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Abstract

This paper investigates fitness sharing in genetic
programming. Implicit fitness sharing is applied
to populations of programs. Three treatments are
compared: raw fitness, pure fitness sharing, and a
gradual change from fitness sharing to raw
fitness. The 6- and 11-multiplexer problems are
compared. Using the same population sizes,
fitness sharing shows a large improvement in the
error rate for both problems. Further experiments
compare the treatments on learning recursive list
membership functions; again, there are dramatic
improvements in error rate. Conversely, fitness
sharing runs achieve comparable results to raw
fitness using populations two to three times
smaller. Measures of population diversity
suggest that the results are due to preservation of
diversity and avoidance of premature convergence
by the fitness sharing runs.

1 INTRODUCTION

Genetic programming has been applied to a wide range of
problems, including some where performance equal to or
better than the best human performance has been
demonstrated. Nevertheless, genetic programming, like all
evolutionary algorithms, can suffer from the phenomenon
of premature convergence, whereby variation is eliminated
from a population of fairly fit individuals before a
complete solution is achieved.

Premature convergence has been heavily studied in the
evolutionary community, and a number of mechanisms for
preserving and enhancing variation within populations
have been proposed. One class of such mechanisms goes
by the name of fitness sharing. Fitness sharing was
introduced by Deb and Goldberg (1989). That form,
known as explicit fitness sharing, relies on a distance
metric to cluster population members. Members which are
similar to each other are punished for this similarity by

being required to share their fitness, while isolated
individuals retain all the fitness value that they achieve.

Some years later, Smith, Forrest and Perlson (1992)
introduced implicit fitness sharing for concept learning
problems. Implicit fitness sharing differs from the explicit
form in that no explicit distance metric is required.
Instead, all population members which correctly predict a
particular input/output pair share the payoff for that pair.

Implicit fitness sharing extends readily to many genetic
programming approaches, but with the increased
complexity of genetic programming search spaces there is
a risk that the benefits of fitness sharing may be
dissipated. This paper investigates fitness sharing for three
genetic programming problems.

2 IMPLICIT FITNESS SHARING

Implicit fitness sharing makes the assumption that the
overall (raw) fitness of an individual may be determined
by summing its performance over a set of sub-problems,
each sub-problem having only a small number of possible
outcomes (often two). For example, with concept learning
problems, the raw fitness of the individual is the sum of
the reward for the individual cases, and the reward for an
individual case is 1 if the individual correctly predicts that
case, otherwise 0. Mathematically, for each program i

fa(i) = reward(i(c))

The implicitly shared fitness of an individual is
calculated instead by dividing the reward for each case by
the number of individuals which make the same
prediction for that case, before summing over cases:

N reward(i(c))
e} = 3 5 ramard (i (0)

i":i'(c)=i(c)
Implicit fitness sharing provides selection pressure for
each individual to make different predictions from other
individuals, modifying the simple pressure to make
accurate predictions which is provided by raw fitness. So
evolutionary search with fitness sharing gives a less eager
search than with raw fitness; this can result in lower




performance early in a run, but is more than outweighed,
for these problems, by a delay in convergence of the
algorithm, and better overall performance.

3 EXPERIMENTAL SETUP

3.1 EXPERIMENTAL PROBLEMS

Three simple prediction problems were used as test cases:
the 6- and 11-multiplexer problems and the recursive list
membership problem. The 6-multiplexer problem is to
predict the output of a multiplexer having as inputs two
address and four data lines; the 11 multiplexer problem
extends this to three adress and eight data lines. The
recursive list membership task is to learn a lisp-like
expression for list membership.

Table 1: 6-Multiplexer Grammar

EXPR - BOOL

BOOL - TERM

BOOL - and BOOL BOOL
BOOL - or BOOL BOOL
BOOL - not BOOL
BOOL - if BOOL BOOL BOOL
TERM - a0

TERM - al

TERM - dO

TERM - dl

TERM - d2

TERM - d3

Table 2: List Membership Grammar

S- M
M - if EXPN EXPN M

M "
EXPN - atom LST
EXPN - eq LST LST
EXPN - member x LST
EXPN - true

EXPN - false

LST - first LST

LST - rest LST

LST - x

LST - y

The software is based on Ross' (1999) DCTG-GP system,
modified by the incorporation of implicit fitness sharing.
DCTG-GP is a grammar-guided genetic programming
system (Whigham, 1995), but the grammars used in these
experiments simple encode typing, so the results extend
to many forms of tree-based genetic programming. All
three problems are taken from (Whigham, 1996).

The grammar used for (table 1) the 6- and 11-multiplexers
are identical except for the addition of an extra address line
terminal 'a2', and four extra data line terminals, 'd4',..,'d7"
in the latter.

