Skip to main content

Faster Convergence with Lexicase Selection in Tree-Based Automated Machine Learning

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2023)

Abstract

In many evolutionary computation systems, parent selection methods can affect, among other things, convergence to a solution. In this paper, we present a study comparing the role of two commonly used parent selection methods in evolving machine learning pipelines in an automated machine learning system called Tree-based Pipeline Optimization Tool (TPOT). Specifically, we demonstrate, using experiments on multiple datasets, that lexicase selection leads to significantly faster convergence as compared to NSGA-II in TPOT. We also compare the exploration of parts of the search space by these selection methods using a trie data structure that contains information about the pipelines explored in a particular run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Individual \(i_1\) dominates \(i_2\) if \(i_1\) is better than or the same as \(i_2\) on all objectives and strictly better than \(i_2\) on at least one objective.

  2. 2.

    https://github.com/EpistasisLab/exploration-trie-tpot including code and supplementary material.

References

  1. Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S., Kronberger, G.: Visualization of genetic lineages and inheritance information in genetic programming. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1351–1358 (2013)

    Google Scholar 

  2. Ciesielski, V., Mawhinney, D.: Prevention of early convergence in genetic programming by replacement of similar programs. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 67–72. IEEE (2002)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  5. Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

  6. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  7. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2014)

    Article  Google Scholar 

  8. La Cava, W., Moore, J.H.: An analysis of \(\epsilon \)-lexicase selection for large-scale many- objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 185–186 (2018)

    Google Scholar 

  9. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 741–748 (2016)

    Google Scholar 

  10. Langdon, W.B.: Genetic programming convergence. Genet. Program Evolvable Mach. 23(1), 71–104 (2022)

    Article  Google Scholar 

  11. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). https://doi.org/10.1103/PhysRevLett.87.198701, https://link.aps.org/doi/10.1103/PhysRevLett.87.198701

  12. McPhee, N.F., Finzel, M.D., Casale, M.M., Helmuth, T., Spector, L.: A detailed analysis of a PushGP run. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and Practice XIV. GEC, pp. 65–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97088-2_5

    Chapter  Google Scholar 

  13. Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic programming. In: Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice XVI. GEC, pp. 123–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04735-1_7

    Chapter  Google Scholar 

  14. Moore, J.M., McKinley, P.K.: A comparison of multiobjective algorithms in evolving quadrupedal gaits. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS (LNAI), vol. 9825, pp. 157–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43488-9_15

    Chapter  Google Scholar 

  15. Oh, H., et al.: Convergence-aware neural network training. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  16. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

    Chapter  Google Scholar 

  17. Orlenko, A., et al.: Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning. Bioinformatics 36(6), 1772–1778 (2020)

    Article  Google Scholar 

  18. Orzechowski, P., Moore, J.H.: Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers. Sci. Adv. 8(47), eabl4747 (2022). https://doi.org/10.1126/sciadv.abl4747, https://www.science.org/doi/abs/10.1126/sciadv.abl4747

  19. Saini, A.K., Spector, L.: Relationships between parent selection methods, looping constructs, and success rate in genetic programming. Genet. Program Evolvable Mach. 22(4), 495–509 (2021)

    Article  Google Scholar 

  20. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State University Press (1989)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Institute of Health grants R01 LM010098 and R01 AG066833.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Batista or Jason H. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsumoto, N. et al. (2023). Faster Convergence with Lexicase Selection in Tree-Based Automated Machine Learning. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29573-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29572-0

  • Online ISBN: 978-3-031-29573-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics