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Abstract

Biodiversidade, a variedade de vida no planeta, estd em declinio devido a alteragdes
climéticas, mudancas nas intera¢des da populacdes e espécies, bem como nas alteracoes
demograficas e na ecologia da paisagem. Avalia¢des integradas baseadas em modelos de-
sempenham um papel fundamental na compreensio e na exploragio destas dindmicas
complexas e tem o seu uso comprovado no planejamento de conservagio da biodiver-
sidade. Os objetivos deste estudo de doutorado foram investigar; (1) o uso de técnicas
de genetic programming e fuzzy para construir modelos de alta qualidade que lidam com
presenca e auséncia de dados com ruido, (2) a extensdo desta solu¢io para explorar o
paralelismo inerente a programacio genética para acelerar tomadas de decisdo e (3) um
framework conceitual para compartilhar modelos, na expectativa de permitir a sintese de
pesquisas. Subsequentemente, a qualidade do método, avaliada com a true skill statistic,
foi examinada com dois estudos de caso. O primeiro utilizou um conjunto de dados fic-
ticios obtidos a partir da defini¢do de uma espécie virtual, e o segundo utilizou dados
de uma espécie de pomba (Zenaida macroura) obtidos do North American Breeding Bird Sur-
vey. Nestes estudos, os modelos foram capazes de predizer a distribuicdo das espécies de
maneira correta mesmo utilizando bases de dados com até 30% de erros nas amostras
de presenca e de auséncia. A implementacio paralela utilizando um cluster de vinte nos
c3.xlarge Amazon EC2 StarCluster, mostrou uma aceleracio linear devido a arquitetura
de multiplos demes de granulagio grossa. O algoritmo de programacio genética e fuzzy
gerado em determinadas condi¢des durante os estudos de caso, foram significativamente

melhores na transferéncia do que os algoritmos do BIOMOD.

Palavras-chave: Algortimos genéticos, Algoritmos uteis e especificos, FUZZY (Inteligéncia

artificial), Bioclimatologia.






Abstract

Biodiversity, the variety of life on the planet, is declining due to climate change, popu-
lation and species interactions and as the result of demographic and landscape dynam-
ics. Integrated model-based assessments play a key role in understanding and exploring
these complex dynamics and have proven use in conservation planning. Model-based
assessments using Species Distribution Models constitute an efficient means of trans-
lating limited point data to distribution probability maps for current and future scenar-
ios in support of conservation decision making. The aims of this doctoral study were
to investigate; (1) the use of a hybrid fuzzy genetic programming to build high quality
models that handle noisy real-world presence and absence data, (2) the extension of this
solution to exploit the parallelism inherent to genetic programming for fast scenario
based decision making tasks, and (3) a conceptual framework to share these models in
the hope of enabling research synthesis. Subsequent to this, the quality of the method,
evaluated with the true skill statistic, was examined with two case studies. The first with a
dataset obtained by defining a virtual species, and the second with data extracted from the
North American Breeding Bird Survey relating to the mourning dove (Zenaida macroura).
In these studies, the produced models effectively predicted the species distribution up
to 30% of error rate in both presence and absence samples. The parallel implementation
based on a twenty-node c3.xlarge Amazon EC2 StarCluster showed a linear speedup due
to the multiple-deme coarse-grained design. The hybrid fuzzy genetic programming al-
gorithm generated under certain conditions during the case studies significantly better

transferable models.

Keywords: Genetic Algorithms, Applied and specific algorithms, Fuzzy logic, Species Dis-

tribution Modeling, ecological niche models.
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The Millennium Ecosystem Assessment (2005) involved over 1360 experts and 95
countries who identified significant contributions of biodiversity in natural ecosystems
to human life and well-being. Yet biodiversity, the variety of life on the planet, is declin-
ing due to complex causes, such as climate change, population and species interactions
(STUART, 2004; MCCANN, 2000; BELLWOOD et al., 2004) and as a result of demographic and
landscape dynamics (KEITH et al,, 2008). There is clearly a need for well-informed politi-
cal decision-making in front of the global challenges of biodiversity loss, climate change,

and associated food security concerns.

In this context, integrated model-based assessments play a key role in understand-
ing the causes of biodiversity decline, to explore and assess their relations and impact
(SIEBER et al,, 2010). The conservation of species is not a scientific choice, but depends
heavily on the values, mission, or legal mandate of the organisation producing the conser-
vation plan (MURDOCH et al., 2007). Policy makers use conservation tools, such as Marxan
(BALL; POSSINGHAM; WAT'TS, 2009), to evaluate the impact of their choices. Planning by
major organisations has already been aided by these tools (PRESSEY et al., 2007), for exam-
ple, the planning and rezoning of the Great Barrier Reef (FERNANDES et al., 2005). Sarkar
et al. (2006) defines a conservation planning tool as a software that at the very minimum
identifies either sets of complementary sites needed to achieve quantitative targets for
biodiversity features or the complimentary contribution that individual sites make to
biodiversity conservation within a region. To that end it is essential to know which fea-

tures and species are present at sites.

1.1 Problem statement

The intent of this study is to improve the quality of species distribution models using a
proposed hybrid algorithm with genetic programming and fuzzy operators. The problem

statement is defined as:
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Thesis: Not just ecological models, hybrid fuzzy - evolutionary models in extendible

environments allow for better predictions.

1.2 Objectives

The above thesis will be demonstrated by fulfilling the following research objectives:

« Design an algorithm that uses genetic programming and fuzzy operators.

 Implement the algorithm and make it available using open source solution.

Apply the solution to real-world data and verify the thesis statement.

Consider how models can be re-used for research synthesis.

1.3 Contribution

The contribution to knowledge by answering the thesis is threefold. First, the research
will provide a comparative analysis of the impact of fuzzy genetic programming on
Species Distribution Model (SDM).

Second, the research provides predictable and understandable models and dis-
cusses a conceptual framework and the importance to share models, perhaps even more

so than underlaying data.

Third, a demonstration of the architecture on a fully operable modelling solution
in R is made available as open source so that others can assess the validity and perfor-

mance of this methodology.

1.4 Structure

The remainder of this thesis is structured as follows.

« Chapter 2 provides an overview of a research survey concerning relevant back-
ground concepts and work related to SDM.

« Chapter 3 includes the research methodology of this dissertation.

« Chapter 4 investigates a new algorithm which combines the concepts of linear ge-
netic programming and fuzzy rule-based systems, which is preceded by a short liter-
ature review on genetic programming. It also discusses the interfaces that are used
to execute both case studies.

« Chapter 5 Discusses two case studies that are performed with the new algorithm.
Experiments are performed to compare the performance of the new algorithm
to those provided in the popular BIOMOD package. A theoretical analysis is per-
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formed with the first case study, while the second experiment is used to obtain
more empirical results.

« While not part of the overall subject of this thesis, Chapter 6 investigates a concept
architecture to increase sharing of reproducible models, an important issue that
arose during my work.

« Finally Chapter 7 presents the major conclusions of this work and potential future
work directions.
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2 Species Distribution Models

Contents
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The niche is a central concept in ecological thinking and is related to the pres-
ence of species in a certain environment, the relations and requirements it has for that
environment, and its relationship with other species. Using this concept ecologists try to
answer many questions, for instance: Why is a species present in a geographic area? What
is its relation with other species? How will the species distribution change over space and
time? What is the impact of a species on its local environment? What is a species func-
tion? Perhaps, equally important: What is a niche exactly? Since the term niche is used
differently and in distinct contexts. This chapter discusses the niche and the models that

describe them.

2.0.1 The Grinnellian and Eltonian niche

Chase and Leibold (2003), Colwell and Rangel (2009) note that ecologists are avoiding the
term niche, unlike most articles in the 1960s and 7os where the term was used in a quarter
of the publications in the journal Ecology. However, researchers started to use the term

in different contexts, causing niche to become ambiguous and fall into disuse. The most
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cited origin of the concept niche in a scientific journal is The Niche-Relationships of the Cal-
ifornia Thrasher by Grinnell (1917). However, he already used the term, although not in
the title, in his PhD dissertation in 1913 (GRIESEMER, 1994). The term was used in vari-
ous publications and in similar context as early as the 1g9th century and probably even as
early as 1833 (GIBSON-REINEMER, 2015). Grinnell used niche in his early articles to describe
the various circumstances and the adaptations in physical structure and temperament
of a species to those circumstances, where each species has its own and unique niche. A
niche is then the place that a species occupies in its environment and is based on the idea
of Darwin that improvements by natural selection means the better species will competi-
tively exclude other species from occupying that same place. Limiting circumstances that
Grinnell later considered in his work are biological factors — such as, food, shelter, com-
petition, parasitism, and overpopulation — and abiotical factors — such as, temperature,

rainfall and soil conditions —.

Elton (1927) in his book Animal Ecology concerned himself similarly and indepen-
dently of Grinnell with the niche. Elton focused on the impact of the species on his en-
vironment to understand the distribution of species. Due to his focus on food chains
he defined the niche relating to who eats who. Elton wrote “and the niche’ of an animal
means its place in the biotic environment, its relations to food and enemies”. However, he
did not limit himself'to just food as the limiting factor of the niche. He often mentioned

suitable soil types as limiting factors for nesting birds and feeding places(GRIESEMER,
1994)

Many texts make a strict distinction between Grinnellian and Eltonian niches
(SOBERON, 2007; AUSTIN, 2002; PETERSON, 2011), each representing a different end of a
spectrum. On one side, the Grinnellian niche representing the habitat idea which is de-
fined by non-interactive factors and conditions. On the other side, the Eltonian niche that
is defined by the biotic interactions and the function of species within its environment.
While this distinction is useful as it helps to better define what is meant with the niche
and the required data to define it, this distinction is not that clear in their actual works
as both authors considered biotic and abiotic factors. The difference is mainly in their
approach and the problem that they tried to solve and the question whether multiple
species are able to occupy the same niche (GRIESEMER, 1994).

Cox (1980) points out that both Elton and Grinnell in their initial publications
mainly used the niche as a metaphor and have not explored the term in detail. Only in
later work both gave the term more context. Since its initial appearance, the metaphor has
been used in various ways. Even before Grinnell and Elton made the term popular, niche
was already used in a review published in Nature of a book written by Grant Allen, titled
Vignettes from Nature (1881). As both Gibson-Reinemer (2015) and Cox (1980) wrote, the long

history of the meaning of niche prior to Grinnell and Elton emphasises the importance
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of the conceptual richness of the term and that it might be more important than who

conceived it.

2.0.2 The concept of niches

The concept of a niche has been shown and recognised to be a confusing one as there is
no single concept of a niche and the word is interchangeably used in different contexts
by different authors. This unclarity leads to further confusion when terms depending
on the niche concept are defined (WHITTAKER; LEVIN; ROOT, 1973; KEARNEY, 2006; CHASE;
LEIBOLD, 2003). Whittaker, Levin and Root (1973) lists the following common current uses
for niche: to indicate the position or role of'a species within a given community, or, as the
distributional relation of a species to a range of environments and communities, or to

indicate and mixture both previous concepts.

In this work, and in almost all others that concern Species Distribution Models
(SDMs), the definition used is based on the work of Hutchinson (1957), who defined it
as: “We may now introduce another variable x3 and obtain a volume, and then further
variables ...z, until all of the ecological factors relative to S; have been considered. In
this way an n-dimensional hyper-volume is defined, every point in which corresponds to
a state of the environment which would permit the species 5, to exist indefinitely”. This
view describes the niche as a place and where the distributional relation of a species (5)

depends on a range of variables (zo...x,).

This definition still leaves questions that need to be answered, such as: What are
the variables? How do they relate to each other and to the state of the environment? and
When does a species “exist indefinitely”? To answer the first question, Hutchinson (1978)
divided these variables into two categories: dynamic, interacting, resource-related vari-
ables for which there is competition; and variables that define environmental conditions
for which there is no competition. The first category was named bionomic and the sec-
ond scenopoetic. These two distinct categories have been again and again used, although
with different names (SOBERON, 2007), i.e., direct/resource variables (AUSTIN, 2002), and con-
dition/resource variables (BEGON; TOWNSEND; HARPER, 2006). While local interactions defi-
nitely have impact on population size on small scales, broader distribution patterns de-
pend largely on scenopoetic variables and other variables are often considered as noise,
or just ignored (CHASE; LEIBOLD, 2003; PETERSON, 2011).

This duality is further illustrated by Hutchinson in Figure 1 which shows many
features characteristic of real-world applications. The figure depicts a lake with a niche
space with two variables: temperature (i.e., a scenopoetic variable) and the algal food size
(i-e., a bionomic variable). The niche space contains two niches of two hypothetical micro
algae-eating species: one of S; a larger warm-water species that feeds on large algae, and

Sy a cool-water species that feeds on smaller algae. The figure demonstrates the reciprocal
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Figure 1 — An illustration used by Hutchinson to show the niche-biotope duality for a

Depth (m)

lake with a temperature gradient and two species (S; and S,) that consume al-
gae. The biotope is defined by two factors that vary over the depth: the tempera-
ture and the distribution of food. The larger algae (circles) correspond with the
niche of S; in the niche space, while the smaller algae (dots) of S, correspond
with another niche defined in niche space. The distribution of the algae in the
biotope depends on their niche. One sees that the smaller algae also exist on
the top half of the biotope as that part of the niche is not utilised by S;. On
the other hand the larger algae of S, are not present at low temperatures as the
niche is unavailable.
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Figure 2 — Occupied niche (left) - Actual distribution (right), + Observed species occur-
rence record, © Fundamental niche (left) - Potential distribution (right). Illus-
tration of the mapping between the geographical space and environmental
space for a species. The environmental space (left) is as Hutchinson defined
it, see Section 2.0.2, and consists here out of two factors, the axis e; and es. The
+-ses represent occurrence records. The areas in the environmental niche
represent the occupied niche, while they represent those areas that are occu-
pied by the species in geographic space. The mapping of the environmental
space to geographical space is one-to-many, shown by a single region of en-
vironmental space mapped onto three distinct regions (4,B,C) in geographic
space. In region B there is an area that is suitable but not occupied, maybe
because the species hasn’t been able to disperse to there. On the other hand
region A is completely suitable and also occupied. Region C' is only partially
occupied, maybe because there is competition or maybe other factors are lim-
iting the species distribution.

Grid

EnvironmentalSpace

€1 €2

Source: Author

mapping of the niche with the biotope as discussed in the last paragraph. Furthermore,
it shows that niches have limiting factors, for example, algae food size and temperature,

or in general: resources and conditions.

It is important to realise that the concept of a niche as defined by Hutchinson
(1957), Hutchinson (1978) is distinct from its habitat. While the niche describes the en-
vironmental space where both scenopoetic and bionomic variables are favourable, the
habitat is then the physical spaces in which species live. This one-to-many duality con-
cept, as in Figure 1, enables to: think of the niche, define and project a niche to a physical
space, infer the niche from distribution in the world, realise that the mapping is likely
non-linear, have parts of the niche un-utilised or unavailable in geographic space, or to
have those parts simply not used (COLWELL; RANGEL, 2009). It is this distinction and these

insights that are the foundation of species distribution modelling,
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2.0.3 The relation between environmental and geographic spaces

Figure 2 shows the mapping of the environmental space E consisting out of n environ-
mental variables, in the figure illustrated by e; and e,. As discussed, these environmental
variables are factors such as: rainfall, coldest month, topography, average temperate. All
variables typically defined with a maximum resolution of 1 km? per grid cell, which is
mapped on real world data, see Section 2.1.3. On the other side there is the geographic
space G, equal to Hutchinson’s biotope, that typically is composed of'a two dimensional
grid of'a certain region, such as a country or continent, with its own resolution, and often
different compared to the E grids. The mapping between E and G is Hutchinson’s Duality

from Section 2.0.2.

More formal, at every cell ¢ € G all n layers of the environmental factors are
measurable to obtain e,, where ¢; = (e, es,...,e,),. This vector is obtainable for every
cell and is not necessarily unique for each cell, e.g., multiple locations in geographic space
can have the same temperature and altitude combination assuming only those two factors
are considered. The space of all vectors ¢, combined is the actual environmental space E
of which a species typically only occupies a subset. Due to effects, such as climate change
and invasive species, E is not a static space, but a dynamic one that changes over time.
Since F is build from vectors e, the rank of G and FE is typically the same. However, if
there are a large number of factors it is common, e.g. in Giannini et al. (2013), for scientist

to apply Principal Component Analysis (PCA) in which case rank(E) < rank(G).

Grid resolution, the size of the cells in GG, impacts the predicted distribution. Sci-
entists need to be aware of the Modifiable Areal Unit Problem (OPENSHAW; TAYLOR, 1979)
that is a source of statistical bias that radically affects the results of spatial phenomena
when grid sizes are varied. The use of varied grid sizes is common when different sources
of environmental data is used and significantly impacts the produced results (SEO et al,
2009). Seo et al. (2009) therefore recommends the use of a grid size of 1 km?. This result is
in contrast to an extensive study by Guisan et al. (2007) which has shown no severe impact
on model quality when the grid resolution had a ten fold coarsening. They did find an
overall model quality degradation, but only noticeable for models that already had suffi-
cient performance and/or with initial data that have an intrinsic error smaller than the

coarser grid cell size.

The sets G and FE have till so far been sets defined and limited solely by a ge-
ographic extent. For the concepts to be useful it is necessary to define subset G’ C G
to indicate the geographic area where the species is present. The environment factors
present on a single cell of that region is denoted as 7(g) = ¢, and for all occupied cells
n(G’") = {n(g)|g € G'}. The inverse, mapping environment space on to geographic space
is denoted as n ' (E’) = {g € Gl¢, € E’}. Both operations are easily performed with Ge-
ographic Information System (GIS) tools, e.g. ArcMap and OpenGIS, and are a first step
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in preparing data for model training, evaluation and testing.

2.0.4 The BAM diagram

Equation 2.1 based on ideas of Vandermeer (1972) shows the relationship and factors that
affect population growth in an Eltonian grid. It describes the relationship between the
distribution of a species in space and its niches, based on the environments that it oc-

cupies to predict where it actually or potentially occurs. The first factor of the formula

1 dxi,g
Ti,g dt

the species at that particular area. Assuming there is no migration between cells, then

represents the growth rate of species i in area ¢, and where z; , is the density of

the growth rate is determined by the intrinsic growth rate r and ¢ that represents the

densities of all other species that affect the species.

1 dz; o . -
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In general the growth rate of the species is determined by the scenopoetic variables
(vector ¢€,) and the biotic factors ¢, such as its interactions with other species, resources
and diseases (vector R; ;). While growth is one factor that determines a population density
another factor is dispersal, migration or movement, of the species in its environment.
This factor is represented by 7" in the equation and it is a transition matrix that describes

possible movements from area to area.

These three factors combined are detrimental to discuss and find the area of dis-
tribution of the species. A graphical representation of the ideas behind this formula
is shown in Figure 3. In this figure Set A characterises the geographic area where the
scenopoetic variables are such that there is a positive growth rate for that area. The Set B
represents the area where the biotic factors are beneficial to the presence of the species.
The third area shown in the figure area M is analogous to the last factor in Equation 2.1
and are the regions where the species historically over the generations has been able to

disperse to.

Figure 3 show a Venn diagram of the areas A, B and M and where these areas
overlap. The area (G,) A N B N M is the occupied distributional area. This is the region
where all the variables are favourable for the species and where it currently resides. The
area (G1) AN B N M€ in contrast is the area where the species could survive but has
not yet spread out to, this is the invadable distributional area. Both areas together G p, or
(Go U G,), is the potential distributional area.

This last area, Gp, is the to be discovered area when invasive species are inves-
tigated by modelling a species’ niche. It is important to note however that the models
are constructed with data points obtained from those places where the species currently

resides, in other words from the area enclosed by M this is indicated by the black dots in
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Figure 3 — Set A represents regions in space where scenopoetic, non interacting, variables
are favourable for a species. Region B represents areas where biological con-
ditions, e.g, competitors, predators, diseases, are favourable. M represents re-
gions to which species has access due to movement, barriers and distances. Go,
with black dots as presences, is the actual distribution while Gi, with white dots
as not yet occupied presences, is the potential area distribution currently lim-
ited by the movement. The challenge is finding out what restricts the species,
nothing as in (a), by biotic factors (b) or by movement (c)

(b)

Source: Author

the figure indicating places where the species occurs. Places where the species is absent

are indicated by white circles.

The region encompassed by the circle A, G 4, is the region where the scenopo-
etic variables are favourable for the species and which would be populated if there was
no competition and assuming perfect dispersal abilities of the species. The environment
that exists in this area is F 4. E 4 is the existing fundamental niche and is a subset of the
fundamental niche E, representing the entire spectrum of environmental conditions that
are favourable, and obtainable through the operation 7(G ) discussed in Section 2.0.3.
The challenge is determining the ecological niche of'a species E 4 that hopefully is rep-

resentative of E.

2.1 Geographic areas and ecological niches

The aim of any species distribution modelling algorithm is to identify and estimate the
regions of A, B and M of Figure 3. Algorithms find similarities between geographic
areas and environmental space and use this relationship to interpolate and extrapolate
spatially to other regions. A model is said to interpolate when it projects in a region sim-
ilar to as what it was trained on, as seen in the grey area in region C with many observed

occurrences (++) in Figure 2. For interpolation on coarse scales SDMs are not necessary
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as it suffices to just predict based on the proximity of other presences (BAHN; MCGILL,
2007). Extrapolation, on the other hand, is to areas that are statistically independent of
the training region, i.e into region A and B in Figure 2 with no known occurrences and
with environmental conditions not available in the calibration data, see Section 2.2.1. Spa-
tial extrapolation, or projection outside known regions with observed presences, is also
known as spatial transferability and requires distribution models that are capable to gen-
eralise their training data set, but unlike with extrapolation the environment is similar

to that of the calibration region.

Any modelling algorithm that maps between G and E will map between the
geospatial range of G p and G and the environmental range Ep and Eo. In other words,
the model predicts between what is currently occupied and that what potentially is occu-
pied by the species. Whether it is closer to Potential or Occupied will depend on from
which region the training data was sampled, the uniformity of the sampling, the overlap
of the regions A,B, M (see Figure 3), and the properties of the algorithm. It is worth
noting that even though a model is trainable with results close to E¢ based on sampled
data from Gy, the reverse action will not result in a direct one-to-one mapping back to
G0, but instead to the larger area of G p. So while an environmental niche model is ob-
tainable from the area the species occupies, the inverse, to determine the area the species
occupies is not possible from that same model. The reason is that there are possibly many
regions with the same environmental conditions and there is no way knowing which one

is occupied and which one is not.

Figure 3 shows three configurations to illustrate the point that the sampling area,
indicated by the occurrences in the figure, and the circumstances of the species, indicated
by B, A and M, determine in the end what region of the species is predicted. In Figure 3a
the species is a great disperser and as such M encapsulates the intersection of A and B.
In this case potential and occupied areas are almost the same as A, or 4(G, E) = G4 ~
Go. In Figure 3c the situation is quite different as all regions only partially overlap. In
this case, due to historical reasons and the dispersion rate, a species has not been able to
disperse into all suitable invadable areas, indicated with G';. This case is different as only
a part of the known environmental space of the species can and has been sampled. Any
useful model prediction u(G, E) will have to be able to predict into the G region and
at the same time the sampled niche E, might be far from complete, the species possibly
occurs in many more geographic spaces than assumed. This is important to realise when
predicting future scenarios. For example, a species might now be assumed not to occur
in regions higher than 20 °C and thus to be extinct in the future due to global warming,
In reality, it has never been able to disperse to warmer areas due to other constraints in
M and B. As a result its environmental space was not completely known and could not

be sampled, causing this inaccurate prediction.



36 Chapter 2. Species Distribution Models

Therefore, with estimating geographic areas and ecological niches it is impor-
tant to understand the BAM framework and the consequences of it on the predic-
tions. As Peterson (2011) states a modelling algorithm p is desired that predicts Go C
W(Gpara, E) C A, where Gpara is the set of presence and absence points. The idea is
that the model predicts presence location similar to G, the set of true presences. The
set of predicted presences will most likely have omission and commission errors. Omis-
sion errors are those locations where the species should have been predicted to occur,
while commission errors on the other hand are locations where the species is predicted
to occur, but in reality do not occur. Section 2.2.4.2 discusses how these errors occur in

spatial predictions and the effects that they may have on the model.

2.1.1  Steps to build niche models

SDMs have already been shown to contribute to biodiversity conservation management,
discussed in Section 2.3, and help understand the optimum conditions for dispersal and
to see impact of species populations with possible future climate changes. All these stud-
ies follow, although not explicitly, the same steps to make these predictions. This process
to compute and present meaningful species distributions has been described in detail in
Guisan and Zimmermann (2000), Hirzel and Lay (2008) and in Santana et al. (2008). Sum-
marised, these are the steps:

Step 1. Problem definition
Before anything else it is important to know the objectives and reason for the mod-
elling and the questions that need answering with the resulting outputs, because Pe-
terson and Vieglais (2001) has shown that different goals combined with the wrong

modelling technique impacts the quality of the outcomes.

Step 2. Select and prepare scenopoetic variables
The preparation of scenopoetic layers is one if the most time consuming and com-
putationally intensive tasks. However, the task has become easier with the release
and use of standardised layers, such as WorldClim (HIJMANS et al., 2005; CHAPMAN;
MUNOZ; KOCH, 2005). Even with the use of standardised layers, combining several
sources requires a common geographic coordinate system and/or projection. Co-
ordinate system transformations and resampling are frequently a required prepro-

cessing task for the environmental layers.

Step 3. Select the area under study
Anderson and Raza (2010) show that the definition of the study region and calibrat-
ing inside that region plays an important role in obtaining realistic predictions. In

addition, models produced with an overly large study area are likely to show low
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transferability, in other words reducing their prediction quality in different biolog-

ical contexts.

Step 4. Identify suitable presences and absences
Species occurrence records will need to be obtained if not a mechanistic approach

is used to correlate the species occurrences with the environmental variables.

Step 5. Select a suitable modelling technique(s)
There are many different modelling techniques and algorithms available that differ
in their distribution of the response, in their used fitness functions, and their use
of occurrence data (ELITH et al,, 20006). This is even more so complicated, because
the amount of choice here is enormous as Araujo and Correa (2007) argues that a

combination of several approaches should be used to create more robust models.

Step 6. Understand the response of the modelling technique
According to the no free lunch theorem (WOLPERT; MACREADY, 1997) if an optimisa-
tion algorithm performs well for certain applications then it necessarily performs
worse for all other applications (WOLPERT; MACREADY, 1997). Therefore, to select the
best modelling technique it is necessary to understand the response of the model

in the context of the defined problem.

Step 7. Select an appropriate threshold
For continuous model outputs often a threshold is selected to transform the output
to either a presence or an absence. The selection of this threshold has a large impact
on the output of the model. For example, with climate change studies the impact
of threshold values causes a 1.7- to 9.9 fold difterences in the proportions of species
projected to become threatened (NENZEN; ARAUJO, 2011).

Step 8. Test the sensitivity and robustness of the model
Using statistics and established performance metrics models are objectively anal-
ysed and compared to establish model quality, where the definition of quality will
depend on the problem domain.

Step 9. Interpret the model results for ecological correctness
The effect of small differences in performance metrics may still be meaningful in
the biological sense (PHILLIPS; ANDERSON; SCHAPIRE, 2006; AUSTIN, 2002). For this
reason model projections should be visually inspected and not just statistically.

Step 10. Evaluate the predictions
There is variance in predictive power and model output. It is therefore important to
understand the uncertainty in model predictions in the context that they are used
(WATLING et al., 2015).

Step 11. Show confidence levels for the model output
Hirzel and Lay (2008) suggest to show geographically the areas where the model is
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either interpolated or extrapolated to get a better understanding of the output.

Step 12. Reclassify the prediction in meaningful classes
While continuous output might give more information it is misleading due to un-
certainty. Hirzel et al. (2006) therefore suggests reclassifying the model output in
fewer classes, e.g,, unsuitable, marginal, suitable and optimal, giving a better under-

standing and representation of the contained information.

Step 13. Consider home range, exclude small isolated regions
The appropriate resolution of the projecting, and training, might correlate with
the home range of the species and how it uses the surrounding resources. Small
patches of suitable areas smaller than the home range might be better excluded
(GUISAN; THUILLER, 2005).

Step 14. Expert validation
In the end, only with careful examination and evaluation by experts can a model
be asserted as useful, because there are many more aspects and variables to species
distributions not covered by SDM.

2.1.2 Occurence data

Knowing where a species is found is an integral ingredient for species distribution mod-
elling as the process often relies on presence-only occurrence records. Although, for some
modelling techniques systematic presence-absence occurrence records are needed. His-
torically, such records have been collected opportunistically as often the more accessible
areas such as river beds and roads were investigated for taxonomic studies in museums
and herbaria (WILLIAM et al.,, 1996). Nowadays, there are many sources for these records

and with various qualities.

2.1.2.1  Primary and Secondary Occurrence Data

Peterson, Stockwell and Kluza (2002) divide occurrences into primary and secondary in-
formation. Primary information is those occurrences that are obtained through direct
observation or documentation. Primary occurrences often come in the form of collected
specimens for museums. Secondary occurrence are those obtained through range maps,

species geographies, description of the species niche or even projections of SDMs.

It may be tempting to use secondary data for modelling as it is already cleaned and
comes often in the convenient form of polygons, however, there are some complications.
First, one needs to trust that the expert who made the map is truly an expert in knowing
which non-sampled regions contain populations. Secondly, secondary data needs to be

published and thus lags behind current knowledge. Finally, a publication is static and as
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a consequence its quality will degrade over time; new insights are gained, niche stability

might not have been achieved, and species distributions continuously change.

Primary occurrence points do not have these drawbacks. Even if they are obtained
from old museum collections, some hundred of years old, and therefore are inaccurately,
ifat all, georeferenced they do not have the earlier mentioned drawbacks. With the proper
methodology even inaccurate data is useful for predictions of species distributions with
the right robust modelling techniques (GRAHAM et al., 2008). While secondary data gets
more inaccurate over time, primary data gets increasingly more accurate as more knowl-

edge is gained.

Not all occurrence records, even if primary, are suitable for generating SDMs. An
occurrence record might seem just like a simple recording of a sighting of a particular

species at a given point in place and time, but how should one be interpreted?

2.1.2.2  Sampling

To understand that not all occurrence records are created equal it is necessary to see
what happens when a species is observed. Typically an observer goes to a place and spots
a species. Now, if that species is there because it is an abiotically and biotically suitable
place than it means it is a true presence and all is well. However, if the observer spots
the species in a place that is abiotically and/or biotically not suitable for long term sur-
vival due to dispersal than it is a more complicated case. These type of occurrences are
undistinguishable from the true presence points and cause errors in the generated model.
Another source of errors in occurrence records is due to identification errors made by the
observer, although these points might show up as outliers when analysed together with

environment variables.

Not only errors, but also sampling bias gives a distorted view of the true distribu-
tional patterns of species. An observer can spot a species, but he might have chosen a phys-
ically easier accessible location to investigate. For example, in specific habitat types such
as grasslands, or next to railways, rivers, or roads (REDDY; DAVALOS, 2003). This introduces
bias in the distribution of sampling effort and the primary occurrence data will misrep-
resent the ecological tolerances of the species. Furthermore, bias is also introduced due
to the fact that some species are simply detectable in some habitat types more than in
others.

Absence records have the same problems. Even if'a location is abiotically and biot-
ically suitable and accessible for a species, there is still chance that it goes undetected by
an observer. This will result in false absence record. Other false absences occur because
species have temporal variations in their presence. Due to bird migration an area might
be considered unsuitable while in fact it is only partly so. The BAM diagram, Figure 3,
shows another possibility, namely, a location is biotically and abiotically suitable, but the
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species has not dispersed to there yet.

Due to the complications mentioned above, occurrence records should be care-
fully evaluated and inspected for bias and data quality assured before they are used to
train models (ELITH et al., 2006; CHAPMAN, 2005). The use of absence points is even more
complicated. True absence points are difficult to obtain, but should be used when avail-
able (BRAMEIER; BANZHAF, 2007), and the use of pseudo/background data has its own com-
plications (ANDERSON; RAZA, 2010; PHILLIPS et al,, 2009; SMITH; FRANKLIN, 2013) and contro-
versions (HASTIE; FITHIAN, 2013).

2.1.2.3 Occurrence Data Content and Availability

Species distribution modelling is commonly hard as useful occurrence records are scarce
and difficult to obtain. Models are typically trained with a small number of occurrences,
even as few as twenty-five records (JACKSON; ROBERTSON, 2011; PEARSON et al., 2007).

Historically specimens were stored in museums and herbaria which have build
up an extensive collection over the years that also represents an irreplaceable legacy in-
formation about our biosphere and biodiversity loss. Arifio (2010) estimates that the total
museum collection size is in the order of one to two giga specimens of which only about
three percent is web-accessible. This number is even higher as not all collections might

have emerged through literature and were unknown to the authors.

That makes these collections the main source of occurrence records (PONDER et
al,, 2001). Other sources are: new field studies, data extracted from earlier articles, data ex-
tracted from published range maps, the sharing of unpublished data among collaborators
and citizen science. Most sources, however, do not have data in digitalised formats avail-
able with adequate metadata that facilitate use and synthesis. Many institution simply do
not have the financial, technological and staffing resources to mobilise this enormous
amount of information. The complete digitisation of all natural history collections may
cost as much as €150,000 million, and take as long as 1,500 years (BLAGODEROV et al.,, 2012).
As a solution, projects are becoming popular that use citizen science, or volunteers, to

play a role in making this data accessible for the research community (HILL et al,, 2012).

Even so, just a decade ago one of the biggest challenges would have been obtaining
any of the information in these collections. If one was lucky a collection had its own portal
to query, or if less lucky, one had to visit the museums and visit the collection in person.
Now, after many years of endeavour and advancement there are internationals effort to

make all this data accessible and searchable through a single portal.

One successful implementation of such a portal is the Global Biodiversity Infor-
mation Facility (GBIF), that distributes data primarily on plants, animals, fungi, and mi-

crobes for the world, and scientific names data (EDWARDS, 2000). The portal offers cur-
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rently more than 640 million occurrences of over 1.6 million species by 782 different data
publishers. Data quality is an issue for these records but cleaning that data is far less of an
investment of resources than reproducing and documenting the samples held in natural
history museums.

Data quality is an issue as most data are managed and published through a wide
range of heterogeneous databases. Standardisation is needed for guaranteed, stable and
persistent access to each data record. Mesibov (2013) asserted that there are many errors
and just aggregating data is not enough; data errors needs to be corrected and aggregators
may need to do more effective data checking or provide ways to annotate and return
feedback to data providers. Koch Veiga, Cartolano and Saraiva (2014) discusses efforts and

mechanisms to prevent some of these types of data errors.

All things considered, these aggregators provide a tremendous amount of species
records at the touch of a finger tip *. Careful planning and rigorous data cleaning, for
example such as in Mesibov (2013), lead to useable occurrence records to build species

distribution models, as seen in this work and many many others.

2.1.3 Scenopoetic data

Ecological niche models are based upon two sources of data; the occurrences of species
as discussed in Section 2.1.2, and environmental data such as described in this section.
As earlier discussed and shown in Equation 2.1 population densities are correlated to

favourable scenopoetic and bionomic variables within the environmental space.

In general, species respond to environmental variables in different ways. The vari-
ation in those variables often forms the limiting factors for species and operate on dif-
ferent spatial and temporal scales. As a result different variables are relatively more or
less influential depending on the scale domain and according to biological and environ-
mental contexts (SOBERON, 2007; PEARSON; DAWSON, 2003). For example, macro climatic
variables such as the average yearly temperature, work on courser scales than the pH of
local plot of land.

Austin (1980) suggested a division of the environmental variables into three types;
direct, indirect and resource. Indirect means in this context that the variable has no phys-
iological effect on growth or competition. Examples are altitude, latitude or longitude.
Their only impact is due to indirect correlation with other variables. Direct variables on
the other hand do have a direct physiological impact on the growth and are not con-
sumed by the species. Examples are temperature and pH. Resources are similar to direct
variables except that they are consumed in order for the species to grow; think of water
and sunlight.

' <http:/[www.gbif.org/occurrence>GBIF occurrence records
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Another subdivision of environmental variables is that one into proximal and dis-
tal. The idea here is that the proximal environmental variables have the greatest impact
on the population densities of the species, while more distal variables have a lesser im-
pact. For example, local pH will have a greater impact than the average pH in soil. Of the

division types, indirect variables are more distal than direct variables.

Models based on proximal variables will be better applicable and more precise
than those on distal variables. However, models like that are harder to obtain due to
the nature of the precise local data required. Austin (1980) correctly argues that the use
of proximal variables for predictive mapping of species distribution is for that reason
impractical. For that reason, the training of models involves more distal variables that

correlate with the causal variables.

As mentioned before, depending on the scale domain different environmental
variables play a role in explaining population densities. The question is then to discover
exactly which variables are the deciding factors and which ones are not. Models are fre-
quently based on publicly available dataset that provides accurate values for several vari-
ables over large spans of geographical areas and in some case even over periods of time.
The case studies, see Section 5, use two such publicly available datasets, namely, WorldClim
and Hydroik.

The WorldClim database developed by Hijmans et al. (2005) is such a dataset and
is available for download from <http://www.worldclim.org>. The dataset provides inter-
polated climate surfaces for global land areas, excluding Antarctica, and was generated
through interpolation of average monthly climate data from weather stations on a 30
arc-second grid, also commonly referred to as 1 km resolution grid. The dataset contains
variables that describe the monthly total precipitation and monthly mean, minimum and
maximum temperature and also nineteen derived bioclimatic variables. See Table 1 for

an overview of all the variables.

The data layers were compiled from several sources, such as the Global Historical
Climate Network Dataset, the World Meteorological Organization climatological normals
and the United Nations Food And Agriculture Organization global climate database (FAO-
CLIM 2.0). The resulting data was generated through interpolation of average monthly
climate data from weather stations. After cleaning of the data, precipitation record from
47,554 locations, mean temperature from 24,542 locations, and minimum and maximum

temperature for 14,835 locations were obtained to generate variables layers.

The WorldClim database also provides historical datasets and datasets with fore-
casted projections for several possible climate change scenarios. Future datasets are based
on general circulation models which implement a mathematical model of the general cir-
culation of the earth’s atmosphere or ocean. The output of these models are dependent

on the assumed atmospheric concentration of greenhouse gases. WorldClim provides the
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datasets for four emission scenarios that are used in the Fifth Assessment IPCC report
(Intergovernmental Panel on Climate Change, 2014). Species Distribution Models generated and
based on current environmental variables are often applied on future projections of cli-
mate data for the prediction of invasive species pathways (ACOSTA, 2015; ACOSTA et al., 2010)
and biodiversity conservation and planning (GIANNINI et al., 2012).

The Hydro1k database (U.S. Geological Survey, 2000) provides a 1 km resolution global
coverage of common topographically derived data used in hydrologic analysis to predict
movement of water across the earths surface. The digital elevation model data set provides
five additional raster data layers: aspect in radial degrees, flow direction, flow accumula-

tion, slope and a compound topographic index. Table 1 describes these layers.

Both databases are used together in this work. Combining Hydroik with Worldclim
provides a more detailed information as variables have synergy and alter the species’ re-
sponse. As Peterson, Pape and Eaton (2007) point out, the slope of a region, for example,
impacts how species experience the climate as the average temperature (obtained from
the WorldClim database) is higher on south-facing slopes in the Northern Hemisphere.
This effect has, according to Acosta (2015), impact on the micro climate and especially that
of Bombus terrestris colonies, either by impacting the availability of resources, e.g., food
and nesting, or its interactions with other species, e.g., plants, predators and diseases. In
the end, which variables to use and which ones not, depends highly on the application of
the obtained models and their aims and requirements (PETERSON, 2000).

2.2 Species Distribution Models

Modelling algorithms try to find a function, a rule, a procedure, or a program that gives
an estimation of relative suitability, u(G, E) = f (FERRIER, 2002). This estimation is in
many publications considered a probability of occurrence (PEARCE; FERRIER, 2000; KEAT-
ING; CHERRY, 2004; PHILLIPS; ANDERSON; SCHAPIRE, 20006), while in others it is a dimen-
sionless suitability index that, for example, ranges from zero to one (HIRZEL et al., 2002).
There are many modelling algorithms for SDM. Elith et al. (2006) discuss a comparison
of sixteen modelling methods, while new ones, such as the one discussed in this thesis,

is ongoing research.

The algorithms differ in their approach (i.e., regression, machine-learning, statis-
tics), in the generated output (continuous, binary, ordinal), in the required input
data/maps, their suitability for applications (interpolation, transferability) and their use,
if required, of absence data. While some algorithms only require presence data to make
predictions (BUSBY, 1991), the majority needs some form of absence data. Absence data
comes mainly in three forms; (i) true absence, (ii) background , and (iii) pseudo-absence

data. Those algorithms that require absence data contrast the environment at the pres-
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Figure 4 — Plots of the worldclim data layers
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Source: Adapted from Hijmans et al. (2005)
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Plots of the worldclim data layers
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Table 1 — Overview of the layers provided in the worldclim dataset

Type Label Climate Layer Source
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIOjs Max Temperature of Warmest Month
BIOG6 Min Temperature of Coldest Month
BIOy Temperature Annual Range (BIO5-BIOG) -
9 BIO8 Mean Temperature of Wettest Quarter g
?E“ BIOg Mean Temperature of Driest Quarter <
= BIO10 Mean Temperature of Warmest Quarter %
.9 BIO1n1 Mean Temperature of Coldest Quarter g
A BIO12 Annual Precipitation )
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
o TMEAN Average monthly mean temperature (°C * 10)
= TMIN Average monthly minimum temperature (°C * 10)
g TMAX Average monthly maximum temperature (°C * 10)
5 PREC Average monthly precipitation (mm)
ALT Altitude (elevation above sea level) (m)
N ASPECT Direction of maximum rate of change in the elevations 3
3 FLOW DIRECTION The direction to its steepest down-slope neighbour 2
i FLOW ACCUMULATION The amount of upstream area draining into the cell gn
T SLOPE Maximum change in the elevations between cells &
CTI The Compound Topographic Index or the Wetness Index 4

Source: Author

ence locations with those of the absence data. Ideally true absence data is available, but
more often than not it is unavailable to the researcher. For this reason the background
and pseudo-absence methods are popular as they artificially create the absences. In the
background approach a large sample is uniformly taken from the entire region under
study without regard whether a species is present or absent in those samples. The pseudo-
absence method differs in that last aspect as samples are only taken from sites where it
known not to occur, for example in regions that are too hot/cold, too high/low altitude,
too wet/dry. Absence data should optimally still be picked from the region limited by M
in the BAM diagram ( Figure 3) so that the model is only trained on conditions explain-
able by the known environmental data from A for the model to have meaning (BARVE et
al,, 2011).

The construction of models require often adjustment to the parameters of the

algorithm, and are algorithm specific. For example, for machine learning methods the

maximum number of generations is usually set, and also the acceptable error, and the
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population size. FIELDING and BELL (1997) discuss three general principles of model cal-
ibration: data splitting, variable selection, and threshold selection. A common practice in
machine-learning and other supervised modelling methods is to split the data into three
parts when constructing models. To prevent overfitting of the model the available data is
split into three sets: training, validation and test. The training dataset is used to train and
build the prediction model with the algorithm to fit the parameters of the modelling as
best as possible to the data. The validation dataset is used to evaluate independently the
trained model to adjust algorithm parameters of the classifier, for example the maximum
program length in genetic programming or the maximum number of rules. The test data
set is used to pick among the generated models the one that performs and generalises

the best on unseen data, and thus is not overfitted to noise in the training dataset.

2.21  Model complexity and overfitting

Species distribution modelling algorithms operate by searching the environmental space
for a function that fits the sampled species environment Eo. However, since there is an
exponential growing number of different ways to fit the data as the number of environ-
mental variables increases, not all functions are actually be tested to have the smallest
error of all possible functions. To emphasise this, Blum and Rivest (1992) show that fit-
ting even a simple two-layer neural network, with only two hidden nodes and one output,
to data is an NP-complete problem. Therefore heuristics are successfully used to find a

reasonable, but probably suboptimal, function to explain the function.

The aim of any modelling method is to be applied on unseen data and to max-
imise the predictive accuracy on these data points. However, if the algorithm works too
hard to minimise the error between the training dataset and the function f then it is very
likely that the model will be overfitted (DIETTERICH, 1995; HAWKINS, 2004; BABYAK, 2004).
Hawkins (2004) defines overfitting as “Overfitting is the use of models or procedures that
violate parsimony that is, that include more terms than are necessary or use more com-
plicated approaches than are necessary.” Figure 5 illustrates and example of overfitting.
Using a complex function (c) to match the data points in the graph will lead to zero error
in the training set but most likely will be a poor generalised model. The linear line (a)
is a too simple model with large errors for all data points. The quadratic function (b) is
a better choice, containing enough to explain the data points without adding any more

complexity.

There are many reasons why overfitting is undesirable: (i) using more predictors to
build the model, means for future predictions these predictors need to be collected again,
(ii) using unneeded features leads to additional unneeded complexity and to worse deci-
sions, (iii) portability and understanding of the model becomes worse when the model

is more complex and uses more features, (iv) an overfitted model will predicted a small
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Figure 5 — Example of overfitting, three lines fitted to the shown data points. Line (a) is
probably too simplistic of a model with large error, line(c) will have the least
error, but might in some conditions be overfitted and have a large error for
unseen data, line (b) is arguably the best model that has the least error while
still being able to generalise. The zoomed out area illustrates extrapolation of
the model; since there is no data point with an = < 0.2 the algorithm has no
way in knowing what way the trend continues, the three lines indicate three
different responses.
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region G that is very similar to the training data and poorly into unknown regions.

Strategies to limit overfitting are: (i) collect more data, especially for some species
there is just not enough data available and no method can fix that simple fact, (ii) reduce
the degree of freedom, either by reducing the number of features or performing PCA
to combine dependent features into one and remove features that do not explain the
presence of the species. However, in the end the best way to make sure that a model is
not overfitted is by evaluating the models on unseen separately kept data and pick the
model that generalises best. However this is not a guarantee that the model predicts well
for all unseen data.

2.2.2  Study region extent

As mentioned in Section 2.2 absence samples are sampled from: the entire study region G,
background samples; or from parts of where the species is assumed to not exist, pseudo-
absence samples. Anderson and Raza (2010) makes the argument that while there is a
conceptual difference between the two, in practice the samples will be very much alike.
The reason is that for most studies very few locations/pixels will have presences, thus
the regions where the species is assumed to not exist and the entire background area are

close to equal. For either way of selecting 'absences’ it is clear that the study region extent
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has influence on the selected samples, and on the resulting model too (HIRZEL et al., 2002;
ANDERSON; RAZA, 2010).

The work by Anderson and Raza (2010) suggests that models are better transferable
and more representative of the true niche when the extent of region G that is sampled for
calibration is small and only covers areas limited by M ofthe BAM diagram, Figure 3. The
reason is simple, because the better the sampled region represents the species’ potential
distribution the more accurate is the model. For this reason sampling from areas where
the species is absent due to biological factors introduce noise and false signals about the
absence of the species due to scenopoetic factors. Even though selecting a smaller region
will possibly mean that a species model will have to extrapolate into regions that have
not been sampled during calibration this does not have to result in a lower quality model
than when large extent is sampled (ANDERSON; RAZA, 2010).

When models are calibrated it is important to consider the BAM framework and to
take into account other factors such as, the species’ dispersal ability, the topographic com-
plexity of the study region and the distributional patterns of related species. In addition,
models calibrated with an overly large study region extent are likely to show low transfer-
ability (ANDERSON; RAZA, 2010). The transferability of a model is especially important for
studies on invasive species and climatic change (ACOSTA, 2015) and model transferability
(PETERSON; PAPE ; EATON, 2007) where models will be used to predict presences for unseen

regions.

2.2.3 Model Extrapolation and Transferability

Model quality is not only affected by the study region, but also by the environmental
conditions that are present there. Extrapolation in E-space and transferability in G-space
greatly affects the model performance when predictions are projected on areas outside
the area where they were calibrated on. Figure 5 shows in the zoomed in area an example
of extrapolation in E-space. The model has been trained with the data points shown in
the figure. Beyond the known region, the three lines in the zoomed region, the model
can be fitted in many ways without affecting the model performance on the calibration
data. These different predictions have a large impact on model projections (CARNEIRO et
al,, 2016). In general the trends shown in the current data do not need hold for future
scenarios and great care should be taken to make these kind of projections (DORMANN,

2007).

Model transferability, or extrapolation in G space, is however a simple conse-
quence of Hutchinson’s duality principle, see Figure 1. Where a single area in FE space
is mappable onto many in areas in G space. Still care needs to be taken when projecting
into not sampled regions or future and past times. Torres et al. (2015), Huang and Frim-

pong (2016), for example, have shown that sound ecological basis for evaluating model
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outputs is essential, because the transferability of SDMs is severely limited due to factors
such as: the type taxa (i.e., terrestrial or marine), climate- or landscape-change effects,
natural barriers and how close a species is to equilibrium with current environmental

conditions.

Summarising, a biologist with extensive knowledge about the modelled species always

needs to verify model outputs for ecological soundness.

2.2.4 Evaluating model performance and significance

All species distribution models, as all other models, have predictions errors as they are
simplified, but are useful views of reality that approximate the true distribution. Errors
are introduced in every step (Section 2.1.1) of the model building process. Table 2 by
Franklin and Miller (2009) gives an overview of some of those sources of error, the step
where they are introduced and articles where more information is found over these errors.
The most common error discussed in almost all published articles relating to SDMs is the
focus on how well a model predicts, see Model evaluation - Validity in the table. Equally im-
portant, as discussed in the previous section, but given far less attention are other criteria
as ecological realism and credibility. Probably the reason that many articles focus on just
model evaluation is that it the easiest error to quantify without deep knowledge about
the contemporary species distribution. Another reason for focussing on model evalua-
tion is there are many different modelling methods and there is no consensus on which
model should be applied for which application. In addition, modelling algorithms have
shown to produce varied results even calibrated on the same data with different methods
(THUILLER, 2004). Combined with interdisciplinary data and researchers from different
backgrounds the only objective way to compare those models is for now the use of the
metrics such as those discussed in this section.

2.2.4.1 Calibration and Evaluation Dataset

To evaluate the quality of SDMs there are two main types of techniques: cross-validation
that uses a single dataset; and holdout that separates the dataset into a training, validation
and test dataset where the test set is not used for calibrating. Both techniques train and
evaluate model performance with different data to prevent overfitting. Cross Validation
techniques to evaluate the predictability of a species distribution model are, for exam-
ple; Akaike Information Criteria (AIC) (AKAIKE, 1974), and jackknife and bootstrap (EFRON,

1979)
One reason to use Cross Validation (CV) is that usually only a very small number
of presences are known for a given species and the number of explanatory variables is

so high that all samples need to be used to calibrate the model. To obtain an unbiased

estimate of the SDM performance k-fold cross-validation is used, where frequently k=10
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Table 2 — Criteria for evaluating species distribution models that address different kinds
of uncertainty arising during model formulation and calibration,

Modelling Criterion Description Reference
step
Precision Ability to replicate system parame- (MORRISON; MARCOT;
Conceptual ters MANNAN, 2000)
formulation Specification DO the model address the prob- (BARRY; ELITH, 2000)
pecification lem?
ems
Does it describe the true relation- (BARRY; ELITH, 2000)
ship?
Ecological  Is conceptual formulation consis- (AUSTIN, 1980; AUSTIN,
realism tent with ecological theory? 2002; BARRY; ELITH,
2000)
Statistical Realism Account for relevant variables and (MORRISON; MARCOT;
formulation relationships MANNAN, 20006)
Verification Isthe model logic correct? (RYKIEL, 1996)
Model Calibration Parameter estimation or model fit- (RYKIEL, 1996; CHAT-
calibration ting and selection FIELD, 1995)
Model Validity, Capability to produce empirically (BARRY; ELITH, 2006;
evaluation perfor- correct predictions to a degree ofac- RYKIEL, 1996; MOR-
mance curacy that is acceptable given the RISON; MARCOT;
intended application of the model = MANNAN, 2000)
Appeal, Accepted by users, matches user in- (MORRISON; MAR-
credibility  tuition, sufficient degree of' beliefto COT; MANNAN, 2006;

justify use for intended application

RYKIEL, 1996)

Source: Adapted from Table 9.1, p210 in Franklin and Miller (2009)

(FIELDING; BELL, 1997). In k-fold cross-validation the dataset is divided into k equal sized
subsets which reduces the high variance that might occur when data is only divided into
two subsets. Models are then build k-times, where every time one of the k-subsets is not
used to train the model but only used as a test set. Reporting the average performance of

the k-models on the k different subsets gives an estimated performance measure.

CV techniques by themselves do not guarantee that the test set is independent
from the training set as samples can still be spatially auto-correlated due to sampling
bias. An alternative is to spatially split occurrences into training and testing sets to reduce
overfitting to sampling bias (PETERSON, 2011; ARAUJO; GUISAN, 2006). Spatially structured
datasets are formed in multiple ways: by countries, continents, checkerboards (PETERSON;
PAPE ; EATON, 2007) or just any polygon or shape drawn in GIS software. While spatially
dividing the dataset might introduce a bias in G, models that actually perform well even
with this bias might be highly desired as it signifies they are transferable.

