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Abstract

Time-series modeling is a well-studied topic of classical analysis and machine learning. However, large datasets are required to
obtain the model with a better prediction quality with the increasing model complexity. Therefore, some applications demand
synthetic datasets that are preserving modeling-sensitive properties. Another application of synthetic data is data anonymization.
The synthetic data generation algorithm may be split into two parts: the time-series modeling and the synthetic data generation
parts. The model must be interpretable to obtain the synthetic data with good quality. The model parameter interpretation allows
controlling generation by adding noise to different groups of parameters. In the paper, the evolutionary multi-objective closed-form
algebraic expressions discovery approach that allows obtaining the model in the form that may be analyzed using the mathematics
is proposed. The analysis allows the interpretation of the model parameters for the controllable generation of the synthetic data.
The notion of synthetic data quality is discussed. The examples of the synthetic time-series generation based on two datasets with
different properties are shown.
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1. Introduction1

Time-series forecasting is a classical problem that arises in various areas. Starting from classical ARMA models [3]2

to the most advanced usage of the complex neural networks [7]. The simple and advanced models require observational3

data for parameter estimation. However, the amount of data is different. In particular, most modern machine learning4

methods require much data to show a good quality of prediction.5

Moreover, some companies want to anonymize their data before passing it to the researchers. One of the possible6

solutions is to create the synthetic dataset based on the properties of the actual data [4], [1]. In this case, the properties7

essential for the machine learning methods such as statistical distributions or spectra should be preserved as much as8

possible.9
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Usually, time-series modeling is split into two parts. The first part of the generation of synthetic data is usually10

considered within the time-series modeling framework. Different models from classical trend-season-noise decompo-11

sition [10] to most advanced architectures of autoencoders [11] may be used for the modeling part. However, not every12

type of model may be properly used for time-series generation. One of the most important properties is the model pa-13

rameters’ mathematical stability, as the second input data stability. Many other properties increase the quality of the14

synthetics, such as interpretability and the ability to control the modeling and the synthetics generation process.15

The properties of the chosen models are essential for the second part, which is the generation of synthetic data.16

The synthetics may be generated by adding noise to the parameters or the data [5]. Both approaches may be used17

simultaneously. However, it does not necessarily increase the quality of the results.18

We propose the multi-objective approach that allows generating the algebraical expressions using the observations19

data. The first part is the time-series modeling in the form of algebraic equations. There are many modeling algorithms20

[2] that allow to end up with the mathematical expression based on a given input data. However, at this stage, additional21

objectives allow to tune the modeling process and obtain the Pareto frontier of the models analyzed by an expert and22

used to generate synthetic data.23

One may note that there are a lot of different modeling problems in the applied fields that are solved using algebraic24

expression generation. There are exist both classical applications in hydrometeorology [13, 12] and modern examples25

in quantum physics [9]. However, in most cases, the form of the equation is known completely, so only coefficients26

are identified, or the discovery process is used to add data-specific terms to the known equations. In the previous work27

[8], we show that described in the paper algebraic equation discovery process does not have any a priori knowledge28

about the process. As additional input data, only simple building blocks, such as simple parameterized functions, are29

used.30

One of the algebraic expression properties is the model interpretability since the form of the obtained model may31

be understood by a human, and every coefficient may be analyzed from a mathematical point of view. The possibility32

to interpret the system allows controlling both the modeling and synthetics generations process.33

The paper is organized as follows. Section 2 describes the main principles of the synthetic time-series generation.34

Section 3 contains the description of the current algorithm realization. Section 4 contains two examples of the time-35

series generation on datasets with different properties. Section 5 outlines the paper.36

2. The problem formulation37

In the paper, we describe the approach that generates synthetic time-series data. Most of the time-series generation38

approaches can be separated into two independent parts: time-series modeling and time-series generation.39

Time-series modeling. The input of an arbitrary time-series modeling algorithm is an observation of some continious40

process P(t). It is assumed that P(t) is defined only on a discrete time-steps ti, i.e. P(ti) = pi. The resulting input for41

the time series modeling algorithm may written in form P̄ = {p1, p2, ...pn}, where n is the length of the time series.42

We define the time-series model as the map M(θ; pi−T , ...pi−1)− > pi, ..., pi+H , where θ is the vector of the model43

parameters. We assume that parameters θ could be changed such that the error between the model prediction M̄ =44

{p̄T , ..., p̄n} and observations P̄ is minimal. We note that the method how the prediction itself (since there may be45

prediction overlaps) and prediction error is calculaed may be chosen in many ways.46

Mathematical expression model. As the mathematical model, we understand the model that can be represented as47

a sum of products of integrable functions. Therefore, we do not stick to the given form of the equation. However,48

without loss of the generality, we assume that the resulting model has the form Eq.1.49

M(t) =
i=L∑
i=1

ci ∗ at(t) (1)

In Eq.1 coefficiencts c1 are the constants, functions a1(x) are the products of the integrable functions. To reduce50

the problem, ususally the subclass T of the functions is defined to form the produncts, L is the maximum expression51

length.52
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We note that the subclass T may be defined in a discrete manner, such that functions cos t and cos(2t) are different.53

Also, T may be defined in a continuous way such that cos(ωt) is one equivalence class. Even though it is an equivalence54

class, we assume that several class elements may present in the resulting model.55

Multi-objective optimization. Definitions above may be used to formulate of the data-driven algebraic equation dis-56

covery problem. We use the part of the dataset P̄train ⊂ P̄ to define functions ai(t) and conefficients ci in form Eq.1.57

Usually, it is done as an optimization problem. Therefore, we introduce the ”quality” metric. First we take rest of58

the dataset P̄test = P̄ − P̄train and compute model at the same timesteps {ttest} = as the P̄test, thus the set of the model59

responses M̄test is obtained.60

We formulate optimization problem as:61

M(t) = arg min
ai∈T L,ci∈RL

||P̄test − M̄test || (2)

In Eq. 2 T L = T × ... × T is the Cartesian product of the sets of the possible equations, || · || is an arbitrary distance62

between the two discrete time-series.63

The multi-objective formulation allows introducing more control to the optimization process and thus allows tuning64

the model in various ways. For example, for some problems, the time-series detailed reproduction precision leads to the65

“overfitting” of the model to the given observation data. Thus, the ability to balance model complexity and prediction66

quality may be useful for applications.67

The first group of the objectives we refer to as “quality”. For a given model Mi, the quality metric is the distance68

between observed and the predicted time-series (Eq.3)69

Q(Mi) = ||P̄test − M̄itest || (3)
The second group of objectives we refer to as “complexity”. For a given model Mi, the complexity metric Eq.4 is70

bound to the number of elements from the subclass T in the model that is denoted as #(M)71

C(Mj) = #(Mj) (4)
The objective functions Q(M),C(M) form the optimization space used to form the Pareto frontier with the multi-72

objective optimization algorithm.73

3. The algorithm description74

This section describes a multi-objective evolutionary optimization algorithm for time-series modeling and subse-75

quent synthetic time-series generation. We follow the problem statement and describe the algorithm in two separate76

parts: building a generative model during time-series modeling and creating synthetics based on the generative model.77

First part can be implemented with single-objective (Sec. 3.1) based on [8] or multi-objective (Sec. 3.2) evolutionary78

optimizations based on [6]. Thereafter the synthetics is generated by varying the model parameters (Sec. 3.3)79

3.1. Single-objective evolutionary optimization80

Single-objective algorithm follows the formulation Eq. 2. The building algorithm is aimed to discover the mathe-81

matical expression M̄(t), closest to the initial time series. In the article, normalized variance D of the difference vector82

Eq. 5 is used as the distance.83

Q(Mi) =
D(P̄ − M̄i(t))

D(P̄)
(5)

The algorithm detects the presence of trend components and periodic components and patterns using sets of the84

functions specified by the user. The sum of power functions forms a polynomial describing the trend or the lower-85

frequency component of the time series. Periodic functions such as pulses and trigonometric functions are used to86
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describe seasonal or higher-frequency components. The result of the algorithm is a mathematical model, an analytical87

expression that determines components found in the time series.88

We describe subclass T of the functions used for the optimization in terms of tokens. The tokens are essentially89

the building blocks for the resulting mathematical expression, as shown in Eq. 1. We define tokens in the form of a90

parameterized mathematical function. The example of the token is shown in Eq. 6.91

a1(p1, p2, p3, t) = p1 ∗ sin (p2 ∗ t + p3) (6)
The number of parameters pi within the token is pre-defined and dependent on the type of functions included in92

the token. We note that amplitudes ci from Eq. 1 are used as the token’s parameter. It is assumed that the resulting93

expression is the sum of the products of tokens.94

Therefore, the problem is described as follows, let M̄(p̄, t) =
∑
I

∏
J

ai, j(p(i, j)
1 , ..., p

(i, j)
k , t), where is the resulting95

model, where I = 1, 2, 3, ... and J = 1, 2, 3, ... multi-indices, that determine the token type, k is the fixed number96

of the parameters for the given token type and p̄ = (p(1,1)
1 , ...) is the model multi-parameter. Using the model M̄(p̄, t)97

definition we can formulate the optimization problem Eq. 798

M(t) = arg min
ai, j∈T, p̄

Q(M̄(p̄, t)) (7)

It is assumed that the number of tokens ai, j ∈ T used in the model is varied during the optimization problem that99

means that the token multiparameter p̄ dimensions are varying.100

The building algorithm can be divided into three parts. The first part is token optimization, which is the preliminary101

step for evolutionary optimization and proper fitness function calculation. The second part is evolutionary optimiza-102

tion, which allows changing the number of tokens using the mutation and cross-over operators. Finally, the third part103

is the regularization that allows reducing expression by canceling out the insignificant tokens.104

Token parameter optimization. A critical part of the algorithm is the numerical optimization of all tokens’ parameters.105

Parameters form the chromosomes of individuals in the evolutionary algorithm. Every chromosome that is passed106

after the evolutionary part should obtain the optimal set of parameters. The quality of the parameters’ set affects the107

probability of removing or preserving a token from the chromosome during regularization, and as a result, it affects108

the growth rate of individuals’ chromosomes and the convergence rate of the algorithm.109

We will not provide the details for brevity and state that every token may require different algorithms to optimize110

its parameters (more detailed they are described in [8]). Below we describe two methods used as part of the algorithm111

within the tokens’ parameters optimization procedure.112

The periodic tokens are optimized using the spectral analysis of the initial time series. If the token has a frequency113

parameter, it gets a frequency value from one of the harmonics with a large amplitude. Other parameters are optimized114

using different optimizing methods such as Gradient Descent or Differential Evolution. Also, the spectral analysis115

prevents appearing of unexpectable tokens in the chromosome. For example, there will be no trend token if there are116

no low-frequency significant harmonics in the spectrum.117

Impulse tokens have the opportunity to approximate close to periodic components. To do this, every single pulse118

in the token undergoes additional parameters optimization on the allocated time interval, which usually is equal to the119

token period. It allows to approximate non-periodic peaks. That sort of token is critically important in some cases and120

called complex impulse.121

Evolutionary part. Another proposed time-series modeling algorithm is an evolutionary algorithm with a population122

consisting of individuals with arrays of tokens as chromosomes. A token is a gene in a chromosome. The sum of the123

array elements forms the final analytical expression. Thus, individuals are competing in the train data representation124

quality. We define the fitness of an individual as the Eq. 5. Overall it is the evolutionary approach to solve single-125

objective optimization problem Eq. 7. Consistent approaching optima can solve it. Thereby individuals in the initial126

population have short chromosomes. Influenced by genetic operators, chromosomes are expanded with new tokens.127

The cross-over operator allows two selected parents to exchange random tokens among themselves or expand their128

chromosomes. The mutation operator similarly acts on the selected individual – randomly generated tokens replace129

some tokens in the chromosome or expand it. Selection is implemented using roulette wheel selection and elitism.130
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The intensity of genetic operators affecting the number of tokens involved in the operation and the probability of131

chromosome expansion are meta-parameters.132

Qualitative optimization of token parameters in individual chromosomes is likely to produce the same results for133

different individuals. Therefore, it is expected that diversity is reduced to a minimum. In addition, the population134

size is preferred to be small to eliminate an overhead associated with solving similar problems of optimizing token135

parameters.136

The maximum number of evolution iterations and the critical fitness value is used as the stop criterion.137

Regularization part. During the evolutionary part of the algorithm, excessive chromosome expansion may appear. It138

means that the tokens can start approximating the noise component of the initial time series or appeared as a result of139

an inaccurate approximation on previous steps. Thus, chromosome length regularization is necessary to avoid model140

so-called overfitting.141

Previously [8], we use LASSO regression to reduce model complexity and thus filter out the insignificant compo-142

nents. Overall we may use an arbitrary regularization operator to remove tokens with close frequencies and tokens143

that make the lowest contribution to an individual’s fitness (initial time series approximation).144

