
Analysis of Simulation-Driven Numerical Performance
Modeling Techniques for Application to Analog Circuit

Optimization

Trent McConaghy
ESAT-MICAS
K.U. Leuven

Leuven, Belgium

Georges Gielen
ESAT-MICAS
K.U. Leuven

Leuven, Belgium

Abstract—There is promise of efficiency gains in simulator-in-
the-loop analog circuit optimization if one uses numerical
performance modeling on simulation data to relate design
parameters to performance values. However, the choice of
modeling approach can impact performance. We analyze and
compare these approaches: polynomials, posynomials, genetic
programming, feedforward neural networks, boosted
feedforward neural networks, multivariate adaptive regression
splines, support vector machines, and kriging. Experiments
are conducted on a dataset used previously for posynomial
modeling, showing the strengths and weaknesses of the
different methods in the context of circuit optimization.

I. INTRODUCTION
Automated sizing of analog circuits is important to industrial

design practices because it can improve productivity in the analog
design process. Over the years, there has been effort to improve
automated approaches in both academia (e.g. [1-3]) and industry.
Typical approaches use simulated annealing or an evolutionary
algorithm, possibly executed in parallel using a farm of
workstations. Simulator-in-the-loop optimization has been
demonstrated to be especially effective because of the accuracy and
flexibility of simulators. The drawback is runtime. Thus, it
continues to be important and useful to improve the efficiency.

Recently, there have been proposals to leverage numerical
performance modeling to improve efficiency [4-8]. A performance
model is a mathematical model relating the performance
characteristics of a circuit (e.g. gain/bandwidth) to the design
variables. Accuracy is maintained by constructing the performance
model based on sample sets of SPICE simulation data. Efficiency
of circuit optimization is improved because the performance model
can replace at least some of the time-consuming SPICE simulations.
In each of those techniques, the choice of model type and model
construction technique was made early in the research process
without deep considerations for alternative approaches. However,
there is a wide variety of possible approaches, so an arbitrarily
chosen approach could easily be suboptimal.

This paper analyzes and compares a large set of modeling
approaches in the context of a reference optimization flow. Section
II describes the flow. Section III discusses modeling criteria.

Section IV surveys modeling approaches in light of analog
optimization. Section V experimentally compares the modeling
approaches. Section VI concludes.

II. REFERENCE OPTIMIZATION FLOW
There are many possible ways to use models to improve

optimization efficiency. We limit ourselves to one reference flow,
specifically the one that [4] suggests.

From an initial “center” design, repeat
until stopping criteria met:
• Use Design Of Experiments (DOE) to sample

several data points about the “center”
design; simulate each and compute
performance values

• Build one model for each performance
measure, using those samples

• Choose a new “center” design by
optimizing on the models

III. CRITERIA FOR MODELING
Since circuit simulation is the bottleneck in simulator-in-the-

loop optimization, improving efficiency roughly translates to
reducing the number of simulations. However, it is important that
the time taken to build the model or optimize on the model does not
end up making the overall runtime longer. Lower model prediction
error can reduce the number of iterations of the algorithm, but there
is a tradeoff, as achieving lower prediction error takes more time in
model building.

The most important criteria are prediction ability, model
building time / scalability, and model simulation time. Specific
targets for each criterion depend on the optimization flow, as well
as the circuit simulation time, number of process and environmental
corners, and number of design variables.

IV. MODELS AND MODEL BUILDING ALGORITHMS
We choose a representative sample of modeling approaches

based on performance, popularity, and diversity of origin. Figure 1
illustrates. The methods we investigate are at the leaf nodes.

Figure 1. A sampling of modeling approaches with a diversity of origin

The following modeling methods are considered:

• As reference models, we use a constant (set as the mean of
the data), a linear model, and a 2nd-order polynomial. A
constant is not useful in practice, of course, as it would
provide zero information on choosing the next center
design. In this paper, no terms are pruned from the
polynomials.

• Posynomials are compared because [4] considered them as
the prime candidate in the reference optimization flow,
because posynomials result in a convex optimization
problem that can be solved very efficiently. Unlike the
polynomials in this comparison, the posynomials in [4]
follow a more constructive approach for model building,
causing sparser models.

• A modified form of genetic programming (GP) [8] called
CAFFEINE [10] is tested. CAFFEINE restricts GP to
canonical functional forms via a grammar. In [10],
CAFFEINE achieved low testing error in comparison to
posynomials on the same dataset that this paper uses.

• Feedforward neural networks (FFNNs) have been applied
to a wide variety of problems, including analog circuit
sizing [5,7]. We use a state of the art training algorithm,
OLMAM [11]. The number of hidden nodes, NumHid, is
chosen as follows: set NumHid = 1; train NumRestarts
times for MaxEpochs training epochs; increment NumHid;
repeat. When the target nmse is hit, stop.

• Boosting [12] creates a “stack” of models; each model is
learned on a weighted version of the data. Weights are
based on the previous iteration’s errors. The overall output
is the average of the outputs of the individual models.
Boosted FFNNs have been previously applied to
simulation data [6]. We first determine NumHid in the
same way as for single FFNNs. Then, NumModels are
sequentially built, with each model having NumHid nodes.

• Multivariate Adaptive Regression Splines (MARS) [13]
are piecewise polynomials, and are built as follows. In the
constructive step, input variables are iteratively added on
an “as-needed” basis for greedily chosen sub-regions of
the input space. A pruning step follows. MARS scales to a
high number of input dimensions but is locally accurate.

• Support vector machines (SVMs) [14] transform inputs
into a space of much higher dimension and do linear
regression in that space. We use a fast-learning variant,
LS-SVM [15], with the following settings: radial basis
functions, auto-learn model parameters �2 and �; and auto-

select input dimensions. A problem with radial kernels is
that the inputs that are kept are treated uniformly, which
exaggerates the influence of less important variables.

• Kriging originated in geostatistics, but it has been shown
to be useful in optimization [16]. In kriging, prediction is
the value of nearby samples “corrected” by a correlated
error calculation. Model building time does not scale well
with a high number of inputs or of samples. The behavior
of both kriging and SVMs is highly dependent on the
choice of “distance function” among input points.

V. EXPERIMENTAL COMPARISON

A. Experimental Setup
As this paper uses the flow advocated by the posynomial work,

it is also useful to compare to that work. So, the problem setup and
simulation data was identical to [17]. The circuit being modeled is a
high-voltage CMOS OTA as shown in Figure 2. The goal is to
build predictive models for low-frequency gain (ALF), unity-gain
frequency (fu), phase margin (PM), input-referred offset voltage
(voffset), and the positive and negative slew rate (SRp, SRn), thus
including both small-signal and large-signal transient
characteristics.

Figure 2. Schematic of high-speed CMOS OTA

The technology is 0.7 µm CMOS. The supply voltage is 5V.
The nominal threshold voltages are 0.76V for NMOS devices and –
0.75V for PMOS devices. The circuit has to drive a load
capacitance of 10 pF. Currents and transistor drive voltages are
chosen as design variables, for a total of 13 design variables. Full
orthogonal-hypercube Design-Of-Experiments (DOE) sampling of
design points was used, with scaled design space dx=0.1 to have
243 design point samples. These samples were used as training data
inputs. Separate testing data had DOE sampling with dx=0.03. The
testing nmse is equivalent to the posynomial “quality of fit”
measure qtc used in [17]. We build each model with a target
training normalized mean-squared error (nmse) on the training
data, then simulate it on a separate set of test data, and compare the
testing nmse. All experiments were on a 3.0 GHz Pentium IV PC
running Matlab 6.5 on Red Hat Linux.

The code to build constant, linear, and polynomial models was
about 25 lines of Matlab. The model building time was a few
seconds, at most. The posynomial results were taken directly from
[17]; it reports that the model building time was 1-4 minutes (on a

slower machine). The target training nmse for the other model
builders was the posynomial’s training nmse from [17].

