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Abstract. Opportunities offered by high performance com-
puting provide a significant degree of promise in the en-
hancement of the performance of real-time flood forecast-
ing systems. In this paper, a real-time framework for prob-
abilistic flood forecasting through data assimilation is pre-
sented. The distributed rainfall-runoff real-time interactive
basin simulator (RIBS) model is selected to simulate the hy-
drological process in the basin. Although the RIBS model is
deterministic, it is run in a probabilistic way through the re-
sults of calibration developed in a previous work performed
by the authors that identifies the probability distribution func-
tions that best characterise the most relevant model parame-
ters. Adaptive techniques improve the result of flood fore-
casts because the model can be adapted to observations in
real time as new information is available. The new adaptive
forecast model based on genetic programming as a data as-
similation technique is compared with the previously devel-
oped flood forecast model based on the calibration results.
Both models are probabilistic as they generate an ensem-
ble of hydrographs, taking the different uncertainties inherent
in any forecast process into account. The Manzanares River
basin was selected as a case study, with the process being
computationally intensive as it requires simulation of many
replicas of the ensemble in real time.

1 Introduction

Hydrological flood forecasting entails estimation of a hy-
drological variable in the future from the available data in
the present and the set of recorded data of flood events in
the past, giving its time of occurrence, quantitative measure
and reliability (Sz̈ollösi-Nagy, 2009). The utility of a hydro-
logical forecast increases, given that its uncertainty is better

quantified either by a probability distribution of occurrence
or by an ensemble of possible scenarios. Uncertainty bounds
must be defined (with the potential adverse consequences) to
assist flood managers and users so that they can make deci-
sions taking risk into account (Komma et al., 2007).

Information about historic flood events in the past is not
sufficient to fully characterise the hydrological behaviour of
the basin in the future. In addition, a fixed model with con-
stant parameters will not be able to represent completely the
complex processes in the basin. For practical purposes, an
adaptive forecast scheme may be used to adjust model pa-
rameters, state variables and/or specify results of changes in
the basin behaviour that cannot be simulated by the initial
model setup (Young, 2002). Adaptive forecasting techniques
have been applied to forecasting water levels in the River
Severn in the United Kingdom (Romanowicz et al., 2006);
forecasting floods in regulated basins in Korea, therefore im-
proving the forecast of the high-flow events (Shamir et al.,
2010); improving flood forecasts in the Rhine and Meuse
rivers (Weerts et al., 2010); and improving streamflow fore-
casts in France, mainly for small basins (Thirel et al., 2010).

Data assimilation techniques can be used to develop an
adaptive forecast model, as they update estimates of system
states or parameters quantifying errors in both the hydrologi-
cal model and observations. Therefore, data assimilation can
improve flood forecasts (Vrugt et al., 2006). Furthermore,
data assimilation applied to a distributed hydrological model
has significant potential, as model estimates of basin states
can be improved from observations at a gauged station keep-
ing their distribution in space (Liu and Gupta, 2007; Clark et
al., 2008).

Data assimilation techniques have been extensively ap-
plied in the atmospheric and oceanic sciences, though their
application to hydrology is relatively new. The first models
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were based on the Kalman filter (KF) technique (Kalman,
1960), which is used to update the model state variables
from the assimilation of observed discharge data, extending
the model and observed data uncertainties to uncertainties in
the forecast (Bras and Rodriguez-Iturbe, 1985; Awwad and
Valdés, 1992).

The extended Kalman filter (EKF) linearises the error co-
variance equation and propagates the covariance matrix in
the future. Although it is effective in many cases, it is unsta-
ble if the nonlinearities are strong and it fails in representing
the error probability (Reichle and Koster, 2003). To solve this
unstable behaviour, a filter based on Monte-Carlo simula-
tions has been developed, termed the ensemble Kalman filter
(EnKF) (Evensen, 2003, 2004), which generates an ensemble
of forecasts from a set of model states that take model and
observed data uncertainties into account. The model is up-
dated with the variance of the ensemble prediction from dif-
ferences between each ensemble member and the ensemble
mean. EnKF has been widely applied as a result of recent in-
creases in computing capacity, making the approach afford-
able (Pauwels and De Lannoy, 2006; Shamir et al., 2010).

Kalman filters assume that the prior distribution of model
states is represented by a Gaussian distribution, though state
variables in hydrology do not always follow a Gaussian dis-
tribution. Particle filter (PF) techniques do not assume any
prior distribution, at the expense of requiring a larger num-
ber of ensembles. PF assigns a probability to each ensemble
element by a weight calculated as the difference between the
ensemble element and the observations (Moradkhani et al.,
2005; Weerts and El Serafy, 2006). Furthermore, Kalman fil-
ters assume that the model parameters are known prior to the
forecast. This is not the case for hydrological forecasts, how-
ever, as rainfall-runoff models use parameters that represent
either physical or conceptual properties of runoff processes
that cannot be accurately estimated and model outputs highly
depend on these parameters. Moreover, some model param-
eters may not be stationary because the basin can change its
behaviour during a given flood event, with data assimilation
techniques being able to change its estimate of model param-
eters in real time.

Genetic programming (GP) is a suitable technique in
adapting model parameters to observations, given that it is
designed to identify and enhance good individuals from an
ensemble by applying selection and crossover techniques.
GP is an evolutionary algorithm (EA), which includes a set
of techniques inspired by biological evolution that simulate
the evolution of individuals by means of different perturba-
tions and a fitness function, such as the following: (a) genetic
algorithms used to solve optimisation problems (Holland,
1975); (b) evolutionary programming (that is very similar to
GP but uses a fixed structure of the problem) (Fogel et al.,
1966); (c) evolution strategy that works with vectors or real
numbers and uses self-adaptive mutation rates (Schwefel,
1981); (d) GP that work with trees; and (e) Neuroevolution

that uses artificial neural networks to represent the variables
(Angeline, 1994).

GP uses the Darwinian natural selection principle of sur-
vival and reproduction of the best individuals (from an ini-
tial population the best individuals are selected with a fitness
function) (Koza, 1992). These so-called better individuals are
chosen to breed the next generation, applying certain pertur-
bations. The new individuals fight to survive in the next gen-
eration, with the process being repeated based on perturba-
tions to create diversity and selection to improve the fitness
(Eiben and Smith, 2007).

GP has been used in hydrology in a diversity of appli-
cations. For example, a GP system was used to discover
rainfall-runoff relationships in different basins from daily
time series of rainfall-runoff data and a lumped model based
on the unit hydrograph technique. The GP model led to a
more robust model than the conventional ones (especially
when surface runoff processes and precipitation losses were
not correctly understood) (Whigham and Crapper, 2001). A
data-driven model based on GP was developed from hydrom-
eteorological data to avoid the problem of collecting data
of physically-based models and to overcome the problem
of formulating traditional models to describe the non-linear
processes of runoff generation (Babovic and Keijzer, 2002).
Both were successful approaches and improved the conven-
tional models.

Khatibi et al. (2011) compared three artificial intelligence
techniques to simulate the discharge routing process: artifi-
cial neural networks (ANN), adaptive neuro-fuzzy inference
system (ANFIS) and GP. The latter showed an improved per-
formance in most of the assessment measures. Elshorbagy
et al. (2010a and b) compared seven data-driven techniques
in a modelling experiment: ANN, GP, evolutionary polyno-
mial regression, support vector machines, M5 model trees,
K-nearest neighbours and multiple-linear regression. GP was
also the most successful technique in terms of predictive ac-
curacy and uncertainties due to its ability to adapt the model
to the data. In addition, Wang et al. (2009a) conducted a com-
parison to forecast monthly discharge time series, where the
GP and ANFIS models obtained the better results, though
the former achieved the best forecast results in the validation
phase.

Other comparisons have been conducted in the follow-
ing cases: to identify the unit hydrograph of an urban basin,
where the results were improved by using GP to obtain math-
ematical expressions that correct the model errors (Rabunal
et al., 2007); to simulate rainfall-runoff processes, enabling
GP techniques to provide a useful tool in solving problems
in hydrology by means of a simple and explicit model (Aytek
and Alp, 2008); to improve the reliability of hydrologic pre-
diction, showing that GP models can be used to predict the
model uncertainty (Parasuraman and Elshorbagy, 2008); and
finally, to develop a flow prediction method, where the use-
fulness of a GP model as an effective algorithm to fore-
cast the long-term discharges was demonstrated (Savic et al.,

Nat. Hazards Earth Syst. Sci., 12, 3719–3732, 2012 www.nat-hazards-earth-syst-sci.net/12/3719/2012/



L. Mediero et al.: Improving probabilistic flood forecasting through a data assimilation scheme 3721

1999; Wang et al., 2009b). In addition to the aforementioned
cases, the GP technique was also applied to real-time fore-
casting (Khu et al., 2001; Kisi and Shiri, 2011).

This paper presents the development of an adaptive flood
forecast model. A sequential data assimilation technique is
developed to update the estimation of the probability distri-
bution of several parameters of a distributed rainfall-runoff
model. The stochastic parameter estimation is performed by
application of a GP algorithm to minimise the expected value
of model errors. The paper is organised as follows: Sect. 2
presents the methodology to develop the adaptive flood fore-
cast model; Sect. 3 introduces the case study used to test the
model; Sect. 4 is devoted to discuss the results of the model
in a set of flood events; and finally, the conclusions are pre-
sented in Sect. 5.

2 Methodology

A hydrological forecast model estimates the response of a
basin from the current observations and predictions of future
meteorological conditions. As new observations are available
in real time, this information can be used to update the model
by data assimilation techniques. This paper focuses on the
evaluation of the benefits of a data assimilation technique
based on GP from a forecast without data assimilation.

This section is organised in five parts. First the rainfall-
runoff model is presented, then the forecast scheme without
data assimilation is described and finally the proposed fore-
cast scheme with data assimilation is introduced.

2.1 Rainfall-runoff model

The methodology is applied to the real-time interactive basin
simulator (RIBS) model (Garrote and Bras, 1995a and b).
Such a model is composed of a runoff-generation module
that estimates the infiltration capacity and obtains the evo-
lution of the saturated area of the basin, as well as a flow
routing module that propagates discharge across the basin.
Two processes are represented in the runoff-generation mod-
ule: local infiltration and lateral moisture fluxes. It is assumed
that the saturated hydraulic conductivity (Ks) decreases with
soil depth (z) following an exponential function. The soil is
considered anisotropic, withKs varying in directions normal
(n) and parallel (p) to the sloped soil surface according to
the following equations:

Ksn(z) = K0n e−f z

(
θ−θr

θs−θr

)ε

(1)

Ksp (z) = K0p e−f z

(
θ−θr

θs−θr

)ε

, (2)

whereK0n and K0p (mm h−1) are the saturated hydraulic
surface conductivities in directions normal and parallel to the
surface;f (mm−1) a parameter that controls the reduction of

saturated hydraulic conductivity with depth;θ the soil mois-
ture content;θr the residual soil moisture content;θs the sat-
urated moisture content; andε the index of soil porosity.

The saturated hydraulic surface conductivities in the par-
allel and normal directions are related by the anisotropy co-
efficient (a):

a =
K0p

K0n

. (3)

Under the kinematic approximation, the contribution of
capillary forces to pore pressure is neglected (Beven, 1984).
This leads to the establishment of a wetting front: a sharp
discontinuity that separates two areas with different moisture
content; the upper zone contains the moisture wave of the
storm and the lower zone remains with the initial soil mois-
ture content. The depth of the wetting front is represented by
the variableNf (mm). If saturation is reached, there is also an
upper front representing the ascension of the saturated zone,
Nt (mm). Normal flow in this area,qn (mm h−1), is given by

qn = K0n

f (Nf − Nt )

ef Nf − ef Nt
. (4)

Surface runoff will occur when the value of rainfall inten-
sity exceeds the infiltration capacity of the soil, or when the
soil is saturated.

The flow routing module simulates the runoff propagation
process through the basin. Flow routing is based on the dis-
tributed convolution equation:

Q(t) =

∫
A

t∫
0

Rf (x,y,τ ) h(x,y, t − τ) dτ dA, (5)

where Q(t) is the resulting hydrograph at the outlet,
Rf (x,y, t) is a function describing the distribution of runoff
rate generation per unit area andh(x,y, t) is the instanta-
neous response function of the element of areadA located at
coordinates (x, y). The estimation of the instantaneous re-
sponse function is based on travel time along the flow path,
assuming constant velocities on the hillslopes (vh) and on the
riverbeds (vs). To account for possible non-linearities, stream
velocity, vs, may grow with the relative value of flow at the
discharge point of the basin,Q(t), with respect to a reference
flow rateQref, with the exponentr:

vs(t) = Cv

[
Q(t)

Qref

]r

. (6)

If the exponent is taken as equal to 0,vs is constant
throughout the simulation. Forr > 0, the channel velocity is
greater than the parameterCv (m s−1) when the discharge at
the outlet is above the reference value and otherwise smaller
thanCv. Hillslope velocity is defined as a function of stream
velocity through a dimensionless parameter,Kv:

vh(t) =
vs(t)

Kv
. (7)
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2.2 Forecast without data assimilation

The forecast model without data assimilation does not take
advantage of the possibilities to adapt its parameters to dis-
charge observations in real time, as it is based on the results
of a calibration process developed prior to the occurrence of
the event. However, it is formulated as an ensemble forecast
to take the forecast uncertainty into account. Ensemble mod-
els were developed to assess the forecast uncertainty with a
low number of simulations and have shown their advantages
over other techniques for operational forecasting (Rebora et
al., 2006; Dietrich et al., 2009).

Forecast ensemble members are generated by sampling
from the probability distributions of relevant model param-
eters. The probabilistic calibration developed by Mediero et
al. (2011) was applied to obtain the initial estimation of the
probability distribution of model parameters. This approach
was selected as it takes into account that hydrological mod-
els are unable to provide a unique combination of parameters
that correctly simulate all situations that may occur in the
basin due to: (a) the presence of structural errors (Wagener et
al., 2004); (b) a set of multiple parameters leading to an in-
terval of forecast discharges that provides a better assessment
of the forecast uncertainties (Beven, 2006); and (c) address-
ing of the uncertainty involved in the forecast being crucial
(Taramasso et al., 2005).

2.2.1 Probabilistic calibration

The probabilistic calibration of the RIBS rainfall-runoff
model in the Manzanares River basin was carried out in Me-
diero et al. (2011). A summary of this calibration is presented
in this section.

The model calibration started with a sensitivity analysis of
the RIBS model parameters to find the most influential pa-
rameters on model results in order to reduce the number of
parameters used in the calibration process. Three parameters
were identified as the most influential on the model results:
parameterf , which represents the variation of hydraulic con-
ductivity with respect to depth; parameterKv, which repre-
sents the ratio between flow velocity and hillslope velocity
in the riverbed; and parameterCv, which represents a coef-
ficient of the law that simulates the relationship between ve-
locity on the riverbed and discharge at the outlet of the basin.

Then, a set of objective functions were selected to assess
the most important aspects of the hydrograph in a flood fore-
cast. The hydrograph was divided into two parts according to
the mean flow value: P at the end of the objective function
means the upper part, and B the lower part. Four objective
functions were selected: the shape of the hydrograph in its
upper part analysed by the root mean squared error applied to
the upper part of the hydrograph (RMSE-P); the magnitude
of low flows analysed by the mean absolute error applied to
its lower part (MAE-B); the utility of the hydrograph as a
forecast analysed by the Nash-Sutcliffe efficiency coefficient

(NSE); and the time of occurrence of the peak analysed by
the time to peak (TP) objective function.

A multi-objective calibration of the model was performed
to find the set of parameter combinations that lead to the most
accurate solutions, based on the Pareto solutions calculated
as the set of non-dominated optimal solutions. The multi-
objective calibration entailed three steps. In the first step, the
Pareto solutions were obtained with the four selected objec-
tive functions to identify the range of values ofCv that leads
to an accurate simulated peak time. In the second, the Pareto
solutions were obtained from RMSE-P, MAE-B and NSE,
identifying the parameter combinations that lead to an ac-
curate simulation of the upper part of the hydrograph. And
in the third, the solutions obtained in the second step that
fall outside the validity range ofCv obtained in the first step
were eliminated. Finally, the solutions that properly simulate
the shape and peak time simultaneously were identified as
calibration results with ranges that are physically meaning-
ful.

A distribution function is fitted to the resulting populations
of each parameter. A beta function was fitted to the logarith-
mic values of parameterf :

log10(f ) = −3.15 + 2.85 × fbeta(α = 2.43, β = 1.75). (8)

ParameterKv was represented by a Weibull function with
parametersα = 8.82 andβ = 7.78. ParameterCv was repre-
sented by a normal distribution function with a mean (µ) of
1.883 and a standard deviation (σ ) of 0.097. Independence
between parameters was studied and it was found that in-
dependence between parameters can be assumed. Therefore,
the result of the calibration process is a set of parameter com-
binations randomised from these fitted functions; that is to
say, the calibration result is a probability density function for
each parameter instead of a unique solution.

2.2.2 Forecast model

This first forecast model does not use data assimilation tech-
niques, ignoring the new discharge observations in real-time.
The model is fixed prior to the forecast from the result of the
probabilistic calibration and cannot adapt itself to changes in
the basin response or to forecast errors.

A set of parameter combinations is generated with the dis-
tribution functions that represent the variability of each pa-
rameter after the calibration process. The model initial con-
dition was selected among a set of previously computed basin
states, obtained as the water table depths that are in long-term
equilibrium with a given constant recharge rate. The moisture
profile in the unsaturated zone is defined to reach saturation
at the water table depth, as suggested in Cabral et al. (1992).
The choice of initial basin state depends on antecedent condi-
tions prior to the storm, and introduces additional uncertainty
to the forecasting process. In each time step, as new rainfall
observations are available, the model is run with these fixed
parameters to simulate the basin response to the observed
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rainfall up to current time and then run into the future with
alternative rainfall forecasts from different sources. A large
fraction of model uncertainty is linked to uncertainties in the
forecast rainfall. Testing the validity of these rainfall fore-
casts is beyond the scope of this paper, given that the aim
is testing the hydrological forecast models, not the rainfall
forecasts. Therefore, the forecast model was used in hind-
cast mode, assuming perfect knowledge of future rainfall, al-
though emulating real-time operation. Other sources of un-
certainty, such as those corresponding to the choice of initial
condition, cannot be eliminated without data assimilation.

2.3 Forecast with data assimilation

The second forecast model is based on the application of GP
as a data assimilation technique to adapt the model to new
observations during the flood event in order to improve the
first flood forecast model.

The forecast model based on GP takes the result of the cal-
ibration process and the initial condition used in the forecast
model without assimilation as a starting point and adapts the
individuals of this first population of parameters with the new
available records in each operational time step. Although the
comparison between models was conducted with the same
initial population, it could also be conducted with two differ-
ent randomisations from the result of the probabilistic cali-
bration without any significant influence on the comparison
results. The data assimilation scheme is based on updating
model parameter values, and therefore only one initial basin
state was considered. A similar approach could be applied
taking several basin states as initial condition. This approach
was not considered to allow for a better comparison with re-
spect to the forecast without data assimilation, where the full
ensemble of model parameters was used, but only one initial
basin state. The procedure used by the forecast model based
on GP can be summarised as follows:

1. Generation of an initial population of parameter com-
binations from a randomisation with the results of the
probabilistic calibration.

2. Running of the RIBS model with this initial population
of parameters in the first time step, taking the observed
rainfall in this first time step as an input and obtaining
an ensemble of simulations as an output.

3. Quantifying the ability to reproduce the observed hy-
drograph of each individual of the ensemble population
by an objective function that evaluates the fit between
simulated and observed discharges.

4. Selection of the set of best individuals or parameter
combinations of the ensemble from the results of the
previous step. These individuals will live in the next
time step and are termed themating population.

5. Mating of the selected individuals of the ensemble, ap-
plying the crossover technique or exchange of parame-
ter values between them.

6. Mating of the selected individuals of the ensemble, ap-
plying the mutation technique or random perturbation
of the parameter values of an individual.

7. Creation of the next generation of individuals or chil-
dren, joining the mating population or selected param-
eter combinations in step four and the result of the
crossover in step five and the result of the mutation in
step six.

8. Repetition of steps two to seven up to the end of the
hydrograph, taking the ensemble population of model
parameters obtained in the step seven as initial popula-
tion.

The steps of selection (two through four), crossover (five)
and mutation (six) are described in detail as follows.

2.3.1 Selection

Selection consists of identifying the best individuals that will
survive in the next generation. An individual or parameter
combination is better than another when the former leads to
a better representation of the observed hydrograph than the
latter. Therefore, a probability to survive the next generation
is assigned to each parameter combination from its ability
to represent the hydrological response of the basin. The pa-
rameter combinations are evaluated, punishing the parameter
combinations and basin states that lead to less accurate re-
sults and rewarding the parameter combinations and basin
states that lead to better results. The ability of an individ-
ual is evaluated by an objective function. A fitness ranking
was selected to assign the survival probability and parame-
ter combinations are sorted by their values of the objective
function. The root mean squared error (RMSE) was selected
as an objective function as it gives a higher penalty to higher
errors:

RMSE(θi)=

√√√√ 1

N

N∑
t=1

(
yt−y′

t (θi)
)2

, (9)

whereyt is the observed flow at timet , y′
t (θi) is the simu-

lated flow at timet with parametersθ i , with i being thei-th
simulation, andN the number of time steps used in the eval-
uation, which in this case is equal to eight, as an evaluation
period of two hours is used.

The selected individuals are the parents that mate and pro-
duce the children in the next generation by crossover and mu-
tation processes.

