated and then upscaled by multiplying the summarized power predictions

for the wind farms in the subarea by a upscaling function which depends on wind

speed and wind direction. The second approach is to use a model that links the

total power production of the subarea to the numerical weather predictions. The

advantage of this approach is that it uses the smoothing properties of the total

production, as numerical weather models perform well in predicting the weather

patterns but less well in predicting local weather at a particular farm. Apart from

delivering point forecasts, WPPT provides uncertainty estimation via prediction

intervals and scenarios. According to Madsen et al. (2005a), when this tool

started to be used commercially in 2005, it was one of the few that provided an

uncertainty forecast. Prediction intervals are calculated using ensembles provided

by the European Centre of Medium-Range Weather Forecasts (ECMWF) and the

National Centers for Environmental Prediction (NCEP), part of NOAA in the

US. The WPPT started by operating in Denmark in Eltra/Energinet.dk, a SO

in the west of Denmark, and in some CHP and wind farm systems. Nowadays,

EFOR, the company that currently owns the tool, claims this is one of the most

used forecasting tools worldwide. WPPT and Prediktor systems were unified

under the Zephyr project in order to combine the advantages of both systems;

however, WPPT has been the most successful one.

Another important tool, developed in Spain by the University Carlos III of

Madrid for the Red Eléctrica de España (the Spanish TSO), is Sipreólico (Sánchez

et al., 2002). This forecasting system is based on NWPs from the HIRLAM,

NCEP and Metra (Meteorological service from New Zealand) models and using

on-line data from 80% of all the Spanish wind turbines. This forecasting tool was

designed to be used in the DA market as it provides hourly wind power forecasts

for the following 48 hours. HIRLAM forecasts are used at a 20 km resolution for

up to 24 hours ahead and at 40 km resolution for 24 to 48 hour horizons. One

main feature of this system is that it can adapt easily to changes in the wind

farm or in the NWP model. Sipreólico uses an adaptive combination of a set

of statistical models and it updates the estimation of all models using the most

recent information. The forecasting system is composed of 9 different models of
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two types: dynamic linear models, which convert wind to power using polynomials

of different degrees, and non-parametric models. Some models use NWP data,

and some do not, and each has better results at different horizons. The models are

obtained by using the Recursive Least Squares (RLS) algorithm and a Kalman

Filter. Another feature is that there is no pre-calibration needed, so it can be

used for different wind farms. The system uses different inputs such as NWPs,

online data and manufacturers’ power curves. Depending on the circumstances,

it can deal with missing data. The system has an additional diagnosis tool to deal

with uncertainty. This tool evaluates the accuracy of the predictions through the

calculation of a variety of statistical parameters and error measurements (Sánchez

et al., 2002). It was reported by these authors that one of future enhancements

was to consider NWPs from different sources and apply a weighting strategy to

add them as an attempt to improve the quality of their forecasts.

LocalPred, developed by the Centro Nacional de Enerǵıas Renovables (CENER),

combines physical and statistical models to provide short-term forecasts for wind

farms (Pérez, 2002). The system uses meteorological forecasts from HIRLAM

and uses MM5 for high resolution physical modeling. Then, using MOS tech-

niques, it removes systematic errors and applies a power curve model using ridge

regression and fuzzy logic methods. The system quantifies uncertainty by the

use of ensemble predictions which are obtained combining numerical predictions

from various models.

Garrad Hassan, now DNV GL, developed a forecasting model called GH Fore-

caster based on the UK MetOffice NWPs. This system provides hourly forecasts

of future production of UK wind farms and it implements linear regression tech-

niques to convert NWP to local wind speeds and power models to finally convert

to hourly power outputs. According to Parkes and Tindal (2004), the GH Fore-

caster is able to improve the Persistence model by 60% for periods of 12 hours

and this accuracy is maintained even beyond 2 days in advance. The authors

present different error measures to evaluate the accuracy of the system, such as

MAE and RMSE; however, they do not provide any results regarding uncertainty

estimations.

A four year research and development project, called the ANEMOS project,

started as an important effort in the development of forecasting systems and
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integration to market operations (Kariniotakis et al., 2006). Twenty two part-

ners from seven countries, including institutes, universities, industrial companies,

utilities, TSOs and agencies, participated. Kariniotakis et al. reported from this

project that the software developed was installed to evaluate the online operation

at some on- and offshore wind farms. As the major follow-up, two projects are

running now, ANEMOS.plus and SafeWind. ANEMOS.plus is working on the

integration of the forecasts in the electricity markets while SafeWind is a project

oriented to the study of extreme events (i.e. ramp events). In this project, Karin-

iotakis emphasizes “the need of developing dedicated approaches to reduce large

prediction errors or predict extremes at local scale as state-of-the-art wind power

forecasting systems are focused so far on “usual” conditions rather on the extreme

ones” (Kariniotakis, 2008).

Most commercial wind power forecasting systems have been published via fast

track routes, such as conference papers/posters or technical reports. There is a

great amount of work published in journals which does not aim to build com-

plete forecasting tools but instead to introduce new approaches to improving the

specific steps of the forecasting process. Some of these are focused on the wind

speed downscaling step, some on the power conversion. Sweeney et al. proposed

different post-processing methods to improve wind speed COSMO model fore-

casts (Sweeney et al., 2011) using different resolutions. These post-processing

methods included a Kalman filter approach (Sweeney and Lynch, 2010), ANN

approach (Salcedo-Sanz et al., 2009), bias correction methods and a combination

of these. Sweeney et al. were able to obtain similar results at 3 and 7 km resolu-

tion, meaning that computational costs can be reduced by using post-processing

methods instead of high resolution NWPs. Zhao et al. proposed the implemen-

tation of WRF model together with a Kalman filter method for wind speed and

wind power forecasting for a wind farm in China (Zhao et al., 2012). Kalman

filter approaches have also been applied by Monache et al. (2011) and by Cassola

and Burlando (2012) as post-processing tools for correcting the bias of WRF wind

speed predictions, reducing significantly the size of the training set, compared to

ANN based methods.

As mentioned previously, an increase in the horizontal resolution of the mesoscale

model is not always a guarantee for improvement in the quality of the forecasts
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(Louka et al., 2008; Möhrlen, 2004). The same amount of computational re-

sources used for increasing the horizontal resolution could be used for ensemble

forecasting. Taking this into account, several downscaling methods have been

proposed to avoid high resolution runs. Salcedo-Sanz et al. (2009) have proposed

the integration of GFS and the mesoscale physical model MM5 (Grell et al.,

1994) together with neural networks for short term forecasting. The neural net-

work is used to perform the final downscaling from the mesoscale model to the

observation sites, avoiding the execution of the numerical model at high resolu-

tions. However, the neural network approach behaves as a black box, which does

not provide information about the model that was found and needs a significant

amount of training data to ensure generalisation. The same forecasting model

was implemented replacing the ANN with an SVM approach (Salcedo-Sanz et al.,

2011).

2.5 Forecasting and Characterising Large Changes

in Wind Power

One of the current issues in wind power generation is dealing with ramp events.

Ramp events, as mentioned before, are characterised by sudden increases or de-

creases in wind power. With high levels of wind penetration, ramp events can

be quite large, becoming a great challenge to balancing the load and the genera-

tion. This has been well documented. For example, a rapid and large ramp-down

event occurred in the ERCOT operations area in February 2008 that forced them

to declare a system emergency (a high cost system condition) (Francis, 2008).

Although wind power forecasts were available to the operator, they were not

integrated into the ERCOT system operations. The use of forecasts was an im-

portant lesson learnt from this event, and, most of all, that the way the forecast

is to be used should be just as important as the forecast itself (Ela and Kirby,

2008). System security is one of the main aspects that TSOs need to consider

when managing the grid. The uncertainty of ramp events might prevent TSOs

from incorporating wind power sources into the system, taking into account the

potential risk these ramps represent. To address these events, TSOs, utilities
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and wind power operators need to develop mechanisms that can allow them to

satisfy the electricity demand while the economic and environmental benefits are

maximized. If ramp events are identified and characterised early enough, the

procedures will be more effective.

One of the problems when dealing with the characterisation of these events

is that there is no standard formal definition. The literature reports different

definitions depending, for instance, on the location and size of the farms or the

characteristics of the power system the wind farms are connected to. In general,

most authors agree that a ramp occurs when there is a change in power output

that has a large enough amplitude over a relatively short period of time. Figure

2.10 illustrates the definition presented by Greaves et al. (2009), which according

to the authors, is a change of 50% or more of the wind farm capacity in 4 hours

or less.

Ramps

Figure 2.10: Ramp event definition: A change in more than 50% of the capacity
in a maximum time window of 4 hours. Figure inspired by the work of Ferreira
et al. (Ferreira et al., 2010).

In general, all these definitions seem a somewhat arbitrary. It would be good

to have a characterisation that is related to the needs of the power grid in some

way. As stated in the literature, a ramp event can be identified according to

the power signal P (t) and two user-defined parameters. The first parameter,
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∆t, is related to the duration of a ramp and defines the time interval considered

to be identified. This duration could range from minutes to hours, depending

on the configuration of the system. The second parameter, Pval, is related to

the type and magnitude of the ramp and provides a cut-off level on the power

changes. This parameter is set usually as a percentage of the wind power nominal

capacity. Kamath (2010) defines a ramp event as a change occurring at the start

of an interval if the magnitude of the increase or decrease in the power signal at

time ∆t ahead of the interval is greater than a predefined threshold value:

|P (t+ ∆t)− P (t)| > Pval (2.7)

This definition does not consider any ramp events that occur in the middle of

the interval. To consider them, Kamath presents a second definition formulated

as:

max(P [t, t+ ∆t])−min(P [t, t+ ∆t]) > Pval (2.8)

This second definition looks for the maximum and minimum value of the power

output in a time interval. However, it is not possible to determine how quickly the

change occurred. This kind of information is provided by the slope of the curve

or power ramp rate. To address this, Zheng and Kusiak propose characterising

power ramps based on the power ramp rate PRRval (Zheng and Kusiak, 2009).

In this characterisation approach, a ramp event is flagged when the ratio between

the absolute difference of the power measured at two time points (the initial and

the final points of the interval ∆t) and the size of the interval ∆t is greater than

a predefined reference value:

|P (t+ ∆t)− P (t)|
∆t

> PRRval (2.9)

The larger the absolute value of PRR, the faster the power surge (or drop).

From Equations 2.7 and 2.9, the type or direction of the ramp can be identified:

if P (t) > P (t+ ∆t) then the change represents a ramp-down event; otherwise, it

is a ramp-up event. In Equation 2.8, on the other hand, it is difficult to be able

to identify if the change represents a ramp-up or down event as the minimum
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and maximum values are not identified in time. In order to identify the type, one

would need to identify the relative position of the extreme time points within the

interval.

Instead of working directly on the power signal, some ramp detection ap-

proaches pre-process the signal before identifying the ramps. A common trans-

formation consists of considering k-order differences in the power amplitude.

Bossavy et al. presented a study where filtered versions of a power signal are

used to identify possible ramps (Bossavy et al., 2013). The filtered signal calcu-

lation can be expressed as:

pft = mean(pt+h − pt+h−nam ;h = 1, ..., nnam) (2.10)

where nam is the number of averaged power differences to consider. According

to this filtered signal, the ramp event occurs if the absolute value of the filtered

signal pft exceeds a given threshold value Pval:

|pft | > Pval (2.11)

The time of the ramp is defined by the value that reaches the maximum value

in the interval.

Regardless of the definition used, most ramp event studies look for a specific

percentage of change in power output, which is a binary classification, since a

decision needs to be made if the ramp exists or not. The disadvantage of this

definition is that slightly lower changes might not be identified and these may be

equally important to the grid operator. The following sections provide details of

some of the most relevant studies carried out to understand the meteorological

causes related to ramp events and the approaches developed to characterise them.

2.5.1 Understanding the Meteorological Causes of Ramp

Events

A report from AWS Truewind presents an analysis of the frequency of large

ramps in different wind farms in California, USA (Zack, 2007). The authors

define large ramp events as changes in more than 50% of the capacity of the
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farm in 2 hours or less. They found that different wind farms presented different

levels of variation and that the ramp events could be associated with different

atmospheric processes. Some of the large ramp events were associated with large-

scale weather systems, such as low and high pressure areas and cold and warm

fronts. These types of meteorological events usually have long life cycles, so

they are easy to model by NWP models. A second type of atmospheric process

identified to produce large ramp events were the local or mesoscale circulations.

These circulations include sea-land breezes, mountain-valley winds, drainage flows

and gap flows. These have a shorter life cycle and smaller spatial scales; hence,

they are more difficult to diagnose. The authors suggest that, for the day ahead,

NWP models are the best option to forecast ramp events associated with these

kinds of meteorological processes. The third type of atmospheric process that was

identified was the vertical turbulent mixing momentum. Large ramp events can

occur in two ways in this situation. One occurs when there is a layer of high wind

speeds above a low speeds layer at the height of the turbine rotors. The turbulent

mixing of wind speed between the two layers can bring the high wind speeds down

to the turbine rotor level, creating explosive ramp-up events. A second type can

occur when the layer of high wind speeds from the surface up to the height well-

above the top of the turbine is mixed with a low thermodynamic stability. A

sudden cooling of the near-surface layer can drastically increase stability, which

decreases the turbulent mixing. In this case, the wind speed can experience a

sudden decrease below and at the rotor height, decreasing the amount of power

output of the turbine for a short period of time. In a similar way to turbulent

mixing, a thunderstorm can cause a ramp event, but involving water as well, which

results in a process with a longer life time but still at a small spatial scale. This

small spatial scale could mean that the thunderstorm could affect at a wind farm

level, not at a region level, as large-scale processes do. Finally, ramp events were

also identified to occur when the wind speed exceeds the turbine cut-off speed

(usually 25 m/s). In this type of event, a very small variation in wind speed can

result in a large ramp event as the wind turbine is shut down for safety reasons.

This event is usually difficult to predict as small errors in the prediction can result

in large errors of real power output. The AWS Truewind report emphasizes the

need for developing dedicated ramp event forecasting systems as ramp events are
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usually outliers in data samples used to train most forecasting models.

Another study by AWS Truewind performed in the ERCOT domain reported

the meteorological causes of the ramp events observed in the region (AWS

Truewind, 2008). To characterise the events, the authors defined ramp events

as a change in 20% of the rated capacity of the wind farms in the region over a

30 minute period. The meteorological processes involved in the observed ramp

events are similar to the ones reported in Zack (2007) such as thunderstorms,

cold fronts, frontal passages, dry lines and weakening pressure gradients. Con-

vective events were the primary cause of all ramp events, followed by frontal

passages and weakening pressure gradients. In the case of the ramp-down events,

the most frequent cause found was the weakening pressure gradient. Although

all ramp events were mapped to a meteorological one, it was found that every

meteorological event was temporally and spatially unique. This peculiarity does

not allow us to make any generalisation of the duration of the ramp event based

on its meteorological cause. This finding is interesting as it means that, even if a

ramp forecasting system is developed based on the training over historical data of

ramp events, it would not be possible to use this past information to characterise

correctly the timings and duration.

Ela and Kemper presented a study on the characterisation of large ramp

events in different areas of the U.S. With the characterisation of the observed

ramp events, the authors studied the correlation of these between wind farms,

and how that could provide information to an utility for predicting those ramps

(Ela and Kemper, 2009). The study is focused on the Xcel Energy service areas.

Xcel owns one of the largest amounts of wind capacity in the United States. The

authors note the importance of wind power forecast accuracy during times when

the wind power production is changing rapidly. During a ramp-down event, an

operator needs to compensate for the loss of generation by either ramping up or

turning on reserve units. During a ramp up event, the operator compensates for

the excess of load by ramping down units, shutting them off, or, in the worst

case, curtailing the high-producing wind. The different strategies of the operator

to handle these situations will depend on the speed (i.e. ramp rate), duration,

magnitude, and timing of the ramp. It will also depend on how far in advance the

ramp is predicted and the different generating units available in the system. Units
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with longer start times are usually cheaper than units with shorter start times.

Also, units that can remain on for longer are cheaper than those with shorter

minimum on times. The prediction of ramp events in advance could potentially

reduce costs. The magnitude and duration of a ramp can help to determine the

type of energy requirements to compensate for the ramp.

Ela and Kemper found that, from the total number of ramps observed in

the area of Colorado (PSCO), there are more occurrences of ramp up events

compared to ramp-down events. The authors concluded that the more strict the

ramp definition (i.e. the larger the threshold), the higher the percentage of ramp

up events compared to ramp-downs. It was also observed by the authors that

there is a correlation between ramp direction and time of day in the area of Texas

and New Mexico (SPS) that was not seen at PSCO. The majority of the ramps

during the evening and night period were ramp-ups, while most ramp-downs were

early in the day. These results demonstrate how different and site-dependent

ramp events are, so, in order to develop tools, one first needs to understand what

factors are involved in the development of the such ramp events. The authors also

studied the correlation between ramp events in one farm and another, depending

on the dispersion and terrain features. They concluded that geographic diversity

lessened the impact on ramps.

2.5.2 Evaluation Metrics

In order to assess the accuracy of a ramp event forecast, there are several metrics

used in the literature depending on whether it is a deterministic or probabilistic

forecast. Two statistics that are widely used to evaluate deterministic forecasts

are precision and recall. Precision is defined as the ratio between the events that

were well forecasted and the total events forecasted. Recall is defined as the ratio

between the number of well forecasted events and the number of observed ones

(Ferreira et al., 2010). Precision is formally expressed as:

Precision =
TP

TP + FP
(2.12)

where TP corresponds to true positives (well forecasted) and FP to false positives
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(forecasts that did not occur). Recall is expressed as:

Recall =
TP

TP + FN
(2.13)

where FN corresponds to false negatives. Precision, also referred to as forecast

accuracy in Greaves et al. (2009), determines the fraction of predicted events that

really occurred. Recall, also referred to as ramp capture, determines the fraction

of observed ramps that were correctly forecasted. To assess the performance of a

classification system, precision and recall can be combined as follows:

Fscore = 2× Precision×Recall
Precision+Recall

(2.14)

An Fscore of 1 would mean that all events were detected, while a score of 0

indicates that none were detected. Another metric widely used is the Hanssen

& Kuipers skill score (KSS), also known as Peirce’s skill score or the true skill

score. This score measures the ability of the classification system to separate the

correctly forecasted events from the false ones. It can be calculated by means of

the hit rate (H) and false alarm rate (F) in the following way:

KSS = H − F =
TP

TP + FN
− FP

FP + TN
(2.15)

where TN corresponds to the true negatives, which are the cases where no ramp

was observed nor forecasted. The KSS values range between -1 and 1, where -1

indicates no skill and 1 is the perfect score.

As the binary classification of events is a definition that might lead to artificial

results, the use of probabilistic forecasts is a potential way to introduce a degree

of freedom. One technique that can be used to choose the optimal threshold is the

receiver operating characteristic (ROC) curve. This technique shows graphically

the sensitivity of the classifier system when the threshold is varied. The ROC

is obtained by plotting the fraction of true positives versus the fraction of false

positives as the criterion threshold changes (Hand, 2009).

For those ramp detection tools that assign a probability to each event, other

types of metrics could be used. The Brier score (BS) (Brier, 1950) is a score func-

tion that measures the average squared deviation between predicted probabilities
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for a set of events and their outcomes. It is expressed as:

BS =
1

n

N∑
t=1

(Ft −Ot)
2 (2.16)

where F is the probability that was forecasted and O is the actual outcome of

the event at instance t (0 if it does not happen and 1 if it does), and N is the

number of forecasting instances. A low BS score will indicate a high accuracy of

the forecasting method.

Bossavy et al. (2013) used the Brier skill score (BSS), which is based on the BS

score, to compare the performance of their probability forecasts with a reference

methodology. The BSS is expressed as:

BSS = 1− BS

BSref
(2.17)

where BSref and BS are the Brier score of the reference and proposed models.

The BSS is a particular case of the ranked probability score (RPS), which is used

to assess the performance of multicategory probabilistic forecasting systems.

2.5.3 Ramp Forecasting Approaches

The first approaches for wind power ramp characterisation are fairly recent. One

of the first studies was presented by Zheng and Kusiak (2009), which reported a

system for the prediction of power ramp rates using a time series approach. The

authors apply different data-mining algorithms to build the prediction models

for 10, 20, 30, 40, 50 and 60 minutes into the future ramp predictions. Some

of the algorithms applied are the multi-layer perceptron (MLP), SVM, random

forest, classification and regression(C&R) tree and the pace regression algorithm.

The study used one month of wind speed and power measurements from a wind

farm with 100 turbines. The data was collected every 2 seconds, but averaged

and stored at 10 minute intervals. The predictors used to build the time-series

models were the mean, standard deviation, maximum and minimum wind speed

of a turbine, the wind farm power output and the power ramp rate. According

to the results obtained, for horizons from 10 to 40 minutes into the future, the

time series models can predict accurately the ramp rates. However, for a larger
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horizon, this accuracy degrades, demonstrating the importance of the inclusion

of weather forecasting data.

Potter et al. (2009) presented a study on the benefits of using a dedicated ramp

forecasting tool during the reserves allocation process. The authors remarked that

there are several challenges to be addressed when developing a ramp forecasting

system. These challenges are:

• Timing error (phase error): when a ramp event is predicted accurately in

magnitude but it occurs at a different (unexpected) time.

• Intensity error : when the ramp event is forecasted at the “right” time but

with the wrong magnitude.

• Location error : when the weather model forecasts the event at another

physical position or the event follows a different path than the one fore-

casted, resulting in timing and intensity errors.

These types of error are highly related to the numerical model, although they

might be also related to the wind to power conversion process (Pinson, 2006).

Potter et al. also suggested that the use of a strict ”ramp or no ramp” binary

definition can result in artificially low accuracy. To address this, Potter et al.

proposed the use of probabilistic ramp forecasts, characterising each event with

a potential risk which would need to be assessed by the grid operator. The

authors compared the costs of using the probabilistic forecasts with the costs of

having a constant backup and the costs of not having no backup protection at all.

According to their results, there is a potential economic benefit in incorporating

these kinds of systems into the grid management. Unfortunately, the authors did

not provide any detail on how these probabilistic forecasts are to be obtained.

Greaves et al. (2009) presented a study where NWP models are used for

characterising the timings of ramp events. The study was performed using data

from wind farms in the US and the UK. The observed ramp events were treated

separately by wind farm and as a portfolio, or group, of farms. The results showed

that, in general, forecasts for a group of farms were significantly more accurate

than for individual farms. However, despite the high accuracy, the method used to

forecast in individual sites was not optimal for portfolios, implying that different
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definitions of a forecast ramp event should be used in each case. The authors

also suggested that, although using NWP data from different sources can reduce

the overall error of the forecasts, the methods used for combining them are not

optimal as some ramp event information may be lost.

Bossavy et al. (2013) proposed the use of NWP ensembles for wind power

ramp predictions. The ensembles are used to improve the time prediction of the

ramps by calculating the probabilities of the ramp happening at a certain time

interval depending on the number of ensembles that model the change at that

interval of time. The authors used the Brier skill score to assess the quality of

the predictions. Their predictions are compared to the Brier core of climatology,

which is calculated based on the number of observations that fell in each time

interval. The results showed that the proposed approach has more skill than the

climatology.

According to Cutler et al. (2009), the timing or phase error of numerical mod-

els can be addressed taking into account a wider area of the NWP grid, not only

the closest point to the observation site, due to the NWP being unable to place

the meteorological process in the correct physical position, causing a “misplace-

ment” error. This wide area approach is what the authors denominated as spatial

fields. Cutler et al. (2009) developed a visual tool that shows the possible power

output of the farm if it was located at different points of the mesoscale grid. In

order to calculate the potential available power in the surrounding points, each

grid point is standardised to be equivalent to the terrain at the closest point as-

suming a homogeneous relationship between the wind speeds at the closest point

and at the neighbor points. Then the wind speeds at each grid point are converted

to wind power using a farm power curve obtained using wind speed and power

observations at the farm. The purpose of this is to provide a graphic forecast

of potential power outputs of the farms that could indicate changes that are not

modeled at the closest point. The authors compared the visual results to specific

case studies where large ramp events were detected. The tool is described by the

authors as a complementary tool apart from the single time-series forecast that

still provides useful information on smaller spatial scale events happening at a

close point to the farm. One of the disadvantages of this visual tool is that it

needs the interpretation of an expert to determine the potential risk that changes
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represent in the neighbourhood to the farm.

Tastu et al. (2011) performed a spatio-temporal analysis of short-term wind

power forecast errors in western Denmark. The authors suggested that a forecast

error made at a given point in space and time might be related to forecast errors

at other points in space in later periods of time. According to their study, the

higher the wind speed, the stronger the dependency on more remote places, while

in the case of lower wind speeds, the influence came from a local origin.

Gallego et al. (2013) presented a ramp forecasting approach using wavelets,

which avoids using a fixed change percentage, analysing the power forecast at dif-

ferent magnitudes of change and different time windows. Despite their promising

results, the application to the day-ahead market is not addressed in depth, nor

how this could allow end users to interpret the different ramp intensities.