The CAFFEINE model builder was 2000 lines of Matlab code.
Run settings were: maximum number of basis functions 15,
population size 200, number of generations 5000, and maximum
tree depth 8. Model building time was 12 hours. The time could be
probably be lowered by 10x with a C implementation, and perhaps
another 5x with a less arbitrary population sizing and number of
generations, which would put the time at 14.4 minutes.

The FFNN was the Matlab code from [18]. Settings were
NumRestarts = 10, MaxEpochs = 5000. The time to build a single
network was about 10 s. A suitable nmse was typically found in the
first or second restart of about 3 hidden neurons. Therefore the total
model building time was about (10 s) * (10 restarts) * (first 2
neurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*10*2 + 10*2
= 220 s = 3.7 min. A 10x speedup via a C implementation would
make this about 22 s. The boosted FFNN was Matlab code
wrapping the OLMAM code. Settings were NumModels = 20.
Model building time was about (220 s to discover NumHid) + (10
s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min. A 10x speedup
via a C implementation would make this 42 s.

The MARS model builder was about 500 lines of Matlab code.
The model building time was about 5 minutes. A 10x speedup via
C would make this 30 s. The SVM model builder was Matlab code
from [19], with all settings at “fully automatic.” Model building
time was about 5 minutes. The kriging model builder was about
200 lines of Matlab code, with Θmin=0.0, Θmax=10.0, pmin=0.0,
pmax=1.99. Model building time was about 5 minutes; a 10x
speedup via C would make this 30 s.

B. Model Prediction Results
Figure 3 summarizes how well each of the modeling approaches

did in prediction of unseen data; Table I provides details. The
Genetic Programming variant, CAFFEINE, does the best. MARS
comes in very close. Kriging is next-best. The FFNN, boosted
FFNN, and SVM are all very close, and perform about the same as
the linear model. Of the non-reference modeling strategies, the
posynomial approach does the worst, by far. The only strategy
doing worse is the polynomial reference model. Interestingly, only
three approaches, namely CAFFEINE, MARS, and kriging, did
better at prediction than a constant.

Figure 3. Total prediction (testing) error for each modeling approach

Perf.
Con-
stant

Lin-
ear Poly. Posy.

CAFF-
EINE FFNN

Boosted
FFNN MARS SVM

Krig-
ing

pm 3.3 3.1 11.7 9.7 2.6 6.8 2.8 1.8 5.8 3.8

lfgain 6.2 4.6 14.7 6.5 2.8 5.0 5.3 4.4 11.5 7.3
srn 6.5 11.0 16.1 7.8 3.9 9.5 9.7 5.4 4.1 5.1
srp 9.3 12.4 33.8 31.0 7.4 8.2 14.0 7.2 10.0 8.9

offsetn 1.8 2.2 4.3 0.8 1.0 2.9 1.4 1.2 1.8 2.2
fu 8.2 14.2 20.8 5.9 5.0 9.3 10.0 9.4 12.7 7.3

Table I. Prediction error (%), for each modeling approach and each
performance measure. Best or near-best are in bold.

It should not be surprising that the polynomial does the worst,
as polynomials are notorious for overfitting. The approach used
here is particularly susceptible because it uses all the inputs in all
combinations, and the size of the dataset is relatively small in
comparison to the number of input dimensions. The posynomials,
for which this dataset was originally created, performed terribly
compared to all the other non-reference modeling approaches.
Posynomials did almost as badly as the similar approach of
polynomials; the posynomials did better probably because the
model building algorithm was constructive, leading to more sparse
models.

CAFFEINE had the opportunity to use more complex functions
such as sin(), but in its quest to build models to suit the data, it used
rationals on 5 of the 6 performance goals. CAFFEINE only selects
input variables that really matter. It is biased towards the axes of
the input variables rather than being affine-invariant. MARS did
similarly, because it is also biased towards the axes and is selective
of input variables. While CAFFEINE had the best or near-best
prediction error on 5 of the 6 performance goals, MARS had the
best or near-best on 3. As we shall see, the other approaches lose
prediction accuracy because they have different biases.