2.3.2 Crossover

Crossover process consists in producing a new offspring of
parameter combinations from interchanging genetic material
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(a)

(b)

Fig. 1.Scheme of the crossover process:(a) parents;(b) children.

or parameter values between two parents. The new children
inherit the parameter values of their two parents, though
they do not have exactly the same characteristics as either of
them, given that a genetic exchanging occurs in the process.
The crossover process follows the principle that part of the
offspring obtained by mating two individuals with different
characteristics will improve the properties of their parents,
while the rest will have worse properties than their parents.
Natural selection is responsible for selecting the better in-
dividuals and improving the quality of the next generation.
The improved offspring will then have a higher probability
of surviving the next generation.

Crossover is based on a stochastic process (Fig. 1). From
the ensemble of model parameter combinations,pi,j , where
i is i-th ensemble simulation andj is j -th model parame-
ter, withm the number of model parameters, two parameter
combinations are taken randomly from the ensemble (i1 and
i2 in the example shown in Fig. 1). Then, a model parame-
ter is selected randomly from them model parameters (the
third parameter in the example shown in Fig. 1). The param-
eter value of the first parameter combination (pi1,3) is inter-
changed with the parameter value of the second parameter
combination (pi2,3).

The crossover process is not always successful. The com-
bination of model parameter values has to be run on a basin
state which was obtained with a different parameter set. The
soil moisture profile as described through the kinematic ap-
proximation is unique for a given set of state variables, front
positions and moisture content, and depends on model pa-
rameters (in particular, on parameterf ). If parameter val-
ues are changed maintaining the state variable values (front
position and moisture content) this could lead to numerical

Fig. 2. Scheme of the mutation process. Model parameters for the
parent at the top and model parameters for the child at the bottom.

instabilities in some cells, especially in those where the top
front is close to the surface, because the moisture profile can-
not be adapted to the new parameter values. Such instances
were simply discarded in the GP data assimilation scheme.

2.3.3 Mutation

The mutation process is based on a random change in the ge-
netic material or parameter values of one individual to pro-
duce a modified mutant child. Such mutation adds a pertur-
bation in the parameter values of some individuals. This pro-
cess differs from the crossover in that the mutation creates
new parameter values, while crossover only interchanges the
existing parameter values. Mutation tries to avoid the sur-
vival population being highly conditioned by the observa-
tions, despite the possible existence of errors in observations
or changes in the basin response.

Mutation is also a stochastic process (Fig. 2). First, an en-
semble individual is randomly selected from the parent pop-
ulation (i1 in the case of Fig. 2). Then, a model parameter is
randomly taken from them model parameters (pi1,3 in the
example shown in Fig. 2). Finally, perturbations in the value
of the model parameter of that individual are produced to
obtain the mutated child (pk,3). For the sake of simplicity,
as small perturbation magnitudes around the initial parame-
ter value are generated, perturbations are simulated by a ran-
dom normal distributionN(0,σ ) instead of utilising the dis-
tribution functions found as result of the calibration process
(Eq. 9).

fN (x) =
1

σ
√

2π
exp

[
−

x2

2 σ 2

]
(10)

wherex is the value of the parameter andσ is the standard
deviation.

Perturbations are unbiased with the objective of them be-
ing centred on the value of the parent parameter value. Per-
turbation dispersion is fixed for each parameter by a given
standard deviation (σ ). However, the final magnitude of the
perturbation depends on the magnitude of the parent parame-
ter value, which is multiplied by the result of the normal ran-
domisation in order to obtain larger perturbations for larger
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values of parameters. Theσ value for each parameter should
be of a sufficient magnitude to give flexibility to the forecast
model, while small enough to avoid higher uncertainties. A
sensitivity analysis is conducted to fix theσ values.

2.4 Measures for testing the forecast performance

The comparison of each forecast needs certain measures that
quantify the bias, accuracy and uncertainty of the forecast re-
sults. Two such measures were selected to validate the fore-
casts. The bias of the results was quantified by a modifica-
tion of the Nash-Sutcliffe efficiency (NSE(ỹ′)) coefficient
that compares the utility of the median of the forecasts with
that of the temporal mean of the observations (ȳ) NSE(ỹ′):

NSE
(
ỹ′

)
=1.0−

N∑
t=1

[
yt−ỹ′

t

]2

N∑
t=1

[yt−ȳ]2
, (11)

whereỹ′
t is the forecast median or value with a probability of

0.5 at timet . NSE(ỹ′) has an optimal value of 1.0; a value of
0 indicates that a forecast using the mean of the observation
for all time steps will have the same utility as the result of the
forecast; and values below 0 indicate results are worse than
the prognosis by the mean of the medians.

The accuracy of the results was quantified by the inclusion
coefficient [CR(α)], which assess the ability of the model to
include observed flow values within the prediction intervals
of forecasts associated with a confidence levelα by calcu-
lating the proportion of time intervals in which the observed
flow falls within the prediction interval over the total number
of time intervals (Montanari, 2005):

CR(α) =

N∑
t=1

I [yt ]

N
, (12)

whereI [yt ] is 1 if the observed flow value falls within the
prediction interval at timet , and is 0 otherwise.

The uncertainty of the model was quantified by the coeffi-
cient of variation (CV) of forecasts at each time step, which
measures the dispersion of results. A lower dispersion is pre-
ferred, as the forecast increases its precision.

2.5 Setup of the forecast models

Both forecast models have the following characteristics. The
size of the forecast ensemble (Ne) is 100 simulations. The
time step length of RIBS model run (1tr) is 15 min, as it
was found to be the optimum time resolution by Atencia et
al. (2011). The time step length of the simulation (1ts) and
forecasting (1tf) loops is two hours. The observed rainfall is
considered as forecast rainfall.