NWP models are necessary for the characterisation of ramp events one day in

advance. However, it has been shown that a forecast based on the closest point

of the NWP model to the location of the wind farm is not the best approach as

the forecasts might be potentially misplaced. For this reason, there is potential

in the use of neighbour points to see how these can be used to improve the

characterisation of ramp events.

2.6 Discussion

There are two main aspects, or lessons that have been learnt as wind power has

evolved as an important source of renewable energy. On the one hand, the first

lesson learnt is the need for accurate forecasts in order to incorporate wind power

into the electricity market. Wind power is an intermittent and uncertain source

that, although quite appealing due to its vast availability and low cost, in order

to treat it as a conventional power source, the incorporation of a prediction is

crucial. For this reason, there has been great effort in the last decades to try to

improve the accuracy of wind power forecasts. Most state-of-the-art forecasting

systems achieve a 10-15% RMSE of the total installed capacity for a 36 hour

horizon, although one of the latest reports from Germany mentions the reduction

to less than 5% of the RMSE (Giebel et al., 2011). The literature shows there

is still ongoing research to improve forecasts and that researchers in the field are
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continuously looking for new approaches.

On the other hand, the second lesson learnt is that it has been shown that

the “how” of using a forecast is as important as the forecast itself. The majority

of TSOs are using forecasts in deterministic UC and ED decisions and the use of

probability forecasts is still in its infancy in terms of the electricity market oper-

ations. Although the literature reports a vast amount of research on uncertainty

forecasts, there is still a gap between the research and the actual application.

As this situation is currently true for most markets, it has become relevant to

introduce the use of dedicated ramp forecasting systems in order to improve the

allocation of backup generation. This is a very critical aspect of the wind power

integration. Security is one of the main concerns for operators as everyone relies

on the constant supply of energy for their daily activities. In recent years, the

increase of allocated backup units has been inevitable as wind power is bringing

more uncertainty to TSOs. However, it is not acceptable for power markets to

increase the amount of dedicated backup generation to ensure continuous supply

if the resulting costs are too high.

Ramp forecasting is becoming a potential area to exploit as the recent research

has shown the benefit of using these types of forecasts in the reduction of costs

and, hence, for having a positive environmental impact, as more wind power is

used and less backup is allocated. It is for this reason that it is interesting to

investigate how to adequately use NWP predictions to get as much information

as possible to characterise ramp events.

It has been well established in the literature that NWP models are essential

for the day-ahead market. According to several studies, running NWP at very

high resolutions might not improve significantly the quality of the meteorological

forecasts, which has led to an increasing use of statistical methods to do the the

final downscaling step to the location of interest. Forecasting systems such as

WPPT use statistical methods for this. Some authors argue that it is better to

use the computational effort to run ensembles rather than to run high resolution

NWP forecasts. Ensembles have caught the attention of researchers as a way to

characterise ramp events. Most ensemble forecasts reported in the literature are

based either on perturbations of the initial conditions, different parameterisations

or the combination of different forecast sources. Spatial fields is an area where
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very little attention has been paid. There are some studies now emerging on

the spatio-temporal errors which show the importance of taking into account

information from wider areas to improve the characterisation of errors.

This research aims to explore two aspects of wind forecasting which, when

combined, could potentially improve the characterisation of ramp events. One is

the one-step conversion of wind speed to power by the use of a non-parametric

technique and the other is to apply that procedure to a wide area in order to

compute different possible power outputs of the farm using different grid points.

Each neighbour point will provide a possible generating scenario as part of an

ensemble of scenarios.
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Data Collection

3.1 Introduction

As the major interest in this research was to study and characterise wind power

forecasts for the DA market, it was essential to incorporate numerical models as

the main source of data into the characterisation process. For the time horizon of

study, it was required to have availability of hourly forecasts for up to 48 hours

into the future, wind speed being the most relevant variable to obtain. A first

option was to use Global forecasts which are freely available for any location in

the world and for a wide range of years. However, their spatial and time res-

olution was not enough for this application. The following option was to use

mesoscale model predictions, which can achieve a high time and space resolution.

It was then decided to run locally the Advanced Research WRF mesoscale model

(WRF-ARW), which can be initialised with global inputs from the GFS system.

The main advantage of running locally a mesoscale model like WRF-ARW is the

availability of different meteorological variables at different pressure levels and

locations. This was essential for the prediction of wind power and the character-

isation of ramp events. In addition, this mesoscale model has good support from

the University Corporation for Atmospheric Research (UCAR), which provides

user assistance and maintains the code. Apart from the meteorological forecasts,

wind speed and power observations were obtained from the locations of study.

This chapter presents in detail how both meteorological and observation data
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was obtained and processed. Section 3.2 describes the sites of study and their

characteristics. Section 3.3 introduces the WRF-ARW model, which was used

for all meteorological forecasts. The parameterisation of the model was tested

using several case studies provided by the NOAA, like for example the Hurricane

Katrina. In Section 3.4, the acquisition of wind speed forecasts for the state of

Illinois, USA, is explained, and the quality of the results are analysed. Then, in

Section 3.5, a different setup of the model is introduced for wind speed forecasting

at Galicia, Spain. Finally, a summary is provided in Section 3.6.

3.2 Sites of Study and Available Observation

Data

The availability of free meteorological and observation data is very restricted,

and it is specially difficult to find both for the same location. The best option in

terms of meteorological data was to run the mesoscale model in a location where

wind speed/power observations were available.

To run the mesoscale model locally, an adequate parameterisation was needed.

To make sure the model was well set-up, the quality of the wind speed forecasts

needed to be assessed, before any further experimentation into wind power fore-

casting was carried out. This required the availability of wind speed observations,

if possible at multiple sites, to observe if the quality was consistent. At this stage

it was not required to have access to wind power observations. For this reason,

the data available from Illinois Wind seemed suitable. Illinois Wind is part of a

program from the Illinois Institute for Rural Affairs that assists rural residents

and communities of Illinois to build knowledge of wind power (Illinois Institute for

Rural Affairs, 2014). Together with the Western Illinois University, they provide

organisations and landowners the opportunity to assess the wind at a site under

consideration for wind power. A limited number of sites is selected each year to

undergo monitoring of wind velocity and direction for short periods. The sites

depend on the applicants interest in developing a small scale farm. The project

provides free access to historical observations at various locations. This was a

good starting point as there were three locations in Illinois where observations
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were available for the same period of time (9 months) and it only required one

run of the model to cover the three locations, instead of having three indepen-

dent runs, one per location. The three observation sites used in this study, Cuba,

SIUE and Wilmington, are monitoring points where wind speed, wind direction

and temperature were captured from November 2010 to July 2011 every 10 min-

utes at 10, 40 and 58 meters height . The latter is at the most appropriate height

for wind power prediction, so this height was selected for the study. The latitude

and longitude location of the three sites is shown in Table 3.1 and Figure 3.1

shows their geographic location.

Table 3.1: Location of the three observation sites in Illinois, USA

Site Latitude Longitude
Cuba N 40 28.906 W 90 11.187
SIUE N 38 48.098 W 90 00.473

Wilmington N 41 17.999 W 88 7.818

Figure 3.1: Observation sites in Illinois. The blue place mark corresponds to
SIUE, the red to Cuba and the green to Wilmington.

As the data was in a 10 minute frequency, averages were calculated to be

compared with the hourly averages obtained by the WRF-ARW model for that

same period. At this point, this data was not selected for its frequent incidents

of ramp events. The comparison of the numerical prediction against these ob-
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servations were used to evaluate the accuracy and ensure the correct settings of

the numerical model. This 9 month period was selected as it presented more

diversity in observed locations and could give more information of the accuracy

of the numerical model in different terrain characteristics.

After experimenting with the setup of the numerical model, the following

phase in terms of data collection/generation was to look for a wind farm loca-

tion where wind power and wind speed/direction observations were available.

Sotavento Experimental Wind Farm (Sotavento, 2014) is a wind energy project

established in 1997 and promoted by the Government of Galicia, Spain. The

main purpose of this wind farm is the promotion and implementation of projects,

studies and research related to renewable energy. The wind farm is situated in

north-western Spain at approximately 40 km from the Atlantic Ocean in a mod-

erately complex terrain. The wind farm is composed by 24 wind turbines of 9

different models. The characteristics of the models are shown in Table 3.2 .

Table 3.2: Wind turbine general features

Turbine Unit Rotor Tower Blade
Type Power (kW) Diameter (m) Height (m) Pitch

Neg Micon NM-48 750 750 48 45 Fixed
Gamesa G-47 660 47 45 Variable
Made AE-46 660 46 45 Fixed

Izar-Bonus MK-IV 600 44 40 Fixed
Ecotecnia 44/640 640 (2 x 320) 44 46 Fixed

Neg Micon NM-52 900 900 48 45 Fixed
Made AE-52 800 52 50 Variable
Made AE-61 1320 61 60 Fixed

Izar-Bonus 1.3 MW 1300 62 49 Variable

The rated capacity of Sotavento wind farm is 17.56 MW. The wind farm has

two measuring stations located at the middle and south of the farm. However,

the observations available are only from one of the anemometers. Wind speed

and direction observations are available at a 10-min and hourly frequency and at

a height of 45m. Hourly observations were again selected to match the frequency

of the hourly forecasts of the numerical model. The reason for this is that the
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day-ahead market works at an hourly frequency, which is the term of interest for

this research. Sotavento has historical observations available for multiple years.

As it will be explained in detail later on, generating numerical data is time and

resource consuming. For this reason, the amount of data selected was restricted

to six months, from January to June 2012. This period presents similar wind

patterns and the presence of both ramp up and ramp down events.

3.3 Setting the Basic Configuration of WRF-

ARW With a Known Case: Hurricane Kat-

rina

The WRF modeling system is a multiagency effort intended to provide a next-

generation mesoscale forecast model and data assimilation system for both un-

derstanding mesoscale weather and accelerate the transfer of research into op-

erations (Skamarock et al., 2001). This model was developed as a collaborative

effort among a number of agencies like the the NCAR Mesoscale and Microscale

Meteorology (MMM) Division, NOAA, NCEP, among others, and a number of

university scientists.

WRF has a modular single-source code that can be configured for both re-

search and operations. Its principal components are shown in Figure 3.3. The

WRF Software Framework (WSF) provides infrastructure that support multi-

ple dynamics solvers (e.g. NMM and ARW), physic packages that plug into the

solvers through a standard physics interface, programs for initialization, and a

data assimilation (WRF-Var) system which can be used to produce optimal esti-

mates of the true atmospheric state at analysis time.

In this research the Advanced Research WRF (ARW) solver was used. The

reason for this is that this solver is very well supported with documentation,

online tutorials and a user forum. WRF-ARW is a non-hydrostatic limited area

model (with an hydrostatic option) based on an Eulerian mass dynamical core

(Skamarock et al., 2005). It solves a system of differential equations that repre-

sent the dynamics of the atmospheric flow. The solver uses a third order Runge

Kutta time integration scheme with a split-explicit 2nd-order small time inte-
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Figure 3.2: Principal components of the WRF Framework.

gration scheme for the acoustic and gravity-wave modes. Some of the variables

predicted by the integration of the equations include velocity components u and v

in Cartesian coordinate, vertical velocity w, potential temperature perturbations,

among others. Figure 3.4 shows the program flow for a typical run.

Figure 3.3: Program flow for a typical run of the WRF-ARW system.

The left side of the figure shows the steps needed to preprocess the data before

running the model. This is done with the WRF Preprocessing System (WPS)

that consists of three main programs. The first step is running geogrid.exe, which

is used to define the simulation domain(s) and interpolate terrestrial data to the

model grids. The domain refers to the area of interest, specified by latitude and
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longitude locations within a minimum coverage area. Terrestrial data interpolated

to the model grid include soil and land use categories, terrain height, among

others. A list and definition of these is provided on Appendix A.

Figure 3.5 shows a domain setup centered in the Gulf of México for a hurricane

simulation. Hurricane Katrina, the test case that will be used for the rest of

this section, has been the most destructive hurricane to strike the U.S. This

meteorological development happened on August 28, 2005. It strengthened to

a Category 5 storm, based on the Saffir-Simpson hurricane scale, with winds

estimated at 175 mph. Figure 3.6 shows the result of the interpolation of the

albedo data into the grid points of the specified domain.

Figure 3.4: Domain setup centered on The Gulf of México, area of interest.

The ungrib module unpacks GRIB meteorological data (from the GFS), which

for this case consists of 1 degree data at 26 pressure levels and a frequency output

of 6 hours. After unpacking it, ungrib packs it into an intermediate file format

that is used by the final program metgrid.exe which horizontally interpolates the

meteorological data onto the model domain.

The ARW solver supports horizontal nesting, that allows to increase the res-

olution of the grid on smaller regions of the area of interest. This is done by

adding an additional grid (or grids) into the simulation. The additional grids

(nested grids) are rectangular and aligned with the parent (coarser) grid within

which they are nested. In ARW, each nested region is entirely contained within a

single parent grid. The finer nested grids are referred to as child grids. A parent
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Figure 3.5: Albedo for the 28th of August 2005 at 00T (GMT).

(a) Telescoping nests. (b) Nests at the same level with respect to
a parent grid

Figure 3.6: Possible WRF-ARW domain configurations.

grid may contain several child grids at the same level of nesting. These child

grids cannot be overlapped. Figure 3.7 shows the possible configurations of the

domains.

ARW uses staggering, which defines the way that the child grid is situated

on top of the parent grid. For all odd ratios there is a coincident point for each

variable: a location that has the coarse grid and the fine grid at the same physical

point. The location of this point depends on the variable. Figure 3.8 shows the u

and v components of horizontal velocity which are normal to the respective faces

of the grid cell. Scalar variables are located at the center of the cell.

The nested grid simulations can be produced using either 1-way or 2-way grid
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Figure 3.7: Example of two domain setting and the staggered variables u and v.

nesting. These options refer to how a coarse grid and the fine grid interact. In

both cases, the fine grid boundary conditions are interpolated from the coarse grid

forecast (from coarse grid to fine grid). In a 1-way nesting, boundary information

is the only information that is exchanged between the grids. In the 2-way nest

integration, the fine grid solution replaces the coarse grid solution for the coarse

grid points that lie inside the fine grid. Figure 3.9 shows a two nested setting for

the Hurricane Katrina case.

Figure 3.8: Two domain setting for the Hurricane Katrina simulation.
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Once the input data is processed, the WRF-ARW module, which is the second

part of the system depicted in Figure 3.4, can be executed. This module consists

of two main programs, real.exe which interpolates vertically the data prepared by

metgrid and creates the boundary and initial condition files, and wrf.exe, which

generates the model forecast.

WRF-ARW has multiple physics options classified in different categories,

which are (1) microphysics, (2) cumulus parameterisation, (3) land surface model,

(4) planetary boundary layer and (5) radiation. The physics section, which is an

independent module from the rest of the dynamics solver, involves the filling

of arrays with physics-required variables that include the temperature, pressure,

heights, layer thickness, and other state variables.

As the WRF-ARW model was installed in a supercomputer with a graphic

processor (GPU), a CUDA based version of the WRF Single Moment 5 Cloud

(WSM5) microphysics kernel was used as an attempt to decrease execution times

as much as possible (Michalakes and Vachharajani, 2008). This was the only

physics option that was available in a CUDA version, so the rest of the physics

options were installed on the CPU with the rest of the WRF system. Table 3.3

shows the physics options used for Hurricane Katrina simulation.

Table 3.3: Physics options used in the WRF model

Domains 2 nested domains
Dynamics nonhydrostatic Euler equations
Longwave Radiation rapid radiative transfer model (RRTM)
Shortwave Radiation simple downward integration
Surface Layer MM5 similarity
Boundary Layer YSU scheme
Cumulus Kain-Fritsch (new Eta) scheme

The WRF-ARW real and wrf programs were executed with the Hurricane

Katrina test case using GFS meteorological forecasts as input. Figure 3.10 shows

the water vapor that was forecasted by WRF every 6 hours on August 28 2005.

In order to assess the benefits of running the microphysics module on the GPU,

two experiments were designed. The first one consisted in running the system to
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(a) Hurricane Katrina at 00Z. (b) Hurricane Katrina at 06Z.

(c) Hurricane Katrina at 12Z. (d) Hurricane Katrina at 18Z.

Figure 3.9: Hurricane Katrina forecasted with WRF on a single domain setup.

forecast one day (from 28/08/2005 00Z to 29/08/2005 00Z (Zulu or UTC time))

using a single domain with the microphysics module on the CPU and another

run with the module on the GPU. The run with the module on the GPU took

283 seconds while the run with no GPU took 499 seconds. A second experiment

was executed using a 2-way nested run with two domains for the same period

of time. The execution using the GPU took 1952 seconds (approx. 32 minutes)

while with no GPU, the execution took 3482 seconds (approx. 58 minutes). With

these results, it was decided to continue with the GPU configuration.
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3.4 Forecasting Wind Speed at Illinois, USA

With the WRF-ARW up and running, the model was ready to be configured

to run for any location. Before setting the model for wind speed forecasting in

Illinois, an analysis of the GFS input forecasts was performed. Global forecasts

were used previously for the Hurricane Katrina test case, however this case was

used only for configuration purposes. As the wind speed forecasts in Illinois were

the first formal evaluation of the numerical model, it was important to validate

the quality of the input data and use that as a reference when evaluating the

produced forecasts.

3.4.1 Initialisation Data for the WRF-ARW Model

Global models can be used as a first step towards the prediction of wind speed

at specific sites. Despite their low resolution, these forecasts can be used as the

start point and boundary conditions for a mesoscale model that could improve

the space and time resolution of these forecasts. Specifically, the GFS model was

used in this research (Kanamitsu et al., 1991). GFS runs four times a day, at

00Z, 06Z, 12Z and 18Z. At each run, it produces low resolution forecasts, this

means the entire globe is divided into a grid, of usually 1◦ × 1◦ or 0.5◦ × 0.5◦,

producing forecasts at each of the intersection points of the grid. Each GFS

model execution predicts up to 16 days into the future with a three-hour time

step in the first 8 days, and a 12-hour time step in the following days. GFS

data is freely available from the NCEP Products Inventory (National Centers

for Environmental Prediction, 2013). Their database usually maintains 1 year of

data online, but previous years can be requested.

Before further progress could be made, it was necessary to verify that a re-

lationship between GFS wind speed forecasts and real wind speed observations

exists. To establish this, a correlation analysis was carried out. Taking into ac-

count only the first 48 hours of each GFS forecast (predictions for the day-ahead

market), 50 contiguous runs of the GFS model were used, considering only those

values forecasted 48 hours into the future. The reason for this is that values fore-

casted 48 hours into the future are more likely to have a larger error than the rest

of the forecasted hours within the 48-hour horizon. The 50 runs corresponded
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to GFS forecasts from the 6th to 18th of February, 2011. The data was selected

in this month to match the observations, which were only available for limited

periods.

Wind speeds at 58 meters height were extracted from the GFS model forecasts

at the closest points in the grid to the three observation sites (Illinois Institute

for Rural Affairs, 2014) in Illinois. This was achieved using the NCAR Command

Language (NCL) post-processing tool, which is an interpreted language designed

specifically for scientific data analysis and visualisation. It provides a set of li-

braries to process output files from models like GFS and WRF and extract the

desired variables. The script developed using NCL consisted in the following

steps: first, the height was converted to an approximate air pressure taking into

account the terrain of the location. Subsequently, wind vectors (u,v) were inter-

polated vertically, using the pressure level, to obtain the wind speed prediction

at 58m height.

Figures 3.11 and 3.12 show the correlation of GFS with observations at Cuba

site. The GFS model has a correlation of 0.74668 and a RMSE of 1.90462 for

values forecasted 48 hours into the future. The global model is able to capture

the trend of local observations despite the low space resolution of the model.

The same behavior occurred at the SIUE and Wilmington sites. This evident

relationship between the GFS model and the observations proves the potential of

the model for short-term prediction.

3.4.2 WRF-ARW Model Settings

To run the WRF-ARW system, the GFS data together with global terrestrial

data at a 30′′ resolution were used to build the domain, initial state and boundary

conditions. The domain configuration is shown in Figure 3.13.

As shown in the figure, the model was set to run in two domains. The first

domain D1, which covers a major part of the United States, has a resolution of

30 km x 30 km and results from the first integration of the WRF model from the

GFS grid (111km x 78km). The second domain D2 (grey), is limited to the area

of interest (state of Illinois) . It has a resolution of 10 km x 10 km and is obtained

by a second model integration using the first domain as boundary conditions. A

65



3. Data Collection

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35  40  45  50

W
in

d
 S

p
e
e
d
 [
m

/s
]

48h Horizon Forecasts

GFS forecast at 58m
Cuba Obs at 58m

Figure 3.10: GFS 48h into the future wind speed forecasts at 58 meters and Cuba
observations.
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Figure 3.11: Correlation between GFS 48h into the future wind speed forecasts
at 58 meters and Cuba observations.

third domain was considered, but the computational cost of running at 3 km

resolution was too high. In a first attempt of running three domains, the system

took approximately 12 hours to forecast a 12 hour horizon. It was decided then to
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Figure 3.12: WRF-ARW two domain setting.

run in two domains and use an interpolation method for the final downscaling step

to the location of interest. This step was performed with different interpolation

techniques which will be presented later in this section and discussed in detail on

Chapter 5. A similar domain setup is described in (Constantinescu et al., 2011).

From the data available at the three observations sites, the model was used

to produce meteorological forecasts from February to July 2012, starting a new

run every 6 hours (frequency of GFS forecasts). Each run produced complete 48-

hour horizon forecasts with wind speed predictions every hour at a 10 km space

resolution (second domain of the WRF grid). Using the NCL post-processing

tool, wind speed predictions were extracted from the WRF-ARW forecasts and

interpolated to 58 meters height. The most relevant steps of the NCL script

to extract wind speed are the following (the complete script can be found on

Appendix B):

• Obtain the x, y positions of the mesoscale grid that correspond to the closest

point to the latitude and longitude of the observation site.

• Retrieve u and v wind variables from all levels at all grid points at a specific

hour.

• Taking into account the terrain, interpolate u and v at 58m height. This
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results in a plane of u and v components at 58 meters that covers all the

domain.

• Extract from the plane the u and v components at the x,y position.

• Calculate wind speed and direction based on the u and v values obtained.

• Repeat the steps for the rest of the forecasting hours.

The same 50 contiguous GFS model runs that were used in the previous

section, were the ones used for the WRF-ARW model to assess the results. Figures

3.14 and 3.15 show the WRF forecasts obtained for 48 hour into the future wind

speeds. The correlation obtained was 0.73258, which is slightly less than the

correlation of the global model. This could be related to the higher overestimation

of the mesoscale model for the higher peaks and underestimation of the lowest.

Overall, it can be observed that more detail is obtained with the mesoscale model

comparing with the GFS forecasts.
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Figure 3.13: WRF-ARW wind speed forecasts and Cuba observations.

As the space resolution was still not high enough to obtain a forecast at the ex-

act observation site directly from the grid, the forecasts obtained by the mesoscale
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Figure 3.14: Correlation between WRF-ARW wind speed forecasts and Cuba
observations.

model were interpolated using different techniques. The first one, Inverse Dis-

tance Weighting (IDW) (W. Luo, 2008), consists of calculating the wind speed at

the observed location by adding the four wind speeds from the grid that surround

the observation point and multiplying each windspeed by a weight depending on

its distance to the observation point. IDW method is represented in Equation

3.1.

v0 = w1v1 + w2v2 + w3v3 + w4v4 (3.1)

where

wi =

1
d2i

4∑
j=1

1
d2j

(3.2)

The variables v1, v2, v3 and v4 represent the four forecasted wind speeds

extracted from the mesoscale grid. v0 is the new calculated wind speed at the

observation site and di is the distance between vi and the observation site. The
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Figure 3.15: v0 is calculated by multiplying each velocity in the grid by the area
at the opposite to it.

second method, Bilinear Interpolation, consist of calculating the wind speed at

the observed location by first performing linear interpolation in one axis, and

then on the second axis, using the four surrounding points of the grid (see Figure

3.16). The interpolation in the x-direction is done by calculating:

f(R1) =
x2 − x
x2 − x1

v3 +
x− x1
x2 − x1

v4 (3.3)

f(R2) =
x2 − x
x2 − x1

v2 +
x− x1
x2 − x1

v1 (3.4)

After the linear interpolation is done in the x-direction, the values obtained are

used to interpolate in the y direction as follows:

v0 =
y2 − y
y2 − y1

f(R1) +
y − y1
y2 − y1

f(R2) (3.5)
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These two steps are simplified in Equation 3.6:

v0 =
1

(x2 − x1)(y2 − y1)
(v1(x− x1)(y − y1)+

v2(x2 − x)(y − y1)+

v3(x2 − x)(y2 − y)+

v4(x− x1)(y2 − y))

(3.6)

The third method (Best Weights) consists of combining the four surround-

ing wind speeds giving a specific weight to each of them. The mathematical

representation is as follows:

v0 = w1v1 + w2v2 + w3v3 + w4v4 (3.7)

where, as with the IDW method, the sum of the weights is one. In order

to find the values of the weights, past data is used such that the values of the

unknowns will be those that minimise the error between the forecasts and the

observations in a given sample of past data. Once the unknowns are found by

solving a system of four linear equations, they could be used to calculate new

forecasts.

