Skip to main content

Probabilistic Grammatical Evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Abstract

Grammatical Evolution (GE) is one of the most popular Genetic Programming (GP) variants, and it has been used with success in several problem domains. Since the original proposal, many enhancements have been proposed to GE in order to address some of its main issues and improve its performance.

In this paper we propose Probabilistic Grammatical Evolution (PGE), which introduces a new genotypic representation and new mapping mechanism for GE. Specifically, we resort to a Probabilistic Context-Free Grammar (PCFG) where its probabilities are adapted during the evolutionary process, taking into account the productions chosen to construct the fittest individual. The genotype is a list of real values, where each value represents the likelihood of selecting a derivation rule. We evaluate the performance of PGE in two regression problems and compare it with GE and Structured Grammatical Evolution (SGE).

The results show that PGE has a better performance than GE, with statistically significant differences, and achieved similar performance when comparing with SGE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Whigham, P.A.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41 (1995)

    Google Scholar 

  3. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  4. Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015). https://doi.org/10.1145/2739480.2754784

  5. Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 467–507 (2017). https://doi.org/10.1007/s10710-017-9309-9

    Article  Google Scholar 

  6. Nicolau, M., Agapitos, A.: Understanding grammatical evolution: grammar design. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 23–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_2

    Chapter  Google Scholar 

  7. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)Grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_70

    Chapter  Google Scholar 

  8. Kim, H.-T., Ahn, C.W.: A new grammatical evolution based on probabilistic context-free grammar. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.-C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. PALO, vol. 2, pp. 1–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13356-0_1

    Chapter  Google Scholar 

  9. Kim, H.T., Kang, H.K., Ahn, C.W.: A conditional dependency based probabilistic model building grammatical evolution. IEICE Trans. Inf. Syst. E99.D(7), 1937–1940 (2016). https://doi.org/10.1587/transinf.2016edl8004

  10. Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2016). https://doi.org/10.1007/s10710-015-9262-4

  11. Lourenço, N., Ferrer, J., Pereira, F.B., Costa, E.: A comparative study of different grammar-based genetic programming approaches. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 311–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_20

    Chapter  Google Scholar 

  12. Ryan, C.: A rebuttal to Whigham, Dick, and Maclaurin by one of the inventors of grammatical evolution: commentary on on the mapping of genotype to phenotype in evolutionary algorithms by Peter A. Whigham, Grant Dick, and James Maclaurin. Genet. Program. Evolvable Mach. 18(3), 385–389 (2017). https://doi.org/10.1007/s10710-017-9294-z

  13. Keijzer, M., O’Neill, M., Ryan, C., Cattolico, M.: Grammatical evolution rules: the mod and the bucket rule. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 123–130. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_12

    Chapter  Google Scholar 

  14. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_29

    Chapter  Google Scholar 

  15. Ryan, C., Azad, A., Sheahan, A., O’Neill, M.: No coercion and no prohibition, a position independent encoding scheme for evolutionary algorithms – the chorus system. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 131–141. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_13

    Chapter  Google Scholar 

  16. Bartoli, A., Castelli, M., Medvet, E.: Weighted hierarchical grammatical evolution. IEEE Trans. Cybern. 50(2), 476–488 (2018). https://doi.org/10.1109/tcyb.2018.2876563

  17. Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An analysis of genotype-phenotype maps in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 62–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12148-7_6

    Chapter  Google Scholar 

  18. Kim, K., Shan, Y., Hoai, N.X., McKay, R.I.: Probabilistic model building in genetic programming: a critical review. Genet. Program. Evolvable Mach. 15(2), 115–167 (2013). https://doi.org/10.1007/s10710-013-9205-x

  19. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-1539-5

    Book  MATH  Google Scholar 

  20. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference - GECCO 2012. ACM Press (2012). https://doi.org/10.1145/2330163.2330273

  21. Harrison, D., Rubinfeld, D.: Boston Housing Data (1993). http://lib.stat.cmu.edu/datasets/boston. Accessed 27 Dec 2020

  22. Che, J., Yang, Y., Li, L., Bai, X., Zhang, S., Deng, C.: Maximum relevance minimum common redundancy feature selection for nonlinear data. Inf. Sci. 409–410, 68–86 (2017). https://doi.org/10.1016/j.ins.2017.05.013

Download references

Acknowledgements

This work is partially funded by the project grant DSAIPA/DS/0022/2018 (GADgET), by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020. We also thank the NVIDIA Corporation for the hardware granted to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Mégane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mégane, J., Lourenço, N., Machado, P. (2021). Probabilistic Grammatical Evolution. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics