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Abstract—The objective function is the core element in most
search algorithms that are used to solve engineering and scientific
problems, referred to as the fitness function in evolutionary
computation. Some researchers have attempted to bridge this
difference by reducing the need for an explicit fitness function.
A noteworthy example is the novelty search (NS) algorithm,
that substitutes fitness with a measure of uniqueness, or novelty,
that each individual introduces into the search. NS employs the
concept of behavioral space, where each individual is described
by a domain-specific descriptor that captures the main features
of an individual’s performance. However, defining a behavioral
descriptor is not trivial, and most works with NS have focused
on robotics. This paper is an extension of recent attempts to
expand the application domain of NS. In particular, it represents
the first attempt to apply NS on symbolic regression with genetic
programming (GP). The relationship between the proposed NS
algorithm and recent semantics-based GP algorithms is explored.
Results are encouraging and consistent with recent findings,
where NS achieves below average performance on easy problems,
and achieves very good performance on hard problems. In
summary, this paper presents the first attempt to apply NS on
symbolic regression, a continuation of recent research devoted at
extending the domain of competence for behavior-based search.

Keywords—Novelty Search, Behavior-based Search, Genetic
Programming, Symbolic Regression

I. INTRODUCTION

The conventional approach towards search and optimiza-
tion is based on the use of an explicit objective function, this
is true for gradient-based methods and heuristic approaches.
Moreover, this is also true for evolutionary algorithms (EAs),
where the search for better fitness guides the evolutionary
process. Fitness is the core element in understanding EA
dynamics, with a large amount of research devoted at de-
scribing, understanding and analyzing fitness functions [1] and
fitness landscapes [2], [3]; such as work done on locality [4],
[5] and neutrality [6], [7], [8]. Fitness-based algorithms have
achieved impressive results in many domains, for instance just
considering the genetic programming (GP) paradigm a long
list of examples exist [9]. However, it is noteworthy that the
inspiration of EAs comes from a natural process where a
set goal or purpose is not present, this process is Darwinian
evolution, based on random search operations (mutation and
recombination) filtered by non-random natural selection. In

other words, Darwinian evolution is an open-ended process
while most traditional EAs are not.

However, open-ended techniques have not been completely
excluded from EA development; in fact one of the earliest EAs
was the open-ended biomorphs system proposed by Richard
Dawkins [10]. Moreover, over the years several open-ended
systems have been developed, including recent examples in
artificial life [11] and interactive search for artistic design
[12], [13], [14]. Another prominent example is the novelty
search (NS) algorithm proposed by Lehman and Stanley [15],
[16], [17], where the explicit objective function is abandoned
and selective pressure is instead drawn from a measure of
the uniqueness or novelty that each individual introduces
into the evolving population. Eliminating an explicit objective
and promoting and open-ended search could allow for the
development of EAs that are based on a more realistic model of
natural evolution. Moreover, an open-ended search, particularly
one that is based on solution uniqueness such as NS, also has
some pragmatic benefits. For instance, fitness based EAs can
get trapped or prematurely converge on local optima within
a fitness landscape, a problem that in principal should be
avoidable by an algorithm such as NS.

The core element of NS is that individuals are not selected
based on their fitness, instead the behavior that each individual
exhibits is used to describe them, and based on this a measure
of novelty is assigned to each. Of course, to do so, a proper
behavioral descriptor must be proposed, such that the core
elements of an individual’s behavior are captured based on
the requirements of the application domain, while unneces-
sary details are abstracted away. This task, however, is not
trivial, and care must be taken to propose a proper behavioral
descriptor, just like a proper fitness measure is necessary for
a traditional fitness-based search. Therefore, until recently,
most NS applications have focused on very specific problem
domains and applications, such as robotics and interactive
evolution. In fact, behavior-based search in general has proven
to be quite useful in evolutionary robotics systems, where the
concept of behaviors is commonly used and exploited [18],
[19]. However, recent works have extended the use of NS
to common pattern analysis problems; particularly supervised
classification [20] and unsupervised clustering [21] with GP.
Both examples present promising results that suggest that
behavior-based search can be used in more general domains.