As it turned out, the LASSO regularization is not universal. It removes high correlated features, but tokens with145

close frequencies have high correlation only on short time intervals. It removes features whose contribution to the146

target approximation does not justify their amplitude. Nevertheless, it means that, for example, narrow and sharp147

impulses with a high amplitude have fewer chances to stay in the chromosome than wide impulses with a low ampli-148

tude. It is necessary to evaluate the token’s utility by contributing to the individual’s fitness without considering its149

amplitude because tokens can take a wide range of forms.150

Moreover, the regularization coefficient is the LASSO meta-parameter. There is no unambiguous and understand-151

able relationship between it and the scale of the tokens’ amplitude removed. Small changes in the coefficient can give152

substantial changes in the resulting model and vice versa. The magnitude of the regularization coefficient depends on153

the maximal model length and the input data properties. Thereby, the expert has to do some experiments to define the154

regularization coefficient’s interval in which acceptable results are obtained. Usually, it is a computationally expensive155

procedure.156

We use an alternative approach for regularization. First, for every gene of the chromosome, its contribution to157

individual fitness is evaluated. Then genes are sorted, and part of the less important genes are removed. The ratio of158

the genes removed is the new meta-parameter. Also, we perform the regularization procedure for genes with close159

frequencies. Finally, tokens with less contribution are removed. This approach is easier to implement and lacks all160

of the above disadvantages. It is also better suited for multi-objective optimization, as we discuss this topic in the161

corresponding section.162

3.2. Multi-objective evolutionary optimization163

The best model in both the modeling of the original series and the generation of the synthetic is not the same.164

Therefore, for the synthetic generation application, single-objective evolutionary optimization is not always the proper165

choice. Multi-objective evolutionary optimization may control the optimization process. As a result of the better166

control, we may simultaneously obtain good models and good synthetic data. The Pareto frontier within the quality-167

complexity objective space gives the set of models, which may be used either for modeling or synthetics generation.168

Our realization of a multi-objective evolutionary optimization algorithm for closed-form algebraic expression dis-169

covery is based on a single-objective evolutionary algorithm (Sec. 3.1). However, individuals’ chromosomes are ex-170

tended with an isolated gene that contains the regularization parameter. Individual fitness consists of two objectives.171

The first one is the approximation quality Eq. 5 as before. The second one is the tokens number in the individual172

chromosome Eq. 4. Tokens parameter optimization and regularization remain unchanged.173

Cross-over and mutation operators are expanded by the corresponding operations with the regularization parameter174

gene. Individuals can exchange this gene among themselves during cross-over. In addition, the gene can change its175

value in specified ranges during mutation.176

The work with population is based on an evolutionary multi-optimization algorithm based on dominance and177

decomposition [6]. This approach gives the Pareto frontier of models along objective axes and the opportunity to178

choose non-overfitted models with the best quality metrics of the approximation and synthesis.179
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Here, the inappropriateness of using the LASSO regularization operator becomes more transparent. Furthermore,180

due to the high sensitivity of the chromosome length to the regularization parameter and its wide working range,181

many iterations of the influence of evolutionary operators on the regularization gene will be required to obtain a high182

population diversity in terms of the second objective. On the other hand, the maximum length of the chromosome as183

the regularization parameter does not have this problem. So it is chosen as the regularization gene in this work.184

The final algorithm is an evolutionary algorithm, in which the population consists of individuals with arrays of185

tokens as chromosomes. The algorithm scheme is shown in Fig. 1. For each individual, all tokens are optimized186

during iterations. There is a sequential growth of individual chromosomes due to genetic operators. Excessive growth187

of chromosomes is restrained using regularization. The sum of tokens in the chromosome of the fittest individual is188

the final mathematical model describing all components and patterns found in the considered time series.189

Fig. 1: The modeling algorithm’s resulting scheme

3.3. Synthetic generation algorithm190

Based on the above approaches, a generative model can be constructed. The model in the form of an algebraic191

expression can give a wide range of synthetic data by varying tokens parameters. There are two synthetics generation192

algorithms, the first one for Complex impulses and the second one for other tokens described in the first part. The193

choice of the quality metric to assess the generated synthetics is described in the second part.194

Token parameters varying. We add noise or some time-depended function to their parameters to obtain synthetic data195

for most of the tokens. Amplitude, frequency, and phase may be perturbed directly by adding noise components to the196

corresponding parameters. We note that high-frequency components are susceptible to frequency and phase variation.197

Therefore we may add noise only to the low-frequency components’ parameters like a phase in periodic tokens to get198

a synthetic with higher time-series diversity.199

The complex impulse is a token with a sequence of single pulses with different parameters. The main difference of200

complex impulse tokens that besides varying their parameters, there is the ability to vary their order in the sequence.201

For the synthetics generation purpose, single pulses from each complex impulse in the model are clustered by their202

forms and time gaps between them. Pulses from all Complex impulses in the model additionally are clustered ac-203

cording to their belonging to complex impulses. Thus, in total single pulses within the complex one are clustered in204

three-dimensional space.205

Based on the sequence of states in the model, the Markov chain trains and can predict the next state based on206

the previous state. Synthetic data are obtained by decoding states generated by the chain. The state decoding gives a207

single random pulse from the corresponding cluster. The cluster size is the generating algorithm meta-parameters. The208

smaller the size of the clusters, the more deterministic the chain is and the less variability of the synthetic. Therefore,209

we obtain additional control over the synthetics generation process by varying meta-parameters.210
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Quality metric. It is not easy to assess the quality of synthetic data in an automated manner. On the one hand, we211

require synthetics to preserve the properties of the original series, but at the same time, we require as many differences212

as possible to achieve diversity.213

During the work satisfying the several metrics were tested. We chose the Fourier specter proximity of the synthetic214

data to the original data (as the proximity measure, we chose variance of the difference, L2-norm of the difference,215

correlation). The spectrum was chosen because it not only contains information about the main structure of the series216

(trend, seasonal, and noise components) but, unlike time and frequency-time representations, is invariant to the non-217

stationarity of the series if the trend is removed correctly. Specter also allows one to create synthetics for the non-218

stationary processes since we may add noise to the spectral part without changing the non-stationary part.219

However, using only the specter does not reflect the quality of the synthetics since the generating algorithm perturb-220

ing the specter. Therefore, specter quality metric and synthetics diversity are in contradiction. We consider initial and221

synthetic time-series as the random variables and compare values probability density distribution as another method.222

In addition to the quality metric and synthetics diversity contradiction, a uniqueness problem arises. It means that the223

entirely different time series might have similar distributions, and the first requirement would not be met.224

As a result, the proximity to the initial data by itself is not the best measure for the quality of the synthetic data.225

The data predicted by the model almost always had a spectrum closer to the original one than the synthetics based on226

it. Therefore, from the point of view of the chosen metric, it would be more efficient not to vary the model parameters227

to get the highest quality synthetics. We modify the quality metric by adding a value reflecting the dissimilarity of the228

synthetic and original data in the temporal area.229

Since we have already used the Eq. 5 to measure the proximity of the model and the original series in the time230

domain, a logical step is to apply the same formula to the spectra for an equivalent contribution of each part to the final231

assessment of the quality of synthetics. The resulting metric Q is the ratio of the normalized variance of the difference232

between the synthetic X̄ and the original data P̄ spectra S to the normalized variance of their difference in the temporal233

area. It is shown in Eq. 8. So the smaller the spectrum difference and the larger the time series difference, the smaller234

the metric and the better the synthetics.235

Q(X̄) = [
D(S (P̄) − S (X̄))

D(S (P̄))
][

D(P̄ − X̄)
D(P̄)

]−1 (8)

The synthetics quality metric Eq. 8 provides the best synthetics data based on expert analysis.236

4. Experiments237

We chose two different time series representing two different real-world processes to generate synthetic datasets.238

The first one is tropical temperature changes during some time and has periodic structure (Sec. 4.1). The second one239

is the electrical power consumption of some areas and does not have a clear periodic structure. It is needed to show240

Complex impulse tokens capabilities in particular (Sec. 4.2).241

4.1. Time-series with significant seasonality242

The temperature variability time-series can be accurately approximated by periodic tokens such as sine and cosine243

functions. However, we cannot assess how complex the optimal model may be without preliminary analysis of the244

series. Therefore the chromosome size should not be limited by regularization. Using a single-objective algorithm245

with the regularization coefficient that allows for a considerable chromosome length, the generative model with a size246

of 12 tokens is obtained. The 50 synthetic samples are generated based on it. The resulting model and synthetics data247

are shown in Fig. 2.248

As we can see, the original time series has three main spectral harmonics, but the model has a lot more tokens.249

This means that most tokens have minimal amplitude, approximate noise and unnecessarily increase the complexity250

of the model. As a result, the synthetic data has a slight variation due to the high determinism of the series and the low251

contribution of most tokens. Thus, the model is not optimal in its complexity and the quality of its approximation and252

generation. To obtain a more optimal model using a single-objective model, we have to restart the algorithm with the253

changed meta-parameters based on the conclusions made.254
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(a) (b)

