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ABSTRACT 
This paper presents MOJITO, a system which optimizes across 
thousands of analog circuit topologies simultaneously, and returns 
a set of sized topologies that collectively provide a performance 
tradeoff.  MOJITO defines a space of possible topologies as a 
hierarchically organized combination of trusted analog building 
blocks.  To minimize the setup burden: no topology selection 
rules or abstract behaviors need to be specified, and performance 
calculations are SPICE-based.  The search algorithm is a novel 
multi-objective evolutionary algorithm that uses an age-layered 
population structure to balance exploration vs. exploitation.  
Results are shown for a space having 3528 one- and two-stage 
operational amplifier topologies.   
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1. INTRODUCTION 
The choice of cell-level analog circuit topology can have a giant 
impact on the performance of a system, and its implications 
resonate throughout the rest of the design cycle.  Even the best 
circuit optimizers can only produce as good a result as the chosen 
topology allows [18].  Unfortunately, a suboptimal choice can 
occur: it may not suit larger statistical variations or new effects 
such as proximity [6] when the process changes;   functionality 
requirements may be qualitatively new to the designer; or the 
designer may unknowingly miss an advance in topology design.  
The process to choose a topology has traditionally been very 
iterative, and intertwined with the choice of specifications.  As 
Figure 1 (a) shows, many topologies may be tried for a fixed set 
of specifications, and if needed, the specs themselves may 
change.  As Figure 1 (b) shows, one can remove the iteration over 
topology choices by making it part of the search itself; but that 
still needs iterations over specs, and means that just a feasible (not 

optimal) solution will be found.  Multi-objective sizers [4] bypass 
the specs issue by optimizing on >1 goals to generate 
performance tradeoffs as part of the search task.  But so far, 
multiobjective sizers have only worked on one topology at a time.  
This means that to get an optimal tradeoff across multiple 
topologies, one needs one sizing run per topology before merging 
the topologies, as Figure 1 (c) shows.  In system-level design, 
tradeoffs of topologies are merged; then, search at higher-level 
blocks implicitly performs topology selection of lower-level 
blocks [7].  But tradeoff-merging has limits: it would be 
extremely tedious and time-consuming to do a different sizing run 
for each of 100 or 1000 topologies.  Figure 1 (d) shows the ideal 
approach, which simultaneously considers a large number of 
possible topologies and returns a multi-topology tradeoff across 
specs, all in one sizing run. 

 
Figure 1: Single- vs. multi-objective and single- vs. multi-

topology sizing flows 
Cell-level multi-topology sizing approaches also have limits. 
OASYS [9], BLADES [8], and others [1][2][11][16][21][23] 
depend on rule-based reasoning or abstract models having 
transforms to structural descriptions, and therefore have an 
undesirable amount of up-front setup effort.  DARWIN [13] and 
MINLP [14] only require structural information, but rely on a 
sneaky definition of a flat combinatorial search space to define 
possible topologies; they do not show a clear path to generalize 
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and are restricted to <100 topologies.  Approaches like 
[3][12][20] search across unstructured combinations of transistors, 
but that flexibility makes them notorious for exploiting missing 
goals, which compromises designer trust [15]. 

This paper presents MOJITO, a system for multi -objective and 
multi–topology sizing.  It uses inputs and outputs that are 
acceptable for industrial single-topology sizing tools (e.g. [19]), 
with one exception: rather than a single parameterized netlist, it 
requires a hierarchically organized set of building blocks with 
respective implementation choices.  MOJITO does not need a 
special decision rule base, or abstract models with mappings to 
refined structures.  This makes it straightforward to switch 
technologies or add new building blocks.  It uses off-the-shelf 
simulators rather than specially designed performance estimators.  
Its output is a tradeoff of sized circuits (potentially with different 
topologies), for final selection by a designer or within a 
hierarchical methodology like MOBU [7].   

This paper is organized as follows.  Sections 2 and 3 describe the 
MOJITO search space and search algorithm, respectively. Section 
4 presents experimental results. Section 5 concludes. 

2. THE MOJITO SEARCH SPACE 

2.1 Search Space Framework 
This section describes a topology space (library) that is specified 
by structural information only, searchable, trustworthy, and 
flexible.  It is defined with hierarchically organized blocks.  Like 
analog HDLs, each block has external ports and parameters for an 
interface.  To fully netlist a given block, the only extra 
information needed is a value for each parameter of the block.  
Just three block types are needed: 

• Atomic Blocks. Have no sub-blocks. 

• Compound Blocks. Have sub-blocks, which can have 
internal connections among themselves and to the block’s 
external ports.  Sub-block parameters are a function of the 
block’s parameters. 

• Flexible Block. Have the special topological parameter 
chosen_part_index, which during netlisting, selects one of 
several candidate sub-blocks and respective connections. 