The fourth mathematical method (Best Coefficients) is similar to the previous

one, with the only difference that the sum of the weights, which in this case are

called coefficients ci, do not need to sum up to one.

v0 = c1v1 + c2v2 + c3v3 + c4v4 (3.8)

These methods are evaluated on Chapter 5 and compared to a GP approach

introduced in that same chapter.
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Figure 3.16: WRF-ARW two domain setting. The second domain (grey area) is
centered in the point of interest, which is Galicia, Spain.

3.5 Wind Speed Forecasts at Sotavento Exper-

imental Park

To generate the meteorological forecasts at Sotavento, global forecasts from the

GFS model as well as terrestrial data were used. Both observations at Sotavento

and GFS forecasts were available for the year 2012, so the first 6 months of the

year, from January to June 2012 were used. Although there was more data avail-

able, the study was restricted to the amount of mesoscale data that could be

produced locally, as this takes time. Sotavento provides 10 minute and hourly

wind speed, direction and power observations so there was no need to average

data as it was done for the Illinois case. Figure 3.17 shows the domain settings

that were used. As shown in the figure, the model was set to run in two domains.

The first domain, which covers a major part of Spain, has a resolution of 30km

x 30km and results from the first integration of the WRF model from the GFS

grid (111km x 78km). The second domain, which is centered on Galicia, the area

of interest, has a resolution of 10km x 10km and is obtained by a second model

integration that uses the first domain as boundary conditions. The parameteri-

sations used for Sotavento were the same as the ones used for Illinois. Each run

took approximately 3 hours. The six month period was not entirely forecasted as

there was some data missing from the GFS model.
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Figure 3.17: WRF-ARW 48 hour horizon in a 06Z run started at day D. The next
day forecast corresponds to those values 19 to 42 hours. into the future.

For the Sotavento wind farm, only 06T runs of the GFS model were used. The

reason for this was to ensure there was a consistent error for each day forecasted

as it was seen in the previous GFS analysis that a 48 into the future forecast

had a different level of error when using different runs. For each 06T GFS run, a

WRF-ARW run was executed, producing a higher resolution forecast in time and

space. Those values forecasted for the next day (19 to 42 hours into the future),

as shown in Figure 3.18, are the values of interest for the DA power forecasting.

From the model output, wind speed and wind direction forecasts were to most

relevant to consider for power prediction. To extract this data, another NCL

script similar to the one used for the Illinois case was used. The data extracted

was from the closest grid point and neighbour points to the location of the wind

farm. This time forecasts were extracted at 45 meters height, which is the height

of the anemometer at the wind farm.

3.6 Summary

This chapter has presented in detail how meteorological and observation data was

obtained and processed. The amount of data that was produced with WRF-ARW

was restricted mainly by two factors. One was the availability of observation data

for the Illinois case study. The other factor was the time it takes for the model to

run, restricting our time period to six months for the Sotavento case study. The

wind speeds from Illinois will be used on Chapter 5 in order to assess the quality

of the numerical model and the downscaling procedures at the three sites. The

observations from Sotavento and numerical predictions of the area of Galicia will

be used in Chapters 6 and 7 for wind power forecasting and ramp characterisation.
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Chapter 4

Genetic Programming: an

Approach for Symbolic

Regression

4.1 Introduction

This chapter introduces Genetic Programming (GP) (Koza, 1992) as an approach

for regression. This bio-inspired technique evolves a population of possible models

that represent the relationship between an input or set of input variables and an

output. The advantage of this approach over other regression techniques is that

no assumptions on the model structure need to be made. GP can provide an

alternative for the modelling of wind speed and wind power using numerical

weather prediction model information. The layout of this chapter is organized

as follows: Section 4.2 introduces the approach and gives details on the model

representation and genetic operators necessary for evolution. Section 4.3 presents

in detail the implementation of the algorithm. Finally, Section 4.4 presents a

summary and the conclusions.
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4.2 The Genetic Programming Approach

Getting a computer to solve a problem without explicitly being programmed

would require a process through which the computer is able to build computer

programs. These computer programs would perform operations, computations

and iterations on different variables to solve a given problem. The construction

and search process of computer programs, which is referred to as Genetic Pro-

gramming, looks at the space of all possible computer programs and selects the

desired program which best suits the problem. Looking at the complete search

space would be a very exhaustive process, thus, the search needs to be done in

an intelligent way (Koza, 1992).

Genetic Programming is a biologically inspired computation technique based

on the evolution of individuals over time, through events such as crossover and

mutation, which progressively refines them into better individuals. In GP, instead

of evolving a population of binary chromosomes, as used in genetic algorithms

(Goldberg, 1989a), a population of programs (in a binary tree layout) is evolved,

each program representing a set of instructions to solve a specific problem. GP,

like nature, is a random process, which cannot guarantee results but is that

randomness which can lead it to escape traps, which deterministic methods may

be captured by (Poli et al., 2008).

The range of real-world problems where GP has been applied is quite diverse.

In general, GP has been used for problems where the following characteristics

are present (Poli et al., 2008): the relationship between relevant variables is

unknown; situations where there is a way to test solutions but it is difficult to

derive them from the underlying theory; where the problem does not have an

analytical solution and an approximation is enough; where the size and form of

the solution is not known. Specifically, some of the areas were GP has been

used are medicine, bioinformatics, computational chemistry, industrial process

control, financial trading, image and signal processing, data modelling, symbolic

regression, among others (Oakley, 1994; Poli et al., 2008; Tsakonas, 2006).

The prediction of wind power at a wind farm involves the development of

mathematical models to estimate the power output of the wind farm. As many

different factors such as the landscape, wind direction, temperature, pressure may
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a

+

*

b v1

Figure 4.1: Example of a tree expression of the program a+ b ∗ v1.

affect the power output, finding a mathematical model for a specific wind farm

is a complex task. Genetic programming provides a means to find these models

without knowing the shape or size of the problem, as it grows dynamically, com-

pared to other approaches like genetic algorithms where the size of the solution

is fixed.

4.2.1 Representation

Symbolic regression via GP is a non-parametric non-linear regression technique

that, through evolution, looks for an appropriate model structure and model

parameters that best fits a given sample of data (Kotanchek et al., 2010). This

is different from conventional regression techniques that assume a certain model

structure and estimate the optimal parameters. Symbolic regression involves

finding a mathematical expression that fits the given sample data. In GP, the

mathematical expression can be viewed as a computer program that takes as

input the values of the independent variables and produces the values of the

dependent variables. The structure of a program is presented in Figure 4.1.

As shown in the figure, a GP tree is formed by a set of terminals and func-

tions. The functions may be basic arithmetic operators (+,−, ∗, /), standard

mathematical functions (sine, cosine, logarithmic, exponential), logical functions

or domain-specific functions. The terminals may be a constant or any problem-

related variable (b and v1 in Figure 4.1). An initial population of randomly

generated computer programs composed by these terminal and function sets will

be created as a first step in the GP process. In this research the set of opera-

tors explored are the basic operators{+,−, ∗, /}, and the sine, cos, exp and log

functions.
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Figure 4.2: Example of a tree created with the full method. Variables vi represent
wind speed at different locations; variables b and c are constants.

4.2.2 Tree Initialisation

The creation of the initial population is achieved by generating each individual

(tree) randomly like in other evolutionary algorithms. There are different meth-

ods for creating trees randomly. Two of the earliest methods, proposed by Koza

(Koza, 1992), are the full and grow methods. Both methods are restricted by

one parameter which is the depth. The depth of a tree is calculated by counting

the number of nodes that need to be traversed from the root in order to reach the

deepest leaf. This parameter needs to be set experimentally. The full method

consists then in adding nodes randomly generated from the function set to the

tree until the given depth is reached. The last level of the tree is constructed

with nodes generated from the terminal set.

The grow method, unlike the full method, can build the tree by adding nodes

generated from both function and terminal sets. The only restriction is that the

root has to be always chosen from the function set. This adds variability to the

shape of the trees. Nodes containing terminals would stop the growth of that

branch even if the maximum depth is not reached. If the maximum depth is

reached then only nodes from the terminal set are added. Figures 4.2 and 4.3

present an example of trees generated by the full and grow methods respectively.

Koza proposes a combination of the full and grow methods called ramped half-

and-half in order to provide a wider range of sizes and shapes to the population.

In this method, half of the population is created by the full method and the

other half by the grow method. The ramped half-and-half has become one of

the most common ways to create initial GP populations, however other proposed
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Figure 4.3: Example of a tree created with the grow method. Variables vi repre-
sent wind speed at different locations; variables a and c are constants.

approaches for this can be found for example in (Bohm and Geyer-Schulz, 1996;

Langdon, 2000).

4.2.3 Fitness

Following the theory of evolution, individuals with a high fitness have a high

possibility to survive. In the GP approach, each program or individual of a

population will be ranked (fitness measure) depending on how well it performs in

solving the problem. This fitness can represent different things depending on the

situation to be evaluated. For example, the fitness could express how accurate

a program is for recognising or classifying objects. It could also represent the

compliance of a structure or the time required to bring a system to a desired

state. For symbolic regression, a common approach is to use fitness as a form of

error between an input and an output. In this type of system, the best fitness

corresponds to the lowest numerical value and, hence, the function is a cost rather

than a fitness one.The error can be calculated using different criteria like the

BIAS, the MAE, the RMSE, among others. In this research, the RMSE is used

as a criteria to evaluate the cost of a model. Although taking the squared root

would have no effect if this were the complete cost function, it has a substantial

impact when a penalty is added to the overall cost. Additionally, the MAE is

calculated from the best selected models to have a second measure to assess the

accuracy.

To calculate the cost based on the RMSE, a collection of s data points that

will be fitted or approximated is needed. The squared error between the model
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output and these points is calculated, then averaged over the total number of

points in the collection and finally the square root of this average is calculated.

Finding an appropriate collection of points or training set in order to produce

good generalisation models and reduce overfitting may be not be straight forward

when the computational effort in training the models is an important factor. Al-

though it is important to use a training set large enough to cover the search space

to avoid overfitted solutions, very large training sets may increase computation

time which might be critical in certain applications. The appropriate size of the

set would need to be determined experimentally as it may vary according to the

problem.

4.2.4 Genetic Operators

Creating an initial population by a random process would not be enough to pro-

duce the best program to solve a specific problem, unless the problem is simple

and small. However, some of the individuals in the initial population may have

characteristics that make them fitter than others and that could be used to pro-

duce better individuals. GP follows the Darwinian principle of reproduction and

survival of the fittest, using genetic operations such as reproduction, crossover

and mutation. The reproduction operator consists on selecting fit individuals,

according to a specific criterion, and copy the selected individual into a new pop-

ulation (the next generation). The crossover operation creates variation in the

population by producing new offspring from the combination of parts of fit indi-

viduals (parents). Each parent is selected according to a criterion, and could be

of different size and depth. A typical criterion for selecting individuals in GP is

the tournament selection, which consists in selecting a number of individuals at

random from the population and choosing the best of them to be a parent. This

procedure is done twice to obtain two parents which will be recombined to gener-

ate offspring. In each parent, a random crossover point is selected. The random

point in each parent determines the root of the subtree that will be replaced with

the subtree of the other parent. An example of crossover is shown in Figure 4.4.

The mutation operation can introduce diversity to the population when the

algorithm is converging prematurely. This operator introduces random changes
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Figure 4.4: Crossover operation.

Figure 4.5: Mutation operation.

in individuals according to a probability. It starts by selecting a random point

within the tree. This mutation point can be either a function or a terminal point.

The mutation operation removes everything from the selected point and inserts

a randomly generated subtree in this point. The size of the subtree inserted is

controlled by a parameter that specifies the maximum size. Figure 4.5 presents

an example of applying the mutation operator.

4.2.5 Overfitting

As any other Machine Learning (ML) technique, achieving good generalisation

is one of the most important goals of the GP approach (Naik and Dabhi, 2013-

12-01T00:00:00). Failure to generalize, or overfitting, happens when a program

performs well in training cases but has a poor performance in unseen cases. It
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has been noted that poor generalisation of programs is commonly related to

their growth in complexity (increase in the number of nodes) as the number of

iterations increases (Langdon and Poli, 1997a). Programs can grow large pieces

of code that does not make any significant improvement in the overall fitness of

the program. This is what is called the bloat problem (Poli et al., 2008).

There are three classic theories that explain the bloat problem:

1. The replication accuracy theory (McPhee and Miller) states that the success

of a GP depends on its ability to replicate accurately, having offspring

that are functionally the same. If the function set for a problem contains

functions easily combined to form large, semantically irrelevant trees, the

presence of these trees often inhibits the discovery of a correct individual.

2. The removal bias theory (Soule and Foester, 1998) states that code growth

can occur whenever operations which remove and replace a variable sized

section of code, like crossover or subtree mutation, are used. Inactive code

(bloat code that if replaced, does not change the fitness) usually forms

subtrees in the low part of the tree. These subtrees might be small in size

at the early stage of the evolution. However, when these inactive pieces of

code are replaced during crossover or mutation, there is nothing to prevent

them from becoming arbitrarily complex because the fitness is not affected.

3. The nature of program search spaces theory (Langdon and Poli, 1997b)

states that after a certain size, the distribution of fitness does not vary with

size. Because there is a greater amount of larger programs with a given

fitness than short programs of the same fitness in the solution space, the

probability that GP selects larger programs is greater over time.

Due to the lack of a clear explanation to the bloat problem, several empirical

methods to solve it have been proposed. One approach is to limit the size or

depth of the trees during crossover. If the offspring violates the size or depth

limit rule, then the parent can be returned instead of the new offspring. However

this can lead to a population full of programs that nearly infringe the rule, which

is not desired. One way to avoid this is to, instead of returning the parents, return

the offspring with a fitness of 0, preventing it from being selected for crossover in
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future generations. Another way to avoid this situation is by selecting a different

crossover point after the failed first attempt. If the new crossover also infringes

the rule, then a new crossover point can be selected until a certain number of

trials. If after all the attempts, no valid offspring was successfully created, then

a new pair of parents will be selected. Defining the limit of the size or depth of

programs is not trivial. Setting a small limit could prevent programs to express

any solution to the given problem.

Another empirical approach to the bloat problem is having anti-bloat op-

erators, which constrain the choices made during the execution of the genetic

operations. Size fair crossover (Crawford-Marks and Spector, 2002) and size

fair mutation (Langdon, 2000) are two approaches based on this idea. Size fair

crossover restricts the crossover point of the second parent according to the size

of the subtree selected from the first parent. Size fair mutation generates ran-

dom replacement subtrees according to a distribution, in such a way that, when

replacement is done, the size of the tree is not altered.

The parsimony pressure (Koza, 1992; Zhang and Mühlenbein, 1995), another

technique to avoid bloat, penalises the fitness of a program according to its com-

plexity reducing the probability for it to be selected in future generations for

crossover. The penalisation is done by adding to the regular computation of the

fitness function a coefficient called parsimony coefficient, which is multiplied by

the size of the program and then added (or substracted according to the problem)

to the calculated fitness. In (Amil et al., 2009), a theoretical study about the

bloat problem is presented and a parsimony pressure based method is proposed.

This method consists of computing the complexity factor of the tree by approxi-

mating the V apnik − Chervonenkis dimension (Amil et al., 2009), which is the

measure of the capacity of a classifying algorithm. For symbolic regression, this is

done by calculating the upper bound on the generalisation error. The complexity

factor is used as a penalisation of the fitness of each tree. The mathematical

representation of this penalty function is shown on Equation 4.1.

f =
1

s

s∑
i=0

e(i) + k

(
(t2log2 (t)

s

) 1
2

(4.1)

The first term of the fitness equation 4.1 is the sum of the errors between
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the model output and the desired output in the test set (test set size = s). The

second term is the complexity factor, where t is the number of nodes of the

program tested and k is a trade-off weight that allows to control the level of

pressure of the complexity factor. A small value of k (e.g. k=0.0001) would be

translated into low complexity pressure, and higher values of k (e.g. k=0.1) will

result in a strong pressure to the penalisation.

In some implementations of the GP algorithm, a second set, the validation

set, is used as a way to ensure generalisation. The evolution process will depend

on the training set, while the validation set would help to verify if the best

solutions are also good solutions using unseen data (validation set). If during

the evolution process the best solutions begin to learn the training set too well

that their performance on the validation decreases, then the last solution that

was best on both sets will be the output solution of the algorithm.

All these approaches to avoid bloat, as mentioned before, prevent the GP

algorithm from producing programs that are complex and overfitted. Other ap-

proaches based on Random Sampling Technique (RST) have been proposed to

manage overfitting (Gonçalves and da Silva, 2011; Liu and Khoshgoftaar, 2004).

RST basically consists of using a random subset of the training set instead of

the complete set, and calculate the fitness of the programs based only on this

subset. The subset can be re-selected every iteration or at every t iterations.

The programs that survive through the generations are those performing reason-

ably well on different subsets. These programs will be capturing the underlying

relationship of the data instead of overfitting it.

The GP based approach developed in this research explores a combination of

random sampling to achieve generalisation with a parsimony pressure to avoid

the evolution of large programs. The reason for using two overfitting strategies

is that, if only the RST strategy is considered, even getting good generalisation

models, the problem of bloat or code growth can occur (Liu and Khoshgoftaar,

2004). This is due to the concept of introns, which are useless pieces of code that

do not affect the fitness of the program but contributes to the development of

large solutions.
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4.3 The Implementation

The GP algorithm implemented in this research works as follows: First, an initial

population p of n trees is created, selecting random combinations of variables

and operators with the ramped half-and-half method. The fitness of each tree

is calculated in two steps. First, the mathematical expression is evaluated for

every point of the training set in order to calculate the RMSE between the model

outputs and the real observations. Then, a penalisation is added according to the

complexity of the expression (Equation 4.1). Once the tree with the best fitness

is identified, the algorithm iterates x number of generations. At each iteration,

a new population is created by copying the best tree of the previous generation

and the rest of the individuals are created by means of selection, crossover and

mutation operators. The new population replaces the previous population and

the best tree of the new population is identified. This process is repeated until

the specified number of generations has been reached and the best tree on the

training set and validation sets are obtained. A flow chart with this algorithm is

shown in Figure 4.6.

The algorithm was implemented in C++ using the GPC++ class library

(Fraser and Weinbrenner, 1997) by Adam P. Fraser and Thomas Weinbrenner

as a starting point. With these, different algorithms can be developed according

to the application problem; image processing, process control, regression, time

series prediction, etc. To implement the symbolic regression algorithm, the steps

described previously were used. There were several aspects to address in order

to ensure the evolution of valid models. One was the evaluation of each indi-

vidual. As each tree represents a mathematical expression, the tree needs to be

evaluated according to the function and terminal set that is defined during exper-

imentation. Special situations need to be handled like the division by zero and

the natural logarithm of negative values to avoid invalid expressions. Another

important aspect of the implementation to consider is that the number of input

variables may vary according to the application problem or type of experiment.

The algorithm was implemented in such a way that few changes need to be done

in order to use the algorithm with any number of input variables. Another aspect

to consider is the strategy that will be used to prevent overfitting and bloat. It is
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Figure 4.6: Genetic Programming Algorithm.
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important to consider this situation in symbolic regression to avoid the evolution

of models which contain terms that are zero and therefore do not contribute to

the understanding of the variable being modelled. This problem was handled by

applying a parsimony pressure that was determined experimentally. In addition

to these three aspects, there are several parameters that need to be tuned in order

to apply the algorithm. Parameters, such as the number of generations, size of

population, etc., need to be determined experimentally. Further details on the

tuning of these are presented in Chapter 5.

In order to validate the implementation of the algorithm, some experiments

were designed to apply GP as modeller of different jet engine parameters. The

problem and results are presented in Appendix C.

4.4 Summary

This section presents genetic programming as an approach to symbolic regres-

sion. In the one hand, the amount of decisions that need to be made during the

implementation, like the fitness function, the overfitting strategy, the number of

inputs, the size of training sets, among others, might be a complex process. As

any other evolutionary algorithm, it needs tuning, it is not a plug and play strat-

egy. However, as it was found with the jet engine application, this approach is

able to provide some understanding of the relationship between variables which

other machine-learning techniques might not. Compared to neural networks, GP

provides a mathematical representation of the solution which can be used to un-

derstand the processes being modelled. It also has an advantage over genetic

algorithms, in the sense that the solution is not restricted in size and form. As

there are several aspects to tune, there is always different settings that could

be explored to improve results. The following chapter introduces the use of GP

as a final downscaling step from the numerical model grid to a specific location

avoiding the execution of high resolution NWP model runs. This is the first step

towards wind power prediction.
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Chapter 5

A Genetic Programming

Approach for Wind Speed

Downscaling

5.1 Introduction

As it has been mentioned previously, numerical weather prediction models are

essential for wind speed/power forecasting at horizons larger than 6 hours, where

the Persistance model is no longer able to provide robust forecasts (Monteiro

et al., 2009). There are two main aspects of numerical models that allow im-

provement. One aspect is the high resolution runs. In order to provide a wind

speed forecast at an exact observation point or as close as possible, the resolution

of the numerical model grid has to be very high. The high resolution runs are

computationally demanding and therefore they may take too long to complete. A

0.5km resolution run (e.g. 5 domains) may take up to 48 hours to complete when

resources are limited (Louka et al., 2008). In addition, it has been found that

the benefits gained beyond a 6km resolution are not always worth the computa-

tional expenses as coarser domains (12km and 6km) capture mesoscale features

of the airflow satisfactorily. GP as a downscaling technique could provide a way

to find the relationship between the existing low resolution information from the

numerical model and observations at a specific location as it is a non-parametric

87



5. Wind Speed Forecasting with GP

technique. In addition, its model transparency can provide a quick understand-

ing of the phenomena being modelled. This chapter presents the application of

GP for wind speed downscaling as a first step towards wind power forecasting.

The results presented were published as a conference paper in (Mart́ınez-Arellano

et al., 2012).

The second aspect to study are the so-called “misplacement errors”. NWP

models are good at modeling the spatial phenomena that cause spatial variations

in wind energy flux, yet it may misplace these phenomena relative to the physical

world (Cutler et al., 2009). The spatial variability of wind speeds in a NWP

system could give a useful characterisation of uncertainty in future wind power.

Most of the current wind power forecasting tools focus on the closest grid point to

the observation site, while neighbour points could provide information of changes

in wind speed which were not modelled on the closest point of the grid. This

misplacement error will be addressed further in this thesis on Chapters 6 and 7.

The layout of this chapter is organized as follows: in Section 5.2, a basic

GP approach for statistical downscaling is introduced. Section 5.3 presents an

improvement of the basic GP downscaling approach by varying the function set.

Sections 5.4, 5.5 and 5.6 extend the experimentation by exploring different aspects

of the approach such as the stop condition, the size of the training set and the

use of a sliding window for re-training. Section 5.7 presents a discussion and

conclusions on the results obtained.

5.2 Basic GP Approach for Statistical Down-

scaling at Different Locations

Genetic Programming, as other machine learning techniques used for statistical

downscaling like neural networks (Salcedo-Sanz et al., 2009), works as black box,

as a-priori knowledge of the system is not required. However, in contrast to these

techniques, it is able to provide a direct model of the system. This is important

as the mathematical representation might provide some insight about the process

being modelled. GP does not restrict the size and form of the solutions, which

is an advantage over regression methods where the shape of the model must be
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known in advance. For short-term forecasting, as the forecast horizon becomes

larger, it is important to take into account numerical weather prediction models.

Symbolic regression via genetic programming will be used as the final downscal-

ing step from the mesoscale grid to the location of the wind farm to avoid the

execution of high resolution model runs which may not add any additional im-

provement to the lower resolution forecasts. The algorithm will be trained to

“learn” from the error of past forecasts to be able to compensate it in future

forecasts. In addition, genetic programming is able to provide an ensemble of

potential solutions after training. This is useful and can potentially be used as a

means to quantify uncertainty of the modelled variable.

An exhaustive experimentation phase was carried out to analyse the potential

of genetic programming for statistical downscaling and to compare it with the

mathematical methods introduced previously. The objective at this stage was to

improve the wind speed predictions obtained with the numerical model to convert

these in a second step to wind power predictions by applying a power curve.

Many variables could be used as inputs for wind speed downscaling. In ad-

dition to wind speed, atmospheric variables such as wind direction, temperature,

solar cycle, among others, could be used, as many approaches currently do (Mon-

teiro et al., 2009). However, with the results obtained while testing the simulation

of the jet engine parameters, it has been found that a selection of input variables

for the training process is not a simple and straight forward task. Using a large

set of input variables and letting the algorithm find out which one is the most

relevant is not the best approach and would not guarantee any success in the

first attempt. In this situation, the application of a feature selection algorithm

may enable the regression process to operate faster and more effectively. There

are three general schemes for feature selection: the embedded, the filter and the

wrapper scheme. A survey on feature selection techniques can be found in (Chan-

drashekar and Sahin, 2014). In this research a naive forward sequential wrapper

scheme has been adopted. This approach wraps the feature selection around the

induction algorithm to be used, using cross-validation to predict the benefits of

adding or removing a feature from the subset used. Forward selection greedily

adds attributes that, when added to the feature set, yields to structures that

generalise better. For this problem in particular, the first step was to work only
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with wind speed and then to add other variables progressively. These other vari-

ables included wind direction, temperature and solar cycle, as these are the most

common variables used by state-of-the-art methods.

The observations available from the state of Illinois were used for the exper-

imentation. Three different sites could be tested for wind speed with the same

numerical model run. This was very useful as each run takes approximately 3

hours to complete and producing enough training data for different observation

sites at totally different locations in the globe would have been a long process.

There were two main stages during the experimentation. The first stage used

observations at 10 meters height as the numerical model provides a specific vari-

able to model wind speed at this height. In a second stage, observations at 58m

were used, as this height is closer to a typical hub height of 80-120 meters. Al-

though it would be more useful to work with observations at hub height, these

are still not commonly available as most anemometer measurements are at 50m

or lower.

The size of the training set plays an important role in machine learning algo-

rithms so this was an important aspect to explore. Large training sets might be

the best option to ensure generalisation. However, very large training sets may

require a greater computational effort, so it is critical to find what is the minimum

training size that could ensure that generalisation. The starting point was to take

a small training set of 50 points to assess the capabilities of the approach; the

same 50 points used to assess the GFS forecasts in Chapter 3. Later on, larger

training sets were tested as well as the use of validation sets to avoid overfitting.

A similar approach was presented by (Sweeney et al., 2011), where experiments

started from a 2-day window size to up to 30 days.

The first set of experiments was conducted as follows. From the 50 forecasts

generated using WRF-ARW (from the 6th to the 18th of February 2011), the four

10 meter wind speed predictions of the grid that surrounded the observation sites

were extracted, considering only those values forecasted 48 hours into the future.

At this point, only wind speed was selected as feature for regression. Hence the

training set consisted of 50 sets (v1, v2, v3, v4) each one with its corresponding ob-

servation at the target site. The reason for considering only values forecasted 48

hours into the future is that these are more likely to have a larger error than the
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rest of the forecasted hours within the 48-hour horizon. So at this stage, the inter-

est was to observe how the GP approach would handle specifically these values at

t+ 48, which are probably the worst case scenario. A test set, which corresponds

to the five following days after the period considered for training (from the 18th

to the 22nd of February, 2011), was used to assess the generalisation achieved by

the models when applied to new data. The concept of generalisation would only

apply to the immediate available forecasts after the training period. This does

not mean that the models obtained could be used for any time of the year. It

is assumed that the immediate days after the training period would have similar

characteristics and conditions. At this point there is no notion about what the

best training size is and if it is site dependent.

The crossover probability was set according to a small experiment consist-

ing in varying this parameter and observe the overall quality of the programs.

Figure 5.1 shows how small crossover probabilities tend to slightly decrease the

overall quality of the solutions. High probabilities, despite the higher variability

in the first quartile, can achieve better solutions and may produce less outlier

values. With these results, it was decided to set the crossover control parameter

to 100%. The mutation probability was set to 3% so that the new material could

be occasionally incorporated into the solutions.

For such a small training set, it could be assumed that all of the points

would be needed during training to obtain the best generalisation model possible.

However, to avoid any assumption, different subset sizes were used. From the

training set, the subset size values that were used were 50, 40, 30, 20, and 10.

For each of these subset sizes, three different parsimony pressures k were used,

k = 0.1, k = 0.01 and k = 0.001 as it was identified that those values have a

visible effect in the size of the models. Each combination of this two parameters

was executed 50 times, keeping track of the best solution at each run and taking

an overall average of the best solution. In order to assess the impact of different

parsimony pressures and random sub sets, the rest of the control parameters on

the GP run were fixed. The same control parameters used for the jet engine

problem were used here. A substantial consistency in the choice of the same

control parameters in all experiments would help to eliminate any concerns that

the success of the algorithm depends on random or coincidental choices in a
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Figure 5.1: Quality of the best solutions on 50 runs of the GP varying the prob-
ability of crossover.

particular problem. These control parameters are shown in Table 5.1.

The first results using a pressure of k = 0.1 and different training subset sizes

showed a clear site dependency. As it was expected, the best models on the

training were achieved by using the complete training set. However, to achieve

generalisation the best size was yet to be defined by the complexity of the site.

At SIUE, the GP algorithm obtained a diverse quality of solutions on the test

(unseen) data compared to the training data, obtaining the best average using a

random training set of 40 points. At Cuba and Wilmington, a smaller variation in

the quality of the solutions was observed. At Wilmington, there was an apparent

improvement on the average fitness on test data when changing the training set to

larger sizes. This opened the question if a better generalisation/quality could be

obtained by increasing the training set for a size larger than the current maximum

size.
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Table 5.1: Fixed GP parameters used for the experiments.

Runs 50

Population 1000

Generations 100 and 500

Crossover operator Standard subtree crossover, probability 100%

Mutation operator Standard subtree mutation, probability 3%,

maximum depth of new tree 17

Tree initialisation Ramped Half-and-Half, maximum depth 6

Function set +, -, *, /

Terminal set v1, v2, v3, v4 and random constants

Selection Tournament of size 20

Elitism Best individual always survives

The next step was to decrease the parsimony pressure (k = 0.01) to see

if a smaller pressure and more complex models could improve results without

getting into an overfitting situation. The first aspect that was observed in these

experiments was that the standard deviation of the best GP in the test data was

in general smaller than previous experiments, meaning that the best programs

were performing better on test data in all runs. This behavior was expected

as using a smaller parsimony pressure can lead to more complex mathematical

formulas, which can represent more accurate models. However, there was still

the question if these could be further improved with the current training set. A

final parsimony pressure of k = 0.001 was experimented. The results showed an

overtraining in the models as the programs were getting very good at the training

but were not performing well on the test data. Results using the complete training

set are presented in Figure 5.2 for Cuba. The figure shows large variations on the

quality of the results when using a small pressure. It also shows how a pressure

of k = 0.01 leads to the smaller variability in the quality of the models. The

tendency for most training sizes was that the models perform worse in test than

in training. All figures obtained from SIUE and Wilmington data can be found

in Appendix D.

With an adequate pressure parameter that could ensure good generalisation
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Figure 5.2: Average cost and standard deviation of the best GP at Cuba with
the complete training set.

models, the approach, in its current basic implementation, could be compared

to benchmark mathematical methods to be able to evaluate the performance

of GP. Tables 5.2 and 5.3 summarise the results obtained with the basic GP

implementation at the three observation sites over the complete training data set

compared to mathematical methods presented in Chapter 3. The results of the

GP approach were taken from the best of 50 runs with a parsimony pressure of

k = 0.01, as this one achieved the best results. As the tables show, GP obtains the

best results for the three sites over training data. In the case of test data, Table

5.4 shows that, in general, the results obtained with GP improve the previous

methods due to its ability to generalise. It is interesting to note that the best

result over new data is not obtained using the complete training set.

After finding the parameters that could allow a successful application of the

algorithm to the downscaling problem, a second stage in the experimentation was

focused on working with wind speeds closer to the wind turbine hub height, as the

objective is to be able to convert wind speed forecasts to wind power forecasts. A
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Table 5.2: MAE in meters per second of all downscaling methods over the training
data.

Site IDW
Bilinear

Interp.

Best

Weights

Best

Coefficients
GP

Cuba 2.84723 2.84794 1.118538 0.900721 0.8891711(0.01, 49)
SIUE 1.8812 1.87679 1.630793 0.799778 0.7254781(0.01, 50)

Wilmington 2.78542 2.77693 2.530139 0.839859 0.76496(0.01, 50)

Table 5.3: RMSE in meters per second of all downscaling methods over the
training data.

Site IDW
Bilinear

Interp.

Best

Weights

Best

Coefficients
GP

Cuba 3.27872 3.2765 1.386675 1.167496 1.153821(0.01, 49)
SIUE 2.35062 2.34336 2.121927 1.094980 0.974957(0.01, 50)

Wilmington 3.23827 3.23091 3.078297 1.059626 0.994099(0.01, 50)

Table 5.4: MAE and RMSE in meters per second of the best two methods over
test data.

Site Best Coefficients GP(k,rss)
MAE RMSE MAE RMSE

Cuba 1.4668495 1.761794 1.47404(0.01, 20) 1.712134
SIUE 1.042472 1.321985 1.01643(0.02, 20) 1.229757

Wilmington 1.3233674 1.569485 1.16398(0.01, 49) 1.38117
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different performance of the GP could be expected as the airflow is highly affected

by topographic effects and the quality of the numerical model predictions could

be different (Ray et al., 2006). The wind speed predictions were obtained at 58m

height as explained in Chapter 3. Similar training and testing sets were created

as for previous experiments and different pressure parameters were used. The

results in Tables 5.5 and 5.6 show that the GP approach was able to improve

again the results of all the other techniques. It is interesting to observe that the

best training sub set size to achieve generalisation in most cases is basically the

complete set. This could mean that the error at 58 meters height of the numerical

model could be larger than the one at 10m and the GP algorithm needs more data

to get the best generalisation possible with that training set. This again leads to

the question of possible improvement by increasing the amount of training data.

Table 5.5: RMSE in meters per second of all downscaling methods over the
training data.

Site IDW
Bilinear

Interp.

Best

Weights

Best

Coefficients
GP

Cuba 2.83422 2.82729 2.156678 1.51196 1.282657
SIUE 2.54912 2.52729 2.120475 1.81081 1.326856

Wilmington 3.4226 3.41178 3.169136 1.576498 1.217808

Table 5.6: MAE and RMSE in meters per second of the best two methods over
test data.

Site Best Coefficients GP(k,rss)
MAE RMSE MAE RMSE

Cuba 1.04409 1.36384 0.86469(0.01, 50) 1.126627
SIUE 1.30877 1.50457 1.2604356(0.01, 40) 1.5825726

Wilmington 1.74079 2.11086 1.388853(0.01, 40) 1.826828

Figure 5.3 shows the relationship between the model output and observations

at Cuba on training and test data using the best model found by the GP. The
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correlation coefficient on training data is 0.60855 and on new data is 0.62860.

This indicates the model is achieving a similar quality of the results when new

data is presented and means that the parsimony pressure applied is maintaining

the desired level of generalisation for 58 meter wind speeds.
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Figure 5.3: Correlation between the best GP model and wind speed observations
at Cuba on training (left) and testing (right) sets.
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As one of the main features of GP is that it outputs a mathematical repre-

sentation of the model, it is interesting to see how the models for wind speed

downscaling look. The results showed that models obtained with less training

data (training size = 10) were more stable as most runs produced similar math-

ematical formulas. The quality of these solutions, however, was poor compared

to models found using the complete training set. The models found at each site

with the best set of parameters are shown in Table 5.7.

Table 5.7: Models found with the Basic GP implementation.

Site Mathematical Representation of the Model
Cuba (v4/v1 ∗ 0.570914 + v3)/v1 + v3/(v1 ∗ 0.570914 + v1) ∗ v4
SIUE (6.58506/v2 + 2 ∗ v3 − 2 ∗ v1)/1.38663

Wilmington (3.5761 + 1.89108)/v2 + v2/1.89108 + 1

The model for Cuba shows a combination of most of the input variables,

compared to SIUE and Wilmington that tend to select v2. This suggests that

using only the closest point for a downscaling procedure might not be enough as

the terrain conditions in each site are different. As there is a possibility that the

numerical forecast contains misplacement errors, a forecasting approach based on

several grid points might bring additional information.

5.3 Varying the Function and Terminal Sets

The GP implementation presented previously is able to construct models by

means of the basic operators (+, -, *, /) and four wind speeds obtained from

the WRF-ARW model at both 10 and 58 meters height. This is a basic imple-

mentation that could be potentially improved if other variables or operators were

considered. As more functions or variables become available to the GP algorithm,

it could be capable of constructing more complex programs that could represent

better the downscaling procedure. This however, it is not a trivial task to per-

form. In order to investigate which variables and operators could improve the

results based on the current data available, a set of experiments was designed.
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The first aspect to study was the addition of other operators to the function

set. For this, the logarithmic, exponential, sine and cosine functions were added

to the set and experiments were executed in the same way as it was carried

out with the basic GP implementation. Different parsimony pressures k and

training set sizes rss were used, the same ones as in previous experiments, and

each experiment was executed fifty times. The combination of logarithmic and

exponential functions provided the best results. These are presented in Table 5.8

and 5.9.

Table 5.8: MAE and RMSE in meters per second of all downscaling methods over
the training data at 58m.

Site Best Coefficients Basic GP GP + log +exp
MAE RMSE MAE RMSE MAE RMSE

Cuba 1.188412 1.51196 1.011829 1.282657 0.966050 1.222136
SIUE 1.276052 1.81081 1.034538 1.326856 1.054124 1.358985

Wilmington 1.152524 1.576498 0.907641 1.217808 0.920869 1.223930

Table 5.9: MAE and RMSE in meters per second of all downscaling methods over
the new data at 58m.

Site Best Coefficients Basic GP GP + log +exp
MAE RMSE MAE RMSE MAE RMSE

Cuba 1.044095 1.36384 0.86469 1.126627 0.866885 1.122023
SIUE 1.308773 1.504599 1.260435 1.582573 1.232535 1.535281

Wilmington 1.740791 2.110863 1.388853 1.82683 1.3064 1.72599

The results obtained with the logarithmic and exponential functions improved

the ones obtained with the basic GP implementation in the test set. These

results are comparable with previously published results. In Salcedo-Sanz et al.

(2009), the MAE obtained lies between 1.45 to 2.2 m/s, and the error obtained

in the presented experiments lies between 0.86 and 1.30 m/s in average. Results

obtained in Sweeney et al. (2011) in terms of RMSE lies between 0.96 and 1.89

m/s, which are comparable to the RMSE obtained by the GP which lies between
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1.12 and 1.72 m/s. Figures of the average cost, standard deviation and correlation

between the best GP obtained using logarithmic and exponential functions and

observations in the tree sites can be found in Appendix C.
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Figure 5.4: Minimum, average and maximum cost in m/s of the best GP on 50
runs at Cuba.

Figure 5.4 shows the minimum, average and maximum cost of the best GPs

on 50 runs at Cuba. It can be seen that the worst GP found is closer to the

average. In general, any solution that falls between the average and the worst

cost, which are the majority, will provide a good model because the program is

not overfitted. Over trained solutions are less frequent.

In terms of computation time, it could be observed that a lower parsimony

pressure would increase the execution time of the algorithm as more complex

models would evolve, requiring more time to evaluate them. Computation time

was also influenced by the number of training points and the number of individuals

in the population. In general, when using the complete training set, the cases

with high parsimony pressure would run in 2-3 minutes while low pressures cases

would run for up to 40-45 minutes.

After experimenting with the function set, new atmospheric variables were

added to the terminal set to investigate if these could improve the model with the

given training data. Seven types of experiments were conducted, using different

combinations of variables at the four closest points additionally to wind speed:

temperature, wind direction and solar cycle. In all experiments, logarithmic
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and exponential functions were included in the function set. For each type of

experiment, the same procedure as in past experiments was followed. Different

values of k and rss were used and each experiment was executed 50 times.

Table 5.10: MAE in m/s on new data at 58m (WS = wind speed, T= temperature,
WD = wind direction, SC = solar cycle).

Site WS+T WS+WD WS+SC WS+T+WD
Cuba 0.888935 1.08766 0.877463 1.019572
SIUE 1.295135 1.29692 1.265810 1.330596

Wilmington 1.315414 1.443895 1.313376 1.46964

Table 5.11: MAE in m/s on new data at 58m (WS = wind speed, T= temperature,
WD = wind direction, SC = solar cycle).

Site WS+T+SC WS+WD+SC WS+T+WD+SC
Cuba 0.8891106 1.01097 1.682021
SIUE 1.282913 1.313471 2.04603

Wilmington 1.331096 1.464797 2.39844

Table 5.12: RMSE in m/s on new data at 58m (WS = wind speed, T= temper-
ature, WD = wind direction, SC = solar cycle).

Site WS+T WS+WD WS+SC WS+T+WD
Cuba 1.138327 1.397556 1.137904 1.268113
SIUE 1.624708 1.592776 1.562777 1.675193

Wilmington 1.72772 1.899298 1.743662 1.910552

As it can be seen in Tables 5.10 to 5.13, as more variables are added to the

terminal set, there is a decrease in the quality of the models when applied to

the test data. All these experiments were executed using a population of 2000

individuals, which, according to the results in Table 5.10 and Table 5.11 may

be insufficient as the number of variables involved in the model increase. The
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Table 5.13: RMSE in m/s on new data at 58m (WS = wind speed, T= temper-
ature, WD = wind direction, SC = solar cycle).

Site WS+T+SC WS+WD+SC WS+T+D+SC
Cuba 1.1309058 1.283128 2.315644
SIUE 1.6020632 1.637047 2.5275

Wilmington 1.7543704 1.919438 3.24581

hypothesis about adding these atmospheric variables was that, with more infor-

mation known, better models could be constructed. The results show otherwise.

In addition to the insufficient population size, it is important to have in mind

that the training set contains only 50 data points, which seem a small number

to be able to represent all the combinations of temperature, wind direction and

solar cycle that could be presented to the model. To find out the appropriate

number of training points, an exhaustive experimentation would be needed for

each combination of variables. Another important aspect to take into account

is the execution time. Population and training sets could be increased in size,

however these would have a high execution cost.

Table 5.14 presents the mathematical representation of some of the models

obtained at the three sites. The models present some repetition of functions as

there were no constraints in how the program could grow. These models were used

to forecast a complete 48-hour horizon (data starting immediately after the last

training point). If the error of the numerical model was more or less consistent

within the 48-hour horizon, then it would be interesting to observe how well could

the same model be applied on the rest of the hours of the 48-hour horizon. Results

in Figures 5.5, 5.6 and 5.7 show that the forecast is able to capture the trend of

the observations, having an average MAE on the complete horizon of 0.783031 at

Cuba, 0.995733 at SIUE and 0.809297 at Wilmington.

5.4 Analysing the Stop Condition

In all experiments, the algorithm has evolved for 500 generations. However the

parameter was set arbitrarily. The approach has shown to work successfully, but it
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Table 5.14: Models found with GP+Log+Exp.

Site Mathematical Representation of the Model
Cuba v3/v1 ∗ (exp(exp(exp(v3 − v1))/17.8952)+

exp(exp(v2/17.8952)))
SIUE exp(log(log(v2 − 39.0888− exp(exp(log(v3)− v1/39.0888))))

+log(v2/v4))
Wilmington v4/log(v2 ∗ v3)+

log(exp(v4)/(v3 ∗ v2)/v1 − v1 + v3 ∗ v2)
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Figure 5.5: Forecast of a complete 48-hour horizon with the best GP found at
the three different observation sites.
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Figure 5.6: Forecast of a complete 48-hour horizon with the best GP found at
the three different observation sites.
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Figure 5.7: Forecast of a complete 48-hour horizon with the best GP found at
the three different observation sites.
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is important to make sure that the stop condition is allowing models enough time

to evolve. In order to determine if this number of generations was large enough,

the behavior of the population and the best solution was studied. Several runs

of the GP were plotted to compare the population average cost versus the best

program through time. Figure 5.8 shows the relationship between the evolution

of the best solution and the population. As the best solution improves over the

training and test sets, the average population cost has a decreasing tendency.

After a certain number of generations, usually between 100 and 200, the best

solution, which continues to improve over training set, decreases its quality over

the test set, showing also an abrupt change in the tendency of the population

average cost.
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Figure 5.8: Best GP cost and population average cost on three independent runs
at Cuba. Figures on the left hand side show the best GP on the training (solid
line) and test (dotted line) sets on a typical run. Figures on the right show the
moving average of the population on the corresponding run to the left.
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Figure 5.9: RMSE at each forecasting hour of the 48-hour horizon at Cuba.

It can also be observed in Figure 5.8 that after 100 generations, the models

are not improving on the test set, and as the programs continue evolving, there is

a higher probability of overfitting them. This suggests that a stopping condition

of 100 generations might be just enough to let good generalisation models evolve

and at the same time reduce the overfitting cases.

5.5 Re-training the Algorithm

With good generalisation models obtained, an important question that is raised is

for how long can they be used, specially if they are obtained from a small training

set. It was not expected that the model could be used for any time of the year.

However, if the model was constructed in a type of sliding window process, where

a new model is obtained as new data becomes available, the applicability of the

model for the following day could been ensured. The main idea behind the sliding

window approach is to re-train the model as soon as new information becomes

available. This way, the models can continuously be capturing the changes in the

trend of the climate and be applied in a different time.

To evaluate the quality of the downscaling models in a sliding window ap-

proach, the following experiment was designed. A training set was build using a

window of 50 consecutive forecasts (corresponding to 13 consecutive days), start-
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Figure 5.10: Using a static and retrained models before and during a wind speed
ramp down event on the 24 and 25th of June 2011 at Cuba.

ing on May 2nd with the run at 12Z until May 14th last run, at 18Z. After running

the GP on the training set, the best model found was used to forecast a complete

48 hour horizon, starting just after the last data point used in the training set

(00Z May 15th). After testing, a new training set was created by sliding the

window one day ahead (12Z run on May 3rd) and then tested on the following

48-hour horizon, starting after the last data point in the training set. This pro-

cedure was repeated until a period of 50 days was covered, producing a total of

50 complete 48-h horizon forecasts. The RMSE was calculated at each hour of

the horizon and averaged over the 50 horizon forecasts. Figure 5.9 presents the

average error per hour that was obtained for Cuba.

Figures 5.10, 5.11 and 5.12 show forecasts obtained during different wind

speed ramp events at Cuba using the same model for every event (green) and

daily retrained models (blue). It can be observed from Figure 5.10 that when

the wind is more of less stable, both models give similar outputs. During the

drop, however, the retrained model is slightly more accurate. The same situation

is depicted in Figure 5.11. Figure 5.12 shows an increase in wind speed that,

although both forecasts in general terms can predict, the sudden ramp ups are

not well captured expect for the last day of June.
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Figure 5.11: Using a static and retrained models before and during a wind speed
ramp down event on the 27 and 27th of June 2011 at Cuba.
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Figure 5.12: Using a static and retrained models before and during a wind speed
ramp up event on the 29 and 30th of June 2011 at Cuba.
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In terms of the error, using the same model in all events has a MAE of 1.05

and RMSE of 1.38 while using a retrained model each time obtains an overall

MAE of 0.9364 and a RMSE of 1.20.

As it has been found in previous experiments, the results showed that the

downscaling technique based on GP will have a different level of improvement

depending on the observation site. Cuba and Wilmington sites showed better im-

provements than those obtained for SIUE. Nevertheless, in general, the technique

was able to reduce the error of the WRF-ARW model, avoiding the execution of

very high resolution forecasts, which decreases the time and resources cost.

5.6 Varying the Size of the Training Set

A final set of experiments was designed to evaluate the quality of the results

using GP in another time of the year and varying the size of the training set.

Three training sets were used: one with 2 months of data (May and June 2011),

a second one with one month (June) and a third one with 15 days (last two weeks

of June) of data. In the three cases, only the daily 06T run was used, taking the

values forecasted from hour 19 to hour 42 (which correspond to the next day

forecast). All next day forecasted hours were considered this time, as an attempt

to increase the number of training points. The testing set consisted of the first

10 days of July. As in the training set, each day of the test set corresponds to a

forecast done the previous day at 06Z. According to the RMSE obtained for the

three sites, a training set of 15 days was enough to forecast wind speed at Cuba.

Forecasts at Wilmington were best achieved with one month of data and the best

results at SIUE were achieved with the two-month training set. This indicates

that each place has a different level of complexity to forecast wind speed and,

therefore, a different amount of training data is needed. Larger training sets were

not used due to limited data availability.

Figure 5.13 shows the first 100 hours of the test set at Cuba. Additionally to

the control forecast (best solution), this figure shows the best 50 models obtained

on the best run. GP evolves a population of solutions, therefore, not only the

best one but a subset of the population can be used.

As it can be observed in the top image of Figure 5.13, most of the models
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Figure 5.13: Wind Speed forecasts at the three observations sites with a different
training set sizes: a 15-day training set for Cuba, a 1-month training set for
Wilmington and a 2-month training set for SIUE.
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agree with the control forecast. However, periods like hours 80 to 90 or 95 to

100, show how a visible amount of models can differ from the control forecast.

This can be related to the use of different wind speed variables in the models,

which is expected. The use of four wind speeds to build the downscaling model

is based on the hypothesis that the closest point from the mesoscale grid is not

necessarily the best point of reference for a downscaling model. Additionally,

considering several grid points could help quantify the uncertainty of the wind in

the observation site. The results in the three figures show that the same models

found with one training set, could be used for a consecutive period of 10 days.

However, this was only tested on the month of July, where atmospheric conditions

might have been similar. If the models are to be tested on a different period of

time, the re-training of the algorithm is preferable.

In terms of the speed of the algorithm, the average execution time of the

GP approach was 1,348.394 seconds for a two months training set. This, added

to the total execution time of the numerical model (approx. 3 hours), is still

considerable lower than the high resolution runs which could take 48 hours for 5

domains (Louka et al., 2008).

5.7 Discussion

This chapter presents the successful application of GP as a downscaling method

to forecast wind speed at specific observation sites. The implemented algorithm is

able to construct programs that model the wind speed behavior at the observation

sites from the wind predictions obtained by the mesoscale model WRF-ARW.

The results obtained with GP improve the ones obtained with the mathematical

methods explored before. Also, different function and terminal sets were used

to investigate if these could improve the results of the basic GP implementation.

It was found that adding logarithmic and exponential functions to the function

turned to better results. However, including more variables to the terminal did

not lead to better results. The reason for this could be that the training set

is not large enough to be representative of all the wind speed and temperature

combinations in the site, so new data presented would not necessarily be modelled

by the program. Nevertheless, the results obtained by adding only logarithmic
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and exponential functions are comparable to the ones published in (Salcedo-Sanz

et al., 2009) and (Sweeney et al., 2011).

An important finding of the experimentation presented in this chapter was

that the level of improvement using GP was different at each site and required

a different training set size. The same NWP model can have a different level of

accuracy, which was expected as each location has its own level of topographic

complexity and the same finding applies for the downscaling technique. In general

it can be concluded that the quality of the results are site dependent. However,

the algorithm is not designed for a specific site. A different equation will evolve

according to the complexity of the site, making it a general downscaling tool.

Results obtained at 58m height showed that more training data was needed

in order to obtain good generalisation models. Finding the adequate size of the

training set is an important aspect of the algorithm and if many inputs are to

be considered, one has to ensure that the training set is able to be large enough

to cover the search space. The more variables involved, the more complex the

problem and larger the training set needed.

It was also found that for wind speeds at 10m height, models trained with a

subset of the training set achieved better generalisation. This finding suggests the

use of a validation set for further experimentation, dividing the original training

set into two sets, training and validation, using the second one as a way to prevent

overfitting. While models will evolve based on their fitness on the training set,

the best individual will be the one that has the best fitness on both sets.

With a wind speed forecast at a specific location, a power curve could be

applied to convert those forecasts to wind power forecasts of a given wind tur-

bine/park. The following chapter introduces this idea and explores a second

approach which consists in forecasting directly wind power from raw NWP wind

speed predictions.
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Chapter 6

Wind Power Forecasting with

Genetic Programming

6.1 Introduction

In the previous chapter, GP was successfully applied as a downscaling step to

produce a wind speed prediction at a specific location using low resolution NWP

forecasts. With the execution of high resolution NWP runs being avoided, the

second aspect to study was the misplacement errors of the model. Using a wider

area from the mesoscale grid for wind speed/wind power prediction could provide

information about rapid changes in wind speed that might not necessarily be

modeled at the closest points. This chapter is focused on studying how wind

speed forecasts can be converted into power forecasts and how a neighbourhood

approach could be used to improve those forecasts. The results presented were

published in (Mart́ınez-Arellano and Nolle, 2013a,b).

The chapter is organized as follows: in Section 6.2, a look into some of the

possible variables for modelling wind power with GP is provided. Then, section

6.3 introduces two main approaches to wind power forecasting. The first one is a

one-step approach, which models the conversion of raw NWP forecasts into wind

power directly. The second approach is a two-step one, which first applies GP to

downscale wind speed and then applies a power curve to obtain the total wind

power. The estimation of uncertainty is studied in section 6.4 using Quantile
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Regression to estimate prediction intervals. Section 6.5 extends the application

of GP to neighbour points in order to generate an ensemble of forecasts as a

second approach to uncertainty estimation. Finally, section 6.6 discusses the

results obtained.

6.2 Considering Wind Direction for Wind

Power Modelling

One of the critical aspects of symbolic regression is to determine the variables

that will be used for modelling. Wind is usually characterised not only by its

speed but also its direction. Wind direction could potentially have an effect on

the performance of wind turbines as these need to readjust when the direction

changes. In a preliminary analysis of the wind speed, wind direction and power

output at Sotavento, it has been identified that for the year 2012, from January

to March, when the wind blows in the East Northeast direction (56.25 to 78.75

degrees) or in the West Southwest direction (236.25 to 258.75 degrees), the max-

imum wind power output was achieved for high wind speeds. On the other hand,

when the wind blows in the North direction (348.75 to 11.25 degrees) the power

output is lower even for the higher wind speeds. This can be seen in Figure

6.1. This suggests that the incorporation of the wind direction variable in the

regression models could improve the accuracy of the predictions.

April had a predominant wind from the west southwest as the first three

months of 2012. This tendency, however, does not apply to all the year. Figure

6.2 shows the wind roses from May and June, 2012. It can be observed that the

direction that was predominant in previous months did not prevail during May.

With a model dependent on the wind direction, it cannot be expected that it

will apply for any other period, as wind patterns can be different, as well as the

power output.

Given the characteristics of the wind during this period, it was decided to

use data from January to April, 2012, as an initial experimental set, using April

for the testing as the prevailing winds are similar. Before creating the training,

validation and test sets, the January to March period was preprocessed to remove
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Figure 6.1: Relationship between wind speed, wind direction and the power out-
put at Sotavento Wind Park for three months, January to March, 2012.

 0  6  12  18

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

(a) May

 0  6  12  18

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

(b) June

Figure 6.2: Wind speed and direction during May and June 2012 at Sotavento.
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Table 6.1: Wind direction categories.

Cardinal Degree Cardinal Degree
Direction Direction Direction Direction
N 348.75 - 11.25 S 168.75 - 191.25
NNE 11.25 - 33.75 SSW 191.25 - 213.75
NE 33.75 - 56.25 SW 213.75 - 236.25
ENE 56.25 - 78.75 WSW 236.25 - 258.75
E 78.75 - 101.25 W 258.75 - 281.25
ESE 101.25 - 123.75 WNW 281.25 - 303.75
SE 123.75 - 146.25 NW 303.75 - 326.25
SSE 146.25 - 168.75 NNW 326.25 - 348.75

the outliers. Two types of outlier values that could affect the training process were

identified. The first one relates to ‘errors’ on the power output measurements.

As the power output observations used in this study are total production values

of the wind farm, an outlier could represent the situation where some turbines

have been turned off. The second type of outlier is related to unusually large

errors in the wind speed predictions. These can be easily identified by plotting

wind speed predictions versus power observations.

To remove these values, the relationship between wind speed predictions (from

WRF-ARW) and power observations was approximated by a curve using Matlab

and the points that did not fall at a 90% range from the curve were removed. As

different direction patterns may have a different effect in the power output, it was

decided to divide the training period by the different wind direction categories

shown in Table 6.1 and, for each category, to remove the wind speed measurements

that were considered outliers.

Figure 6.3 shows the training set before and after removing the outlier points.

The total number of input records decreased almost by half from 1632 records

to 975. From the remaining points, 80% was used for training and 20% for

validation.
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Figure 6.3: Training set points before (top) and after (bottom) removing outliers.
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6.3 One-Step and Two-Step Approaches for

Wind Power Forecasting

As it has been previously mentioned, NWP models need to be taken into account

when forecasting wind power for horizons larger than 6 hours. As the main

interest of this research is to study ramp events for the day-ahead market, an

important aspect to investigate is how to incorporate these NWP predictions

into the wind power forecasting process. There are two basic ways to convert the

numerical model predictions to wind power forecasts. The first one consists in

taking the raw NWP output together with observations of the local conditions

to estimate directly the output of a wind turbine/farm in one step. The second

approach consists in forecasting first the wind speed at a target location, either at

the wind turbine location or somewhere in the wind farm, and then the wind speed

forecast would be converted to a wind power forecast using a wind turbine/farm

power curve. These two approaches are presented in more detail in the following

sections.

6.3.1 The One-Step Approach

As the name states, this approach consists in finding a model that can convert

in one step raw NWP forecasts into power predictions. The “downscaling” step

is performed at the same time the wind speed prediction is converted to a wind

power one. The initial benefit of doing the whole process in one step is that the

algorithm will be executed once. This, however, involves the study, in detail, of

the number and type of variables that will be used as input. As this is performed

in only one step, it could imply the use of a large number of input variables,

which, from experience, might sometimes not be the best approach.

The starting point to get a basic one-step approach was to simply use wind

speed in the modelling process. Once this approach was implemented, it was

further extended by adding wind direction. The inclusion of this variable could

potentially improve the accuracy of the one-step approach and be fairly compared

to the two-step approach which naturally incorporates the wind direction into

the process. In order to assess the inclusion of wind direction, an experiment
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was performed. This experiment was based only in the predictions at the closest

point from the grid(denoted as v1 and d1). The reason for this is that if the

four surrounding points are taken, as in the downscaling procedure, the number

of inputs would grow to eight when direction comes into play. The GP was

set to run with the basic operators and logarithmic and exponential functions,

as this configuration has worked well in previous experiments. The experiment

was executed with different pressure parameters and, as shown in Figure 6.4, a

parsimony pressure of k = 2.0 was enough to obtain a similar performance on the

validation and test sets.
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Figure 6.4: Average correlation of the best model to the validation and test sets
and standard deviation in 50 runs applying different pressure parameter values.

In terms of model complexity, the lowest RMSE on the test set was achieved

with a complexity between 50 and 100 (see Figure 6.5). This means that models

do not need to grow very large to achieve a reasonable accuracy.

The results show that models using the wind direction variable provide an

improvement over models that use only the wind speed. Table 6.2 shows the

MAE and RMSE on the test set for both types of models. It can be observed

that there is a larger improvement on the RMSE and that correlation parameters

are also improved. The MAE using both variables represents the 11.7% of the
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Figure 6.5: Relationship between complexity and RMSE in 50 runs using the
pressure parameter k=2.0.

total capacity of the park. This percentage is very good compared to state-of-

the-art tools that have been applied at Sotavento (Giebel et al., 2011).

Table 6.2: Average MAE and RMSE in kWh obtained in 50 runs on the test set
using only wind speed and using wind speed and direction.

Training Set MAE RMSE Correlation Determination
Coefficient Coefficient

Only wind speed 2066.3842 2810.64 0.7930 0.5869
Wind speed and direction 2055.4866 2679.6936 0.8521 0.6871

Another way to see this difference is by looking at the power curves obtained

with the two models which are shown in Figures 6.6 and 6.7. These show that

the use of wind direction can reproduce the power output variability of the real

world within the model whilst the wind speed alone cannot.

With a wind speed-to-power model developed, wind power forecasts can be

obtained as soon as new NWP predictions are available.
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Figure 6.6: Power plots obtained on April 2012 using only wind speed (blue) and
using both wind speed and wind direction (green).
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Figure 6.7: Observed and predicted power plots on April 2012.

6.3.2 The Two-Step Approach

An alternative to the direct conversion of raw numerical forecasts to wind power

prediction, is to do the process in two separate steps. The first step will consist
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in downscaling wind speed to a location of the wind park. This process will be

done as introduced in the previous chapter, taking the four surrounding points to

the park. Once a new wind speed forecast is obtained, it is possible to estimate

the power output of the park at the time of the prediction by using a wind park

power curve. Wind park power curves are an alternative to the use of wind

turbine power curves, which would require the estimation of the power output

of each turbine and then sum them all together. A park level wind-to-power

model in this case is convenient as there is no available information of the power

production of each turbine. To obtain the power curve model of the farm, the

GP is trained with wind speed, wind direction and power observations from the

park.

Figure 6.8 shows the Sotavento power model, found by GP, applied to wind

speed observations at the farm on the test period (April 2012).

The plot at the bottom of the figure shows a well modeled power output.

The top plot shows some discrepancies not in shape but in intensity, specially

from the 14 to the 16 of April. An interesting thing to point out is that, even

though the model is applied to wind speed observations, one can observe a small

time misplacement during the 14th of April. The data that is provided from

Sotavento does not specify any changes in the configuration of the turbines or

the cases of turbines turned off or on. However, these discrepancies suggest two

possible things. One is that the wind turbines might have taken longer than

expected to adjust to the wind variability. In this case, further study into the

modelling of the aerodynamics would be necessary. The other possibility is that

the due to certain grid conditions, some of the wind turbines were powered off.

Despite these discrepancies, the figure shows an overall agreement with the power

observations. Some model examples are shown in Table 6.3

Once a wind park power curve was obtained, downscaled wind speed forecasts

could be fed into the model to obtain wind power forecasts. These downscaled

wind speed were obtained as it was explained in the previous chapter.
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Figure 6.8: Sotavento power model, found by GP, applied to wind speed obser-
vations on April 2012.

Table 6.3: Examples of Sotavento power model found using GP and wind
speed/direction observations at the farm (v0, d0).

Size Mathematical Representation of the Model
25 90.092v20 + 2v0 − 2d0 − 170.183
40 v20 + +2ln(v0) + v0 − d0+

(166.7914v0ln(v0)− ln(v0)− d0 − v0)ln(v0)
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6.3.3 Comparison

The power models obtained with both approaches were used to obtain the wind

power forecasts for the testing period. This is shown in Figure 6.9 .

 0

 5000

 10000

 15000

 20000

09/04 10/04 11/04 12/04 13/04 14/04 15/04 16/04 17/04

W
in

d
 P

o
w

e
r 

[k
W

h
]

Time (Hours)

Power obs
Two-step prediction
One-step prediction

 0

 5000

 10000

 15000

 20000

17/04 18/04 19/04 20/04 21/04 22/04 23/04 24/04 25/04 26/04 27/04

W
in

d
 P

o
w

e
r 

[k
W

h
]

Time (Hours)

Power obs
Two-step prediction
One-step prediction

Figure 6.9: Sotavento power model, found by GP, applied to downscaled wind
speed predictions on April 2012.

The results suggest that there is a similar performance, although some small

differences can be observed. The computational cost of the two-step approach is

higher than the one-step approach as the GP needs to run twice. In both cases
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the algorithm would need to be “retrained” as the weather patterns change with

the seasons. So, the two-step approach might not need to run twice if applied

in the near future, but will necessarily need to obtain a new wind park curve

if applied to a different time of the year. Despite the need of re-training, the

training time of the GP is in average 2,856 seconds, which may not be part of the

critical latency of the numerical prediction except when the system is deployed in

one specific way. Even in those cases, the total execution time of the numerical

model (approx. 3 hours) is still low compared to high resolution runs which for

up to 5 domains could run for 48 hours. Regardless of the approach, the accuracy

obtained for the Sotavento location is around 88% in terms of the MAE. This is

comparable to current forecasting tools, as established in (Giebel et al., 2011).

This, however, would require further experimentation as the summer and autumn

seasons were not considered.

With a similar performance achieved by both strategies, it was decided to use

the one-step approach to forecast the months of May and June. For May experi-

ments, the training period was from February to April. For the month of June,

the training period was from March to May. In both cases, the preprocessing of

the data was performed to remove outliers. Table 6.4 shows the MAE and RMSE

obtained for May and June.

Table 6.4: MAE and RMSE in kWh obtained for different testing periods.

Month MAE RMSE Correlation Determination
Coefficient Coefficient

April 1934.69 2580.39 0.844564 0.697236
May 1459.78 2015.27 0.699818 0.338019
June 1450.3 2027.96 0.841638 0.696648

The table shows that the errors obtained for the new test periods were slightly

lower than for April. However, results for May show a lower correlation. It is

important to note that the wind pattern in this month showed more variability

(as shown in Figure 6.2), with frequent winds from the east. As the January

to April period has predominant winds from the west, it might be that for this

period in particular, the training data was not containing a significant amount of
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cases with winds from the east that may affect the farm differently. The month

of June, however, shows similar results as April in terms of correlation.

6.4 Uncertainty Estimation of Wind Power

Forecasts

With point forecasts like the ones obtained previously, the grid operator can take

decisions for the daily unit commitment. However, these would have a very high

uncertainty if no other information is provided. It has been shown that the point

forecast is more useful if it is supplied with an uncertainty estimation (Pinson,

2006). This estimation can give the operator a better idea about the amount of

backup needed.

The total error of the wind power forecast can be the product of two sources.

The first source of error is the error introduced by the numerical model. This error

tends to increase as the forecasting horizon increases. The second source of error

is the conversion process from wind speed to wind power. This process can depend

on local conditions such as the roughness and orography of the wind farm location

(Kariniotakis et al., 2004). This type of error could be potentially decreased by

the use of empirical power curves rather than the power curve provided by the

manufacturer.

There are several approaches in the literature to quantify the uncertainty of

wind power point forecast errors. In general, the error distribution is found by

observing the behavior of the error on past forecasts and by using explanatory

variables which are additional information such as wind speed, wind direction,

temperature, that can improve the understanding and thus the modelling of the

error.

In order to anaylse the behaviour of the forecast error obtained with the GP

model, histograms were used. Figure 6.10 shows the empirical distribution of the

error in the January-March training set for the first and last hour of the next-day

horizon. Each hour of the horizon has been treated separately as a first attempt

to study the use of the error estimation on the ramp characterisation. One can

observe that the distribution of the error is different for the horizon t + 19 and
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Figure 6.10: Empirical distributions of the prediction error obtained with v1 for
two look-ahead days. Prediction errors are normalised on a scale [-1,1].

t+42. The shorter horizon shows a more distributed error while the larger horizon

shows more overestimation errors, as the frequency of negative errors is higher. It

can also be observed that the upper bound of the empirical distribution at t+ 42

is slightly higher. This means that at this horizon errors of 35% were observed,

while at t+19 errors stayed lower than 30% of the nominal capacity of the farm.

Studies suggest that wind power forecast errors do not follow a normal distri-

bution as wind speed forecast errors do. In fact, wind power error distributions

have been found to have high kurtosis and skewness (Pinson, 2006). For this rea-

son, an approach that makes no assumption of the distribution when estimating

the uncertainty could be more appropriate. Quantile Regression Forests (Mein-

shausen, 2006) is a non-parametric technique to estimate conditional quantiles

for high dimensional predictor variables of a response variable. In typical linear

regression, the equations found are designed to estimate the mean of the response

variable conditional to a predictor one. Quantile regression finds these equations
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by examining how the relation of the predictor and response changes depending

on the score of the response variable.

Quantile Regression Forests perform quantile regression based on the Random

Forest algorithm (Breiman, 2001). Random forest is an ensemble approach, also

thought as a form of nearest neighbor predictor, where the response of the en-

semble members is averaged to obtain the value of the prediction variable when

an input is given. Each ensemble member is a decision tree which is constructed

based on a subset of the predictor variables (X which can be high-dimensional)

to predict a real-valued response variable (Y ). For each tree and node, random

forests employs randomness when selecting a variable to split on. The split is

done according to a training set which is created by sampling with replacement

from a data set. Each leaf of the tree should, at the end of the construction phase,

correspond to a specific subspace of the predictors search space. For regression,

the prediction of a single tree is the weighted average of the original observations

that fall in the same leaf. The weight is given by:

wi(x, θ) =
1

#{j : Xj ∈ Rj(x,θ)}
(6.1)

where Rj(x,θ) is the node were X falls so the weight is 1 divided by the number

of observed values that fell in the same leaf as X. The prediction of a single tree

given X = x is calculated as follows:

µ̂(x) =
n∑
i=1

wi(x, θ)Yi (6.2)

The prediction of a single tree is then the weighted average of the original

observations Yi, i = 1, ..., n. For the nodes were X do not fall, the weigh is zero.

The prediction of a random forest is the weighted average of all trees. Compared

to typical regression, Random forests approximates the conditional mean by a

weighted mean over the observations of the response variable.

Quantile regression forests adds an additional step to find the conditional

distributions of the variable to predict. While traditional random forests keeps

only the mean of the observations that fall into a node, the quantile regression

forests keeps the value of all observations that fall in the node, not just the mean,
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(a) 90% percentil on out-of-the-bag observa-
tions at t + 19

(b) 90% percentil on out-of-the-bag observa-
tions at t + 42

Figure 6.11: Intervals for out-of-bag observations. The green points correspond
to observations that fell inside the intervals, while red points are those that fell
outside. Prediction errors are normalised on a scale [-1,1].

and assesses the conditional distribution based on this information.

To investigate the training errors of the GP model, error quantiles were ob-

tained by applying the quantile regression forest method for each hour of the

next-day horizon. The distribution of the error was found using wind power,

wind speed and wind direction forecasts as explanatory variables. Figure 6.11

shows the out-of-bag observations (observations not used for finding the inter-

vals) and how they fall into the 90% interval. It can be observed that for t + 19

and t + 42 (the beginning and end of the next day horizon) the intervals are

covering most of the points.

To see how these intervals found perform on unseen observations, these were

applied to the April test set. Figure 6.12 presents the point forecasts for the first

four days of the April test set as well as the prediction intervals (10%, 20%, ...,

90%) obtained. The power predictions are presented as a percentage Pn of the

nominal power of the farm (maximum capacity).

The distributions found were applied to the test set which corresponds to

one month after the last training point. It is important to consider that the

129



6. Wind Power Forecasting with GP

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour

%
P

n

90%

80%

70%

60%

50%

40%

30%

20%

10%

pred

obs

100 120 140 160 180 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour

%
P

n

90%

80%

70%

60%

50%

40%

30%

20%

10%

pred

obs

200 220 240 260 280 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour

%
P

n

90%

80%

70%

60%

50%

40%

30%

20%

10%

pred

obs

Figure 6.12: Wind power point predictions as percentage of the nominal power
of the farm (Pn) and the associated interval forecasts using the closest point from
the grid (v1).

130



6. Wind Power Forecasting with GP

20 40 60 80

−
1

0
−

5
0

5
1

0
1

5
2

0

Required Probability [%]

D
e
v
ia

ti
o

n
 f

ro
m

 n
o

m
in

a
l 
c
o
ve

ra
g

e
 [

%
]

observed

ideal

(a) Reliability on the first 200 hours of the test set
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(b) Reliability over all the test set

Figure 6.13: Reliability diagrams of 5, ..., 95 percentiles estimations made with
the Quantile Regression Forest procedure.

distributions found are considering a small set of history observations, which

could probably indicate that these are only accurate for a short period after

the last training point. In order to assess the influence of the sample size on the

quality of the estimated intervals, reliability diagrams were used. These reliability

diagrams provide information about the deviation of the actual coverage (âα) of

the forecasted intervals from the nominal proportions (α). This deviation is

defined as

α− â(α) = α− z(α)

N
(6.3)

where N is the total number of observations and z(α) is the number of obser-

vations that fell in the interval with proportion α (Pinson, 2006).

Figure 6.13 depicts the reliability evaluation results for the predictive distri-

butions obtained in the following 200 hours after the last training point and for
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the complete test set. The diagrams are for the complete next-day horizon (hours

19 to 42). This means that all probabilistic forecasts for all look-ahead times were

used with equal weight when calculating the deviations.

There are a couple of things to note from this figure. The narrower intervals

(10% and 20%) tend to be overestimated on the first 200 hours, having a slightly

higher coverage, while the larger intervals tend to be underestimated. In the same

figure, diagram b shows how the reliability decreases as the horizon increases. The

results confirm the behavior that was expected. The intervals are valid only for a

short period of time after the training period. In order to maintain the reliability,

the GP model would need to be retrained as new information becomes available

and the error distribution needs to be recalculated. Similar results for the months

of May and June can be found in Appendix E.
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(b) Average size of prediction intervals at T+48

Figure 6.14: Average size of prediction intervals at T+19 and T+48 horizons.

Other aspects of the predicted intervals such as the sharpness and resolution

were analysed. The sharpness, Figure 6.14, was calculated as the average of the
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Figure 6.15: Average size of prediction intervals at T+19 and T+48 horizons.

interval size for a particular horizon. As it is shown, the average size of the

intervals increases with the confidence intervals as it was expected.

The resolution metric shows how the intervals adjust in different situations.

This was obtained by calculating the standard deviation of the size of the inter-

vals. Figure 6.15 shows that the intervals vary between 30 to 40% at T+19 and

between 20 to 40% at T+48.

With an accurate estimation of the intervals, the grid operator can determine

what is the risk of sudden increases or decreases in power output that were not

modeled by the point forecast. Although this information is already useful for

decision making, it hasn’t been used for the characterisation of ramp events. If

the distribution of the error is known, this could improve the detection of possible

ramp events that were not modeled by the point forecast but that can potentially

develop into one. This idea will be developed in detail in the following chapter.
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6.5 Using Neighbour Points to Study Misplace-

ment Errors

With a wind-to-power modelling approach working and achieving a comparable

accuracy to current forecasting tools, it was possible to move forward into the

neighbourhood approach for ensemble prediction. The GP approach would allow

the modelling process to be applied at different grid points, as if they were the

actual location of the park. To investigate into this idea, two strategies were used.

The first one consists in using a set of surrounding points to generate one model.

It is assumed that the algorithm will be able to find the combination of points

which better describes the power output of the wind farm. It has to be taken

into account that with this approach, it is assumed that the best combination of

variables found would be the best for the complete testing period. The second

approach consists in generating one model per neighbour point, which will create a

set of models to potentially generate an ensemble of forecasts. The assumption in

this approach is that the misplacement error could be randomised by considering

all neighbour points. This strategy would also deal with the time and season

variability. While some points may be good representation of misplacement errors

during certain times, other points could be better for other times.

Figure 6.16: Neighbour points surrounding the wind farm location, where v1 is
the closest point to the farm (red point).

For the first approach, three different combinations of neighbour points were

used. The training sets consisted of 4, 9 (v1 at the centre of the grid) and 16

wind speed and direction points (shown in Figure 6.16) covering the January-
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March period. As more variables are incorporated to the regression process, it

can be expected that the resulting models will need to be more complex. For this

reason, different parsimony pressures were experimented to find the ideal pressure

for each case.