The forecast model with data assimilation has further char-
acteristics. For each time step of the simulation loop, natural

Fig. 3.Location of the Manzanares River basin. Circles are stream-
flow gauge stations, from north to south: Santillana reservoir, El
Pardo reservoir and Rivas Vaciamadrid. Squares are precipitation
gauge stations. The figure in the upper right corner represents the
basin location within Spain.

selection is applied by means of the selection process. The
survival rate was fixed at 50 %; hence, 50 individuals will
live and 50 will die from each generation. The number of se-
lected individuals (Ns) is fixed at 50. To keep the size of the
forecast ensemble at 100, 50 new individuals are generated
each time step by crossover and mutation by the same rate.
The number of new individuals created by crossover (Nc) is
25 and the number of new individuals created by mutation
(Nm) is 25.

3 Case study

The Manzanares River basin was selected as a case study.
The river is located in the centre of Spain and crosses the
city of Madrid (Fig. 3), having a basin area of 1248 km2. The
basin outlet was taken at the gauging station Rivas Vacia-
madrid, as it is located very close to its confluence with the
Jarama River.

Two reservoirs are located within the basin: the Santillana
and El Pardo. The flood control process in these reservoirs
was simulated by the volumetric assessment method (VAM),
which is based on three principles: outflow discharge must
be lower than inflow discharge at the rising limb of the in-
flow hydrograph; outflow discharge should increase with in-
creases in inflow discharge; and the percentage increase in
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Table 1.Flood events in the Manzanares River basin.

Event Maximum Maximum Rainfall Flow
intensity intensity volume volume

(mm/15 min) (mm/30 min) (hm3) (hm3)

14 April 2003 5.50 9.40 20.91 1.71
5 December 2003 3.60 5.40 28.42 4.40
21 February 2004 2.20 4.40 23.23 6.80
28 April 2004 5.20 9.80 13.76 3.12

outflow discharge relative to the inflow should increase with
reservoir level (Giŕon, 1988).

The Manzanares River basin has a Mediterranean climate
with a wet period from autumn to spring and a dry period in
summer. Therefore, most of flood events occur during the wet
period. The time of concentration of the Manzanares River
basin is 22 h. However, the city of Madrid is located down-
stream the El Pardo reservoir, being the time of concentration
of this subbasin equal to eight hours.

Maps of runoff and slope directions were generated from
a digital elevation model (DEM) of 100-m cell width. The
DEM was generated from maps with a horizontal scale of
1 : 250 000 and elevation resolution of 1 m.

Spatially distributed rainfall events were characterised
from data recorded at 18 rainfall gauging stations that be-
long to the SAIH network; seven are located within the basin
of the Manzanares River, and the other 11 are in surround-
ing areas within its area of influence. Spatial distribution of
rainfall was estimated by the inverse distance weighted inter-
polation method, which uses the weighted sum of the rainfall
observed at gauge stations in terms of the inverse of distance
to known points. Flow data were recorded in three gauging
stations located in the Manzanares River: the Santillana and
El Pardo dams and the Rivas Vaciamadrid station. The com-
parison between both forecast models was focused on the
observed discharges recorded at the outlet, for the sake of
simplicity. Four flood events were considered and the corre-
sponding main characteristics are shown in Table 1.

4 Results

4.1 Sensitivity analysis on the variation of mutation
perturbations

The mutation process is simulated by random perturbations,
with a magnitude sampled from a normal distribution. Per-
turbation dispersion is fixed for each parameter byσ . A sen-
sitivity analysis is carried out to fix aσ value for each param-
eter so that dispersions are big enough to provide flexibility
to the forecast model, while small enough to avoid higher un-
certainties. In addition, theσ parameter of the perturbations
used in the mutation process gives the mutation magnitude or
magnitude of parameter changes around its initial value. As
these changes are slight in comparison with the parameter

Fig. 4. Comparison of forecast model results by the NSE(ỹ′) for
different dispersion in the mutation process.

Table 2.Results of the NSE(ỹ′) for different dispersion in the mu-
tation process.

Forecast t = 12 h t = 14 h t = 16 h t = 18 h

σ(f ) = 0.05 0.88 −0.95 0.25 0.63
σ(f ) = 0.075 0.86 −0.43 0.43 0.51
σ(Kv) = 0.05 0.88 −1.84 0.46 0.67
σ(Kv) = 0.075 0.87 −1.53 0.05 0.56
σ(Cv) = 0.05 0.88 −1.08 0.11 0.45
σ(Cv) = 0.075 0.84 −1.67 0.09 0.42

ranges obtained in the calibration process, a different distri-
bution function from that used in the calibration can be ac-
cepted.

For the following forecasting time step the RIBS model is
run with the new parameter set, though starting from a basin
state obtained with the parent parameter set. Since moisture
profiles correspond to different parameter values from those
applied in the new simulation, a large change of parameter
values may lead to instabilities in the resolution of differ-
ential equations of the RIBS model, and thereforeσ values
were limited to 0.1. Moreover, given that values higher than
0.1 lead to very high dispersion, influence ofσ equal to 0.05
and 0.075 in forecast results was tested. The sensitivity anal-
ysis entailed running the forecast model with data assimila-
tion, applying the mutation process to only one of the model
parameters, fixingσ for this model parameter and settingσ

equal to zero for the other two parameters. The flood event
that occurred in February 2004 was selected to conduct the
sensitivity analysis. The results are shown in Table 2 and
Fig. 4.