The grammar used for the list membership problem (table
2) permits the system to learn a recursive definition. The
recursive call to member allows the possibility of infinite
loops. To handle this, a count of the depth of looping was
kept, and a depth greater than 20 caused the function to
return the value 'loop', which was treated in fitness
evaluation as an incorrect answer.

3.2 GENETIC PROGRAMMING PARAMETERS

The experiments used half-ramped initialisation, and
tournament selection. Parameter settings are in Table 3.

Table 3: Multiplexer GP Parameters

PARAMETER SPECIFICATION
Number of Runs 100

Generations per Run 100 / 400
Population Size 500

Max depth (initial pop) 8
Max depth (subsequent) 10

Tournament size 5

Crossover Probability 0.9
Mutation Probability 0.1

The raw fitness for the 6-multiplexer experiment was the
proportion of the 64 cases correctly predicted. For the 11-
multiplexer experiments, computation time prevented
evaluation of all 2048 cases, so a random subset of 64
distinct cases, independently selected each generation (but
the same for all individuals in each generation) was used.

The 6 multiplexer runs were terminated at 100
generations, or earlier if a complete solution was found.
The 11 multiplexer runs were terminated at 400
generations or on finding a complete solution (this was
taken to be a correct solution for the 64 test cases for that
generation - the solution was not checked against the
remaining 1984 cases. While some incorrect solutions
may have been accepted, this does not affect the
comparative evaluations which are the focus of this work).



Table 4: List Membership GP Parameters

PARAMETER SPECIFICATION
Number of Runs 100

Generations per Run 200

Population Size 1000

Max depth (initial pop) 8

Max depth (subsequent) 10

Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

For the list membership problem, a fixed set of
membership examples was used: ten positive and ten
negative cases, as shown in table 5:

Table 5: List Membership Cases

POSITIVE CASES NEGATIVE CASES

member(1 [1]) member(1 [6])

member(1 [2 1]) imember(1 |3 6])

member(1 [2 3 1]) member(1 [2 3 6])

member(1[2 34 1]) imember(1 [2 3 4 6])
member(1[2 345 1]) member(1[2 345 6])
member(1[23456 1]) member(1[23456 7])
member(1[23456 7 1) member(1[23456 7 8])
member(1[23456781]) |member(1[23456789])
member(1[23456 789 1]) |member(1[234567892])
member(1[2345678921])jmember(1[234567892 3])

Each experiment involved three separate treatments:
e raw fitness
e implicit fitness sharing

e fitness sharing for the first 25% generations, raw
fitness for the last 25%, with a linear ramp between
the two - raw and shared fitnesses normalised each
generation to have equal range before apportioning

4 RESULTS

4.1 6-MULTIPLEXER RESULTS

As shown in table 3, treatments using fitness sharing
found a complete solution reliably, but the raw fitness
treatment failed to find a solution in 16% of runs.

Table 6: 6-Multiplexer Results

TREATMENT Raw Ramped Shared
Fitness Fitness Fitness
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Figure 1: 6-Multiplexer, Solutions Found

Figure 1 shows the percentage of complete solutions for
the 6 multiplexer, by generation. The two fitness sharing
treatments clearly outperform the raw fitness treatment at
all generations after the first ten.
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Figure 2: 6-Multiplexer, Error of Best Individual

Figure 2 shows the error rate of the best individual,
averaged over the 100 runs of each treatment Again, the
two fitness sharing treatments yield consistently better
results than that using raw fitness (the first ten generations
are omitted to permit reasonable clarity in the graph).

The aim of fitness sharing is to preserve diversity in the
population. If the population is highly diverse, then all
cases in the dataset will be equally likely to be covered
(indeed this is the principle behind implicit fitness
sharing), so that a low variance in cover corresponds to a
diverse population. Conversely, if the population has low
diversity, some cases will be better covered than others,
and the variance in cover will be high. Figure 3 shows the
variance in cover by generation, and clearly illustrates the
ability of fitness sharing to maintain population diversity
(the variance falls to zero when all runs have converged).
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Figure 3: 6-Multiplexer, Cover Variance

4.2 11-MULTIPLEXER RESULTS

Table 7: 11-Multiplexer Results

TREATMENT Raw Ramped Shared
Fitness Fitness Fitness
% SOLUTIONS| 50 99 99

With the 11 multiplexer, there is again a very large
difference between the performance of treatments using
fitness sharing, and that using raw fitness. 99 of 100 runs
using fitness sharing, either throughout or ramped, found
a solution, but only 50 of 100 runs using raw fitness did.
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Figure 4: 11-Multiplexer, Solutions Found

The fitness sharing approaches clearly outperform the raw
fitness treatment for all generations after generation 50.
There is a hint that the increase in eagerness of ramped
sharing after the ramping cuts in at generation 50 may

give slightly better performance, but at the cost of two
extra parameters (the start and end point of the ramping).
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Figure 5: 11-Multiplexer, Error of Best Individual

Figure 5 shows the error rate of the best individual,
averaged over the 100 runs of each treatment (the first ten
generations are omitted to permit reasonable clarity).