2.2 A Highly Searchable Op Amp Library 
We use the framework to define a cell-level library of operational 
amplifiers.  One challenge: if a designer makes a small conceptual 
change to a circuit that corresponds to a small change in 
performance, there may be a drastic change in the netlist.  While 
this complicates the design of an appropriate search 
representation, it is needed for changes like folding an input or 
flipping all NMOS transistors to PMOS.  Myriad examples can be 
found in any analog text [17].  The structural-only op amp 
approaches [13][14] do cover some of these examples, but are 
designed into a flat space, need special heuristics just to work in 
their small spaces, and do not readily generalize.  An example 
limitation: [14] had a single parameter to choose whether NMOS 
vs. PMOS inputs, but did not reconcile that with folded vs. 
cascode which can flip the load being NMOS vs. PMOS. 

To resolve this, we exploit the chosen_part_index parameter, 
which allows highly flexible blocks because it can (a) be a 
function of one or more higher-level parameters, and (b) choose 
between sub-blocks that are identical except how those sub-blocks 
are wired to their parent block.  In the MOJITO library, we set the 
parameter is_pmos to become the value of chosen_part_index for 
the MOS4 flexible block having subblock choices of atomic 
blocks NMOS4 and PMOS4.  How is_pmos gets set is dependent 
on the block’s context in the library hierarchy and therefore the 
values of its parent blocks’ parameters.  Let’s see how that affects 
folding, etc.  A block for a 1-stage amplifier is a flexible block 
with Vdd and Gnd ports, and has two sub-block choices.  Both 
choices are for the same subblock -- the choice specifies only how 
to connect that subblock: one choice ties the subblock’s loadrail 
port to Vdd and its opprail to Gnd; for the other choice, vice 
versa.  It also passes on the chosen_part_index value as a 
parameter to lower-level subblocks, mapping it to the appropriate 
name loadrail_is_vdd.  Another parameter that starts at the 
amplifier level and propagates downwards is input_is_pmos.  To 
resolve folding, the input cascode block’s parameter is_folded is 
calculated by (input_is_pmos == loadrail_is_vdd).  Once that is 
resolved, the flexible block uses is_folded to choose between a 
folded cascode subblock and a stacked subblock.  Each of those 
cascode subblocks can readily set is_pmos parameters for all 
subblocks.   
For space reasons, we do not describe the whole MOJITO 
amplifier library; but, using the core concepts as a guide, the other 
building blocks can be defined in a straightforward fashion.  For 
example, a current mirror block is a flexible block that chooses 
from one of three current mirror choices.  The library also 
includes: 2 level shifter choices (one choice is a wire); 2 choices 
of how to allocate Vdd/Gnd ports for a 1-stage amplifier and 4 for 
a 2-stage amplifier; 3 source-degeneration choices; 3 single-ended 
load choices; and more. 
Table 1 shows that MOJITO increases the op amp count by 50x.  
To calculate that: the count for an atomic block is one; for a 
flexible block, it's the sum of the counts of each choice block; for 
a compound block, it's the product of the counts of each of its 
sub-blocks; but there are subtleties.  Subtlety: for a given choice 
of flexible block, other choice parameters at that level may not 
matter.  Example: if a one-stage amplifier is chosen, do not count 
choices related to second stage.  Subtlety: one higher-level choice 
might govern >1 lower-level choices, so don't overcount.  
Example: a two-transistor current mirror should have two choices 
(nmos vs. pmos), not four (nmos vs. pmos x 2).    

Table 1: Size of Op Amp Topology Spaces 

Technique # 
topologies 

Trustworthy? 

Genetic Prog., e.g. [12] >>billions NO 
DARWIN [13] 24 YES 
MINLP [14] 64 YES 
MOJITO (this work) 3528 YES 

3. THE MOJITO SEARCH ALGORITHM 
MOJITO search is an evolutionary algorithm (EA).  To avoid 
premature convergence, it injects randomness using ALPS [10], 
which segregates individuals by genetic age as shown in Figure 2.  



Selection at a level l considers individuals at only level l and level 
l-1; therefore younger high-fitness individuals can propagate to 
higher levels.  Genetic age is the number of generations of an 
individual’s oldest genetic material: a random individual is age 0; 
the age of a child is the maximum of its parents’ ages.  Putting 
NSGA-II [5] at each age level makes search multi-objective. 

 
Figure 2: Multi-objective ALPS 

MOJITO has a mutation operator and a crossover operator.  
Mutating continuous-valued parameters follows a Cauchy 
distribution; integer-valued chosen_part_index parameters follow 
a discrete uniform distribution; other integer and discrete 
parameters follow discretized Cauchy mutations.  Crossover 
works as follows: given two parent individuals, randomly choose 
a sub-block in parent A, identify all the parameters associated 
with that sub-block, and swap those parameters between parent A 
and parent B.  This effectively makes the search a hybrid between 

tree-based and string-based search.  To generate random 
individuals, MOJITO merely randomly chooses a value for each 
parameter using a uniform distribution. 

