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Abstract—There is promise of efficiency gains in simulator-in-
the-loop analog circuit optimization if one uses numerical 
performance modeling on simulation data to relate design 
parameters to performance values.  However, the choice of 
modeling approach can impact performance.  We analyze and 
compare these approaches:  polynomials, posynomials, genetic 
programming, feedforward neural networks, boosted 
feedforward neural networks, multivariate adaptive regression 
splines, support vector machines, and kriging.  Experiments 
are conducted on a dataset used previously for posynomial 
modeling, showing the strengths and weaknesses of the 
different methods in the context of circuit optimization. 

I. INTRODUCTION  
Automated sizing of analog circuits is important to industrial 

design practices because it can improve productivity in the analog 
design process.  Over the years, there has been effort to improve 
automated approaches in both academia (e.g. [1-3]) and industry.  
Typical approaches use simulated annealing or an evolutionary 
algorithm, possibly executed in parallel using a farm of 
workstations. Simulator-in-the-loop optimization has been 
demonstrated to be especially effective because of the accuracy and 
flexibility of simulators.  The drawback is runtime.  Thus, it 
continues to be important and useful to improve the efficiency.  

Recently, there have been proposals to leverage numerical 
performance modeling to improve efficiency [4-8]. A performance 
model is a mathematical model relating the performance 
characteristics of a circuit (e.g. gain/bandwidth) to the design 
variables.  Accuracy is maintained by constructing the performance 
model based on sample sets of SPICE simulation data.  Efficiency 
of circuit optimization is improved because the performance model 
can replace at least some of the time-consuming SPICE simulations.  
In each of those techniques, the choice of model type and model 
construction technique was made early in the research process 
without deep considerations for alternative approaches.  However, 
there is a wide variety of possible approaches, so an arbitrarily 
chosen approach could easily be suboptimal. 

This paper analyzes and compares a large set of modeling 
approaches in the context of a reference optimization flow. Section 
II describes the flow.  Section III discusses modeling criteria.  

Section IV surveys modeling approaches in light of analog 
optimization.  Section V experimentally compares the modeling 
approaches.  Section VI concludes. 

II. REFERENCE OPTIMIZATION FLOW 
There are many possible ways to use models to improve 

optimization efficiency.  We limit ourselves to one reference flow, 
specifically the one that [4] suggests. 

From an initial “center” design, repeat
until stopping criteria met:
• Use Design Of Experiments (DOE) to sample

several data points about the “center”
design; simulate each and compute
performance values

• Build one model for each performance
measure, using those samples

• Choose a new “center” design by
optimizing on the models

III. CRITERIA FOR MODELING 
Since circuit simulation is the bottleneck in simulator-in-the-

loop optimization, improving efficiency roughly translates to 
reducing the number of simulations.  However, it is important that 
the time taken to build the model or optimize on the model does not 
end up making the overall runtime longer.  Lower model prediction 
error can reduce the number of iterations of the algorithm, but there 
is a tradeoff, as achieving lower prediction error takes more time in 
model building.  

The most important criteria are prediction ability, model 
building time / scalability, and model simulation time.  Specific 
targets for each criterion depend on the optimization flow, as well 
as the circuit simulation time, number of process and environmental 
corners, and number of design variables.  

IV. MODELS AND MODEL BUILDING ALGORITHMS 
We choose a representative sample of modeling approaches 

based on performance, popularity, and diversity of origin.  Figure 1 
illustrates.  The methods we investigate are at the leaf nodes.  



 

Figure 1. A sampling of modeling approaches with a diversity of origin 

The following modeling methods are considered: 

• As reference models, we use a constant (set as the mean of 
the data), a linear model, and a 2nd-order polynomial.  A 
constant is not useful in practice, of course, as it would 
provide zero information on choosing the next center 
design.  In this paper, no terms are pruned from the 
polynomials.    

• Posynomials are compared because [4] considered them as 
the prime candidate in the reference optimization flow, 
because posynomials result in a convex optimization 
problem that can be solved very efficiently.  Unlike the 
polynomials in this comparison, the posynomials in [4]  
follow a more constructive approach for model building, 
causing sparser models. 

• A modified form of genetic programming (GP) [8] called 
CAFFEINE [10] is tested.  CAFFEINE restricts GP to 
canonical functional forms via a grammar.  In [10], 
CAFFEINE achieved low testing error in comparison to 
posynomials on the same dataset that this paper uses.   

• Feedforward neural networks (FFNNs) have been applied 
to a wide variety of problems, including analog circuit 
sizing [5,7]. We use a state of the art training algorithm, 
OLMAM [11].  The number of hidden nodes, NumHid, is 
chosen as follows: set NumHid = 1; train NumRestarts 
times for MaxEpochs training epochs; increment NumHid; 
repeat.  When the target nmse is hit, stop. 

• Boosting  [12] creates a “stack” of models; each model is 
learned on a weighted version of the data.  Weights are 
based on the previous iteration’s errors.  The overall output 
is the average of the outputs of the individual models.  
Boosted FFNNs have been previously applied to 
simulation data [6].   We first determine NumHid in the 
same way as for single FFNNs.  Then, NumModels are 
sequentially built, with each model having NumHid nodes.   

• Multivariate Adaptive Regression Splines (MARS) [13] 
are piecewise polynomials, and are built as follows.  In the 
constructive step, input variables are iteratively added on 
an “as-needed” basis for greedily chosen sub-regions of 
the input space. A pruning step follows.  MARS scales to a 
high number of input dimensions but is locally accurate. 

• Support vector machines (SVMs) [14]  transform inputs 
into a space of much higher dimension and do linear 
regression in that space.  We use a fast-learning variant, 
LS-SVM [15], with the following settings: radial basis 
functions, auto-learn model parameters �2 and �; and auto-

select input dimensions.  A problem with radial kernels is 
that the inputs that are kept are treated uniformly, which  
exaggerates the influence of less important variables.   

• Kriging originated in geostatistics, but it has been shown 
to be useful in optimization [16].  In kriging, prediction is 
the value of nearby samples “corrected” by a correlated 
error calculation.  Model building time does not scale well 
with a high number of inputs or of samples.  The behavior 
of both kriging and SVMs is highly dependent on the 
choice of “distance function” among input points. 

V. EXPERIMENTAL COMPARISON 

A. Experimental Setup 
As this paper uses the flow advocated by the posynomial work, 

it is also useful to compare to that work.  So, the problem setup and 
simulation data was identical to [17]. The circuit being modeled is a 
high-voltage CMOS OTA as shown in Figure 2.  The goal is to 
build predictive models for low-frequency gain (ALF), unity-gain 
frequency (fu), phase margin (PM), input-referred offset voltage 
(voffset), and the positive and negative slew rate (SRp, SRn), thus 
including both small-signal and large-signal transient 
characteristics. 

 

Figure 2. Schematic of high-speed CMOS OTA 

The technology is 0.7 µm CMOS.  The supply voltage is 5V.  
The nominal threshold voltages are 0.76V for NMOS devices and –
0.75V for PMOS devices. The circuit has to drive a load 
capacitance of 10 pF.  Currents and transistor drive voltages are 
chosen as design variables, for a total of 13 design variables. Full 
orthogonal-hypercube Design-Of-Experiments (DOE) sampling of 
design points was used, with scaled design space dx=0.1 to have 
243 design point samples. These samples were used as training data 
inputs.  Separate testing data had DOE sampling with dx=0.03.  The 
testing nmse is equivalent to the posynomial “quality of fit” 
measure  qtc used in [17].  We build each model with a target 
training normalized mean-squared  error (nmse) on the training 
data, then simulate it on a separate set of test data, and compare the 
testing nmse.  All experiments were on a 3.0 GHz Pentium IV PC 
running Matlab 6.5 on Red Hat Linux.    

The code to build constant, linear, and polynomial models was 
about 25 lines of Matlab.  The model building time was a few 
seconds, at most.  The posynomial results were taken directly from 
[17]; it reports that the model building time was 1-4 minutes (on a 



slower machine).  The target training nmse for the other model 
builders was the posynomial’s training nmse from [17].  

The CAFFEINE model builder was 2000 lines of Matlab code.  
Run settings were: maximum number of basis functions 15, 
population size 200, number of generations 5000, and maximum 
tree depth 8. Model building time was 12 hours. The time could be 
probably be lowered by 10x with a C implementation, and perhaps 
another 5x with a less arbitrary population sizing and number of 
generations, which would put the time at 14.4 minutes. 