Kriging performed fairly admirably in this setting. This is not
surprising because it tends to perform well when the input samples
have relatively uniform spacing, as they do here with the DOE
sampling. Kriging, FFNNs, and boosted FFNNs did worse than
CAFFEINE and MARS most likely because they did not have the
helpful (for this application) bias towards the input axes. The
boosted FFNN did not have noticeably superior performance to the
FFNN, which means that overfitting was likely not an issue with the
FFNN. The SVM’s performance was poor probably because it
treated the variables it selected too uniformly. Also, the support
vector at the center of the sampling hypercube has to reconcile all
the other samples, which it does not really have enough parameters
to do properly. Because kriging did substantially better than SVMs,
the choice of distance function was likely not an issue.

C. Relation to Optimization
The main factors in choosing a model builder for a given

optimization flow are prediction ability, model building time, and
model runtime. We have analyzed prediction ability and model
building time, so let us examine model runtime.

Runtime of each model was always about 0.1 seconds or less in
Matlab. A 10x speedup via C would make it 0.01 s. Let us say that
one could optimize on the models (of six performance goals) using,
say, 10,000 evaluations with a modest-performance optimizer such
as simulated annealing. It is not necessary to get a perfectly optimal
point because the model has prediction error anyway. The total
runtime would be = (0.01 s / model) * (6 models / design point) *
(10,000 design points) = 10 minutes.

We could perhaps devise a formula for choosing the allowed
time for model building, so as to minimize total runtime. However,
it would involve knowing a priori the number of iterations that the
algorithm would undergo in order to solve the problem, something
we do not know in advance, especially because it is a function of
the prediction error, which in turn is a function of the modeling
approach and model building time.

Instead, let us use a simple “rule of thumb”: balance (circuit
simulation time) with (model building time + time to optimize on
models). This roughly ensures that the extra computational cost
incurred by modeling does not, in a worst case, make optimization
runtime much longer than an optimization approach with simpler
but less informed heuristics to choose new designs (such as simple
mutation of a design point). And, for non-worst cases, the “more
informed” choices could greatly improve runtime because the
number of iterations would decrease. With each new center design
point there are actually 243 new circuits simulated; if each circuit
takes 10s to simulate, then that is 40 minutes of simulation time.
So, following the rule of thumb, if at each iteration the circuit
simulation time is 40 minutes and time to optimize on models is 10
minutes, then there remains (40 – 10) = 30 minutes to build the
models. Therefore, with 6 performance goals, we get (30 minutes
allocated model building time for all goals) / (6 goals) = 5 minutes
allocated to build each model. All the modeling approaches
discussed above can be built in 5 minutes except for CAFFEINE.
That leaves MARS as the best-predicting approach that meets the
constraint of model building time. For a first pass, MARS is what
we would recommend for this particular optimization flow and
problem. However, for a fully informed decision we would do more
experiments on different center points, and with different inputs and
outputs. As well, we would explore techniques similar to MARS,
and GP speedup techniques.

It is interesting that the choice of [4] for using posynomials as a
modeling approach was largely motivated by the fact that
posynomials allow efficient convex optimization could be used to
determine the next center design. However, as just discussed, the
efficiency of that optimizer is the main issue because model
simulation time is several orders of magnitude less than circuit
simulation time.

VI. CONCLUSIONS
We have compared a total of ten approaches to automatically

build circuit performance models from circuit simulation data, with
application to more efficient analog circuit optimization. The
approaches that predicted new data with the lowest error were
CAFFEINE (a genetic programming variant) and MARS
(multivariate adaptive regression splines). The approaches that did
the next best were kriging, FFNNs (feedforward neural networks),
boosted FFNNs, and SVMs (support vector machines). The
reference approaches of simple constants and linear models did
about the same as those approaches. The worst-predicting models
were polynomials and posynomials.