Table 6.5 presents the average MAE and RMSE obtained for each combination

of input variables. It can be observed that the incorporation of more variables is

not decreasing the error substantially.

Table 6.5: Average MAE and RMSE in kWh obtained in 50 runs on the April
test set using different set of input variables.

No. of Neighbours MAE RMSE Correlation Determination
Training Set Coefficient Coefficient

4 1985.5294 2597.5432 0.844361 0.671764
9 1988.14 2584.7988 0.837649 0.647170
16 2009.677 2627.9488 0.841045 0.647295

Figure 6.17 shows the set of models obtained in 50 runs for each of the con-

figurations of the input variables.

Most models in the three training set configurations are very similar, which

explains why the MAE and RMSE do not vary much. Looking at the different

models, it has been observed that neighbour point v9 is the most frequently picked

up by the algorithm. This means that this point is the one that minimises the

RMSE the most. However, this does not mean that this point improves the big

misplacement errors like the one that occurs around hour 160. To verify this,

neighbour point v9 was taken individually with its direction and used to find

a model, as it was done with the closest point. Figure 6.18 shows the results

obtained on the test set for this point.

In general, it can be observed that both points v1 and v9 provide a similar time

placement on their predictions, however there are some areas where v9 models

some changes and magnitudes that were not seen with v1. For example, the

sudden increase around time t+ 500, the observation shows a sudden peak which

was not seen with v1. Also, between times t + 260 to t + 300 it can be observed

that v9 can model the higher variations better. There is still an evident omission

of some power peaks (increases and decreases). However, this indicates that if
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(b) Models on the following 328 hours of the
test set with 4 neighbour points
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(c) Models on the first 200 hours of the test
set with 9 neighbour points
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(d) Models on the following 328 hours of the
test set with 9 neighbour points
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(e) Models on the first 200 hours of the test
set with 16 neighbour points
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(f) Models on the following 328 hours of the
test set with 16 neighbour points

Figure 6.17: Models obtained in 25 independent runs using 4 (a and b) , 9 (c and
d) and 16 (e and f) neighbour points.
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(a) t to t + 200
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(b) t + 201 to t + 350
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(c) t + 350 to t + 528

Figure 6.18: Wind power forecasts obtained on the test set using v1 and v9.
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further neighbour points are explored, a better modelling could be obtained by

using all points as a ensemble, not just one.
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Figure 6.19: Forecasts obtained using neighbour points on the test set from t
to t + 48. The N/NE points correspond to neighbours located at the north and
northeast of the farm location. The N/NW correspond to those at the northwest,
the S/SW points correspond to those located at the southwest of the farm and
the S/SE corresponds to those located at the southeast of the wind farm.

For this reason, the second approach was explored. The sixteen points taken

before together in one model were taken individually using the same pressure

parameter that was found optimal for v1 and using both wind speed and direction

at the neighbour point. The experiment was further extended to 20 more points

to have finally 36 surrounding points. Figure 6.19 show the forecasts obtained

using different neighbour points that surrounded the wind farm location during

the first 48 hours of the April test set.

It can be observed in the figure that the neighbours located north to the

location of the farm predict the power output with a time placement just before

the times of the points at the south of the farm. Figure 6.20 shows the wind

direction observations at the Sotavento wind farm during this forecasted period.

As the figure indicates, the wind during this period was predominantly coming

from the north, which explains why neighbour points to the north would show a
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6. Wind Power Forecasting with GP

time placement previous to the ones from the south.
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Figure 6.20: Wind power observations on the first 48 hours of the test set. Most
points are located on the N/NE direction, meaning the predominant winds during
this period were from the North.
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Figure 6.21: Forecasts obtained using neighbour points on the test set from t+240
to t+ 280.

Figure 6.21 shows another example of the differences in time placement using

different neighbour points. This figure, which corresponds to the period t + 240
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to t + 280 (17th and 18th of April), shows that there is still a timing error in

the forecasts. Between hours 240 and 255, there is a rapid increase which was

modeled a few hours later. However, there are a couple of neighbors that modeled

the increase with a slightly different time placement. The same situation happens

at t + 260. Some points start the power increase before the rest. Using these

forecasts as an ensemble, the spread could be used to calculate the probabilities

of an increase/decrease happening in a certain period of time.

Figure 6.22 shows the wind direction corresponding to the wind predictions

shown in Figure 6.21. It is interesting to see that during this period of consistent,

although variable, power output increase, the wind was constantly predominantly

from the west.
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Figure 6.22: Wind power observations on the period corresponding to t+ 240 to
t+ 280 hours of the test set. All points are located on the W direction, meaning
the predominant winds during this period were from the West.

Figure 6.23 shows the wind speed and wind power observations in the April

testing period. In general it can be observed that the winds come from the west

and that those wind speeds observations with a east direction usually have a

low power production. This wind direction tendency could mean that looking

to the west points is like looking into the near “future” of what might happen

at the farm. The use of a larger neighbourhood could potentially improve the
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misplacement estimation by looking at the timing error of each forecast to build

a distribution.

 0  6  12  18

N

E

S

W

NE

SESW

NW

N

E

S

W

NE

SESW

NW

(a) Wind speed observations
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(b) Wind power observations

Figure 6.23: Wind speed and wind power observations on the April testing period.

Finally Figure 6.24 shows the forecasts of the most outer points of the neigh-

bourhood during the testing period. It can be observed that there is an evident

difference of each forecast that could be used to quantify the uncertainty of the

power production. This will be further addressed in Chapter 7.

6.6 Discussion

This chapter introduces the use of GP for modelling the relationship between

WRF-ARW forecasts and the total power production of Sotavento Wind Farm.

One of the main findings of this chapter is the importance of the role that variables

play in wind energy prediction, such as wind speed and direction. It has been

shown that a change in direction has a direct impact on the power output. This

could be specially observed on the May forecasts. The quality of the results

for this period suggested that either the wind patterns in this month were not

the same as for the training period, or the wind variability led to more frequent

misplacement errors. Preliminary study using neighbour points suggested that

some improvement could be achieved by considering other grid points. Although

misplacement errors do not occur all the time, it has been found that the inclusion

of other grid points can provide an idea of the possible variability of the future
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Figure 6.24: Wind power forecasts obtained using neighbour points on the April
test set.
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power production of the farm. The use of neighbour points was found to be better

when taken individually than when taking them together as one input.

As it was previously found that a small complexity could produce models

with better generalisation, the parsimony pressure in neighbour experiments was

kept high. Although a low complexity was achieved, it could be noticed that

for the cases of a high number of inputs, the search was biased to certain grid

points; those that kept the error at the minimum level possible in such short

model complexity. Neighbour points that were taken individually could show

interesting power output events that were not modelled at the closest grid point.

This aspect suggests that exploring a wider area could potentially be used to

better characterise large changes in power output.

Both of the power prediction approaches presented in this chapter produced

encouraging results in terms of point forecasts. This is an important achievement

as it is a first step into the characterisation of ramp events. Another important

result of this study was the quantification of the variability of the error, as this

would be the second aspect to use for ramp characterisation. The results obtained

show that the quantile regression forests technique is able to provide acceptable

intervals, covering most of the observation points in the test set.
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Chapter 7

Characterising Large Variations

in Wind Power

7.1 Introduction

Wind power forecasting models are nowadays used by some grid operators for

UC, however, existing tools need to be improved to be able to handle extreme

situations related to wind power generation (Ferreira et al., 2010). These extreme

situations, or ramp events, may be related to specific meteorological events, such

as cold fronts or high pressure levels, which can produce drastic and unexpected

increases or drops in the level of power production of a wind farm (Pinson, 2009).

These sudden increases or drops may happen within a couple of minutes or a

couple of hours. An early detection of the possibility of these events happening

would let the grid operator prepare the most appropriate backup units according

to the characteristics of the event. Different types of backup units respond at

different speeds so an estimation of the intensity and the time scale of an event

is important. The prediction of ramp events is commonly addressed using ei-

ther point forecasts, obtained by running high resolution numerical models, or

ensemble forecasts, which are obtained by running NWP models with different

perturbations of the initial state (Bossavy et al., 2013). Despite high resolution

numerical runs being avoided in ensemble forecasting, ensembles are still compu-

tationally expensive. NWP models may have misplacement errors and therefore
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7. Ramp Events

the closest point of the grid might not always be the best reference point from the

numerical model. In addition, current ramp characterisation techniques are based

on a crisp binary definition, which can leave out events that did not quite meet

the amount of change expected but that could be equally important to consider.

This chapter puts together the wind power forecasting approach introduced

in Chapter 6 and a ramp characterisation technique in order to address the weak-

nesses of current ramp characterisation approaches. The wind power forecasts

and their corresponding error distribution are used during the characterisation

process, which consists of a power signal filtering phase and the application of a

fuzzy inference system to classify ramps. The fuzzy rules are based on the as-

sumption that changes in power output that do not meet the strict definition of

ramp event can be equally important and damaging and should not be ignored.

To differentiate between highly probable events and events with lower probabil-

ity, a score is given, which is the result of the application of fuzzy rules defined

based on post experience. This work has been published as a journal paper in

(Mart́ınez-Arellano et al., 2014b).

The layout of this chapter is organized as follows: in Section 7.2, a basic

ramp detection algorithm is presented and applied directly to the wind power

forecasts obtained by using GP. Section 7.3 presents an improvement of the basic

approach, taking into consideration the possible error of the forecasts. Section

7.4 presents a different detection/characterisation approach of power ramps based

on fuzzy logic and is complemented by an uncertainty estimation of the timing

of the events using neighbour points as ensemble forecasts. Finally, Section 7.6

presents a discussion and conclusion of the results obtained.

7.2 A Basic Ramp Detection Algorithm

One of the current challenges in wind power forecasting is the ability to handle

extreme events, which can represent a different situation depending on the end

user. In general, a ramp event is a rapid change in power output, either increase

or decrease, within a small time window. Whether to use an increase of 50% or

30% of nominal power is, as mentioned before, up to the system operator. Wind

power forecasts usually model very well the increases or decreases that happen
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7. Ramp Events

within large time windows (at a small change rate). However, changes in small

time windows are more difficult to model correctly. Cutler et al. (2009) studied

the weather phenomena that were causal of ramp events. They found that the

majority of the events that were studied were associated with cold fronts, low

pressure systems and troughs, which are well modelled by the numerical model

but might be placed in the wrong physical position.

Another factor that might contribute to the inadequate characterisation of

ramp events is the crisp definition of such events. In the literature, most studies

are based on a binary definition, where the ramp is defined as a specific percentage

of change in a specific time window. With this definition, events which might be

slightly lower in change might not be identified but could be equally important in

the eye of the operator. A good characterisation strategy should be more flexible

and able to identify small but potential events.

In order to establish a benchmark for ramp detection precision, a basic ramp

detection algorithm is presented, which follows the binary definition of ramp

events. The approach consists in processing the power forecast several times

using different time windows to look for changes of a certain percentage p until a

maximum window size w is reached. To do this, a sliding window is used, which

starts from hour 1 and is moved one hour ahead after verifying if the current time

window has an increase or decrease of p percentage. A Pseudocode is presented

in Algorithm 1.

The algorithm was applied on both forecasted and real power output of the

Sotavento Experimental Park to identify the falsely and truely forecasted ramps.

The time window was set to 5 hours, according to (Greaves et al., 2009). The

percentage of change was set to 30% due to a very small number of real events

of higher change. A total number of 21 ramps were observed in the available

data from the month of April using the 30% of change determined previously. Of

the 21 ramps observed, 8 of them were forecasted accurately in direction (ramp-

up or down) and with a phase error less than ±12 hours. This time period of

association is the maximum time difference between the timing of the forecast

and the observed ramps, according to Greaves et al. (2009), that can maintain

realistic connection between the forecast and the observed event. Events further

apart might be representing totally different events. The total ramp precision and
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Algorithm 1 Ramp detection

Require: a power signal, percentage of change and maximum window size
p = maxPercentage, w = maxWindow
currentWindow = 1
while currentWindow is less than w do

set window pointer at the beginning of the power signal.
while the end of the power signal is not reached do

Calculate the amount of change from the starting point of the window to
the end.
if change is greater than or equal to p then

identify the starting point of the window as the initial time of the ramp
event
The end time is detected in the following hours where the direction of
the ramp event changes

end if
slide the start point of the window one hour forward

end while
currentWindow = currentWindow + 1

end while
In the final set of ramps identified, check overlaps and readjust the start and
end times.
Output all ramp-up and ramp-down events with their start and end times

ramp recall percentage were calculated using the equations presented in Chapter

2.

Figure 7.1 shows an example of a true forecast of a ramp-up that occurred

on the 9th of April. Although the observations indicate that the ramp started

around 10:00 hrs, the forecast was able to model this event one hour later, from

11:00 hrs to 02:00 hrs the next day. One can also notice that the fluctuation at

10am was not modelled. It might have been caused by local conditions that were

not captured at the mesoscale level, however the increase tendency was modelled

effectively.

Table 7.1 shows the results of the approach described previously. It can be

observed that the recall percentage obtained from the forecast is quite low. How-

ever, the result is not reflecting what could be appreciated in the signal at a first

glance, as some of the ramps that were not detected by the algorithm were about

3% under the threshold. The ramps would have been detected using a smaller
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Figure 7.1: True ramp forecasted on April 9th, 2012.

Table 7.1: Forecast Precision and Recall on April, May and June 2012 at So-
tavento using the model at the closest point. The observed ramps are obtained
by applying the binary definition with a change of 30%.

April May June

Number of true forecasts 8 3 9
Number of false forecasts 3 1 2
Number of missed ramps 14 14 15

Forecast Precision 72.72% 75% 81.81%
Recall 36.36% 17.64% 37.5%

percentage of change that could be equally important to the operator. However,

taking into account the current definition of a ramp implemented in the algo-

rithm, only those ramps that are of exactly 30% or more can be detected. Other

ramps that were not captured had an error between the 5 and 10%, which can be

attributed to an underestimation of the forecast. If the estimation of the error

was considered in the process, it could potentially improve the ramp recall.
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7.3 Incorporating the Error into the Ramp De-

tection Process

According to the previous analysis, the error of the model on the training set

is most of the time negative (over estimation). However, the histograms show

some large under estimation errors. This could be potentially related to the

fact that the GP algorithm works by minimising the root mean squared error

(RMSE), which during ramp events where there are timing errors might result

into high penalisations. For this reason, it could be expected that some large

changes in power output would be missed in subsequent forecasts. To investigate

the potential of using the error distribution for the ramp characterisation, the

ramp detection algorithm presented previously was adapted to incorporate the

error during the calculation of the change percentage on the sliding window.

The possible errors on the start and end of the window were taken into account

only if by incorporating the error, the difference between start and end point

increased. It is important to make clear that so far the error distribution is not

time dependent, each hour is treated independently. From the quantiles obtained

in Chapter 6, the median of the error (50th percentil) was used for the detection

process. The reason for using the median instead of the mean, for example, is

that with a high skewed distribution, the mean could be affected by few very

large errors, so the use of the median helps to avoid the incorporation of very

large errors that could potentially increase the number of false ramps.

The new version of the ramp detection algorithm was applied to April, May

and June 2012. Results with this approach are shown in Tables 7.2 and 7.3. The

ramp recall increases significantly for the months of May and June. There is not

much increase in the number of false forecasts, which keeps the ramp precision

at a sufficient level. For the case of May, which showed a lower precision, a

neighbour point south to the location of the farm was tested. The precision

shows an important improvement

These precision measurements are obtained using the binary definition on the

real power output. This could mean that ramps that are apparently false forecasts

could actually be “almost” a ramp on the real power output. This situation is

shown on Figure 7.2. The figure shows a ramp-up and ramp-down which are
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Table 7.2: Forecast Precision and Recall on April 2012 at Sotavento using the
model at the closest point. The observed ramps are obtained by applying the
binary definition using a change in 30%.

Basic Considering
approach the error

Number of true forecasts 8 15
Number of false forecasts 3 5
Number of missed ramps 14 7

Forecast Precision 72.72% 75%
Recall 36.36% 68.18%

Table 7.3: Forecast Precision and Recall considering the error during May and
June 2012 at Sotavento. The observed ramps are obtained by applying the binary
definition using a change in 30%.

May May June
Neighbour Point

Number of true forecasts 6 11 14
Number of false forecasts 2 8 4
Number of missed ramps 11 6 10

Forecast Precision 75% 57.98% 77.77%
Recall 35.29% 64.70% 58.33%

not at the 30% change on the observations. The figure also shows four different

forecasts using four different points from the grid. Most of the models show an

increase and decrease which are identified as a ramp events. Although in the real

power output this was not identified as a ramp due to the binary definition, it

could still be of impact, if it is just slightly lower.

In order to avoid these “false” recalls, the binary definition of ramp events

could be relaxed and changes could be categorised or scored according to certain

criteria. To do this, a fuzzy rule based approach is proposed. This will allow to

also consider those events, which are likely to become ramp events.
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Figure 7.2: Ramp on the 4th of April using the four grid points surrounding the
farm.

7.4 A Fuzzy Logic Approach for Ramp Charac-

terisation

Fuzzy set theory, proposed by L.A. Zadeh, provides a methodology that allows to

deal with the imprecision of practical systems (Zadeh, 1965). In a given system,

where an output is produced according to certain inputs, those inputs or elements

may have different states or values which represent ranges. These ranges which

are not precisely defined, can be modelled using fuzzy sets. To decide whether

the element belongs to one or another set, a membership function is used. The

membership functions depict the degree of membership or one-to-one correspon-

dence between an element in a domain and a truth value. Membership functions

take the form

µA(x)← f(x ∈ A) (7.1)

where µA is the membership function and x is an element of the set X, which

may belong to a fuzzy set A. The membership functions may have different

shapes according to the experience of the designer.

Once the input is mapped to a set, the process of deciding what the output

should be is done by using a set of rules. Fuzzy rules describe in a high level
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language how elements of the domain, which are inputs to the system, map to

the outputs. This is done by applying a set of IF-THEN rules when an input has

been mapped to its fuzzy set with the membership function. After the evaluation

of these rules, a fuzzy set associated with each model solution variable is produced.

Then, a process of defuzzification is used to find the value that best represents the

information contained in the fuzzy set. This value is called the Fuzzy Inference

System (FIS) score. Figure 7.3 represents the overall fuzzy inference system.

In terms of ramp characterisation, the decision to be made is whether a change

in power is a potential ramp event. The binary classification can be avoided by

characterising the event as a high, medium or low probable ramp event without

discriminating it completely. The FIS score would be a measure of how probable is

the ramp event. The following sections present the detail of how this is achieved.

Fuzzyfication
Crisp Input

Fuzzy

Input

Fuzzy 

Output
Inference System Defuzzyfication

Crisp Output

Fuzzy 

Rules

Membership 

Functions

Figure 7.3: Fuzzy Logic System.

7.4.1 Inputs and the Filter Function

In order to use a fuzzy inference system for ramp characterisation, the first aspect

to address is the type of inputs that will be used by the inference system to classify

an event. The variables that are used in the decision making process, as well as the

rules, are chosen by and depend on the knowledge and expertise of the designer.

The experience of power grid operators would need to be taken into account in

order to adjust the inputs, fuzzy sets and rules according to the situation of the

grid.

As the purpose is to characterise a change in power (either increase or de-

crease), a straightforward option is to use the amount of change in a window of

time, with the window size being a parameter that depends on the end user and
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the conditions of the energy system that is being operated. This window size is

important as the amount of change to be considered depends on the time frame

one is looking at, which is related with how quickly the energy system can react.

The window size is a clear concept drift problem as the conditions of the energy

system are constantly changing, affecting on real time the size of the window.

Concept drift refers to changes in the conditional distribution of the output or

target variable, while the distribution of the input may stay the same (Gama

et al., 2013). In the ramp characterisation problem, the classification ramp/no

ramp will not always be the same for the same inputs (amount of change and

window size). This research, however, is only addressing the problem as a static

one, fixing the window size to 5 hours in order to develop a baseline for this

method. The use of dynamic windowing is proposed as future work on Chapter

8.

The power forecast, which was obtained previously by GP, will be converted

first to a percentage of total capacity, instead of using the actual power output in

kWh. This is done by dividing the hourly forecasted power by the total capacity

of the wind park. Once the signal is in terms of percentage, it is filtered to obtain

a new signal which will indicate the amount of change at time t for a specific

window of time.

For a given wind power time series Pt, the associated filtered signal P f
t is

calculated using the following equation:

P f
t = |Pt+w − Pt|, w = 1, 2, 3...n (7.2)

where w is the window size and n the maximum window of time to study. If

the interest is to characterise changes in a time window of 5 hours, then 5 filtered

signals would need to be obtained to study the changes in up to five hours. This

is because if a percentage of change is only calculated in a window of size 5, then

the changes that happened in between those 5 hours would be ignored. It might

be the case that between hours 2 and 4, the change was produced but not noticed

after the fifth hour if compared to the beginning to the time window. To avoid this

situation, the procedure will be to generate multiple filtered signals using different

window sizes until the maximum window size is reached. The first signal will then
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Figure 7.4: Filtered signals obtained for the first 24 hours of the test set. These
show the possible ramp event on the 4th of April.

be obtained calculating the differences in power output taking a sliding window

of one hour, the second signal will be obtained taking the differences on sliding

windows of two hours and so on, until reaching the maximum window size. Each

filtered signal will be slightly shorter than the original due to the window size.

With the filtered signals ready, the next thing is to design the fuzzy inference

system to process these one by one.

Figure 7.4 shows the five different filtered signals obtained for the first 24 hours

of the April test set. It can be observed that a potential ramp-up event starting

at t+10 is being predicted. All filtered signals show the ramp-up tendency at the

same time and an end time can be identified at t18, where the one hour window

signal still shows a positive change.

Figure 7.5 shows a ramp-up event of long duration on the 9th of April. Taking

a look at the signal in red (1-hour window), it can be observed that the quickest

ramp rate happens at hour 71, where the signal is above the 15%. This signal also

shows that the ramp-up that started at around hour 53, has a one-hour decrease

(or no change), that was not visible on the other signals. The grid operator needs

to make sure that the backup allocated would be quick enough to compensate for

the sudden decrease and also that the rapid increase at hour 71 is not going to
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Figure 7.5: Filtered signals obtained on the 9th of April (test set).

cause instability in the system.

Another interesting aspect to point out is that in both figures, it can be

observed that a change in a 1-hour window never reaches the 30%. However,

from the two-hour window, one can start observing changes close to the expected

percentage of change. This could help to determine the type of backup resource

needed. If the rate of change during the first hour is small, the grid operator

could decide to use non-spinning reserve. However, if it was the case of having

a high probability of 30% changes within an hour, then a quick ramp-up backup

resource would be more suitable.

7.4.2 The Fuzzy Inference System

As mentioned previously, two aspects are considered here, the amount of change

in power and the time window. There is an interesting relationship between these

two variables that can provide information about ramp events. When the time

window is small and a large change is observed, there is a high probability that

the tendency could continue in the following hours, marking the start of a ramp

event. Moreover, when the time window increases to a medium size (2 ∼ 4 hours),

and if the change is high enough, there might still be a high possibility that a

ramp event is happening. Finally, if the time window is at its maximum size and
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the change was close to the percentage of change that defines a ramp event, then

it is definitely a ramp. On the other hand, there are situations which are less

likely of developing a ramp event. Situations where the time window is high and

the change is low, either the increase/decrease event is occurring very slowly or

the event happened in a smaller window, so in both cases the probability is low.

This is opposite to a low change in a small window which can potentially still be

a ramp in the coming hours.

This behaviour was translated into fuzzy sets and rules. There are different

approaches for the derivation of fuzzy rules. As it is not always easy to derive

these from human experts, several methods have been proposed for generating

them automatically from numerical data. Most techniques involve the clustering

or division of input and output data into subspaces (fuzzy regions, grid methods)

and the inference of rules from these (Nozaki et al., 1996; Takagi and Sugeno,

1985; Wang and Mendel, 1992). AI approaches like Genetic Algorithms, Genetic

Programming and Neural Networks have been proposed, which might require

some notion of potential rules or might depend on the accuracy of clustering

techniques (Akbarzadeh et al., 2008; Lee and Lee, 2005; Quek and Tung, 2001).

Due to the limited size of the ramp event training set, it was decided to classify

the existing training cases into few linguistic categories and derive the rules from

there according to the training cases. Future work would address the automatic

generation of these. Figure 7.6 shows the two input variables and member func-

tions used. The time window size uses a triangular member function, as it is the

standard. The three fuzzy sets for the time variable are slow, medium and fast,

as depicted in the figure. A fast change would be a change that happened in the

first three hours. A change in a medium time frame would be one taking between

two and four hours, achieving its maximum score at hour three. A slow event

would be one that takes the complete five hour window to happen.

The power change rate implements a gaussian membership function, as this

function has a softer transition between sets. It also naturally introduces a “shoul-

der” near zero, suppressing the influence of small changes without introducing a

third free parameter. As depicted in Figure 7.6, the fuzzy sets for the power

change are divided in three: low, medium and high.