The FFNN was the Matlab code from [18].  Settings were 
NumRestarts = 10, MaxEpochs = 5000.  The time to build a single 
network was about 10 s.  A suitable nmse was typically found in the 
first or second restart of about 3 hidden neurons.  Therefore the total 
model building time was about (10 s) * (10 restarts) * (first 2 
neurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*10*2 + 10*2 
= 220 s = 3.7 min.  A 10x speedup via a C implementation would 
make this about 22 s.  The boosted FFNN was Matlab code 
wrapping the OLMAM code.  Settings were NumModels = 20. 
Model building time was about (220 s to discover NumHid) + (10 
s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min.  A 10x speedup 
via a C implementation would make this 42 s. 

The MARS model builder was about 500 lines of Matlab code.  
The model building time was about 5 minutes.  A 10x speedup via 
C would make this 30 s.  The SVM model builder was Matlab code 
from [19], with all settings at “fully automatic.”  Model building 
time was about 5 minutes.  The kriging model builder was about 
200 lines of Matlab code, with Θmin=0.0, Θmax=10.0, pmin=0.0, 
pmax=1.99.  Model building time was about 5 minutes; a 10x 
speedup via C would make this 30 s.   

B. Model Prediction Results 
Figure 3 summarizes how well each of the modeling approaches 

did in prediction of unseen data; Table I provides details.  The 
Genetic Programming variant, CAFFEINE, does the best.  MARS 
comes in very close.  Kriging is next-best.  The FFNN, boosted 
FFNN, and SVM are all very close, and perform about the same as 
the linear model.  Of the non-reference modeling strategies, the 
posynomial approach does the worst, by far.  The only strategy 
doing worse is the polynomial reference model.  Interestingly, only 
three approaches, namely CAFFEINE, MARS, and kriging, did 
better at prediction than a constant.    

 

Figure 3. Total prediction (testing) error for each modeling approach 

Perf.  
Con-
stant

Lin-
ear Poly. Posy.

CAFF-
EINE FFNN 

Boosted 
FFNN MARS SVM

Krig-
ing

pm 3.3 3.1 11.7 9.7 2.6 6.8 2.8 1.8 5.8 3.8

lfgain 6.2 4.6 14.7 6.5 2.8 5.0 5.3 4.4 11.5 7.3
srn 6.5 11.0 16.1 7.8 3.9 9.5 9.7 5.4 4.1 5.1
srp 9.3 12.4 33.8 31.0 7.4 8.2 14.0 7.2 10.0 8.9

offsetn 1.8 2.2 4.3 0.8 1.0 2.9 1.4 1.2 1.8 2.2
fu 8.2 14.2 20.8 5.9 5.0 9.3 10.0 9.4 12.7 7.3

Table I. Prediction error (%), for each modeling approach and each 
performance measure. Best or near-best are in bold. 

It should not be surprising that the polynomial does the worst, 
as polynomials are notorious for overfitting.  The approach used 
here is particularly susceptible because it uses all the inputs in all 
combinations, and the size of the dataset is relatively small in 
comparison to the number of input dimensions.  The posynomials, 
for which this dataset was originally created, performed terribly 
compared to all the other non-reference modeling approaches.  
Posynomials did almost as badly as the similar approach of 
polynomials; the posynomials did better probably because the 
model building algorithm was constructive, leading to more sparse 
models. 

CAFFEINE had the opportunity to use more complex functions 
such as sin(), but in its quest to build models to suit the data, it used 
rationals on 5 of the 6 performance goals.  CAFFEINE only selects 
input variables that really matter.  It is biased towards the axes of 
the input variables rather than being affine-invariant.  MARS did 
similarly, because it is also biased towards the axes and is selective 
of input variables.  While CAFFEINE had the best or near-best 
prediction error on 5 of the 6 performance goals, MARS had the 
best or near-best on 3.  As we shall see, the other approaches lose 
prediction accuracy because they have different biases. 

Kriging performed fairly admirably in this setting.  This is not 
surprising because it tends to perform well when the input samples 
have relatively uniform spacing, as they do here with the DOE 
sampling.  Kriging, FFNNs, and boosted FFNNs did worse than 
CAFFEINE and MARS most likely because they did not have the 
helpful (for this application) bias towards the input axes. The 
boosted FFNN did not have noticeably superior performance to the 
FFNN, which means that overfitting was likely not an issue with the 
FFNN.  The SVM’s performance was poor probably because it 
treated the variables it selected too uniformly. Also, the support 
vector at the center of the sampling hypercube has to reconcile all 
the other samples, which it does not really have enough parameters 
to do properly.  Because kriging did substantially better than SVMs, 
the choice of distance function was likely not an issue.    

C. Relation to Optimization 
The main factors in choosing a model builder for a given 

optimization flow are prediction ability, model building time, and 
model runtime.  We have analyzed prediction ability and model 
building time, so let us examine model runtime.  

Runtime of each model was always about 0.1 seconds or less in 
Matlab.  A 10x speedup via C would make it 0.01 s.  Let us say that 
one could optimize on the models (of six performance goals) using, 
say, 10,000 evaluations with a modest-performance optimizer such 
as simulated annealing.  It is not necessary to get a perfectly optimal 
point because the model has prediction error anyway.  The total 
runtime would be = (0.01 s / model) * (6 models / design point) * 
(10,000 design points) = 10 minutes.  



We could perhaps devise a formula for choosing the allowed 
time for model building, so as to minimize total runtime.  However, 
it would involve knowing a priori the number of iterations that the 
algorithm would undergo in order to solve the problem, something 
we do not know in advance, especially because it is a function of 
the prediction error, which in turn is a function of the modeling 
approach and model building time.   

Instead, let us use a simple “rule of thumb”: balance (circuit 
simulation time) with (model building time +  time to optimize on 
models).  This roughly ensures that the extra computational cost 
incurred by modeling does not, in a worst case, make optimization 
runtime much longer than an optimization approach with simpler 
but less informed heuristics to choose new designs (such as simple 
mutation of a design point).  And, for non-worst cases, the “more 
informed” choices could greatly improve runtime because the 
number of iterations would decrease.   With each new center design 
point there are actually 243 new circuits simulated; if each circuit 
takes 10s to simulate, then that is 40 minutes of simulation time.  
So, following the rule of thumb, if at each iteration the circuit 
simulation time is 40 minutes and time to optimize on models is 10 
minutes, then there remains (40 – 10) = 30 minutes to build the 
models.  Therefore, with 6 performance goals, we get (30 minutes 
allocated model building time for all goals) / (6 goals) = 5 minutes 
allocated to build each model.  All the modeling approaches 
discussed above can be built in 5 minutes except for CAFFEINE.  
That leaves MARS as the best-predicting approach that meets the 
constraint of model building time. For a first pass, MARS is what 
we would recommend for this particular optimization flow and 
problem. However, for a fully informed decision we would do more 
experiments on different center points, and with different inputs and 
outputs. As well, we would explore techniques similar to MARS, 
and GP speedup techniques.   

It is interesting that the choice of [4] for using posynomials as a 
modeling approach was largely motivated by the fact that 
posynomials allow efficient convex optimization could be used to 
determine the next center design.  However, as just discussed, the 
efficiency of that optimizer is the main issue because model 
simulation time is several orders of magnitude less than circuit 
simulation time. 

VI. CONCLUSIONS 
We have compared a total of ten approaches to automatically 

build circuit performance models from circuit simulation data, with 
application to more efficient analog circuit optimization.  The 
approaches that predicted new data with the lowest error were 
CAFFEINE (a genetic programming variant) and MARS 
(multivariate adaptive regression splines).  The approaches that did 
the next best were kriging, FFNNs (feedforward neural networks), 
boosted FFNNs, and SVMs (support vector machines).  The 
reference approaches of simple constants and linear models did 
about the same as those approaches.  The worst-predicting models 
were polynomials and posynomials.   

The models were examined in light of a reference optimization 
flow, for which [4] advocated posynomials, with the argument that 
posynomials are easy to optimize on.  However, in this flow the 
most important aspect is not ease of optimization on the model, but 
instead is reducing circuit simulation time through the most 

predictive models (subject to the constraints that models must be 
built and simulated fast enough).  As CAFFEINE models are costly 
to construct, that makes MARS the choice for this application.  
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