Figure 6 shows again the ability of fitness sharing to
maintain population diversity. In this case, we can also
see the decrease in diversity (increase in variance) of the
ramped runs as raw fitness takes over. There is a
corresponding small improvement in fitness of the ramped
treatment compared with the pure fitness sharing treatment
(figure 5). This presumably arises from the increase in
eagerness - late in a run, eagerness may be beneficial.
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Figure 6: 11-Multiplexer, Cover Variance



4.3 LIST MEMBERSHIP RESULTS

The list membership problem yielded similar results: the
two fitness sharing treatments clearly outperform the raw
fitness treatment at all generations after the first ten.

Table 8: List Membership Results

TREATMENT Raw Ramped Shared
Fitness Fitness Fitness
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Figure 7: List Membership, Solutions Found
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Figure 8: List Membership, Error of Best Individual
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Figure 9: List Membership, Cover Variance

The error rate of the best individual, averaged over the
200 runs of each treatment, shows similar results (figure
8), though the oscillatory behaviour of the fitness is
interesting. On detailed examination, the populations in
many runs contain a group of individuals with low error
rate (and hence high raw fitness), and another group of
very different individuals with higher error rate, but
covering a different subset of the test cases. Small
fluctuations in the size of the second set are reflected in
larger changes in the shared fitness of its members relative
to the first set, and hence to the selection pressure toward
it, resulting in the oscillations seen.

This oscillatory behaviour can also be clearly seen in the
cover variance graph (figure 9)

5 FURTHER EXPERIMENTS:
POPULATION SIZE

The results indicate that fitness sharing leads to improved
predictive accuracy when other evolutionary parameters are
kept the same. But computational requirements are an
important issue in genetic programming. If fitness sharing
allows us to obtain greater accuracy from similar sized
runs, then presumably it will also allow us to obtain
equivalent accuracy from smaller sized runs. Experiments
were conducted with pure fitness sharing on different sized
populations to determine what population size yielded
similar predictive accuracy to raw fitness with the
populations in the preceding runs.



Table 9: GP Parameters for Multiplexer Population Size

Experiments
PARAMETER SPECIFICATION
Number of Runs 100/50
Generations per Run 100 / 400
Population Size 0 - 500 (steps of
50/100)

Max depth (initial pop) 8

Max depth (subsequent) 10

Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

For the raw fitness treatment, the population size was
held, as before, at 500. The fitness sharing treatments
reduced the population size in decrements of 50.
Experiments were run for both the 6- and 11-multiplexer
problems. As in the previous series of experiments, the 6-
multiplexer experiments were run for 100 generations,
since the runs appear to be at or near convergence by then.

6 FURTHER RESULTS

6.1 6-MULTIPLEXER RESULTS

Table 11: 6-Multiplexer Size Comparisons

Raw Shared

500 [500]450(400]350]|300|250]200]150{100] 50

84 100|100 98 [ 99 (99|97 |91]189] 74| 52

The second row in the table shows the population size, the third the
percentage of complete solutions over 100 runs.

Figure 10 shows the error rate of the best individual,
averaged over the 100 runs of each treatment (the first ten
generations are omitted to permit reasonable clarity in the
graph). The results show that there is a trade-off between
the number of generations in the run and the population
size. Fitness sharing with a population of 150 outperforms
raw fitness with a population of 500 after about generation
50, but to obtain earlier high performance a larger
population is required (and as previously discussed, the
very early performance of raw fitness is marginally better
than for fitness sharing, even with similar populations).

The 11-multiplexer experiments were run to 400
generations; even this does not show full convergence in 035 ——
all cases, but computational limitations have precluded - ‘S‘]?‘“;i?_i“
longer runs, and also limited the population step sizes to 03 e e
100 (50 for the 6-multiplexer) and the number of runs to 025 |
50 (100 for the 6-multiplexer).
é 02
) . 2 o5
Table 10: GP Parameters for List Membership Population =
Size Experiments 0.1
PARAMETER SPECIFICATION 0.05
Number of Runs 100 0
- 10 20 30 40 50 60 70 80 90 100
Generations per Run 200 Generation
Population Size 0 - 1000 (steps of
100)
Fi 10: 6-Multiplexer Size Comparisons
Max depth (initial pop) 8 eure wHp P
Max depth (subsequent) 10
Tournament Size 3 Table 12: 11-Multiplexer Size Comparisons
Crossover Probability 0.9 Raw Shared
Mutation Probability 0.1 500 500 400 300 200 100
60 100 100 98 90 26

For the list membership problem, in the raw fitness
treatment, the population size was held at 1000. The
fitness sharing treatments reduced the population size in
decrements of 100. As in the previous series of
experiments, the experiments ran for 200 generations.