All things written in Section 2.2.2 about considering the BAM framework when
training the model also holds for evaluating it. A SDM should also be validated with

samples that capture details of G and F and that are representative for the species.
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Table 3 — The confusion matrix, as used for model fitness evaluations

Predicted Actual

Presence Absence
Presence True Positive (TP) False Positive (FP)
Absence  False Negative (FP) True Negative (TN)

Source: Author

2.2.4.2 Assessing Model Significance

The problems considered in this work are classification problems with two classes; pres-
ence (positive) and absence (negative). This means formally that each instance / is mapped
to one element of the set {p,n} class labels. A SDM is then a classifier that chooses, after
training for each instance, the right element from the class label set. For these classifiers,
a threshold is usually chosen to divide the continuous values into a binary value to be
mapped onto the class label set. Classifiers with discrete outputs and that predict more

than two classes will similarly also have to be mapped on a binary set.

For an instance 7 and a classifier model output C(I) , assuming that both are bi-
nary sets there are four possible outcomes. The instance and the classifier output can; a)
both predict a positive thus signifying a true positive prediction; b) the model prediction
is negative while the instance is positive, then it is a false negative; c) the model predic-
tion is negative and the input is negative too, signifying a true negative; or d) the model
prediction is positive for a negative instance which is called a false positive. Table 3 show
these outcomes in a table form. This two by two confusion matrix or contingency table
consists of the above outcomes and its values are the basis for many commonly used

model significance metrics.

The main diagonal of the confusion matrix represent the correct predictions made
by the classifier, and the numbers on the anti-diagonal represent the errors made by the
classifier or the confusion that there is between the two classes. Formulas 2.2 are equa-
tions derived from the matrix. The sensitivity, Equation 2.2a, refers to the proportion
of instances which have been observed to be present and also have been predicted to be
present. Specificity, Equation 2.2b, is the proportion of instances that are truly absent and
are also predicted by the classifier to be absent. The accuracy, Equation 2.2c, is the propor-
tion of the total number of instance predictions that are correct. Precision is defined by
Equation 2.2d and is the proportion of the predicted positive instances that were correct.

See Section 2.2.4.3 for a discussion of Equation 2.2e and 2.2f.
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Figure 6 — The Receiver Operating Characteristic curve
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2.2.4.2.1  ROC

Figure 6 shows a Receiver Operating Characteristic (ROC) graph. A ROC graph is
a visualisation tool to show and compare the performance of classifiers (FIELDING; BELL,
1997). They have a long history of being used in signal detection theory to visualise the
trade off between hit rates and false alarm rates of classifiers. The use of ROC graphs for
medical diagnostic testing and a resulting article in Scientific American is what made
the technique popular and known to a wider audience (SWETS; DAWES; MONAHAN, 2000;
FAWCETT, 2000).

Since the 1980s, ROC analysis has been a popular and become a standard metric in

a suit of metrics to evaluate machine learning algorithms and other areas of cost-sensitive
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learning algorithms. One of the earliest uses of ROC graphs to compare models and al-
gorithms was by Spackman (1989). He demonstrated that the use of ROC curves is not
only useful for medical diagnostics, but also for assessing machine learning algorithms.

A further detailed introduction to ROC analysis in research is found in Fawcett (2000).

The graphs are two-dimensional with the sensitivity (Equation 2.2a) plotted on
the X-Axis and the false positive rate, which equals to 1 — SPC (2.2b). The graph shows
the relative tradeoff between predicting true positives and predicting false positives. The
ROC space is divided in half by a striped line in Figure 6. All points on this line signify
that the classifier performs randomly, meaning it is as often wrong as it is right. Points
above the line represent classifiers that predict more often right than wrong, while points
below the line represent classifiers that perform worse more than half of the time. The
latter type of classifier is easily made useful by inverting their predictions, thus the lower

area is often empty.

Other interesting features of the graph are: the point at (0,0) where never a pres-
ence is predicted and thus no mistakes are made in predicting a presence; the point (1,1)
where everything is predicted to be present while every absence is predicted wrong; and
the point (o,1) in the left top corner with only correct predictions and no false ones, the
perfect classifier. While a perfect classifier is not realistic to train it represent the goal
of any classification algorithm. It is important to note that all discrete binary classifiers

produce a single point in ROC space.

To construct a ROC curve of a classifier, first the predictions C(/) are sorted ac-
cording to the probabilistic scores for each prediction from high to low. Then drawing
the graph starts at point (0,0) and all prediction are evaluated. If for a prediction its true
class is present then a point is drawn one unit higher then the previous one, if'it is neg-
ative a point is drawn one unit to the right. At the end of the process the point (1,1) is

drawn and all points can be connected with a line.

ROC curves of different classifiers are comparable. If a line dominates all oth-
ers, meaning it is above the others in the graph, than that classifier is the superior one.
However, lines will frequently cross, signifying that a classifier is only superior for some
context. Comparing lines when no dominant classifier is present is difficult through look-
ing at the ROC curves. For this reason ROC analysis also defines another metric to mea-
sure model classification performance: The area under the ROC curve, or the Area Under
Curve (AUC).

2.2.4.2.2 AUC

The area under curve (HANLEY; MCNEIL, 1982) is equal to the area of the grey area
in Figure 6. Since the area of the square is always less than one the value of the AUC is in
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the range [0,1]. Any useful classification model will have its ROC curve above the random
line and therefore an AUC greater than o.5. The AUC is the same as the probability that
the model will rank a randomly chosen present instance higher than a randomly chosen
absent instance. The AUC is a popular metric to compare modelling results in ecology
articles (THUILLER, 2003; MANEL; WILLIAMS; ORMEROD, 2001; BROTONS et al., 2004).

There are however some disadvantages in using the AUC (LOBO; JIMENEZ-
VALVERDE; REAL, 2008). Five reasons why it is not recommended: (1) it ignores the pre-
dicted probability values as the values are just sorted by the score but then the score is
no longer considered; (2) it summarises the test performance over regions in ROC space
which would never be considered to be actually used for setting thresholds; (3) while not
necessarily so, but conventionally omission and commission errors are weight equally
which is not optimal and dependents on the application of the model; (4) the score itself,
nor the ROC curve, give information about the spatial distribution of model errors; and
most importantly according to Lobo, Jiménez-Valverde and Real (2008) the total extent to
which models are carried out highly influences the rate of well-predicted absences and
thus the AUC scores.

2.2.4.3 TSS

Allouche, Tsoar and Kadmon (2006) introduced, as an alternative metric, the True Skill
Statistic (T'SS) , Equation 2.2f; also know as the Hanssen—Kuipers discriminant and the
Pierce skill score, to measure species prediction model performance. The TSS score con-
siders both omission, commission errors and a lucky hit due to random guessing. The
score ranges from -1 to +1, where +1 indicated perfect predictions and values of zero or
less indicate that the predictions are no better than random choice. One reason to use
the T'SS score is that unlike the AUC and « (Cohen’s Kappa, Equation 2.2€) score, the TSS
is not affected by prevalence, the proportion of sampled sites where a species is present
(ALLOUCHE; TSOAR; KADMON, 2000). For a literature review of how prevalence can impact
AUC and & scores see Table 1 in Santika (2011). In addition, the TSS score gives better re-
sults when used with binary models, such as those produced by the algorithm discussed
in this thesis, that show a clear distinction between the two classes, presence and absence
(ALLOUCHE; TSOAR; KADMON, 2000).

There are no official minimal metric scores to state when a classifier is making
usable predictions. However, Table 4 shows a general guide for classifying the accuracy of
classifiers based on the academic point system and earlier publications. Acceptable scores

for all models in this work are Good, Very Good and Excellent.



56 Chapter 2. Species Distribution Models

Table 4 — Evaluation of metric results. To evaluate the values of the different metrics a gen-
eral guide for classifying the accuracy of classifiers is the traditional academic
point system.

Metric Fail/Poor Fair Good Very Good Excellent
TSS <0.4 0.4-0.75 >0.75

K <0.4 0.4-0.55 0.55-0.7 0.7-0.85 >0.85

AUC 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 >0.9

Source: Ranges from Swets (1988) (AUC), Landis and Koch (1977) (KAPPA, ), Eskildsen et
al. (2013) (TSS).

2.3 Conservation planning

This chapter discussed SDM and the relevant background to understand what is actu-
ally being modelled. The big question now is why to make these predictions of species
distributions in the first place? The most simple reason is that it helps understand the
relationship between environment and species. Understanding this relationship helps
predicting outcomes and form theories about species distributions and environmental
impacts. However, the most useful and essential function is transforming limited point
data to range predictions. Not only for current conditions but also for other points in time
with likely different climate conditions, to understand the effect on species distributions
over time. These range maps help to see where effort is well spent to survey for species

populations and helps to understand which areas should be considered for conservation.

One example of the use of SDMs is for conservation planning. Despite the recent
proliferation of data driven approaches, algorithms, and software packages for use in sys-
tematic conservation planning, most of these techniques share a common purpose. Be-
cause in any given region the total amount of land that can be managed for conservation
is limited by various social and economic factors, the basic purpose of systematic conser-
vation planning is to establish a system of conservation areas that maximises long-term

conservation of biodiversity, subject to socioeconomic constraints.

The goal of conservation planning is to protect and maintain indefinitely biolog-
ical diversity at regional and global scales (MARGULES; PRESSEY, 2000). This involves com-
plex ecological processes and model-based scenarios for possible future circumstances
to illustrate consequences of decisions made by governments, the industry and the gen-
eral public. The use of plausible scenarios has an enormous impact. In the 198os and
1990s scientific advances and new environmental scenario projections made change in
international policies within 24 months (WATSON, 2005; BALMFORD et al., 2005). Due to
this complexity and because conservation by itself’is not a scientific choice, conservation
plans will have global and local challenges, because in any given region the total amount

of land used for conservation is constrained by social and economic factors (MURDOCH et
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al,, 2007).

There is a large choice of tools and algorithms to plan and design representative
system of conservation areas. Almost certainly, however, the first essential component
of all these tools is information about the spatial distribution of species for the region
of interest (FERRIER, 2002). Without this information quantitative assessment of policies
and alternative conservation scenarios is impossible as this information is needed to pri-
oritise areas for protected status, to assess threats to those areas and to design the ac-
tual conservation areas (FRANKLIN; MILLER, 2009). In practice, however, due to budget and
time constraints it is not feasible to have complete knowledge of all species, populations,
ecosystems and interspecies relations occurring within the region of interest. For prac-
tical purposes, under these limited conditions surrogates, or indicator, species are used
within the area to represent the biodiversity of a region as a whole, because single species
are easier to study than communities, landscapes or genes, especially when considering
that many species still need to be discovered (NOSS, 1990).

Predictive modelling of species distributions is an important tool in conserva-
tion biology and climate change research (GUISAN; THUILLER, 2005). Its relationship with
species locational records, modelling of community distributions and that of individual
species for regional conservation planning is illustrated in Figure 7. While more research
is needed to find the best way how SDMs can help to establish priorities and policies
(MARSHALL; GLEGG; HOWELL, 2014), it has been used before for non toy-problems. One
of the earliest use has been to address protection gaps as part of the U.S. National Gap
Analysis Program where spatial interpolations based on land-use patterns and existing
conservation reserve network information was partially successfully used to identify gaps
in the protection network (SCOTT et al., 1993; PETERSON; KLUZA, 2003). For other applica-
tions see the article by Esfandeh, Kaboli and Eslami-Andargoli (2015) that discusses 67

other articles written between 2005-2015 concerning systematic conservation planning.
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Figure 7 — Diagram illustrating the function of modelling in general, including species
distribution modelling, as a tool for regional conservation planning.
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3 Methodology

To defend the thesis the objectives are further broken down into five steps that form the
core of the methodology and are discussed in this chapter.

3.1 First step - Fuzzy - Linear Genetic Programming

The objective to design and implement an algorithm that has three aspects: the use of
linear genetic programming, the use of fuzzy operators, and parallelisation. Genetic al-
gorithms are typically based on several distinct genotypes. A genotype defines the way of
notating operators, variables, and functions. Linear Genetic Programming (LGP) is such
a genotype. It is fast due to its limited memory footprint and typical simple instructions
that operate on just a handful of registers. Important to note is that linear only refers to
the structure of the program representation. The program is a sequence of instructions
interpreted by a programming language, or directly executed as machine language. LGP
in no way limits the method to linearly separable problems. On the contrary, LGP algo-

rithms are able to represent highly-complex and non-linear solutions.

The aim of the algorithm is to give the likelihood of species presence in a geo-
graphic regions. Fuzzy rule-based systems have been successfully applied to similar clas-
sification and regression problems (BARDOSSY; DUCKSTEIN, 1995; CORDON; HERRERA; VIL-
LAR, 2001; ISHIBUCHI et al,, 1994). They are known to deal well with noise, impreciseness,
uncertain and incomplete information. Perhaps, most importantly, because they describe

complex behaviour without the need of precisely defined system models.

The fuzzy system themselves are simple to design and implement, but the identi-
fication of the system is a complex undertaking. To use fuzzy operators and rules in the
algorithm it is necessary to: (1) define and converse the input and output factors, (2) estab-
lish the rules governing the system, (3) define membership functions to determine points
in the input space that are mapped to membership values, and (4) define the methods to

generate fuzzy rules.

This research aims to do symbolic regression classification by using linear genetic
programming to build complex fuzzy rules that can handle the noisy data that inherently
rule SDMs. At the same time, the presentation of the model as a program can give answers

to the relationship of variables which other classifier approaches can not.
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3.2 Second step - Open source software for the use of the system

To benefit the research community the software is released as open source. This has the
advantage of giving the full access of the software code and its implementation to others
so they can: understand what the solution does, fix possible bugs even when the main
author is no longer able to maintain the project, explore and expand with new research
methods. Open source is far from new and used in many other work. It is hoped that this
project takes advantage from similar benefits as those works. However, the most impor-

tant reason to release all the code is to promote reproducible research.

SDM and the processing of species data is a challenging area of scientific explo-
ration and involves researchers from various backgrounds. It is therefore essential to have
a good methodology that uses established techniques and methods. For this reason, the
open source R language and environment for analysis, together with the vast number of’
available packages is a popular choice. Therefore, R will be adopted as the target language

for development and C++ when fast execution is needed.

BIOMOD is the software package to use within the R environment and provides
a distribution modelling methodology. The BIOMOD methodology supports: the prepa-
ration of species data, the generation of models and ensembles, the evaluation of those
models and it supports the projection of distributions onto geographic maps. Many pop-
ular algorithms for SDM are available, therefore this work will be made compatible with a

locally modified version of BIOMOD to evaluate the difference in obtained model quality.

To execute this second step, algorithm defined in the first step is implemented in
C++ and tested by using a command line interface. Then, if the solution works to satis-
faction and to prepare for the next step, changes are made in the BIOMOD source code
to enable the use of the algorithm inside R and with the BIOMOD package.

3.3 Third step - Case studies

While a case study won't proofthat the algorithm is usable in every situation, since only a
limited number of cases are studied, they will give an insight if the thesis is defendable for
those cases and raise questions for future research. In addition, the algorithm is bound
to perform inferior to some other ones for certain cases if the no-free-lunch theorem
(WOLPERT; MACREADY, 1997) is taken into consideration, still it is of interest how near the

algorithm performance is to the best one.

There are three datasets used in the analysis of the algorithm; climate data, hy-
drologically correct DEM, and species data. Similar to the work of Peterson, Pape and
Eaton (2007), the abiotic data set is formed by joining the nineteen bioclimatic variables
of the WorldClim data set (HIJMANS et al,, 2005) with four layers (elevation, slope, aspect
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and the compound topographic index) from the digital elevation model Hydroik (U.S. Geo-
logical Survey, 2000) data set, see Table 1. To reproduce the data set PCA is used to reduce the
amount of possibly correlated variables and thus the search space. The eleven most signif-
icant components together account for 97,9% of the variance. A difference with Peterson,
Pape and Eaton (2007) is that the Hydroik data set is not resampled to 10’ resolution, but
only projected to WGS84 and aligned with the 30 arc-seconds WorlClim data set. The rea-
son is that occurrence point data (Longi and Lati fields) from North American Breeding
Bird Survey (BBS) are used and not the route paths shape files. Thus avoiding the effect

of resampling as, for example, slope calculations are resolution dependent.

The species data originate from the BBS (SAUER; J. E. Hines; J. Fallon, 2001). These data
were obtained in digital form and contains a database with presence/absences for over
400 bird species measured over thousands of routes for more than five decades. From
this database stable population data of the species Zenaida macroura, the mourning dove,
were obtained. Presences were defined as the routes where the species was spotted during
eight, not necessarily consecutive, years during the period 1991-2000. Absences where
defined by not having a single specimen spotted during that same period. All other routes
were not used for this study. This resulted in a data set with 1155 true absence points
and 1003 true presence points of Zenaida macroura in North America (westlimit=-169.5;

southlimit=24.5; eastlimit=-52.0; northlimit=76.5; projection=WGS84).

3.4 Fourth step - Parallelisation

If the algorithm functions satisfactory then, and only then, it is worth to pay attention
to parallelisation. There are three main reasons to focus on parallelisation. First, and
foremost, parallelisation enables to cover heuristically a larger search space in the same
amount of time. Given that the design of conservation area networks and the definition
of SDMs are NP-hard problems (SARKAR et al., 2006) and heuristics are used a larger search

space can be covered possibly resulting in models with a higher accuracy.

Second, decision support systems are used in real-time negotiations during which
stakeholders need rapid information about the implication of policies in alternative ways
(SARKAR et al., 2006). Therefore, it is important to have fast algorithms to evaluate the op-
tions under conditions of highly variable biodiversity data and the large number of tasks
that need to be examined. In addition, Thuiller et al. (2009), Terribile, Diniz-Filho and
Marco (2010), Parviainen et al. (2009) recommend to combine multiple SDM to obtain
higher quality predictions and better assessments of species richness trends and hotspot

patterns. This significantly increases the amount of time spend on building models.

Finally,McBride et al. (2010), Foerster et al. (2010), Larocque et al. (2011), Giuliani

et al. (2011), Johannes et al. (2009), Yang et al. (2011), Luong, Talbi and Melab (2010) state
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that the further development of decision support tools, and associated algorithms, will de-
pend on the availability of computational power for solving complex applications. Accord-
ing to Christophe, Michel and Inglada (2011) the increase of this computational power for
the coming years goes through a parallel approach and therefore parallelisation should

be an integral part of algorithm design.

The following solutions are used to parallelise and develop the software: OpenMP
to optimise for a single multi-core system; OpenMPI to enable clustering; Starcluster to
define and initialise an Amazon EC2 cluster; GCC to compile the algorithm and CMake
to link and build the executable.

3.5 Fifth step - Consider research synthesis

In order to solve climate change problems and change policies that affect biodiversity it
is necessary to create analytical tools that can do more than just plotting range maps of
species. However, those tools are likely to use generated SDM as a building block. For this
reason it is extremely important to consider the sharing of the models to enable research
synthesis. While not providing an answer as the matter is too complicated to be part of
this research, an initial conceptual model is discussed in Chapter 6. In retrospect this

matter might be more important than more accurate models.
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Genetic Algorithms (GA) and Genetic Programming (GP) are based on the biolog-
ical analogy of evolution, genetics and on the principle of survival of the fittest (SPENCER,
1864-1867) as described by Darwin (1871) as natural selection. In GA a population of strings
is bred selectively to create new generations and offspring with better characteristics,
where the characteristics are often defined by a monotonic function that minimises a
metric error, e.g., the Root Mean Square Error (Equation 4.1), where n is the number of
samples, y; is known output and y; is the predicted output. In GP populations are simi-
lar, except that the individuals do not represent the solution themselves, but a program
that computes the required solutions. GP was proposed, invented, and made popular by
(KOZA, 1992) in the nineties and founded on the research done by Holland (1992). For
both methods, depending on the genotype, there is typically a structure, such as a string
or tree, that acts like a biological chromosome and bind the individual parts together.
These structure usually belong to a single individual, although variations on this exist,
where the individual represents a point in search space and possibly a solution to the
problem at hand. Using the digital analogies of genetic mutation and crossover, the chro-

mosomes are recombined to breed new and hopefully fitter individuals. Breeding is an
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iterative generational process; improving solutions from one generation to the next. This
iterative process continues until a stopping criteria has been met. Typical stopping cri-
teria are: an individual is found with the required fitness, the population has reached a
certain number of generations, a certain amount of time has passed, or no considerable
better individual has been found and the fitness function has little changed for some
generations.

n

RMSE= | 3" (i~ )" (@)

=1

Even though the idea of GA and GP is simple to understand and implement, the
theoretical background as to why and how they work is far more complicated and is still
an open research question. The theoretical background is important to understand the
process of generation and to know for which kind of problem they are suitable. In the mid-
seventies John Holland developed his schema theorem (HOLLAND, 1975). A schema by his
definition is a string of symbols, where the symbols are elements of an alphabet 0, 1, #,
where the symbol # signifies a don’t care and the symbols 0, 1 the respective numbers of
the base-2 numeral system. Thus, the schema 11xox represents four string instances: 11000,
11001,11100, and 11101. There are several properties defined for schemas: the order (4 ), the
number of non-# symbols; and the defining length .#(H), the distance between the two
furthest away non-# symbols in the string. Using these definitions the schema theorem
predicts the variation in the number of particular strings over time in a population of
strings. The theorem is formulated as follows (POLI; LANGDON, 1998):

Elm(H,t+1)] > m(H,1)- f(_t) (1 _pm)ﬁ( )'[1 _ch_ 1(1_ Mf(t) | (4-2)
Selection ) Mut:tion Cro;sfover

In Equation 4.2 m(H, t) is the number of strings matching the schema H at time ¢,
f(H,t) is the fitness of those strings in the population, M the total number of strings in
the populations, f(¢) the mean of all those strings, p,, the probability that a symbol mu-
tates, p. the probability on crossover, N the number of bits in "the length” of the strings,
and finally E[m(H,t+1)] is the expected new number of of strings matching schema H at
the next time interval. The meaning of this equation is that over time the schema H with
above average fitness and shorter length will become more dominant in the population.
One might notice that both mutation and crossover are destructive in the equation. How-
ever, it is commonly believed that crossover is actually the source of the power of genetic
algorithms (HOLLAND, 1975; HOLLAND, 1992; MITCHELL, 1998, c1996; LUKE; SPECTOR, 1998),

because the operator combines good performing schemas in new equally, or better, per-
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forming schemas. This assumption is known as the Building Block Hypothesis (GOLDBERG;
HOLLAND, 1988).

Holland’s theorem combined with Price’s Covariance and Selection Theorem, that
describes how a gene change in frequency over time, explicitly shows how changes in
different macroscopic properties of population in a genetic algorithm can be derived by
using the microscopic dynamics of the GA and GP combined with an appropriate fitness
function (ALTENBERG, 1995) leads to the automatic programming of working computer
programs that are able to solve a variety of problems, including the accurate prediction
of species distributions (see Chapter 5).

The benefits of GA and GP are many fold, they:

- make no assumptions about the underlaying problem nor is there a need for experts
to define how the problem should be solved. This is important as there often is
not a mathematical model of the objective function available for many real world
problems.

« allow expert information about the system to be incorporated to focus the search
and limit the exploration of the search space, however, no such information is re-
quired to find suitable solutions.

« function inherently and embarrassingly parallel.

« have a good chance of not staying stuck in local optimal solutions as the search
space is explored in parallel, unlike traditional methods which typically search from
a single point in search space.

« are not deterministic, answers tend to improve (slowly) over time.

« work even when analytical approaches do not work, for example, due to the data or

when the objective function itself'is not smooth.

4.1 Genotype

The search space that can be covered to find possible solutions is limited and defined
by the genotype of the genetic algorithm. The genotype defines the data structure that is
operated on by the reproduction, crossover and mutation operators of Equation 4.2. For
GP the genotype tends to directly translate to an executable program, although there are
a few cases for which this is not true (KELLER; BANZHAF, 1996). The three frequently used
genotypes are: tree-based (KOZA, 1996), Figure 8a; linear (OLTEAN et al,, 2009), Figure 8b;
and Cartesian (MILLER, 2011), Figure 8c.

Each genotype has its benefits and drawbacks (WILSON; BANZHAF, 2008). These
drawbacks come frequently to light during the implementation of the algorithm. For ex-
ample, while trees are easily mutated when just considering nodes from a high level point

of view, it is more computation intensive and requires syntax validation of the tree when
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Figure 8 — Genetic programming genotypes
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implemented. For example, a node with two children mutated to a node with three chil-
dren needs to have a third child to be executable. Besides these three main types there are
many variations, such as, Multi Expression Programming (OLTEAN; GROSAN, 2003) where

not only the fitness of the root node is considered, but also the fitness of the best sub-tree.

In GP, individuals are generated according to a certain genotype and form a popu-
lation of typically small computer programs. Using the principles of Holland’s Theorem
this population is then evolved and improved from one generation to another by using
a genetic algorithm in combination with a suitable fitness function. The programs can
vary in size and structure and are expressed by software building blocks called genes. Each
gene represents a function that is typically a simple unary or binary operator out of a pre-
selected function set, such as ¥ — {+, —, =+, x, !}. Although more complex functions

composed out of a set of genes or even other individuals are possible (KOZA, 1994).

The algorithm implemented in this work uses the LGP (OLTEAN et al,, 2009) geno-
type to classify the absences and presences as discussed in Chapter 2. The LGP algorithm
is used to discover symbolic expressions that accurately characterise the non-linear re-
lationships that are presumably buried in feature rich datasets of scenopoetic data. Dis-
covering this relationship enables the classification of new regions that are not defined
in the training dataset. No assumptions are made about the models for LGP to work. To
start, initial expressions are randomly created and evolved to find the function, thus sym-
bolic regression, that most accurately describes the relationship(s) between the training
data and the supervisory signal, that is the presence and absence data. Using the genetic
algorithm every generation new and possibly better performing functions are found that

describe this relationship.

4.2 Evolution

The field of evolutionary algorithms is a relative new area that studies non-deterministic

search algorithms that are loosely based on aspects of Darwin’s theory of evolution by
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Figure 9 — The methodology to evolve populations in genetic programming
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natural selection. John Holland proposed evolutionary algorithms and showed that an
evolutionary process could be applied to artificial systems (HOLLAND, 1992). This led to
evolving program code, so called genetic programming, that became widely known after
the publication of a series of books by John Koza (KOZA, 1994). Genetic Programming
is ultimately, as Koza described it, a method for getting a computer to solve a problem
by telling it what needs to be done instead of how to do it. The methodology to evolve
populations that forms the basis for this work is depicted in Figure 9.

Genetic Algorithms work by creating populations consisting of individuals. Each
individual represents a possible solution for the problem at hand. At the start all individ-
uals are initialised randomly, meaning that each gene of an individual is set to a random
element operator, variable or function of a programming language. The individuals are
then evaluated and compared to stopping criteria; a typical stopping criteria is a pre-set
acceptable error rate. If the criteria are met the algorithm is finished and the best individ-

ual is a solution to the problem, if not met the population evolves and a next generation



68 Chapter 4. Genetic Programming

is created.