These depend in the amount of change as a percentage of the total power
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Figure 7.6: Member functions for variables time and rate.

production of the wind park. The rules are shown in Table 7.4 and using the

Mamdani Inference Model, a surface plot of these was generated (Figure 7.7).

Colours ranging from the magenta to orange, depict events that are ramp events

or can potentially be ramp events, while yellow to blue depict changes which are

unlikely to turn into ramp events.

With these rules and the fuzzy sets, a softer decision of what a ramp event is

could be made, allowing the identification of smaller equally important events.

Table 7.4: Rules of the fuzzy inference system.

Rule 1. If change is high then rampSeverity is high
Rule 2. If time is fast and change is medium then rampSeverity is midhigh
Rule 3. If time is medium and change is medium then rampSeverity is midhigh
Rule 4. If time is slow and change is medium then rampSeverity is medium
Rule 5. If time is fast and change is low then rampSeverity is medium
Rule 6. If time is medium and change is low then rampSeverity is medium
Rule 7. If time is slow and change is low then rampSeverity is low
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Figure 7.7: Surface plot of the solution domain according to fuzzy rules. Colours
ranging from the magenta to orange depict potential ramp events, while yellow
to blue depict changes which are unlikely to turn into ramp events.

7.4.3 Applying the FIS for Ramp Characterisation

To test the fuzzy inference system, the same characteristics of change were used

as with the basic ramp detection approach studied previously, which considered

ramp events as a change of 30% in 5 hours or less. For this kind of ramp events,

5 filtered signals were obtained and then the FIS was applied to each one individ-

ually. Each value of the filtered signal was taken as a new input, and the window

size was chosen according to the filtered signal being tested. Some of the results

are shown in Figure 7.8. Colour maps were used to facilitate the interpretation

of the results. As the human eye is sensible to the difference in colour, differences

can be captured more easily than when results are presented as quantities. In

addition, the shapes provide some interesting facts about the characteristics of

the event. A maroon colour corresponds to a FIS score of 1, which represents a

high severity. A light maroon/crimson colour corresponds to a mid-high severity

which is between 0.7 and 0.9 score. The yellow/green corresponds to low severity

events, while the blue colour is definitely not a ramp event. The ramp-up and

down events were separated into two graphs to avoid colour maps being too satu-

rated. The top figures are the actual power signal, the figures in the middle show

the ramp-up events and the last row shows the ramp-down events.

Focusing on the second line of the figure, the ramp-up events, it can be ob-
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Figure 7.8: Real power output and fuzzy inference system scores corresponding
ramp-up and ramp-down events on the same time period. The graphs on the left
correspond to the first 100 hours after the last training point. The graphs to the
right correspond to hours 100 to 200 after the last training point.

served that the largest change (between hour 60 and 80) is the strongest in FIS

score along the 5 filtered signals. A dark colour in all filtered signals at the same

time (a straight line from 1 to 5 in the Figure) would mean that the change started

quickly with a high rate and lasted for some hours. These are the changes that

might pose the worse threat as the grid operator might need backup units that
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can be turned on or ramped up/down quickly. The step shape of some of the

lines indicate the event started with a low change rate and progressively speeded

up. A wide segment on the 5-hour signal would indicate that the change contin-

ued to increase even after the 5 hour window. If the event was shorter, strictly

limited to 5 hours, the line would be thinner. The step shape is not reflected,

for example, on the change detected after hour 160. A straight line is shown in

this case, meaning that from the very start of the event it increased with a very

prominent slope. The ramp-up observed at hour 80 is a false ramp due to large

error on the forecast. The corresponding ramp-down of this false ramp-up can

also be observed on the bottom of the figure. Another interesting thing to men-

tion is that the “false” ramp-up before hour 20 is shown with a slightly lighter

colour meaning that the total change in the 5 hour window did not reach the

30% change, nevertheless it is an important increase to take into account. Look-

ing more into the bottom part of the figure, it can be observed that the largest

ramp-down events are correctly identified, at hours 120 and 180. The original

power signal has several small increases and decreases which can be seen in the

filtered ones as noise.

All these characteristics that can be highlighted through the use of the colour

maps can improve the identification of the ramps as more information about how

the event will develop is given. The results show in general the capacity of the

fuzzy system to identify the events that were previously identified using the ramp

detection algorithm, and in addition to this, presents some additional events

which are categorised as potential ones. These additional events are presented in

lighter colours as they represent less risk and therefore less probability of actually

happening. It might still be possible that the forecast signal even with the error

taken into account could not represent the real intensity of the event due to

misplacement errors, and that other points of the grid could highlight better

these changes. It would be interesting to see if exploring other closer locations

could provide even more important evidence of these changes.

The fuzzy inference system was applied to some neighbour points to see if

other type of information could be revealed that the closest point was not showing.

April power forecasts obtained with neighbour points v3 and v13 (points to the

west of the park) were processed, filtered and characterised with the FIS. Figure
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Figure 7.9: Real power output and fuzzy inference system scores corresponding
to ramp-down events at three different points during the same time period (250
to 350 hours after the last training point).
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7.9 shows some results applying the fuzzy approach to these points. In general,

there is a match in the three points about the events shown, although they present

different intensities. The interesting aspect to see in this figure is the detection of

two events around the 300th hour by the second neighbour (bottom right). These

frequent changes in power output were not well modelled by the closest point of

the grid. However, a neighbour point to the west of the wind farm is starting to

represent these events which are not well located in time but they can indicate a

period of various changes that might be important to consider from the system

operator’s point of view. This is consistent with the wind direction observations

which in general come from the southwest of the farm during this period.

A second subset of neighbour points was taken, this time further apart from

the location of the farm. The points v17, v22, v27 and v32 which correspond to the

far northeast, southeast, southwest and northwest of the 36 grid points explored

before. Figure 7.10 shows the FIS scores obtained in the first one hundred hours

of the test set. It can be observed that all four points agree on the possible

development of a ramp-up event during the first 20 hours. The following three

ramp-ups (at around hours 60, 70 and 80) are forecasted again by all neighbours

but showing different probability. It can also be observed that the northeast point

shows the higher probabilities. The same behaviour can be observed in Figure

7.11. The northeast neighbour highlights the events with higher probability and

the larger ramps (around hours 150 and 160) are well identified. During the

first 10 hours of this period, most neighbours indicate two possible ramp events,

which in the real output are changes of around 20%. These were not detected as

real ramp events with the binary definition, however, most neighbours highlight

a moderate event.

Finally, it can be observed that during the test period on Figure 7.11, all

increases are modelled in at least one neighbour, although different severity. This

leads to think that if all 36 neighbours are considered, this could be used to

compute an overall probability of the event happening at certain hour. Bossavy

et al. (2013) propose a similar approach, however the authors use ensembles

produced by the perturbation of the initial state of the numerical model, not

ensembles by considering a set of points as proposed in this thesis. Also the

authors base their approach on the binary definition of ramp event. The timing of
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Figure 7.10: Real power output and fuzzy inference system scores corresponding
to ramp-up events at four neighbour points during the same time period (0 to
100 hours after the last training point).
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Figure 7.11: Real power output and fuzzy inference system scores corresponding
to ramp-up events at four neighbour points during the same time period (100 to
200 hours after the last training point).
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the event is an important aspect to be characterised as the grid operator needs to

define the available backup resources at each hour. The following section presents

a neighbourhood approach for the estimation of the timing of the events.

7.5 Using A Neighbourhood Ensemble for Esti-

mating the Ramp Timing Uncertainty

The prediction of the timing of a ramp event is a task even more challenging than

predicting the duration. Phase errors have a high impact on the grid stability and

their characterisation has become an important aspect to be addressed in future

forecasting tools, as most state-of-the-art tools not have a dedicated module to

characterise them. A neighborhood ensemble approach for determining the timing

of an event could address the misplacement errors from numerical predictions by

giving the grid operator more information of the possible time intervals where

the event might happen.
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Figure 7.12: Ramp timing characterisation process.

The proposed approach for the timing characterisation, as depicted in Figure

7.12, consists in applying the fuzzy characterisation approach to each of the pre-

dictions obtained using each neighbour point individually and determining the

different possible timings of the potential events (those above a certain FIS score)

according to the ensemble. To determine the timings of ramp event for one grid

point, the five filtered signals are used. First a FIS score threshold τ is defined.

Then, for each forecasted hour t, the filtered signal that has the highest FIS score

at that time and that is higher than the threshold, is marked as the beginning

of the ramp event that will have a duration depending on how many hours the

FIS score is not zero. This process is repeated for each neighbour point until for
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Table 7.5: Forecasted timings for the ramp observed on the 9th of April at 5:00
pm.

Starting time Number of Neighbour Points
11:00 2
12:00 1
14:00 1
15:00 3
16:00 1
17:00 1
18:00 4
19:00 7

Total 20

each ramp event a set of possible start times is obtained. The possible starting

points for one event would determine an interval and the probability of the ramp

event starting at a certain hour would be estimated according to the number of

neighbour points that predicted that starting hour.

The process described above was applied to the 20 outer grid points to So-

tavento for April 2012. Table 7.5 presents the different starting hours and number

of neighbour points that forecasted the ramp-up observed on the 9th of April us-

ing a threshold of τ = 0.8. This particular day, two contiguous ramp-up events

were observed, although only one was detected under the binary definition. The

general trend during the day was an increasing one, except for a slight decrease in

the middle of the day. This can explain why some neighbours detect the increase

from as early as 11 am. From the 20 ensemble members, 12 predict timings af-

ter 17:00 pm, which corresponds to the 60 % of them, 85% predict the starting

time from 14:00 pm. With the FIS scores presented on the colour maps, the grid

operator would still be able to see that there is a potential increase in the morn-

ing of the 9th of April, which is related to that 15% that is forecasting an early

ramp-up. It would be up to the consideration of the grid operator to determine

if this increase is representing a risk according to the scheduled back up.

Table 7.6 shows the starting hours and number of ensemble members that

predict a ramp-up event on the 26th of April which was not forecasted by the

closest point. From the 20 members, 12 predicted the event with high FIS scores,
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Table 7.6: Forecasted timings for the ramp observed on the 26th of April at 08:00
am.

Starting time Number of Neighbour Points
00:00 2
03:00 1
06:00 1
09:00 1
11:00 5
12:00 1
15:00 1

Total 12

indicating again the probability of an event. From the 12 members, 5 predict

a start time at 11:00 am and the other seven are spread between 12:00 am and

15:00 pm, which is still in the 12 hour margin suggested by Greaves et al. (2009).

7.6 Discussion

This chapter presents a novel approach to wind power ramp characterisation.

The approach introduces the use of the error distribution and fuzzy logic rules

to improve the characterisation of ramp events which might not be identified by

using a binary classification. According to the results shown in Table 7.2, the

percentage of ramp recall improves as the error is taken into account. In addi-

tion, the introduction of fuzzy rules provides information about possible events

which were not forecasted with a change of 30 % but could potentially be of

interest to the grid operator especially during periods of constant fluctuations.

The exploration of neighbour points could give information of events that are not

predicted at the closest point, as it is the case of May predictions. The visual

presentation of the results can help to interpret different aspects of the develop-

ment of the event. Although the number of “false” ramps may increase with the

fuzzy approach for ramp detection, it will be able to flag more potential events,

which is equally important giving the operator the information to decide whether

it should be considered a ramp event or not. The ramp rate of the events, which
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can be determined by looking into the size of the time frame where the change

happens, can help determine the type of backup needed. As it has been pre-

viously mentioned, the ramp rate is an important characteristic of ramp events

that will determine how quick the backup resource should be able to start and

reach its nominal load.

In addition to the characterisation of the duration and change rate of the

event, it was possible to provide an estimation of the possible starting times of

the events. Neighbour points were used as an ensemble, where the number of

members were used to calculate a probability of an event happening at a certain

hour.

It is important to take into account that these results are related specifically

to the Sotavento Experimental Wind Farm. Each wind farm has different terrain

characteristics that affect the power production of the farm in different ways. The

advantage of GP is that no assumptions about the model are needed. This does

not mean that the model could not be improved with local information, specially

for the smaller fluctuations. However, for a day-ahead forecast, this approach

provides a wider picture of the possible events at the farm.

In addition to the two variables used for the fuzzy inference system, there are

other potential variables that could bring important information to the charac-

terisation, such as temperature and pressure. It is well known that changes in

these variables are related to the development of ramp events and these variables

at different points may suggest changes that were not characterised at the closest

point. Some detail of how these variables could be potentially used in the charac-

terisation process will be developed in detail in the future work section. Finally,

from the system operator’s point of view, the fuzzy logic approach would allow a

better understanding of how the events will develop over time in addition to the

traditional point and probability day-ahead forecast that is provided by current

state-of-the-art tools.
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Chapter 8

Conclusions and Future Work

8.1 Summary

The work presented in this thesis is a novel approach to wind power forecasting

and to the characterisation of wind power ramp events, which is currently an area

of great interest because of its importance in the integration of wind energy into

the electricity market. Based on the results of this research, it can be concluded

that a good characterisation can be achieved by taking into account the infor-

mation of the surroundings of the wind farm being studied. This, coupled with

a softened definition of a ramp event, allowed the characterisation of potential

events which the common binary definition used in the literature is not able to

achieve.

The prediction of the duration and time of ramp events as well, as the char-

acterisation of how these events will develop in small windows of time, is crit-

ical to the improvement of backup allocation and the stability of the electric

grid. To achieve this characterisation, this research aimed to study the use of

computational intelligence techniques to successfully integrate the information of

numerical weather prediction models with observations from a wind park. This

integration consisted of two main tasks: first, the use of genetic programming,

which allowed the researcher to model the conversion of numerical predictions

at different grid points to wind power forecasts. This on its own was a novel

attempt for wind power prediction. Using GP as a downscaling technique or as

169



8. Conclusions and Future Work

a wind-to-power conversion technique brought in its own interesting results on

the importance of different meteorological variables in the conversion process.

In addition, most state-of-the-art approaches, either point or ensemble forecasts,

are based on the closest point. Few studies have been published regarding the

use of neighbour points and especially of using these as an ensemble. The sec-

ond important task conducted in this research was the introduction of a fuzzy

logic based approach to characterise ramp events based on the way they evolve

through a time window. The use of a fuzzy inference system provided the means

to characterise ramp events which were not detected using a binary definition,

but that might potentially become ramps as power forecasts usually present un-

derestimations. The ramp events were classified from highly probable to unlikely,

providing a percentage of the probability of the event happening. This, together

with the use of colour maps, would allow the grid operator to decide either to

take risks or allocate more backup units.

Another novelty introduced as part of the characterisation process was the

use of the error distribution to calculate the possible amount of change in a time

frame. This was an essential part of the signal filtering process that improved the

ramp detection accuracy. Even the most precise forecasts provided by state-of-

the art tools have a level of error. Most ramp detection techniques use a binary

(crisp) definition directly on a wind power forecast, without taking into account

that the forecast itself has an error that may cause false “unseen” events (Bossavy

et al., 2013; Ferreira et al., 2010; Greaves et al., 2009). Estimating the distribution

of the error is not straightforward, as the power forecasts do not follow typical

distributions. This research explored the use of quantile regression forests to

estimate the error distribution of the wind power forecasts obtained using GP.

This distribution was then used to compute the possible large variations that the

forecasts could present. Despite the slight increase of “false” ramps obtained after

introducing the error in the filtering process, the total ramp capture increased,

which is a fair tradeoff.
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8.2 Conclusions

The following sections present in detail the most important points that were

concluded during, and at the completion of, the project.

8.2.1 A Successful Application of Genetic Programming

as a Downscaling and Wind-to-Power Conversion

Technique

The major and most important part of the work undertaken in this research

project was the study of Genetic Programming as a symbolic regression technique

for downscaling and power conversion. A thorough experimentation was essential

for the successful implementation of the technique. GP is not a “plug-and-play”

technique as there are many aspects to address in order to apply this approach

for regression. Aspects such as deciding on the type of input data and its pre-

processing, if necessary, the selection of the function set and the type of strategy

that will be applied to avoid overfitting are critical. The first experiments that

were carried out were aimed at using GP only as a downscaling technique to see if

numerical wind speed predictions could be improved and to avoid high-resolution

numerical runs. The results were promising and showed the potential of GP, as it

could improve methods that made assumptions of the mathematical model. The

results obtained also showed that the size of the training set is critical especially

when trying to use a large number of input variables. The use of temperature and

the solar cycle did not decrease the overall RMSE; however, at that stage of the

research, the experimental data available was not large enough. This means no

conclusions could be made at this point regarding the incorporation of additional

variables into the downscaling process.

On the other hand, in terms of the wind-to power conversion process, the

experimental results showed the importance of taking into account the wind di-

rection in the model construction. With the results obtained previously for wind

speed downscaling, it was decided to carry out the first wind-to-power experi-

ments using only wind speed and incorporate later on the wind direction to be

able to conclude if this second variable was important or not. The results ob-
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tained show how wind direction could add the variability that the power curve

needed to better approximate the real behaviour of the power production of the

wind park.

The fact that GP does not make any assumption of the model, facilitated

the application of the approach to different grid points, which was one of the

important aspects to study for ramp characterisation. The application of GP as

an “ensemble generator” enabled treating each grid point as if it was the actual

location of the wind park and to study potential displacements. The creation of

the ensemble via GP allowed estimating different possible outcomes of the wind

park, which were used to forecast potential ramp events and their timings.

The strategy for achieving good generalisation models was also a key aspect

to study. It was shown that more complex models were better able to learn

the training set but could perform badly on unseen data. Here, the training set

played an important role, as the training data must represent as much of the

search space as possible. This becomes more complex as variables are added to

the terminal set. In terms of ramp events, it would be difficult to ensure that

a training set is covering a complete search space. The reason for this is that

most meteorological events are different from one another, so an increase in wind

speed would not always be converted to a specific increase in power, because a

slight change in wind direction may affect this conversion. This is one of the main

factors that influenced the amount of training data that was used.

An interesting aspect of using GP that was not fully explored but could be of

interesting further research is that it produces a mathematical representation of

models that could help understand more about the process that is being repre-

sented. Some of the experiments that were done using multiple grid points in one

run could show the grid points that were more likely to be picked up. This could

provide more understanding of what was happening in terms of displacement

errors.
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8.2.2 Using Neighbour Points as One Input Set and Indi-

vidually

In order to study the use of neighbour points introduced by Cutler et al. (2009),

it was important to determine how these would be incorporated into the wind

power and ramp prediction process. The first aspect that was studied was how to

input these into the GP algorithm, all in a single run, or each one separately. The

results confirmed what was expected. Using points together in a single run could

give information about the most relevant points/variables in the neighbourhood.

However, using only certain points to forecast the forthcoming month could not be

the best strategy due to the high variability of the area of Galicia. Considering all

points separately could give a better idea of the different possible outcomes of the

wind park. In addition, according to the results, taking each point individually

could be used as a way to estimate possible timings of large changes in power

output.

8.2.3 The Ramp Detection Process

Most of the research published on wind power ramp detection and characteri-

sation uses the binary definition as the main approach to the detection of such

events. However, this crisp definition can lead to artifacts, missing events that

might have been detected if a less rigorous definition was used. Even if a forecast

was 100% accurate, one could think that a change for example between 28-29%

could be as damaging or dangerous as a change of 30% (assuming the detection

has been done using a 30% amount of change). For this reason, two major as-

pects were of interest to study. First, taking into account that forecasts always

have a percentage of error, the research questions where how to calculate this

error and how to use it to improve the ramp capture. Finding the error distri-

bution of wind power forecasts is a research area on its own and a quick and

effective approach was to use a state-of-the-art technique that could calculate

this distribution without any assumption of its shape. Using wind speed and

direction as explanatory variables, the error quantiles were obtained and used in

the ramp detection algorithm. To quantify the level of ramp capture of this new

approach, a basic detection algorithm based on the binary definition was used
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as a benchmark. The experimental results showed that an improvement on the

ramp capture could be obtained when considering the error of the forecast. It

was expected to see an increase in “false ramps” that could potentially affect the

performance of the approach; however, it was found that the increase in false

ramps was a fair tradeoff compared to the number of ramps now being detected.

Another interesting aspect to look at was the use of neighbour points to

identify potential ramps that were not detected at the closest point. Using these

as an ensemble, a probability of a ramp happening at certain hour could be

calculated.

8.2.4 A New Ramp Characterisation Approach Based on

Filtered Signals and an FIS

As the FIS designed was using primarily the amount of change and time window

as input variables, it was necessary to predict these changes with the best esti-

mation possible. For this reason, it was decided to “break” the original power

signal into different change signals (according to a time window) using the error

distribution as done for the binary ramp detection. These signals, also referred

to here as filtered signals, allowed the observation of the type of changes that

were happening in the original signal at different time scales. The decomposition

could tell us about the ramp rate and how quickly the change was happening.

This information is already valuable on its own as this is critical for an adequate

backup allocation.

The use of the FIS showed that it was possible to detect all ramp events

that a common detection tool would detect. A major contribution into the ramp

characterisation process was the use of the filtered signals together with the FIS to

determine the probability of potential changes developing into real ramp events.

This is an aspect that most state-of-the-art tools do not address. By providing

a probability to the grid operator, combined with his expertise, a more informed

decision regarding the allocation of backup resources could be made.
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8.3 Suggestions for Future Work

Further investigations, in which future works could proceed, are listed below:

1. All numerical predictions were extracted at a specific height using the ver-

tical interpolation tools from NCL. However, it is known that NWP models

might have also vertical misplacement errors and that errors at different

altitudes might be different due to topographic characteristics. Further

investigation could be done using numerical predictions at different pres-

sure levels to study the implications of using NCL interpolation methods

compared to the use of different pressure levels into the regression process.

2. An important aspect to explore further is the incorporation of variables such

as temperature and pressure into the fuzzy inference system. As different

studies have shown, the cold fronts and changes in pressure can be major

contributors to ramps. Figure 8.1 shows the wind power and temperature

forecasts as well as temperature observations that were obtained from two

meteorological stations, Marco da Curra and Coruña Dique (MeteoGalicia,

2014), close to Sotavento.

The figure shows that, although both meteorological stations are located in

the same region, the temperature varies significantly. It would be interesting

to investigate if using the tendencies of change in temperature and pressure

of the neighbourhood in the rules could improve the characterisation of

those events that are not forecasted with a binary approach. This would

require other tasks such as making sure the training and test data contains

ramp events that developed during the meteorological events and also ones

that were not caused by these.

3. There is potential in the use of the neighborhood forecasts to improve the

time characterisation of ramp events. Further study could look into explor-

ing wider areas and exploring other ways to merge all this information to

generate one probabilistic forecast.

4. With no information available of a real market, it is difficult to measure

the benefits of the probabilistic forecast in the backup allocation process.
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Figure 8.1: Wind power forecasts obtained on the test set using v1 and v9 .

There is the possibility of getting access to data from the Spanish market,

which has a considerably good penetration of wind energy. With this data,

case studies could be designed to quantify the level of resources that can be

saved if probabilistic forecasts are provided.

5. The dynamic windowing for ramp characterisation is also an interesting

aspect to explore as this mechanism will allow the ramp characterisation

approach to adapt to the changes in the energy system. This could be ap-

plied not only to day-ahead predictions but also real-time ones. In addition

to this, the use of large ramp events training sets could be used for the
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automatic generation of fuzzy rules.

8.4 Final Remarks

In this thesis a novel approach to wind power forecasting and ramp character-

isation has been presented. The experimental results showed how a Genetic

Programming approach for symbolic regression is able to develop models that

represent the relationship between the numerical weather predictions and wind

power production of a wind park. The advantage of using this approach is that it

can be applied in any location as it is not fixed to specific model shapes. Another

important advantage of this approach is the fact that the output models can

provide some knowledge of what is happening around the location of the park,

especially when used in a neighbourhood. In addition to this novel wind power

forecasting approach, there is an important contribution towards the character-

isation of ramp events through the use of FIS and filtered signals which could

provide information on potential ramp events that could be equally damaging

as those that exceed a certain percentage of change, according to the binary

definition.
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Appendix A: Glossary of

Meteorological Terms

Glossary of meteorological terms (American Meteorology Society,

2014; National Center for Atmospheric Research, 2014)

1. Albedo: fraction of solar energy reflected form the Earth back into space.

2. Annual mean deep soil temperature: the annual mean of the temperature

of the soil that is at 1m depth from the surface.

3. Cartesian coordinates: a coordinate system in which the locations of points

in space are expressed by reference to three planes, called coordinate planes,

no two of which are parallel.

4. Eddy: any circulation drawing its energy from a flow of much larger scale,

and brought about by pressure irregularities, as in the lee of a solid obstacle.

5. Geopotential: the potential energy of a unit mass relative to sea level,

numerically equal to the work that would be done in lifting the unit mass

from sea level tit he heigh at which the mass is located.

6. Land use categories: land use is characterised by the arrangements, activ-

ities and inputs people undertake in a certain land cover type to produce,

change or maintain it. The geogrid.exe module interpolates land use cate-

gories from USGS 24-category data. Those categories are shown in Table

1.