The goal of this paper is to extend the behavior-based
search methodology using the NS algorithm to the most
common application domain for GP, real-valued symbolic
regression problems. Such problems have been extensively
studied and analyzed by the GP community [22]. Recently,
symbolic regression GP systems have been improved by in-
corporating the concept of semantics [23], [24], [25], [26],
[27], [28], [29], [30], [31]. On the other hand, the present
work takes an approach based on behaviors, the difference
between both approaches is carefully discussed below. For
now, it suffices to say that behaviors are a more general concept
than semantics, that can provide a simplified view of what a
program is actually doing. Therefore, this work proposes a
behavioral descriptor for symbolic regression problems, and
results are compared with published results on benchmark tests
[32], [24]. The results are consistent with those published in
[20], [21], showing that NS performs better when problem
difficulty increases, which is what would be expected from a
search process that starts with low-quality behaviors and must
necessarily explore novel regions in the search space, some of
which will contain high-quality solutions; i.e. the search for
novelty leads towards quality when problem difficulty is, in
some sense, large. These results are indeed promising, another
encouraging reason that justifies why behavior-based search
strategies should be further explored [20], [21], [33].

The remainder of the paper proceeds as follows. Section
II describes previous work, focusing on GP semantics. Then,
Section III introduces the concept of behavior-based search.
Afterwards, Section IV describes the NS algorithm. Section
V presents the proposed symbolic regression behavioral de-
scriptor and discusses how NS is incorporated into a symbolic
regression GP system. Experiments and results are presented
in Section VI. Finally, a summary of the paper, conclusions
and future work are discussed in Section VII.

II. PREVIOUS WORK

When an EA performs a search, it is well understood that
it concurrently operates within three spaces. First, genotypic
space or the algorithm’s search space, that depends upon
the encoding used to represent valid candidate solutions. The
genotypic representation is mapped, or decoded, to phenotypic
space (also known as problem or decision space), where
individual solutions are expressed within the problem domain.
Finally, each individual is assigned a performance score in
fitness or objective space. Depending on the representations
used, genotypic and phenotypic space can be distinct or not
[34].

Recently, however, other spaces have started to be analyzed
with respect to EAs. Particularly, other descriptions of a solu-
tion’s performance have been proposed, to either complement
or replace an explicit fitness function. Consider the classic
GP scenario, where a GP must optimize a given evaluation
criterion based on a set of fitness cases. The common approach
is for a fitness function to provide a coarse overview of
performance, where different performance on different fitness
cases is mostly averaged out. Therefore, some researchers have
started to develop approaches that can provide a finer grained
look of an individual’s performance. In the remainder of this
section we will summarize the semantics-based approach in
GP, that follows this line of reasoning.

A. Semantics in Genetic Programming

Semantics in GP, and its corresponding semantic space,
describes the performance of an individual using its raw output
vector computed over all the fitness cases of a problem [23],
[24], [25], [26], [27], [28], [31]. In other words, given a
set of n fitness cases, the semantics of a program K is the
corresponding set of outputs it produces, normally expressed
as a vector y ∈ R

n. Semantics is an important concept in GP
because (vastly) many genetically (phenotypically) different
programs can share the same semantic output. Therefore, it
is assumed that the search process must explicitly consider
the semantic space of programs to properly conduct the
search. Therefore, researchers have used semantics to modify
traditional genetic operators [24], [26], [27], focusing on
improving the semantic diversity of the evolving population.
Moreover, other approaches have been proposed to perform
the evolutionary search within semantic space explicitly [25],
[28], [31]. In general, all of these works have shown improved
results compared to standard GP algorithms, mostly evaluated
on symbolic regression problems.

However, strictly focusing on program outputs might not
be the best approach for some problem domains. For example,
consider the GP classifier based on static range selection (SRS)
[35], that functions as follows: for a two class problem and
real-valued GP outputs, the SRS classifier is straightforward;
if the program output for input pattern x is greater than zero
then the pattern is labeled as belonging to class A, otherwise it
is labeled as a class B pattern. In this case, while the semantic
space description (as defined above) of two programs might be
different (maybe substantially), they can still produce the same
high-level classification (consider any two outputs y1,y2 ∈
(0,∞) with y1 6= y2).

For symbolic regression, a common fitness score (for
instance, the average error) for an individual will depend on
its semantics. In fact, it can be said that the semantics of a
program provides a complementary view of its fitness, each
at different levels of abstraction. Normally, fitness is at the
coarsest possible level, averaging out all of the performance
variations. On the other hand, program semantics provides a
fine level of detail, explicitly contemplating every variation in
program outputs. In the following section, an intermediate view
of program performance is described, based on the concept of
behavioral space.

III. BEHAVIOR BASED SEARCH

Consider the case of evolutionary robotics (ER) systems.
In ER, EAs are normally used to search for robust controllers
of autonomous systems [19]. The goal is to find high qual-
ity solutions while introducing as little prior knowledge as
possible into the objective function, such that the search is
performed based on a very high-level definition of the problem
[36]. In this scenario, the correspondence between program
inputs, outputs and induced actions is less clear. Moreover, in
ER fitness evaluation can be performed within real or simulated
environments, where noisy sensors and the physical coupling
between actuators and the real world can produce a non-
injective and non-surjective relation between program output
and robot actions.



Therefore, some researchers have begun to consider be-
havioral space during an evolutionary search [37], [38]. In
robotics, the concept of behaviors dates back to the seminal
works of Brooks from the 1980’s [18]. A behavior is a
description β of the way an agent K (program in the GP case)
acts in response to a stimulus (or series of stimuli) within a
particular context C. A context C includes the description an
agent has of its environment and its own internal state, as
well as the external environmental conditions in which he is
situated. Stated another way, a behavior β is produced by the
interactions of agent K, output y and context C. In behavior-
based robotics, for instance, behaviors are described at a very
high-level of abstraction by the system designer. In ER, on the
other hand, researchers have recently proposed domain-specific
numerical descriptors to describe each behavior, allowing them
to explicitly consider behavioral space during evolution [38].
The justification for this is evident, given that the objective
function is stated as a high-level goal, then population man-
agement should also consider the behavioral aspect of evolved
solutions. Following this approach, researchers have been able
to develop diversity preservation techniques [37], [39] and
open-ended search algorithms [15], [17]; for a comprehensive
review of behavioral space analysis in ER see [38].

Hence, a behavior defined in this way, can be seen as
a higher-level description of the performance of a program,
compared to the semantics approach. An individual’s behavior
is described in more general terms, accounting not only for
program output but the context in which the output was
produced. While semantics can imply an injective or non-
injective relation between input and output, behaviors are more
general, allowing for multi-valued functions or many-to-many
relations, if only input is considered and context is not. For
instance, for the SRS GP classifier described above, context is
given by the SRS heuristic rule used to assign class label. This
is more evident in the ER examples, where context is given by
the environment and internal state of the robot; for instance,
depending on whether or not the controller has memory.

In summary, fitness, program semantics, and behavior can
be understood as different levels of abstraction of a program’s
performance, as depicted in Figure 1. At one extreme form of
analysis, fitness provides a coarse grained look at performance,
a single value (for each criteria) that attempts to capture a
global evaluation of what a program does. At the other end
of the analysis scale, semantics describe program performance
in great detail considering all of the raw program outputs. On
the other hand, behavioral descriptors move between fitness
and semantics, providing a finer or coarser level of description
depending on how behaviors are meaningfully characterized
within a particular application domain and the context in which
the program operates.