The second row in the table shows the population size, the third the
percentage of complete solutions over 50 runs. Stochastic noise has
given slightly different values in columns 1 & 2 from those in table 7.
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Figure 11: 11-Multiplexer Size Comparisons

Figure 11 shows the error rate of the best individual,
averaged over the 400 runs of each treatment (the first ten
generations are omitted to permit reasonable clarity in the
graph). There is a trade-off between number of generations
in the run and population size. Fitness sharing with a
population of 200 outperforms raw fitness with a
population of 500 after about generation 150.

Table 13: List Membership Size Comparisons

Raw Shared

1000 |1000f 900 [ 800] 700 600| 500|400 300(200] 100

63 | 7917717961 [65]68]|66]46] 39| 19

The second row in the table shows the population size, the third the
percentage of complete solutions over 50 runs.
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Figure 12: List Membership Size Comparisons

Figure 12 shows the error rate of the best individual,
averaged over the 200 runs of each treatment. Because of
the oscillatory behaviour previously noted, the graph is
more difficult to interpret, but it is clear that equivalent
performance to the raw fitness runs is achieved by fitness
shared runs with roughly half the population size.
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Figure 13: List Membership Size Comparisons

The 'runs incomplete' plot (figure 13) shows similar
behaviour. There is a strong suggestion that the smaller
population fitness shared runs have not yet converged after
200 generations, so that extended runs (which were not
completed due to computational cost) might have reflected
a stronger trade-off in favour of fitness sharing.

7 DISCUSSION

7.1 RELATED WORK

A wide variety of other diversity-promoting mechanisms
have been studied in the evolutionary community, among
them island models (Tanese, 1989), mating restrictions
(Goldberg 1989), and De Jong's crowding (reported in
Goldberg 1989). Of these, only island models appear to
have widespread acceptance in genetic programming
(Andre & Koza, 1995), with the emphasis being on their
advantages for parallelism rather than for diversity
preservation.

By comparison with island models, fitness sharing
approaches to diversity directly promote variation within
the population, rather than simply permitting sub-optimal
populations to survive through isolation, hence they
potentially provide greater opportunity for delaying
convergence. On the other hand, implicit fitness sharing
requires the computation of population-wide statistics in
each generation, and hence is unattractive for parallel
implementation. However fitness sharing and island
models are not incompatible - fitness sharing may be
attractive as an additional diversity-promoting mechanism
within the demes of an island model.



7.2 FURTHER WORK

The experiments reported demonstrate that fitness sharing
has a very significant impact on the performance of genetic
programming on two classes of problems. Experiments
are currently under way on real-World problems to
confirm whether the effect extends beyond toy problems

As mentioned in earlier discussion, there is usually a
short-term payoff in switching from fitness sharing to raw
fitness, due to the increased eagerness of search. Thus
mixed approaches, using fitness sharing early in a run and
raw fitness toward the end, offer potential benefits. The
ramped approach used here shows one simple algorithm
to exploit this, but many other approaches are possible.
Investigations of a number of alternative approaches are
currently under way. Further experiments are also in
progress on combining fitness sharing with populations of
partial functions, and with committee methods of
population evaluation.

The aim of fitness sharing is to maintain population
diversity and thus delay convergence. But convergence is
strongly associated with the phenomenon of bloat (Nordin
et al, 1995). Thus one would expect delayed convergence
to reduce bloat. Results from the above experiments do
not support this expectation - the tree depth profiles of the
raw fitness and fitness sharing runs are almost identical.
Interestingly, preliminary experiments combining partial
functions and fitness sharing do show a modest reduction
in bloat.

8 CONCLUSIONS

Implicit fitness sharing applied to genetic programming
for the 6- and 11-multiplexer problems and the recursive
list membership problem results in  dramatic
improvements in the error rate of learned functions. This
reduction appears to be due to the ability of fitness sharing
to maintain population diversity.

Conversely, fitness sharing permits significantly smaller
populations to achieve similar learning accuracy to larger
populations using raw fitness. In the experiments reported
here, reductions in population size of a factor of three were
obtained, with a comparable reduction in computational
cost - the incremental cost of computing the implicitly
shared fitness was negligible.
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