There are a number of ways to evolve individuals within a population. First, to the
left of the diagram, there is elitism, a method with which the best individual of the pop-
ulation is copied to the next-generation of the population to maintain the current best
found solution. Second, there is crossover in which two individuals are selected to mate.
One strategy frequently used is to create two offspring where each offspring contains a
part of each parent. This way new individuals are created that are more likely a better
solution than a completely random solution. Last, there is mutation, in which a single

individual is selected and then one, or more, genes are modified to represent other genes.

After creating the new generation the above described process repeats itself until a
best solution is found. With genetic programming it is not guaranteed that one finds the
best solution, just that a solution is found that performed better than the other solutions
of that particular population. Therefore performance of a genetic algorithm cannot be
measured by the best-found solution in a single run, but measured by how often and

how quick, in number of generations, it finds those solutions.

Therefore, CV procedures are an integral part of the methodology to evaluate the
risk of reporting a performance that does not represent the performance that is obtained
on average (ARLOT; CELISSE, 2010) and is useful when scarcity of field data is an underlying
problem. A ten-fold cross-validation was applied to the classifiers used in this work. In
a ten-fold cross-validation the data is divided into ten complementary subsets and ten
rounds of analysis are performed. In each round, one subset is chosen as the test set,
used to measure the performance of the model on events not represented in the data set,

and the other nine are used as the training set to build the classifier.

4.3 Fuzzy

SDMs are created from mainly two sources of data: occurrence records and environmen-
tal indicators. They predict for each point in a given geographical area typically a value
in the range [0, 1] that is often interpreted as the probability that a species potentially
occurs at a region, or the relative likelihood in case no true absence data is used. Often
these continuous values are converted to a binary presence or absence for ease of interpre-
tation and for measures to evaluate the model. Conversion of the value to a binary one is
conventionally done by setting a threshold, where values above the threshold indicate a

presence and values below an absence.

However, what needs to be realised is that a presence and an absence are not biva-
lent conditions. They are perceptions. The following examples illustrate this: a) an area
is suitable, but has never been visited due to dispersal limitations. Thus the absence here

does not signify that the abiotic factors are not part of the fundamental niche; b) an area is
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unsuitable, but a specie is detected resulting in an occurrence record. However, the popula-
tion is in (rapid) decline as the abiotic factors are not part of the fundamental niche of the
specie; ¢) samples can be collected over a large time span and mismatch temporally with
environmental conditions. A once occurence does not signify that the area is still suitable;

and d) an absence or presence can have different meanings across spatial scales.

Consequently, model outputs should not be interpreted as probabilities, but as im-
precise perceptions with a degree of truthfulness. Fuzzy-set theory, introduced by (ZADEH,
1965), works on problems with a continuum of grades membership and perceptions such
as those just discussed. Therefore, genetic programming can benefit from fuzzy-set the-

ory operators.

There exist a large number of algorithms for creating SDMs. Elith et al. (2006)
have done an extensive study to model comparison of sixteen SDM modelling methods.
The only evolutionary computing based model of the sixteen is the Genetic Algorithm for
Rule-set Production Stockwell and Peters (1999). GARP is an algorithm that uses presence
and background absence points to generate IF-THEN rules and uses a genetic algorithm
to select the methods, i.e. logistics regression, bioclimatic rules and range, to use for a
particular rule. The here proposed algorithm works in a similar fashion, but uses linear
genetic programming (BRAMEIER; BANZHAF, 2001) and fuzzy operators to generate pro-
grams that are more flexible than IF-THEN rules as no predefined structure is assumed.

Finding the characteristic functions of the fuzzy sets that indicate the membership
of the variables to absence and presence is the objective. These fuzzy sets are defined by the
program described by the individual and optimised by applying a genetic algorithm. As

a result the fuzzy rules will classify species occurrence based on global climate datasets.

4.4 The algorithm

The fuzzy genetic modelling algorithm proposed in this thesis and its operators are dis-
cussed in this section and where applicable using SDM as an example. Each individual
contains a block of memory and a block of instructions. Both blocks contain an equal
number of items: floats for the memory block and a struct for the instruction, with an
opcode (int), operand (int) and four constants (float). Each generation consists out of a
new list of individuals on which selection, cross-over and mutation are applied to build

the next generation, and so on.

4.4.1 Initialisation of model population

Suppose there are n abiotic factors denoted as ey, e5..¢,, € E which affect the distribution
of the species. Then the program population is initialised by generating x individuals

randomly with instruction set /, see Table 5, resulting in group of individuals where each
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represent a particular solution to a supervised learning problem. The maximum program
length and populations size x are restricted and set before the run of the algorithm and

determine the complexity of the models obtained.

The instructions implemented in this solution, Table 5, consists out of the stan-
dard fuzzy operators (ZADEH, 1965), two binary operators: AND (the intersection, the mini-
mum of both values), and OR (the union, the maximum of both values), and one unary op-
erator: NOT (the complement, one minus the value). The exact implementation is shown

in the Explanation column.

To obtain the random numbers that are used to initialise the individuals, defin-
ing the operators used in the program and the membership functions, and to pick the
individuals during the selection phase a pseudo random number generator is used. For
the implementation of the here discussed algorithm the Mersenne Twister (MATSUMOTO;
NISHIMURA, 1998) algorithm is used. Mersenne Twister has passed many random statistical
tests, including the die-hard test (MARSAGLIA, 1995) and the load test (LEEB; WEGENKITTL,
1997). The 32 bits implementation that is used is implemented in the C++11 random library
and accessible through std::mersenne_twister_engine. Meaning that it can generate a lot of

random data in a short amount of time.

Each single individual completely defines all the membership functions for all se-
lected attributes that are fuzzified and used to build the complex rules. These definitions
are randomly generated during the initialisation of the population, and will be adjusted
between generations. It is important to note that all attributes are expressed as floats, and
so categorical attributes have to be converted to numerical values, by converting a presence

to 1.0 and an absence as o.0.

The so called 'Pittsburgh’-style method (SMITH, 1980) is followed to form the fuzzy
rule sets. In this approach each chromosome/individual represents a set of rules and not
a single rule (‘'Michigan’-style method; (HOLLAND; REITMAN, 1977)). The main difference
is that not the rules themselves are evaluated and scored, but only the set of the rules as
a whole. In this way, not only the rules are scored, but also how they are glued and used

together.

4.4.2 Fitness evaluation of models

Given that there are n factors, such as longitude, rainfall, altitude, which are assumed to
explain the realised niche, see Chapter 2, then the goal of the algorithm is to minimise the
error between the model prediction and the training presence and absence data. However,
not all error is considered equal. Consider the confusion matrix in Table 3, elements True
Positive (TP) and True Negative (TN) denote correctly predicted samples, whereas False
Negative (FN) and False Positive (FP) denote the erroneously predicted samples. With this
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Table 5 — Instruction set

Instruction Explanation

PUSH push a

AND pop b,if(b>a)a:=b

OR popb,if(b<a)a:=b

LOAD a := load(ram[pc])

TRAPMF  a:=trapmf{datajop],ram[pc],ram[pc+1],ram[pc+2],ram[pc+3])
NOT a=1-a

IF if (a > ram[pc]) a := pop

Source: Author

matrix the following metrics are determined: the sensitivity (2.2a), the proportion of pos-
itives correctly identified; and the specificity (2.2b), the proportion of negatives correctly
identified. For this algorithm implementation, first the sensitivity of the model is con-
sidered and only when the models have equal values then also the specificity. The reason
for this is that it is better to have models that predict zero (absence) when not sure, so that

multiple models can be summed together to form a single higher quality model.

4.4.3 Caching of fitness values

The computation of the fitness of the individuals during each iteration is the bottleneck
in GP. This is in accordance with the results publish by Santos and Santos Jr (2000).
The proposed solution is to cache the fitness values of each individual to significantly
reduce run times. The reason caching is effective is because in GA and GP much of the
gene/instruction sequence is preserved after cross-over and mutation as they only impact
fractions of the individual. Another reason is that typically as the algorithm progresses
from generations to generation more and more solutions will be similar. This is even

more true because of semantic- and structural 'introns’ (BRAMEIER; BANZHAF, 2007).

Introns are sections of instructions that when removed do not alter the outcome.
For example, in the mathematical expression a + b — b there is no change in outcome if
the instructions +0b followed by —b are removed. Now it is possible that during crossover
that mathematical expression has changed to, for example, a + 0 or @ + ¢ — ¢ or perhaps

to a + 1 — 1. In all those case the result will still be just a.

To not evaluate the 'same’ individual twice, all introns are first removed before the
individual’s fitness is calculated. Then the hash of the simplified individual is determined
for each present in that generation. The hash of'the individual is calculated by combining
the hash of all the instructions, operands, and constants defined in the individual with
the boost::hash_combine function (section 6.3 of the C++ Standard Library Technical Report
(ISOJIEC, 2007-11-15)). If the hash value is present in a look up table then it’s matching value
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is assumed to be the fitness of the individual. If not found, the fitness is calculated and
then stored in that same table for future look ups. This significantly increases the speed
of the algorithm, in the study of (SANTOS; Santos Jr, 2000) a speed up of 58% was attained.

4.4.4 Fuzzy parameter optimisation of models

Each generation the fuzzy membership functions are evaluated. Depending on the func-
tion will either be optimised or left in its current state. The fuzzyfication function trapmf,
see Equation 4.3 is chosen because it allows the definition of an optimum region and con-
figurable slopes to indicate less suitable areas.

0 z <a,
r—a a<x<hb,
b—a
TRAPMF(x;a,b,c,d) =< 1 b<z<g (4-3)
=T —.<a
c<zx
d—c -
0 d<zx

4.4.5 Demes

The term deme was first introduced in the field of biology by Gilmour and Gregor (1939)
to replace the then popular terms local intrabreeding populations and the cumbersome pop-
ulations occupying a specific ecological habitat. The benefit of this idea has been introduced
by Wright (1932) in his shifting balance theory and is now later also applied to GA and
GP to indicate a separate population where selection, mutation, and crossover are only
applied within the local separate population. The deme, or island (WRIGHT, 1932), pop-
ulation can be seen as spatial distinctive of other populations and which as a result in-
dependently. The implementation discussed in Section 4.6 uses the multiple-deme coarse
grained method, meaning that one can generate many separate populations that occasion-
ally exchange individuals through migration. This approach has been shown to maintain
diversity over a longer period of time, thus mitigating against premature convergence,
even with smaller populations and results in higher quality solutions (POLI; PAGE, 2000;
LANGDON, 1995; SKOLICKT; JONG, 2005; WRIGHT, 1932).

4.4.6 Recombination of model population

After the fitness is evaluated the individuals that will make it to the next generation are
selected. These individuals are then recombined through crossover or mutation or copied
unmodified to the next generation using an elitism strategy. The individuals are laid
out in a rectangular grid and offspring is created by using tournament selection with
sample size five, thus the cell and all its direct neighbour. This means that every time two
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individuals, in case of crossover, are selected of the cell and its neighbours based on the
best fitness scores and a probability. The anisotropy degree (SIMONCINI et al., 2006) o €
[—1, 1] used is configurable and automatically adjustable during the run and determines
the probability of the centre selection and the take over time of the best individual. This
way the algorithm can tune the selective pressure and first focus on exploration, while in
later generations focus on exploitation.

The delicate balance between these recombination operators is summed up by
Wright (1932) by stating that evolution depends on a delicate balance between these op-
erators. Gene mutation is necessary, but if there is too much there won't be evolution
just the creation of random individuals. There must be selection, but again if too much
there won't be any variability and no optimum solution will be found. Inbreeding within
the demes is advantageous, but only inbreeding and no crossbreeding leads again not to
optimum solutions. The optimum values are often application dependent and thus the
parameters for these operators are set and experimented with by the user when creating
the models.

4.4.6.1  Crossover

Crossover is performed by choosing two random points in the chromosome, both par-
ents will have the same length, then the code between those to points will be exchanged.
Unlike with a tree structure, there is no need to worry in LGP about the validity or depth
of the offspring after crossover. However, due to the nature of the stack machine imple-
mentation it is needed to safeguard against popping more data from the stack than is
available. This is done by guaranteeing that the same number of of pop and push instruc-

tions are in the exchanged part of the chromosome.

4.4.6.2 Mutation

Mutation is performed point wise on a single parent where every point has a (low) prob-
ability of being mutated. The resulting program is the produced offspring. The idea of
mutation is to source and maintain a degree of variability and diversity within the pop-
ulation. To maintain valid programs push instructions are replaced with other push in-

structions, and pop instructions with other instructions that pop.

4.4.6.3 Elitism

Elitism is a method used to conserve one or more of the most fit individuals from one
generation to the next. This means that those individuals are copied without modifica-
tion to the next generation. In this work elitism is implemented as the best individual
being copied over a random element after mutation and crossover already generated the

next generation. This unlike, for example, in the preselection scheme (MAHFOUD, 1992; CAV-
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ICCHIO, 1970) where elitism is implemented by allowing offspring only to replace their
weakest parent when that child is fitter. Elitism is a guaranteed to make sure that the
best individuals discovered are not discarded and are usable in future generations for
improvements by either crossover or mutations. The use of the elitist method is gener-
ally adopted in GA and GP to let the algorithm focus on a global optimum solution, while
still allowing the algorithm to diversify and find multiple other optimal solutions. A dis-
advantage using elitism is that in the later generations there will be less diversity as many
closely related, and likely redundant, individuals will make up a large fraction of the pop-
ulation. A study by Villalobos-Arias, Coello, Carlos A Coello and Hernandez-Lerma (2000)

shows that for some situations, elitism is required to have an algorithm converge.