IV. NOVELTY SEARCH

Lehman and Stanley proposed the NS algorithm to elimi-
nate an explicit objective function from an EA [15], [16], [17].
Therefore, the search is not guided by a measure of quality for
each individual, selective pressure is provided by a measure
of novelty. The strategy is to measure the amount of novelty
each individual introduces into the search with respect to the
current population and also to individuals found in previous
generations.

Fig. 1. Conceptual view of how the performance of a program can be
analyzed. At one extreme (right hand side) we have fitness-based analysis,
a coarse view of performance. Semantics lies at another extreme (left hand
side), where a high level of detail is sought. Finally, behavioral analysis is a
varying scale that depends on how context is incorporated into the analysis of
performance.

NS operates based on the concept of solution behaviors,
where each individual is described based on the functional
behavior it exhibits, as described in the previous section. This
description of behavior is captured by a domain dependent
descriptor, in such a way that each individual is mapped to
a single point in behavioral space. Since, many individuals in
the genotypic space express the same behavior and are thus
mapped to the same point in behavioral space, the search for
novelty is often feasible in practice [15], [16], [17]. Moreover,
Lehman and Stanley argue that since the number of simple
behaviors for any given problem is relatively small, then the
search for novelty must necessarily lead to more complex
behavioral patterns.

A known limitation of objective-based search is a tendency
to converge and get trapped on local optima, particularly
in real-world and multi-modal problems. To overcome this,
researchers have incorporated diversity preservation techniques
into EAs, such as niching or speciation [40]. However, most
proposals are ad-hoc strategies that must attempt to balance
exploration and exploitation during the search. Conversely,
through the search for novelty alone, diversity preservation
introduces the sole selective pressure and can in principle avoid
stagnation during the search.

In practice, NS uses a measure of local sparseness around
each individual within behavioral space to estimate its nov-
elty, considering the current population and novel solutions
from previous generations. An important observation is that
such a measure of novelty is dynamic, since it can produce
different results for the same individual depending on the
population state and search progress at any given generation.
The proposed measure of sparseness ρ around each individual
K, described by its behavioral descriptor β, is given by the
average distance to the k-nearest neighbors in behavioral space,
with k an algorithm parameter, computed as

ρ(β) =
1

k

k∑

i=0

dist(β,αi) , (1)

where αi is the behavioral descriptor of the ith-nearest neigh-
bor of K in behavioral space with respect to distance metric



dist, which is a domain-dependent measure of behavioral
difference between two descriptors. Given this definition, when
the average distance is large, then the individual lies within a
sparse region of behavioral space, and it is in a dense region
if the measure is small.

An important consideration in NS relates to how neighbor-
hood is defined; the original proposal is to consider the current
population and an archive of individuals that were at one time
considered to be novel, it is therefore an inter-generational
neighborhood. An individual is added to the archive if its
sparseness is above a minimal threshold ρmin, the second
parameter of the NS algorithm. Finally, at the conclusion of
the run after a fixed number of generations, the best solution
based on fitness (it is the only moment in which NS uses an
explicit fitness function) from both the final population and the
archive is returned as the solution found by the search.

Since its proposal in [15], and later works [16], [17], most
applications of NS have focused on robotics, such as mobile
robot navigation [15], [16], [17], morphology design [41] and
gait control [17]. Only until recently has NS been used in
general pattern recognition problems, particularly supervised
classification [20] and unsupervised clustering [21]. This paper
continues to expand the use of the open-ended NS algorithm,
applying it to the most common application domain for GP,
real-valued symbolic regression.

V. REGRESSION WITH NS & GP

This paper presents a NS-based GP for real-valued sym-
bolic regression problems, hereafter referred to as NS-GP-R. In
regression analysis, a function f(x) is approximated by an op-
erator K(x), considering independent variable x ∈ D

n ⊆ R
n,

where D
n is the domain of f(x). If we consider the training

set of fitness cases as X , then the goal is to find an operator
K that minimizes ‖f(x) − K(x)‖. However, to use NS the
performance of K(x) must not be expressed as an error over
all fitness cases, but as a description of how K behaves over
the entire set of fitness cases.

A. Behavioral Descriptor

Since the goal of a symbolic regression problem is straight-
forward, to minimize the error between the desired output
and the proposed approximation, then a behavioral descriptor
for symbolic regression must consider the concept of error in
some way. The descriptor must provide a sufficiently detailed
description of how an individual behaves over all fitness cases.
Moreover, the descriptor should abstract away unnecessary
details, and focus on describing how unique a particular
individual is relative to others within the population.

ǫ-descriptor: For a regression problem, let f :
R

n 7→ R be the function to be approximated, X =
{(x1, f(x1)), (x2, f(x2)), ..., (xL, f(xL))} the set of fitness
cases (input-output tuples), Ki a valid GP individual, and
ei = {ei,1, ei,2, ..., ei,L} be the error vector of Ki with
ei,j = |f(xj) − Ki(xj)|; then the ǫ-descriptor βǫ

i of Ki is
a binary vector of size L that is constructed as follows.

For simplicity and without loss of generality, consider
L = 1. Then, at a generation t with population P , sort P in
ascending order based on ei and compute the order statistic p

Algorithm 1 Behavior descriptor βǫ

Require: Input
// x ∈ R

n

// f(x) : symbolic function
// K : GP function

Ensure: Output binary vector βǫ

1: // gen: number of generations
2: for t = 0 : gen do
3: // pop: population size
4: for i = 1 : pop do
5: // L: sample size
6: for j = 1 : L do
7: // Ei,j = {ei,j}: error matrix
8: ei,j ⇐ |f(xj)−Ki(xj)|
9: end for
10: end for
11: // descending sort by column, E = ei,j
12: E ⇐ sort (E, j, descend)
13: // order statistic p (read Section V-A)

14: p ⇐ | P |
h

15: // vector row at threshold h
16: ǫt+1 ⇐ ep

17: if ǫt+1 > ǫt & t 6= 0 then
18: // epsilon vector update
19: ǫt+1 ⇐ ǫt
20: end if
21: // individual descriptor loop
22: for i = 1 : pop do
23: for j = 1 : L do
24: if eij ≤ ǫt+1,j then
25: βǫ

i,j ⇐ 1
26: else
27: βǫ

i,j ⇐ 0
28: end if
29: end for
30: end for
31: end for

of the set of error vectors E = {ei|∀Ki ∈ P}, where p = |P |
h

with h an algorithm parameter. Then, set a bounding value
ǫt = min(ǫt−1, ep) if t > 0 and ǫt = ep otherwise; such that
βǫ
i = 1 for all Ki with i ≤ p and βǫ

i = 0 otherwise.

For example consider h = 10, then the ǫ-descriptor βǫ
i

of Ki identifies the fitness cases j on which individual Ki

is in the best 10-percentile of the population, when βǫ
i,j = 1.

Conversely, if βǫ
i,j = 0, this means that the individual performs

in the worst 90% of the population. A graphical description
of this process is shown in Figure 2. Moreover, a description
of the algorithm used to compute the ǫ-descriptor is given in
Algorithm 1.

B. NS Modifications

The behavioral descriptor presented above is constructed
based on the performance of each individual relative to the
rest of the population. Therefore, the descriptor assigned to
any given individual will depend on the population to which
it belongs. In other words, the context in which a descriptor is
computed varies as a function of the current population. This
represents a slight modification to the original NS implementa-
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Fig. 2. Graphical depiction of how the ǫ-descriptor descriptor βǫ is constructed; Notice how the interval specified by ǫ determines the values of each βi.

tion. However, it is consistent with the idea that the uniqueness
of an individual depends on the search progress at the moment
in which the individual was found.