4. EXPERIMENTAL RESULTS 
This section describes application to two multi-objective multi-
op-amp topology sizing problems.  The problems were set up as 
follows.  The search space had 50 variables (topology selection 
variables and sizing variables).  Simulator was HSPICE.  
Technology was 0.18μ CMOS; supply voltage 1.8V; load 
capacitance 1pF.  Search objectives: maximize GBW, minimize 
power, maximize DC Gain (Experiment Set 2). Constraints: phase 
margin > 65°, all DOCs, DC Gain > 30dB (Experiment Set 1).  
EA settings were: 100 individuals per age layer; 10 age layers, 
maximum age per layer: 9, 19, …, 79, 89, infinity.  Each run took 
approximately 5 days on a single-core 2.0 GHz Linux machine, 
covering 100,000 search points.   

4.1 Experiment Set 1 
These runs were to verify the algorithm’s ability to traverse the 
search space and select different topologies. The problem was set 
up such that the optimization end result was known a priori. 
Three experiments were run, the only difference between them 
being the common mode voltage (Vcmm,in) at the input.  We know 
that for Vcmm,in = 1.5V, topologies must have an NMOS input 
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Figure 5: Results for a multi-topology multi-objective sizing run on 3 objectives: gbw, gain, and area.  

(a) 
(b) 

(c) 

Figure 4: Combined result plot for 3 optimization runs, illustrating some of the selected topologies. Set (a) shows a front for Vin = 
1.5, set (b) is for Vin = 0.3V and set (c) is for Vin = 0.9 
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pair.  For Vcmm,in = 0.3V, topologies must have PMOS inputs.  At 
Vcmm,in = 0.9V, there is no restriction between NMOS and PMOS 
inputs.  Figure 4 illustrates the outcome of the experiments. It 
contains the combined results of three optimization runs. Result 
(a) has Vcmm,in = 1.5V, and has only topologies with NMOS 
inputs.  It chose to use 1-stage and 2-stage amplifiers, depending 
on the power-GBW tradeoff.  Result (b) has Vcmm,in = 0.3V, and 
MOJITO only returns PMOS input pairs. Note that result (a) is a 
result before convergence in order to retain the 2-stage amplifier 
in the result set. Older generations eliminate the 2-stage amplifier 
in favor of the folded cascode amplifier, as in result (b).  For 
result (c) a Vcmm,in = 0.9V has been specified.  Though both 
NMOS and PMOS input pairs might have arisen, the optimization 
preferred NMOS inputs. The curve clearly shows the switch in 
topology around GBW=1.9GHz, moving from a folded cascode 
input to a simple current-mirror amp.  Interestingly, the search 
retained a stacked current-mirror load for about 250MHz GBW.  
Thus, Experiment 1 validated that MOJITO did find the 
topologies that we had expected a priori.  

4.2 Experiment Set 2 
The second set of experiments was performed to verify that 
MOJITO could get interesting groups of topologies in a tradeoff 
of two or more objectives.  The motivation is as follows: whereas 
a single-objective multi-topology optimization can only return 
one topology, the more objectives that one has in a multi-
topology search, the more opportunity there is for many 
topologies to be returned, because different topologies naturally 
lie in different regions of performance space.  In this experiment, 
a single run was performed, having three objectives: area, GBW, 
and gain.  The results are shown in Figure 5.  We can see that 
MOJITO determined (as expected): folded-cascode op amps gave 
high gain-bandwidth but with high area, 2-stage amps give high 
gain but at the cost of high area, the low-voltage current mirror 
load is a 1-stage with high gain, and there are many other 1 stage 
topologies which give a broad performance tradeoff.   

5. CONCLUSION 
This paper presented MOJITO, which does multi-topology, multi-
objective sizing.  It considers thousands of topologies 
simultaneously, which is possible due to a flexible yet searchable 
set of trusted building blocks.  For industrial relevance, it does not 
use a rule-base or behavioral abstractions to guide search, and 
uses SPICE for performance calculation.  MOJITO performs 
search in a hybrid vector/tree space, with a novel multiobjective 
EA.  MOJITO was applied to a space having 3528 different 
operational amplifier topologies.  In one set of experiments, we 
showed how MOJITO successfully found appropriate topologies 
trading off power and gain-bandwidth for different common-mode 
input voltages.  In another experiment, we showed how MOJITO 
evolves different topologies for different regions of the tradeoff 
among gain, gain-bandwidth, and area.    
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