(c) (d)

Fig. 2: Tropical temperature variability dataset results: (a) temperature variability dataset (blue), obtained by single-objective optimization model
(model size 12, orange) and averaged generated synthetics (red) with minimum and maximum bounds for 50 generated samples; (b) corresponding
spectra with the computed quality metric Eq. 8; (c) corresponding disributions for the source data; (d) multi-objective optimization Pareto frontier
(metric Eq. 5, blue) and synthetic data (metric Eq. 8, orange)

Multi-objective optimization copes well with these difficulties. The Pareto frontier of models allows one to draw255

more profound conclusions and immediately choose the best model. The result obtained by the multi-objective algo-256

rithm is shown in Fig. 2d. From this graph, it is clear that the best model is the model with the size of 3 tokens, which257

approximate the basic structure of the series. Other tokens do not significantly contribute to either the approximation258

or the variability and quality of synthetic data due to their low amplitudes. Models including them have excessive259

complexity.260

4.2. Time-series without significant seasonality261

The previous experiment is repeated on the series that cannot be customarily approximated only with the help of262

trend and periodic tokens. The primary working tokens, in this case, are Complex impulses. The result of using the263

single-objective algorithm is shown in Fig. 3.264

In contrast to the previous case, the spectrum has a more complex shape. Thus, it is impossible to say unequivocally265

what size of the model will be sufficient for high-quality approximation and generation of synthetics. For the resulting266

model with nine tokens, the very variable synthetic is obtained due to the generation algorithm based on complex267
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(a) (b)

(c) (d)

Fig. 3: Households electricity usage dataset results: (a) households electricity usage dataset (blue), obtained by single-objective optimization model
(model size 9, orange) and averaged generated synthetics (red) with minimum and maximum bounds for 50 generated samples; (b) corresponding
spectra with the computed quality metric Eq. 8; (c) corresponding disributions for the source data; (d) multi-objective optimization Pareto frontier
(metric Eq. 5, blue) and synthetic data (metric Eq. 8, orange)

tokens. The shaded area of the synthetic bounds indicates possible permutations of the sequence of single pulses. It268

turns out that a weakly deterministic series generates highly variable synthetics, as it should be. In this case, it is not269

known with which meta-parameters a better model will be obtained, and multi-objective optimization will be even270

more helpful here. The result of its use is shown in Fig. 3d.271

Complex impulses are good approximators for the data without a significant seasonal component. Therefore, the272

quality of the model approximation increases with the number of such tokens in the model. An increasing amount273

of the tokens leads to a more accurate noise component approximation. However, the quality of synthetics quickly274

ceases to grow because, with an abundance of complex impulses, the variability of synthetic time series increases.275

At the same time, they lose the structure of the original series, which is reflected in the proximity of their spectra.276

Thus, excessive variability is penalized. The interpretable optimization results confirm the correctness of the synthetic277

quality metric choice. Based on the Pareto frontier, the best generative model would be the model with three tokens.278



294	 Mark Merezhnikov  et al. / Procedia Computer Science 193 (2021) 285–294
10 M. Merezhnikov, A. Hvatov / Procedia Computer Science 00 (2021) 000–000

5. Conclusion279

In the paper, we develop the evolutionary multi-objective approach to generate synthetic time series. It involves280

building a model in the form of a closed-form algebraic expression and creating synthetic data based on the model.281

As the advantages, we can state:282

• In contrast to single-objective optimization, multi-objective evolutionary optimization allows getting a Pareto283

frontier of models from which the expert can choose the optimal model for current tasks.284

• The interpretability of the model allows to fully control the process of creating synthetics and surpasses existing285

approaches in the context of this task. Some of the possible variants of creation are presented in the form of286

synthesizing algorithms in this paper.287

• The presented algorithm can work with the different types of time-series without significant tuning288

However, the current realization algorithm requires significant computational time to obtain the model. Therefore,289

we will work on the code quality to speed up the optimization process in the future. Moreover, as future work, we290

propose advanced models that allow splitting the data to different scales.291

Code and data avaliability292

Data and code to reproduce the experiments described in the paper are available at Nature Systems Simulation293

(NSS) lab repository https://github.com/ITMO-NSS-team/EPDE/tree/main/examples/multi_objective_294

algebraic_expression295
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