This design choice does raise a problem when sparseness
is computed, since the descriptors of individuals stored in the
archive will, with high probability, not represent a consistent
behavioral descriptor with respect to the individuals in the
current population. Therefore, the second modification made
to the NS algorithm for regression problems is to omit the
archive when sparseness is computed. The lack of an archive
can lead the canonical NS to perform backtracking during
the search, cycling within behavioral space without any real
progress. However, this problem is avoided by not allowing
ǫ to increase in magnitude. Since, for most problems, the
initial random population will mostly contain individuals with
a large error vector, in the initial generations the ǫ bounds
will tend to be high. Then, with selective preference given
to individuals with unique behaviors and given the way in
which the ǫ-descriptor is constructed, the algorithm will be
biased towards individuals with descriptors that contain a large
proportion of ones since most low performance solutions will
have behavioral descriptors with a large proportion of zeros;
i.e., it will be biased towards individuals that achieve a low
error on many fitness cases. Therefore, since ǫ cannot increase
over generations, then selective pressure will push the search
towards novel individuals that exhibit a low error on many
fitness cases. Nonetheless, the archive is still used to save
promising individuals across generations, and is used to select
the best solution at the end of the run.

VI. EXPERIMENTS

The proposed NS-GP-R algorithm is evaluated on three
benchmark problems, suggested by [32] and proposed in
[24]. Moreover, for comparative purposes, the algorithm is
compared to the results published in [24], that use a standard
GP, hereafter referred to as SGP, and a GP with the Semantic
Similarity-based Crossover (SSC) also proposed in [24].

A. Test Problems and Parametrization

The three symbolic regression problems are given in Table
I. The problems were chosen based on the difficulty the
problems posed to the methods published in [24], and they are
ordered from the easiest to the most difficult in descending
order 1. The two easier problems have one independent vari-
able, while the harder problem has two independent variables;
Figure 3 shows the ground truth function in each problem.
Table I specifies the desired function and the manner in which
the training set (fitness cases) and testing set are constructed,
using the same random procedure in both.

The GP setup and parameters are given in Table II, using
a similar configuration to [24]. The NS-GP-R algorithm was
coded using GPLAB, a GP Matlab toolbox [42].

1It is not claimed that this ordering implies any deeper understanding of
the intrinsic difficulty of the problem, it is only based on the performance of
the algorithms compared in [24].
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Fig. 3. Benchmark symbolic regression problems.

TABLE I. BENCHMARK PROBLEMS FROM [24].

Problem Function Fitness/Test cases

f1 x4 + x3 + x2 + x 20 random points ⊆ [−1, 1]
f2 sin(x2) ∗ cos(x) − 1 20 random points ⊆ [−1, 1]
f3 2sin(x) ∗ cos(y) 100 random points ⊆ [−1, 1]x[−1, 1]

TABLE II. PARAMETERS FOR THE GP-BASED SEARCH.

Parameter Description

Population size 200 individuals.

Generations 100 generations.

Initialization Full,with 6 levels.

Crossover One-point crossover.

Mutation Subtree mutation.

Operator probabilities Crossover pc = 0.9,
Mutation pµ = 0.05.

Function set ( + , − , × , ÷ , sin , cos , exp , log).
Terminal set x, 1 for single variable problems and x, y

for bivariable problem.

Hard maximum depth 15 levels.

Selection Tournament of size 6.

NS nearest neighbors k = 15.
Sparseness threshold ρmin = 3 for single variable problems and

ρmin = 13 for bivariable problem.

ǫ-descriptor threshold h = 10.
Number of runs per problem 30.