At first, it can be seen that the best results are achieved by
a σ value of 0.075 for thef parameter and that in the first
time step there are no substantial differences among fore-
casts because the rising limb of the flood hydrograph is just
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Fig. 5.Results of the forecast models for the April 2003 flood event.
The vertical dashed line is the current time step. Forecasts are ex-
pressed by the median and the prediction limits for a confidence
level of 5 %. The first column shows the results of the forecast
model without data assimilation and the second column the forecast
model with data assimilation. The rows show forecasts by current
time step:(a) t = 29 h;(b) t = 31 h;(c) t = 33 h;(d) t = 35 h.

beginning. By comparing the results of thef parameter for
bothσ values it can be seen that aσ value equal to 0.05 only
slightly improves the forecast in the last time step (t = 18 h)
when the peak has passed and the forecast is less important.
Therefore, a dispersion given by aσ value equal to 0.075 is
selected for thef parameter.

Regarding theKv parameter, there are no significant dif-
ferences between theσ values in the first two time steps.
However, aσ value of 0.05 gives better results at the time
of peak, with an improvement of 0.40 in the NSE(ỹ′). A σ
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Fig. 6. Results of the forecast models for the December 2003 flood
event. The vertical dashed line is the current time step. Forecasts
are expressed by the median and the prediction limits for a confi-
dence level of 5 %. The first column shows the results of the forecast
model without data assimilation and the second column the forecast
model with data assimilation. The rows show forecasts by current
time step:(a) t = 16 h;(b) t = 18 h;(c) t = 20 h.

value of 0.05 is selected to represent the dispersion in the
mutation step for theKv parameter.Cv parameter shows bet-
ter results for aσ value of 0.05 in all time steps, so thisσ is
selected to represent the dispersion of mutations.

4.2 Forecast improvement by data assimilation

Once mutation dispersion was fixed for each model param-
eter, improvement of the forecast model with data assimila-
tion based on GP over the model without data assimilation
was assessed. The models were compared in four observed
events.

4.2.1 The April 2003 flood event

Both forecast models were applied to the flood event that oc-
curred in April 2003 (Table 3 and Fig. 5). The models were
initialised at time step 20 h and the first forecast was made at
time step 29 h. This first operational time step had a length
of 9 h, so the beginning of the basin response to the observe
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Table 3.Results of the validation measures for the April 2003 flood event.

Forecast t = 129 h t = 131 h t = 133 h t = 135 h

Forecast without data assimilation
NSE(ỹ′) 0.82 −0.12 −1.26 −2.19
CR (α = 5) 1.00 1.00 1.00 1.00
CV 0.49 0.60 0.59 0.48

Forecast with data assimilation
NSE(ỹ′) 0.74 0.54 –1.14 –1.57
CR (α = 5) 1.00 1.00 1.00 1.00
CV 0.44 0.45 0.29 0.22

rainfall could be used to quantify the ability of each parame-
ter combination to reproduce the observed hydrograph.

The bias of both models was measured by the NSE(ỹ′).
It can be seen that its results in the first time step are sim-
ilar for each model. However, the forecast model with data
assimilation improves the results of the model without data
assimilation in the next time steps in terms of bias. In the
last two time steps both models have negative values of the
NSE(ỹ′), as they give discharges higher than observations.

The accuracy of the models is similar from the results of
the CR for a confidence level of 5 % (CR(α = 5)). It can be
seen that the observed hydrograph lies between the predic-
tion limits for the given confidence level in all time steps.

A notable difference between the models can be seen in
terms of dispersion. A significant reduction in the uncertainty
of the forecast is achieved by the GP model in all time steps,
as the CV is reduced up to half in the last time steps. The data
assimilation technique is able to reduce the dispersion of the
forecast, discarding the parameter combinations that yield
worse results and selecting the parameter combinations that
yield results more similar to the observations. This means
that the data assimilation technique is able to reproduce the
observed hydrograph during the flood event.

4.2.2 The December 2003 flood event

In the December 2003 flood event, the models were ini-
tialised at time step 10 h and the first forecast was made at
time step 16 h (Table 4 and Fig. 6). In this case, the fore-
cast model based on GP obtains the best results in the last
time step in terms of bias. However, the models have similar
results in terms of accuracy. The observed hydrograph lies
between the prediction intervals in all time steps, except at
the beginning of the first time step where the models cannot
be adapted to the observations.

In terms of dispersion, the GP model achieves better re-
sults as it has smaller values of the CV in all time steps, with
the difference being higher in the last time step. It is clear
that the GP model always gives smaller dispersions than the
model without data assimilation, as the former tries to adapt
to the observations.
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Fig. 7. Results of the forecast models for the February 2004 flood
event. The vertical dashed line is the current time step. Forecasts
are expressed by the median and the prediction limits for a confi-
dence level of 5 %.The first column shows the results of the forecast
model without data assimilation and the second column the forecast
model with data assimilation. The rows show forecasts by current
time step:(a) t = 12 h;(b) t = 14 h;(c) t = 16 h;(d) t = 18 h.
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Table 4.Results of the validation measures for the December 2003 flood event.

Forecast t = 16 h t = 18 h t = 20 h

Forecast without data assimilation
NSE(ỹ′) 0.67 0.32 −1.21
CR (α=5) 0.78 1.00 1.00
CV 0.34 0.38 0.40

Forecast with data assimilation
NSE(ỹ′) 0.28 0.08 0.96
CR (α=5) 0.78 1.00 1.00
CV 0.31 0.34 0.32

4.2.3 The February 2004 flood event

Each forecast model was applied to the flood event that oc-
curred in February 2004 (Table 5 and Fig. 7). The models
were initialised at time step eight hours and the first forecast
was made at time step 12 h.