The models were examined in light of a reference optimization
flow, for which [4] advocated posynomials, with the argument that
posynomials are easy to optimize on. However, in this flow the
most important aspect is not ease of optimization on the model, but
instead is reducing circuit simulation time through the most

predictive models (subject to the constraints that models must be
built and simulated fast enough). As CAFFEINE models are costly
to construct, that makes MARS the choice for this application.

REFERENCES
[1] R.Phelps, M.Krasnicki, R.A.Rutenbar, R.Carley, J.R.Hellums,

“ANACONDA: simulation-based synthesis of analog circuits via
stochastic pattern search,” IEEE Trans. CAD 19(6), June 2000

[2] B. De Smedt, G. Gielen, "Watson: Design space boundary
exploration and model generation for analog and RF IC design,"
IEEE Trans. CAD 22(2), pp.213-224, Feb. 2003

[3] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E.
Malavasi, A. Sangiovanni-Vincentelli and I. Vassiliou. A top-down,
constraint-driven design methodology for analog integrated circuits.
Kluwer, 1997.

[4] W. Daems, G. Gielen, W. Sansen, "Simulation-based generation of
posynomial performance models for the sizing of analog integrated
circuits," IEEE Trans. CAD 22(5), May 2003, pp. 517-534

[5] P. Vancorenland, G. Van der Plas, M. Steyaert, G. Gielen, W. Sansen,
“A layout-aware synthesis methodology for RF circuits”, ICCAD
2001, San Jose, CA, p. 358

[6] H. Liu, A. Singhee, R.A. Rutenbar, L.R. Carley, “Remembrance of
circuits past: macromodeling by data mining in large analog design
spaces,” DAC 2002, New Orleans, pp. 437 - 442

[7] G. Wolfe, R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers”, IEEE Trans. CAD,
Feb. 2003

[8] F. De Bernardinis, M.I. Jordan, A. Sangiovanni Vincentelli, “Support
vector machines for analog circuit performance representation,” DAC
2003, Anaheim, CA

[9] J.R. Koza. Genetic Programming. MIT Press, 1992.
[10] T. McConaghy, T. Eeckelaert, G. Gielen, “CAFFEINE: Template-

free symbolic model generation of analog circuits via canonical form
functions and genetic programming”, DATE 2005 (not published)

[11] N. Ampazis, S.J. Perantonis, "Two highly efficient second order
algorithms for training feedforward Networks", IEEE Trans. Neural
Networks 13(5), pp. 1064-1074, Sept. 2002

[12] R.E. Schapire, “The boosting approach to machine learning: An
overview,” MSRI Workshop on Nonlin. Estimation and
Classification, 2002

[13] J.H. Friedman, “Multivariate adaptive regression splines”, Annals of
Statistics 19, pp. 1-141, March 1991

[14] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” Adv. in Neural Information
Processing Systems 9, Cambridge, MA, pp. 155-161, 1997

[15] J.A.K. Suykens, J.Vandewalle. Least Squares Support Vector
Machines. World Scientific Pub. Co., Singapore, 2002

[16] D.R. Jones, M. Schonlau, W.J. Welch, “Efficient global optimization
of expensive black-box functions,” J. Glob. Opt. 13(4), pp. 455-492,
1998

[17] W. Daems, G. Gielen, W. Sansen, “An efficient optimization-based
technique to generate posynomial performance models for analog
integrated circuits”, DAC 2002, New Orleans, LA

[18] N. Ampazis, S.J. Perantonis, “OLMAM neural network toolbox for
Matlab,” http://iit.demokritos.gr/~abazis/toolbox/, 2002

[19] J.A.K. Suykens, "LS-SVMlab software",
http://www.esat.kuleuven.ac.be/sista/lssvmlab/

	Introduction
	Reference Optimization Flow
	Criteria for Modeling
	Models and Model Building Algorithms
	Experimental Comparison
	Experimental Setup
	Model Prediction Results
	Relation to Optimization

	Conclusions
	
	
	
	References