B. Experimental Results

After executing the algorithm 30 times on each problem,
the following results are obtained. First, Figure 4 presents

a boxplot analysis of the performance of NS-GP-R on each
benchmark problem, showing the best error on the test-set
achieved in each run. For comparative purposes Table III
presents a comparison of the average error of NS-GP-R on
each benchmark, along with the average error reported in
[24] for SGP and SSC. The table shows an interesting trend,
NS performs worse on the easier problem, performs about
equally on the intermediate problem, and outperforms all
methods on the most difficult problem 2. These results are
interesting but not unexpected, they are consistent with recent
results achieved by NS on classification and data clustering
[20], [21]. The trend is apparent, NS works best when the
problems are difficult, because in this scenario, novelty indeed
leads towards quality, given that the initial random populations
mostly contain individuals that perform poorly. Therefore, in
difficult problems the selection pressure in novelty search
can lead towards individuals that achieve good performance.
In other words, when the gradient for novelty is positively
correlated with the gradient for fitness, then NS can indeed
find high performance solutions.

2Results are compared based only on average error, no statistical tests are
performed because only the published results are being used for comparison.
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TABLE III. COMPARISON OF NS-GP-R WITH TWO CONTROL

METHODS REPORTED IN [24], SSC AND SGP; VALUES ARE THE MEAN

ERROR COMPUTED OVER ALL RUNS.

Problem NS-GP-R SSC SGP

1 0.47 0.15 0.26
2 0.14 0.10 0.21
3 0.42 1.53 2.26

VII. CONCLUSIONS

This work presents a NS-based GP algorithm for the
classical GP problem of symbolic regression. The NS algo-
rithm is an open-ended EA, where an explicit fitness function
is not used to guide the search, instead a measure of the
uniqueness of each individual provides the selective pressure
during evolution. In this respect, the paper represents the
first attempt to apply NS in this domain, one of the most
common engineering and scientific problems. To achieve this,
however, the concept of behavioral space needed to be adapted
for it to be applied in this domain. Therefore, a behavioral
descriptor was proposed called ǫ-descriptor, that emphasizes
the main characteristics of program behavior while abstracting
away unnecessary details, in order to properly describe the
performance that each GP individual exhibits with respect to
the rest of the population.

Results are encouraging and consistent with recent propos-
als that expand the use of the NS algorithm to other mainstream
areas. The proposed NS-based GP was compared with recently
published results on three benchmark problems that are cur-
rently suggested for GP evaluation within the community [32].
NS shows a consistent trend, it achieved quite bad performance
on easy problems, and performs substantially better on difficult
ones, results that are similar to those published in [20], [21].
For real-world scenarios these results are promising, since
most interesting problems are difficult, not easy. The reason
for these results can be inferred from the nature of the NS
algorithm. Random solutions in the initial population mostly
exhibit bad performance, thus the selective pressure towards
good solutions increases during the search for novelty. On the
other hand, for easier problems the exploration performed by
NS is mostly counterproductive, since random solutions might
provide good initial approximations and all that is lacking is an
exploitative search. Therefore, when random solutions have a

high fitness then novelty could easily lead the search towards
worse results. Conversely, when the problem is difficult and
random solutions are of low fitness, then the search for novelty
will lead towards high quality solutions.

Future work will center on exploring further experimental
tests in this domain, comprehensively evaluating different
parameterizations and performance achieved on other bench-
marks and real-world problems, comparing the algorithm with
other GP systems for symbolic regression. Moreover, it is
imperative to provide a deep comparison between the proposed
behavior-based search strategy and recent semantics-based ap-
proaches, a comparison that goes beyond merely experimental
results, but a detailed analysis of the main algorithmic dif-
ferences between both approaches and their effects on search.
Finally, future work should also study how NS affects the bloat
phenomenon during a GP search. The reason for this is actually
very intuitive, given that the main cause for bloat is the bias
introduced by the search for better fitness, what is known as the
fitness-causes-theory [43], [44]. Recent studies of NS applied
to pattern recognition problems [20], [21] has produced results
that suggest that the elimination of an explicit fitness function
can curtail bloating during a GP run [33]. However, since
the algorithm and behavioral descriptors used in [20], [21],
[33] differ on some key aspects with respect to the proposal
described in this paper, then further analysis and experimental
validations is required.
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