The bias of each model was measured by the NSE(ỹ′). It
can be seen that bias results in the first time step are similar
for each model, though bias results in the second and fourth
time step are better for the model without data assimilation,
while the GP model has better results in the third time step.
However, the accuracy of the models is similar in terms of
the CR(α = 5). It can be seen that the observed hydrograph
lies between the prediction limits for the given confidence
level, except in the last time step where the GP forecast gives
somewhat overestimated results.

A notable difference in terms of dispersion can be also
observed, as in the case of the previous events. A reduction in
the uncertainty of the forecast is achieved by the GP model in
all time steps. The difference in the first time step is very low,
though it does increase in the rest of time steps up to a half
in the last two time steps, with the CV of the forecast model
without data assimilation being significantly higher than the
forecast model based on GP.

4.2.4 The April 2004 flood event

In the April 2004 flood event, the models were initialised at
time step 10 h and the first forecast made at time step 20 h
(Table 6 and Fig. 8).

The results show that the observation lies outside the se-
lected members in some time steps. This is caused by the
use of the RMSE to select the best members. This objective
function gives higher penalties to higher deviations follow-
ing a square law. As a result, some members that have great
deviations in some time steps are discarded.

In this flood event, the bias of the GP model is better than
the bias of the model without data assimilation, mainly in
the last two time steps where the GP model highly improves
the results. The accuracy of the models is similar in terms
of the CR(α = 5) and the GP improves the forecast in terms
of uncertainty reduction, as in the previous cases. A notable
difference in terms of dispersion can be observed, mainly in
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Fig. 8.Results of the forecast models for the April 2004 flood event.
The vertical dashed line is the current time step. Forecasts are ex-
pressed by the median and the prediction limits for a confidence
level of 5 %. The first column shows the results of the forecast
model without data assimilation and the second column the forecast
model with data assimilation. The rows show forecasts by current
time step:(a) t = 20 h;(b) t = 21 h;(c) t = 22 h.

the last time step where the dispersion reduction is higher
than two thirds.

5 Conclusions

Data assimilation techniques can improve the performance
of forecast models if an adaptive algorithm updates model
parameters from observations. The improvements obtained
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Table 5.Results of the validation measures for the February 2004 flood event.

Forecast t = 12 h t = 14 h t = 16 h t = 18 h

Forecast without data assimilation
NSE(ỹ′) 0.90 0.05 −1.98 0.76
CR (α = 5) 1.00 1.00 1.00 1.00
CV 0.19 0.17 0.15 0.21

Forecast with data assimilation
NSE(ỹ′) 0.88 −1.31 0.34 0.48
CR (α = 5) 1.00 1.00 1.00 0.44
CV 0.16 0.11 0.06 0.11

Table 6.Results of the validation measures for the April 2004 flood event.

Forecast t = 20 h t = 21 h t = 22 h

Forecast without data assimilation
NSE(ỹ′) 0.64 −3.79 −38.31
CR (α = 5) 1.00 0.60 0.00
CV 0.26 0.28 0.34

Forecast with data assimilation
NSE(ỹ′) 0.40 0.38 –5.98
CR (α = 5) 1.00 0.60 0.00
CV 0.25 0.21 0.11

with the sequential data assimilation technique presented in
this paper were assessed by comparing the performance of a
forecast model without data assimilation with that of a fore-
cast model with data assimilation. The Manzanares River
basin was selected as a case study and the RIBS model as
a rainfall-runoff model. Spatially distributed observed rain-
fall was used as forecast rainfall in order to assess the perfor-
mance of each forecast model without it being conditioned
to the reliability of rainfall forecasts. In this paper, spatially
distributed rainfall was estimated from data recorded at rain-
fall gauging stations. However, rainfall maps recorded by
the radar network could be used if available. Furthermore,
if new products exist, such as quantitative precipitation esti-
mation or quantitative precipitation forecasts, they could be
also used in the proposed forecast model.

The first forecast model, without data assimilation, was
based on the results of a probabilistic calibration, which was
conducted in a previous work on the selected river basin
(Mediero et al., 2011). The probabilistic calibration gave as
a result a probability density function for each influential pa-
rameter of the RIBS model, with the aim of considering dif-
ferent hydrological basin behaviours identified from the ob-
served flood events. Such parameter characterisation is suit-
able for flood forecasting, as the objective functions used in
the calibration process were selected in order to take the most
important aspects of the hydrograph for real-time flood fore-
casting into account. This first forecast model does not use
any assimilation technique from new observed data.

The second forecast model, with data assimilation, reduces
the spread of the ensemble of the first model by using an
adaptive model based on genetic programming. Data assimi-
lation is conducted by three steps: a selection step to find the

parents or model parameter combinations that lead to a bet-
ter fit with the observations, a crossover step to simulate the
creation of new parameter combinations from interchanging
parameter values between parents, and the mutation step to
simulate random changes in the parameter values of parents
to create new children. This forecast model takes the results
of the probabilistic calibration as a starting point, though the
adaptive technique is able to reproduce the observed hydro-
graph and allows the model to be adapted to changes in basin
response during the flood event.

The models were applied to four flood events that occurred
in the Manzanares River basin. The accuracy of the mod-
els is similar, as the observed hydrograph lies between the
prediction limits in the majority of the time steps. Although
there are further differences in terms of bias, the most im-
portant improvement of the forecast model based on genetic
programming was found to be in terms of dispersion or fore-
cast uncertainty. The sequential model reduces the dispersion
of forecasts significantly, with the dispersion being reduced
by a half in most cases. It can hence be concluded that the
introduction of a data assimilation scheme based on genetic
programming improves the results of a forecast model based
on calibration over observed events.
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