7. Mixing ratio: the ratio of the mass of a variable atmospheric constituent to

the mass of dry air. The term normally refers to water vapor.
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Table 1: Land use categories

Land use category Land use description
1 Urban and Built-up Land
2 Dryland Cropland and Pasture
3 Irrigated Cropland and Pasture
4 Mixed Dryland/Irrigated Cropland and Pasture
5 Cropland/Grassland Mosaic
6 Cropland/Woodland Mosaic
7 Grassland
8 Shrubland
9 Mixed Shrubland/Grassland
10 Savanna
11 Deciduous Broadleaf Forest
12 Deciduous Needleleaf Forest
13 Evergreen Broadleaf
14 Evergreen Needleleaf
15 Mixed Forest
16 Water Bodies
17 Herbaceous Wetland
18 Wooden Wetland
19 Barren or Sparsely Vegetated
20 Herbaceous Tundra
21 Wooded Tundra
22 Mixed Tundra
23 Bare Ground Tundra
24 Snow or Ice

8. Orography: branch of physical geography that studies the formation and

features of mountains. The nature of a region with respect to its elevated

terrain.

9. Roughness: the geometric characteristic of a surface with its efficiency as

a momentum sink for turbulent flow, due to the generation of drag forces

and increased vertical wind shear.

10. Soil categories: different types of soil can create differential heating of the

earth surface, having different effects on the numerical model prediction.
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To handle these, soil types are classified into 16 different types shown in

Table 2.

Table 2: Soil categories

Soil Bategory Soil Description
1 Sand
2 Loamy Sand
3 Sandy Loam
4 Silt Loam
5 Silt
6 Loam
7 Sandy Clay Loam
8 Silty Clay Loam
9 Clay Loam
10 Sandy Clay
11 Silty Clay
12 Clay
13 Organic Material
14 Water
15 Bedrock
16 Other (land-ice)

11. Snow albedo: fraction of solar energy reflected by ice or snow, which may

vary according to the characteristics of the snow (freshly fallen, melting

snow or dirty snow).

12. Terrain height: this is calculated by taking the difference between the sur-

face pressure and the mean sea-level pressure and multiplying the result by

10m per hPa, which is the approximate relation of height to pressure and

is a function of the air density.

13. Terrain slope: slope angle, or incline, is the measure of steepness or the

degree of inclination of the terrain relative to the horizontal plane. It is

one of the most significant terrain characteristics which affects weather and

climate patterns.
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14. Turbulent kinetic energy: the mean kinetic energy per unit mass associated

with eddies in turbulent flow.

15. Vegetation fraction: the percentage of occupation of vegetation canopy in

a given ground area in vertical projection. It is popularly treated as a com-

prehensive quantitative index to monitor respective land cover conditions.

16. Vertical velocity: in meteorology, the component of the velocity vector along

the local vertical.
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Appendix B: NCL Script to

Extract Forecasts

NCL scripts

This section presents the NCL script used to extract data from the WRF-

ARW output files. The extraction from GFS files was done in a similar way.

; −−−−−−−−−−−−−− LOAD FUNCTIONS AND PROCEDURES −−−−−−−−−−−−−−−−

load ”/ usr / l o c a l / l i b / ncarg / n c l s c r i p t s /csm/ gsn code . nc l ”

load ”/ usr / l o c a l / l i b / ncarg / n c l s c r i p t s /csm/ gsn csm . nc l ”

load ”/ usr / l o c a l / l i b / ncarg / n c l s c r i p t s /csm/ cont r ibuted . nc l ”

load ”/home/ giovanna /Documents/WRF/WRFV3/WRFUserARW. nc l ”

; −−−−−−−−−−−−−− BEGINING OF NCL SCRIPT −−−−−−−−−−−−−−−−

begin

;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; read in netCDF f i l e and make a loop for a l l time s t ep s

;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
myFiles = systemfunc ( ” l s /home/ giovanna /Documents/WRF/DOMAINS/ g a l i c i a /

wrfprd / wrfout d02 ∗” )

n f i l e s=d ims i z e s ( myFiles )

do numFiles=0, n f i l e s −1

in = a d d f i l e ( myFiles ( numFiles)+” . nc” , ” r ” )

p r i n t ( numFiles )

; get t imes in the f i l e

200



Appendix B

t imes = w r f u s e r l i s t t i m e s ( in )

ntimes = d ims i z e s ( t imes ) ; number o f t imes in the f i l e

wind speed1 = new ( ntimes , f loat )

wind speed2 = new ( ntimes , f loat )

wind speed3 = new ( ntimes , f loat )

wind speed4 = new ( ntimes , f loat )

temp45 1 = new ( ntimes , f loat )

temp45 2 = new ( ntimes , f loat )

temp45 3 = new ( ntimes , f loat )

temp45 4 = new ( ntimes , f loat )

w i n d d i r e c t i o n = new ( ntimes , f loat )

w ind d i r e c t i on2 = new ( ntimes , f loat )

w ind d i r e c t i on3 = new ( ntimes , f loat )

w ind d i r e c t i on4 = new ( ntimes , f loat )

l a t = 43.351630

lon = −7.880116

do i t = 0 , ntimes−1 ; Loop for the time : i t= s t a r t i n g time

time = i t

;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; − S e l e c t lon & l a t o f the po int o f i n t e r e s t −
;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

r e s = True

res@returnInt = True ; Fa l se : return r e a l values , True : return i n t e r g e r va lue s

po int = w r f u s e r l l t o i j ( in , lon , l a t , r e s )

; printVarSummary ( po int )

x = point (0 )

y = point (1 )

; check ing ne ighbors o f x and y to get other g r id po in t s

x2 = x

y2 = y+1

x3 = x−1
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y3 = y+1

x4 = x−1

y4 = y

;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; − e x t r a c t wind components −
;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

u = w r f u s e r g e t v a r ( in , ”ua” , time )

v = w r f u s e r g e t v a r ( in , ”va” , time )

he ight = w r f u s e r g e t v a r ( in , ”z” , time )

t e r = w r f u s e r g e t v a r ( in , ” t e r ” , time )

tc = w r f u s e r g e t v a r ( in , ” tc ” , time )

p = w r f u s e r g e t v a r ( in ” pr e s su r e ” , time )

nhe ight = conform ( height , ter , ( / 1 , 2 / ) )

he ight = he ight − nheight

; I n t e r p o l a t e U,V to 45 Meters

u plane = w r f u s e r i n t r p 3 d (u , height , ”h” , 4 5 , 0 . , Fa l se )

v p lane = w r f u s e r i n t r p 3 d (v , height , ”h” , 4 5 , 0 . , Fa l se )

; Ca l cu la t e wind speed from Vectors

spd = ( u plane ∗ u plane + v plane ∗ v plane ) ˆ ( 0 . 5 )

wind speed1 ( i t ) = spd ( y − 1 , x − 1)

wind speed2 ( i t ) = spd ( y2 − 1 , x2 − 1)

wind speed3 ( i t ) = spd ( y3 − 1 , x3 − 1)

wind speed4 ( i t ) = spd ( y4 − 1 , x4 − 1)

; Ca l cu la t e wind d i r e c t i o n from Vectors at f i r s t po int

r2d = 45.0/ atan ( 1 . 0 ) ; conver s i on f a c t o r ( rad ians to degree s )

d i r = atan2 ( u plane , v p lane ) ∗ r2d + 180

w i n d d i r e c t i o n ( i t ) = d i r (y−1,x−1)

w ind d i r e c t i on2 ( i t ) = d i r ( y2−1,x2−1)

w ind d i r e c t i on3 ( i t ) = d i r ( y3−1,x3−1)
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wind d i r e c t i on4 ( i t ) = d i r ( y4−1,x4−1)

; get Temperature

t c p l a n e = w r f u s e r i n t r p 3 d ( tc , he ight , ”h” , 4 5 , 0 . , Fa l se )

temp45 1 ( i t ) = t c p l a n e (y−1,x−1)

temp45 2 ( i t ) = t c p l a n e ( y2−1,x2−1)

temp45 3 ( i t ) = t c p l a n e ( y3−1,x3−1)

temp45 4 ( i t ) = t c p l a n e ( y4−1,x4−1)

end do ; end o f time loop

;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; − Write wind speed in a s c i i f i l e −
;∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

fName = ” ga l i c i aHor i zon36Ne igh ” + numFiles + ” . txt ” ;

data = new( 24 , ” s t r i n g ” )

do i t =0,ntimes−1

i f ( i t . gt . 17 .and . i t . l t . 42) then

data ( i t −18) = times ( i t )+ ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , wind speed1 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , wind speed2 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , wind speed3 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , wind speed4 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , w i n d d i r e c t i o n ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , w ind d i r e c t i on2 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , w ind d i r e c t i on3 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%7.4 f ” , w ind d i r e c t i on4 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%f ” , temp45 1 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%f ” , temp45 2 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%f ” , temp45 3 ( i t ) ) + ” ”

data ( i t −18) = data ( i t −18) + s p r i n t f ( ”%f ” , temp45 4 ( i t ) ) + ” ”
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end i f

end do

a s c i i w r i t e ( fName , data )

end do

end
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Appendix C: a Symbolic

Regression Application

There is an important amount of research being carried out for the simulation of

jet engines as an alternative to testing when developing control systems. Math-

ematical models needed for simulations are not always available as new engines

become more complex. Considering that the GP approach provides some advan-

tages over other machine-learning techniques, like the mathematical representa-

tion of solutions and unrestricted size solutions, this was an interesting way to

validate the algorithm as a regression technique.

The Problem

In order to provide a smooth, stable and stall free operation of a jet engine,

control systems were developed. These control systems should ensure a minimum

required level of performance, which is defined as the thrust achieved at a given

throttle setting. Engine constraints provide additional challenges for control de-

sign as the engine needs to operate safely; this means without rotor over-speed,

compressor stall, combustor blowout or turbine over-temperature. Small scale

jet engines, which operate on the same principles as the commercial jet engines,

were initially developed by amateurs for use in model aircraft (Schreckling, 1994)

but more recently commercially produced engines have been used for research

and education purposes. Developing robust control systems for small jet engines

is not practical without a simulation, especially if soft computing techniques are

used, because of the need to explore the extreme of safety related parameters

such as the Exhaust Gas Temperature (EGT).

As the level of sophistication of modern jet engines increased, the complexity

of the mathematical models required for an accurate simulation grew. This led
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Figure 2: Behotec j66 engine.

to the application of many knowledge-based systems such as Fuzzy Logic (FL),

neural networks (NN), genetic algorithms (GA) and probabilistic reasoning (PR)

for the generation of complex models. Further detail of control development and

simulation techniques can be found on (Mart́ınez-Arellano et al., 2014a; Sanghi

et al., 2000).

For an amateur designer, developing a good controller without complete

knowledge of the mathematical model of the engine behaviour would be a chal-

lenge. However, following a design/simulation/data acquisition iterative ap-

proach, could facilitate the process. The simulation in the iterative process could

be achieved by applying the GP approach to find the mathematical models at

each iteration with the data gathered in the previous iteration.

Using Genetic Programming for the Prediction of Jet Engine Pa-

rameters

As the thrust of an engine cannot be measured, in order to design a control

system, the fuel flow or any other correlated variable could be used to control

the shaft speed. For this reason, parameters such as the pump voltage, rpm,

temperature, and pressure would be relevant during the simulation. The GP

algorithm was used to model the relationship between three of these parameters

using data available from a Behotec j66 small scale engine presented in Figure 2.

The approach used to test the algorithm is as follows: first, with a simple

fuel flow controller, pump voltage, pressure, temperature among other data was
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gathered from the engine. The GP approach was then used to generate a case

pressure model using pump voltage and pressure observations. A second model

was generated applying the GP approach to model the rotor speed from the case

pressure, pump voltage and rotor speed observations. In a following stage, a third

model was developed using the pump voltage, the pressure and the rotor speed

to predict future values of EGT. The models found predict each parameter only

one step ahead, so for simulation purposes, each value predicted by the model

would have to be fed back into the model to obtain the next prediction.

Experimental Setup and Results

The starting point for the experiments was a set of data that had been logged

during previous runs of the Behotec j66 engine. The information available con-

sisted of pump voltage, case pressure, rpm and EGT logged at intervals of 0.2

seconds. The experimental setup was divided in three stages. The first stage in-

volved the use of pump voltage observations in order to predict the case pressure.

In a first attempt, four inputs, which corresponded to the last four observations

of the pump voltage, were used. Preliminary results suggested that, as the vari-

able presents very slight changes through time, a larger history would need to

be considered. Instead of increasing the number of inputs to consider a larger

history, the same four inputs were kept and the values of these inputs were aver-

ages of historical data. The first one was the actual observation at time t. The

second input was the average of the four last observations of the pump voltage

(t = t, t−1, t−2, t−3). The third input was the average of the last 8 observations

(t = t, t− 1, ..., t− 7) and the fourth input was the average of the last 16 inputs.

In this way, a general overview of the changes in the variable from the last 16

time steps could be considered without increasing the number of inputs of the

algorithm to 16. The expected output would be the pressure at time t. Previous

values of the pressure were not used to predict pressure at time t. The reason for

this was that preliminary experiments showed that very small differences of the

variable in different time steps could lead the search of the algorithm to pick up

faster these previous values of the pressure rather than other variables because

the algorithm is trying to decrease the RMSE between the forecast and the ob-

servation. As this was not the model output that was expected, the input was

removed to avoid leading the search towards these values.
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The second stage used the pressure and pump voltage in order to predict the

rotor speed. For the second set of experiments, the number of inputs increased to

8 in order to consider the four values for both the pump voltage and the pressure.

As it was done with the previous experiments, the rpm parameter was not fed

into the algorithm to avoid picking up this variable over the other ones.

Finally, for the third set of experiments two settings were used. In a first

attempt, pump voltage, pressure and rpm were used. For each variable, the four

inputs as used in previous experiments were used, having a total of 12 inputs. In

a second setting, history of the exhaust gas temperature was included. Due to

the low correlation between the temperature and these three variables, it was also

necessary to include historical data from the temperature. Three averages of the

temperature were considered, an average on the previous 32 readings, an average

on the last 16, and an average on the last 8. A longer history period was used

for the temperature as this variable is changing at a lower pace compared to the

other three variables. The total number of inputs to the algorithm grew to 15.

Genetic programming is very sensitive to the input data. Feeding all variables to

all experiments is not always the best approach. So it must be decided intuitively

which variables are most important and the input must be limited to these ones

only.

For the three sets of experiments the training and testing sets were designed as

follows. Several runs of the engine were used. Those variable readings obtained by

the sensors where the engine and/or pump were not running were excluded from

the recorded information because they were unrepresentative. The remaining

data was divided into training and testing sets. Both training and testing files

contained data from startup and operation stages. From the total amount of

records available 60% were used for training and 40% for testing. The training

set was further randomly divided into 80% training and 20% validation.

Once the training, validation and test sets were obtained, the experiments

were carried out as follows. First, for each type of experiment the best values of

k were identified empirically. Each modelled variable has its own complexity so

different values of k were applied. For the case pressure variable, a parsimony

pressure of k = 0.005 was enough to avoid very complex trees. The raw fitness

(fitness with no penalisation) of the models obtained for the case pressure is 0.045

208



Appendix C

Table 3: Fixed GP parameters used for the experiments.

Runs 50

Population 1000

Generations 100

Crossover operator Standard subtree crossover, probability 1.0

Mutation operator Standard subtree mutation, probability 0.03,

maximum depth of new tree 17

Tree initialisation Ramped Half-and-Half, maximum depth 6

Function set +, -, *, / log, exp

Terminal set pump v, press, rpm and random constants

Selection Tournament of size 20

Elitism Best individual always survives

on average, so the parsimony pressure is such that does not provide an unwanted

advantage over raw fitness. Larger models will be allowed to survive only if they

provide a significant improvement over the raw fitness even when adding the

penalisation. To model the rotor speed, the parsimony pressure used was around

k = 80. For the EGT, values between k = 0.2 and k = 0.3 were used.

Once these parsimony pressures were obtained they were used to execute 50

runs of each type of experiment. At each run, the training and validation sets were

selected randomly. The additional parameters that were set for the experiments

are shown in Table 3 which are typical settings for the GP approach. The best

models found for each variable are shown in Table 4. The subindexes of the

variables are used to denote the type of input. A subindex of 1 means the current

value of the variable at time t, 2 denotes the average of the last 4 observations,

3 corresponds to the last 8 observations and 4 to the last 16 observations. The

models were applied to the test sets to evaluate the quality of the predictions.

Figure 3 presents the predictions of the case pressure obtained on the testing

set with the best model found on the first set of experiments. The correlation

between the observations and the predictions is very high, so the algorithm easily

detected the relationship among them. Figure 4 presents the predictions of the

rpm parameter using the best model found on the second set of experiments. It
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Figure 3: Pressure prediction one time step ahead with the best model found
using pump voltage on test data.

can be seen that this relationship was also quite well caught by the algorithm

producing an accurate model.

Figures 5 and 6 present the predictions of the exhaust gas temperature using

the best model from the third set of experiments. The trend of the temperature is

well caught in both settings of the experiment. However, the increment in temper-

ature at around time step 480 was better achieved by the model that was trained

with some information from previous data of the temperature included. This was

done because it was observed that the temperature parameter is dependent on

its own history in a way that could not easily be captured by working only from

the pump voltage, pressure and RPM. The basic data for pump voltage and case

pressure were somewhat noisy. This is of no consequence for the training process

but the noise is inevitably transmitted through the model. Therefore noise of the

prediction has been reduced in both cases by using the pressure readings that

had been pre-filtered during the data-logging process and by using the demanded

voltage from the pump controller rather than the actual measured pump voltage.

Overall the results are good for predicted pressure and RPM. The predicted

EGT is less accurate but still models the actual engine behaviour in a manner
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Figure 4: RPM prediction using pump voltage and pressure on test data.

which is qualitatively correct. When the EGT history was not included as an

input as in Figure 5, the transient peak in EGT during acceleration was not

strong enough. The model that included EGT history presented in Figure 6,

shows a much stronger peak but with some time lag. This suggests that further

experimentation with the way in which EGT history is presented as an input

may be required. Another approach would be to increase the prominence of the

transient events within the training data so that these inaccuracies are penalised

more strongly during the selection process.
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Figure 5: EGT prediction using pump voltage, pressure and rpm on test data.
RPM observations in the same time period are also shown.

Table 4: Models found with the Basic GP implementation.

Predicted Mathematical Representation of the Model
Variable
Pressure pumpV1/18.6264 + (pumpV4 + ln(pumpV2) + pumpV2)

∗pumpV1/18.6264
RPM exp(2press1 + 11.61046 + press3/exp(press

2
3(press3 ∗ (press1+

5.80523)− press3/(press3/(press1 + 5.80523) + press3/
(press3 ∗ exp(pumpV2)− press1))))) ∗ 92.3692 + press3/

exp(pumpV2)) ∗ 92.3692
EGT 6(pumpV3/press1) + 3(pumpV3 ∗ press1)

+temp8 − pumpV4 − ln(temp16)/pumpV3 − 6ln(temp16)
+pumpV3 + pumpV3/press1 + pumpV3 ∗ press1
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Figure 6: EGT prediction using pump voltage, pressure, rpm and temperature.
RPM observations in the same time period are also shown.
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Appendix D: Wind Speed

Downscaling Experimental

Results

Genetic Programming for wind speed prediction - Experimental Re-

sults

In the following are gathered all the results obtained using genetic program-

ming for wind speed downscaling at Cuba, SIUE and Wilmington sites in Illinois,

USA at 10 meters height. The experiments consisted in varying the parsimony

pressure and the size of the training set as a way to avoid overfitting. The figures

present the variation of the MAE when varying the size of the training set and the

pressure parameter. The results of three different pressures are shown in Figures

7, 8 and 9.

Figures 10 to 13 present the results obtained using logarithmic and exponential

functions in the function set.

Finally, Figure 14 shows the average improvement obtained per hour when

retraining the algorithm.
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Figure 7: Wind Speed forecasts at the three observations sites using a parsimony
pressure of k = 0.1. Top image corresponds to Cuba, middle image to SIUE and
bottom image to Wilmington.
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Figure 8: Wind Speed forecasts at the three observations sites using a parsimony
pressure of k = 0.01. Top image corresponds to Cuba, middle image to SIUE and
bottom image to Wilmington.

216



Appendix D

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10  15  20  25  30  35  40  45  50  55

C
o

s
t 

(M
A

E
)

Random Subset Size

Best individual over training data
Best individual over new data

-2

-1

 0

 1

 2

 3

 4

 5

 6

 10  15  20  25  30  35  40  45  50  55

C
o

s
t 

(M
A

E
)

Random Subset Size

Best individual over training data
Best individual over new data

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10  15  20  25  30  35  40  45  50  55

C
o

s
t 

(M
A

E
)

Random Subset Size

Best individual over training data
Best individual over new data

Figure 9: Wind Speed forecasts at the three observations sites using a parsimony
pressure of k = 0.001. Top image corresponds to Cuba, middle image to SIUE
and bottom image to Wilmington.
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Figure 10: Wind Speed forecasts at the three observations sites using a parsimony
pressure of k = 0.01.
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Figure 11: Correlation between the best GP model and wind speed observations
at Cuba on training (left) and testing (right) sets.
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Figure 12: Correlation between the best GP model and wind speed observations
at SIUE on training (left) and testing (right) sets.
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Figure 13: Correlation between the best GP model and wind speed observations
at Wilmington on training (left) and testing (right) sets.
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Figure 14: Average Error at each hour of the forecast horizon when retraining
the algorithm.
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Appendix E: Wind Power

Forecasting Experimental Results

Genetic Programming for wind power prediction - Experimental Re-

sults

In the following are gathered all the results obtained using genetic program-

ming to forecast the total power production of Sotavento Experimental Wind

Farm for the Day-Ahead market. The approach was tested on the months of

April, May and June. The following figures present the results.
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Figure 15: Reliability diagrams of percentile estimations made with the Quantile
Regression Forest procedure for May forecasts using the closest point.
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Figure 16: Reliability diagrams of percentile estimations made with the Quantile
Regression Forest procedure for May forecasts using a neighbour point.
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Figure 17: Wind power predictions and intervals for the month of May using the
closest point.
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Figure 18: Wind power predictions and intervals for the month of May using a
neighbour point.
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Figure 19: Fuzzy inference system scores corresponding to ramp up events at the
closest point (left) and at a neighbour point (right) during the month of May.
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Figure 20: Fuzzy inference system scores corresponding to ramp down events at
the closest point (left) and at a neighbour point (right) during the month of May.
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Figure 21: Wind power predictions and intervals for the month of June using the
closest point.
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Figure 22: Wind power predictions and intervals for the month of June using a
neighbour point.

230



Appendix E

20 40 60 80

0
2

4
6

8
1

0
1

2

Required Probability [%]

D
e
v
ia

ti
o

n
 f

ro
m

 n
o

m
in

a
l 
c
o
ve

ra
g

e
 [

%
] observed

ideal

20 40 60 80

0
2

4
6

8
1

0
1

2

Required Probability [%]

D
e
v
ia

ti
o

n
 f

ro
m

 n
o

m
in

a
l 
c
o
ve

ra
g

e
 [

%
] observed

ideal

Figure 23: Reliability diagrams of percentile estimations made with the Quantile
Regression Forest procedure for June forecasts using the closest point (top) and
a neighbour point (bottom).
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Figure 24: Fuzzy inference system scores corresponding to ramp up events at the
closest point (left) and at a neighbour point (right) during the month of June.
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Figure 25: Fuzzy inference system scores corresponding to ramp down events at
the closest point (left) and at a neighbour point (right) during the month of June.
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Appendix F: The Wind

Variability of Galicia

The Wind Variability of Galicia

With the possibility of misplacement errors, it is interesting to take a look at

the big picture to see what is happening in terms of wind direction and temper-

ature in the surroundings of the park and in the whole Galicia region.

Figure 26 shows a wind barb plot on April 11th in the Galicia region. The

barbs show the speed and direction of the wind as well as the temperature (defined

with a color) at the location where the barbs are placed. The two left plots in

the figure show the wind forecasted one day before the actual observation (the

10th of April), and the right hand figures show the forecast produced on the same

day. The wind barbs show a high variability of temperatures in the region, which

suggest the possibility of micro-climates which are well known in the region. It

can be observed in both forecasts that there is a change in the wind direction at

the location of the farm.

Figure 27 shows the forecasts for April 13th, 2012 on the day before and on

the same day. This period of time corresponds to two power output increases that

were not well forecasted in time (see Figure 8.1). This case is interesting as it is

so far not identified if the error is related to a NWP misplacement error, to an

inconsistency in the power output data or maybe both. So far, the temperature

plot shows that the increase in temperature shown at Marco da Curra in this

day is not of the same magnitude as the increase in the prediction which is also

confirmed with the wind barbs. There is an evident underestimation which adds

to the time misplacement characteristic of this day. The wind barb plot shows

how at 17T there is a general increase in temperature (right plot) and a change
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Figure 26: Wind barbs that show the wind speed, direction and temperature
forecasted the day before (left) and on the actual day (right). The blue dot is to
show the location of Sotavento Wind Farm.

in the direction of wind which changes from northwest to west and later on to

southwest at the end of the day. A small timing misplacement of how wind

direction changes at the location of the park could do a difference in the power

output estimation.
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Figure 27: Wind barbs that show the wind speed, direction and temperature
forecasted the day before and on the actual day. The blue dot is to show the
location of Sotavento Wind Farm.
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