4.4.6.4 Migration

There are several factors that define migration: the size of migration, the frequency or in-
terval that individuals move from one deme to another, the topology or configuration of
the demes with respect to each other, and the migration policy. Skolicki and Jong (2005)
show that small migration sizes (far) less than 10% should be used although the size has
far less impact than the frequency has, at least for high frequencies. Frequencies are sug-
gested to be around every 5-10 generations.There are many topologies imaginable, for
example, a simple ring topology, a 2-D toroidal grid as is often used in cellular evolu-
tionary algorithms (ALBA; DORRONSORO, 2008), or a full mesh with all nodes connected to
each other. The migration policy dictates which individual of the source sub population
is selected and which individual of the target population is replaced. Several strategies
are imaginable: randomly selecting and replacing; selecting the best and replacing a ran-
dom individual, or the one used in the algorithm implemented here; selecting the best
and replacing a random individual. The migration policy where both source and target
individual are selected based on fitness can significantly increase the selection pressure
and result in faster convergence (CRUZ; TESHIMA; CETRA, 2013).

4.4.7 Projection

The implementation uses the Geospatial Data Abstraction Library (GDAL) open source li-
brary with support for raster and various geospatial data formats (GDAL Development Team,
2016). This library is commonly used, also in R, for reading, writing and manipulating
raster data. Rasters are used to represent climate layers where each cell represents a 'small’
area on earth, e.g, 1 square kilometer. The GeoTIFF file format (RITTER; RUTH, 1997) is
used as intermediate format between the rasters supplied by the user in R and the algo-
rithm. In this format each pixel value represents one geographic area. Multiple bands can
be combined into one file, each representing the same geographic area, but a different

environmental factor. To make projections a specific cell location across all layers is read,
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resulting in a vector of values that will be fed into the model. The output, a single float,
will be written back to a single band GeoTTFF raster file, where each cell represents the
cell’s suitability for the species. This GeoTIFF file is read back into R and can be plotted

as is done in Section 5.1.3.

4.5 The Command Line Interface

A Command Line Interface (CLI) forms the boundary between two entities, e.g. 2 human
and a program, and provides a bidirectional but solely textual interaction with each other.
This section discusses the CLI implemented in a console application and its exposure to
R and the BIOMOD packages.

4.5.1 Console interface

The algorithm is implemented as a console application that interacts with the user, or
BIOMOD, through a command-line interface, where the commands are issued to the
program in the form of options supplied to the algorithm when the program is started.

Listing 1 shows all arguments than can be supplied to the application.

Listing 1 Command Line Interface

fuzzy.exe [--print] [-d <int>] [-g <int>] [-1 <int>] [-p <int>] [--shard <int>] [-b <int>] [-T <int>]
[--output-directory <string>] [--project-out-csv <string>] [--project-out <string>]
[--project-in-csv <string>] [--project-in <string>] [-1 <string>] [-0 <string>] [-v <string>]
[--background-samples <string>] [-s <string>] [--version] [-h]

Where:
--print Print the rules of the model
-d <int>, --dependent <int> The dependent to optimize for
-g <int>, --generation <int> Generations
-i <int>, --instruction <int> Instructions per individual
-p <int>, --population <int> Population size
--demes <int> How many demes to use
-b <int>, --boost <int> How many boosts to do
-T <int>, --runs <int> How many runs to do
--output-directory <string> Directory to place models and projections
--project-out-csv <string> Filename of CSV out
--project-out <string> File name of geotiff out
--project-in-csv <string> (accepted multiple times) File name(s) of CSV in
--project-in <string> File name of geotiff in
-1 <string>, --load <string> Filename of model to load
-0 <string>, --output <string> Filename to write model to
-v <string>, --validation <string> (accepted multiple times) Validation file(s)
--background-samples <string> Background Samples file
-s <string>, --samples <string> Samples file
--version Displays version information and exits.
-h, --help Displays usage information and exits.

4.5.2 R Interface

Changes have been made to alocal copy of the BIOMOD2 package (version 3.1-26), permis-
sible with the GPLvz (Free Software Foundation, June 1991)license under which the package is
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released. The complete tutorial by Georges and Thuiller (2013) can be followed. The only
difference is that in step 3 Computing the models, the here discussed algorithm needs to be
added in the list of models. The line models = c(’SRE’,’CTA’,’RF’,’MARS’,’FDA’),
needs to be replaced with models = c(’SRE’,’CTA’,’RF’,’MARS’,’FDA’,’THESIS"),.

Depending on the species under study the options in step 2 for this algorithm
can be modified. Similarly as is possible for the other algorithms present in BIOMOD.
The options supported in the R interface are shown in Listing 2. The most likely param-
eter that a user would like to change is the path of the executable that is obtained after
compiling the algorithm’s implementation. Other options that are modifiable are: (1) the
number of runs, i.e. the number of models that will be generated and then combined
by adding the outputs of each model and then scaling the result back between zero and
one by dividing the result by the number of runs to obtain an averaged model, (2) to skip
model generation and load a particular (set) of models by providing the location to them
in 'use_model’, (3) the number of generations, specifying the maximum number of itera-
tions before the algorithm halts, (4) the maximum number of instructions each individual
can have, (5) the number of each individuals present in each generation, or in other words
the population size, (6) the number of boosts to execute (FREUND; SCHAPIRE, 1997), and (7)
the number of demes to use, i.e. the number of separate populations to evolve in parallel,

and to ultimately pick the best individual among the demes for each boost.

Listing 2 R BIOMOD Interface

> Print_Default_ModelingOptions()

Defaut modeling options. copy, change what you want paste it as arg to BIOMOD_ModelingOptions

f=—=-=e=-=-—=-=-=-=-=-=-=-=-=-=-=-= ’BIOMOD.Model,Options’ m=e=e=e=e=-=-=e=e=-=-=-=e=-=-=-=-=

THESIS = list( path_to_rclr = ’C:/Users/michelbieleveld/GitHub/biomod’,
runs = 1,
use_model = ,
maximum_generations = 100,
maximum_instructions = 1024,
population_size = 100,
boost = 5,
demes = 50),

4.6 Case study: cloud computing

Generally, in genetic programming parallelisation is achieved in three ways (CANTU-PAZ,
1998): (i) global single-population master-slave (Figure 10a, (ii) single-population fine-
grained (Figure 10b), and (iii) multiple population coarse-grained (Figure 10c). In the case
of'a global single-population there is only one population on which the recommendation

operators, Section 4.4.6, are executed. What is done in parallel is the fitness evaluation of
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Figure 10 — Topology configurations of parallel genetic programs
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Figure 11 — Starcluster configuration file

[global]
DEFAULT_TEMPLATE=smallcluster

[aws info]

AWS_ACCESS_KEY_ID = ...civinienennnnnnn

AWS _SECRET _ACCESS_KEY = ..ttt ittt ei e i e
AWS_USER_ID= ....-....-....

AWS_REGION_NAME = us-east-1

AWS_REGION_HOST = ec2.us-east-1.amazonaws.com

[key mykeyABC]
KEY_LOCATION=~/.ssh/mykeyABC.rsa

[cluster smallcluster]
FORCE_SPOT_MASTER=True

KEYNAME = mykeyABC
CLUSTER_SIZE = 19

CLUSTER_USER = sgeadmin
CLUSTER_SHELL = bash
NODE_IMAGE_ID = ami-765b3e1f
NODE_INSTANCE_TYPE = c3.xlarge
AVAILABILITY_ZONE = us-east-1b
SPOT_BID = o.10

Source: Author

the individuals. In the fine grained method, everything is done in parallel but individuals
belong to spatially structured population. The recombination operators only select indi-
vidual from that local population and its direct neighbours. In this way processors do not
need to be aware of all neighbourhood, just their own. The last method, the population
is divided into several sub-populations (demes) each with individuals only interacting
with those of the same sub-population. However, on specific moments some of the best

individuals are allowed to migrate from one deme to another.

In the THESIS implementation, parallelisation is obtained by using a hybrid
of the coarse-grained method with coarse-grained method (Figure 10d). In this hybrid,
nodes are allocated to a specific deme and each node works on a small sub population
of the deme.To achieve this Open MPI (HUTCHINSON, 1957) is used in combination with
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Figure 12 — Speedup for varying parameters for the THESIS algorithm
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the StarCluster® (IVICA; RILEY; SHUBERT, 2009) configuration platform to configure Spot In-
stances in the Amazon Elastic Compute Cloud (EC2) 2. The used configuration is shown in
Figure 11. The implementation also uses OpenMP (DAGUM; MENON, 1998) to parallelise the
implementation for a single multi-core machine. The implementation is easily compiled
on multiple platforms with the use of CMAKE (MARTIN; HOFFMAN, 2007). The implemen-
tation that is used here is compiled with GCC 5.3 (STALLMAN, 2016). The implementation
is started on multiple machines and each will be assigned to a deme. There can be a num-
ber of demes up and equal to the number of machines, in the testing done here only a
single deme is used. When the program is started, the training and validation datasets
are distributed from the master machine to all others. Then all machines will train and
evaluate independently their solutions. When moving from one generation to the next
there is a migration of one or more individuals from all machines to the machine next

to it. At the end the best individual of all machines is selected as the solution.

The main advantage of the coarse grained approach is that the compute intensive
part of the algorithm, namely calculating the fitness of each individual, is done inde-
pendently for each individual on each processing node. This means that this approach
delivers an increase of speedup that is close to linear with the number of instances that
the implementation is run on. There is almost no need to communicate between the

processes, except for the migration and picking the best individual after during the last

! http://web.mit.edu/star/cluster
2 https://aws.amazon.com/ec2/
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generation. As a result, this method is suitable for low bandwidth parallel computation.

To test the performance of the THESIS algorithm, an experiment was run on the
Amazon Elastic Compute Cloud where up to twenty virtual high compute optimised ma-
chines were instantiated and configured through StarCluster. The configuration type of
these machines was c3.xlarge, a configuration that features four high Frequency intel Xeon
E5-2680 v2 (Ivy Bridge) processors, 7.5 GiB of memory, and two times fourty GB of storage.
The Amazon Machine Image (AMI) ami-765b3e1f was used and is based on Ubuntu? 12.04.
The only changes made to the installations were the addition of gcc-5 and cmake packages
on all machines through apt-get. The reason a newer compiler was required was because
of the use of the experimental filesystem support that is present in the 5.x and newer

releases.

Figure 12 depicts the result of this experiment. The graph shows the amount of
speedup relative to running the algorithm on a single instance. The dashed line repre-
sents a theoretical linear speedup where the execution time is halved for each doubling
of the amount of machines used. In the legend g represents the number of generations
executed, p the total size of the population, and s the number of samples used to train
the models. On each instance the algorithm also runs in parallel, configured with Open
MP, by creating threads up to the number of available cores similar to the global single-
population master-slave method. Therefore the x-axis could also represent the number
of cores, where the amount of cores used is equal to four times the number of instances

used.

The graph shows that for the selected parameters the amount of speedup by
adding instances is close to linear due to the fact that the algorithm is embarrassingly
parallel. While actual execution time for the experiment with p = 2000 is double that
of p = 1000 the achievable speedup is still linear. Which is also true for the amount of’
generations used; using ¢ = 100 will take five times the amount of time as g = 20, but
the achievable speedup is still about the same. To train a single model as used in the
case studies would take about 10 minutes on a single instance and close to 30 seconds
when a cluster of 20 machines is used. Interestingly, the graph also shows a set of pa-
rameters where the implementation runs more than the number of machines used faster
than the solution runs on a single machine, in other words a super-linear speedup. Alba
and Dorronsoro (2008) discussed that this effect is real and has been reported in other
work. Two explanations are: better caching and efficient memory usage (BELDING, 1995),
and (CANTU-PAZ, 2001) theorises that the speedup is due to a reduced convergence by a
higher select pressure caused by fitness based migration policies. Concluding it can be

said the implementation scales well.

3 http://[www.ubuntu.com
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This chapter presents two case studies of species distribution modelling with the
fuzzy THESIS algorithm and ten models made available through the BIOMOD package
that is available in the R project for statistical computing. The case studies in this chapter
draw on the data, algorithms, and implementation as discussed in the previous chapter
and links it with the biological aspects as discussed in Chapter 2 by applying the algo-
rithm on species to model niches based on selected occurrence and absence points. This
chapter discusses first a case study in which a virtual species is created to evaluate the im-
plementation of the THESIS algorithm in a more analytical approach. The second case
study discusses the evaluation of the algorithm with real species data. For each case study

the pattern of evaluation is described as well as the results and a separate conclusion.

5.1 Case study | - virtual ecology

Numerous studies have compared the performance of SDM techniques and their result-
ing models (ELITH et al., 2006; MEYNARD; QUINN, 2007) and often leading to an assortment
of recommendation and, not infrequently, even conflicting ones (ELITH et al., 2000; PE-
TERSON; PAPE ; EATON, 2007). Comparing modelling techniques is often difficult as the
comparisons are made with models trained on real species data. This poses a problem
as modelling species distributions is a complex task with many steps (Section 2.1.1) dur-
ing which there are many sources of uncertainty (Section 2.2.4). The interpretation of the

collected species occurrence records is even more complex as: data can be collected from
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a place where the species is not in equilibrium with its environment, species might be
difficult to detect in their habitat, and sampling can be biased. Biased, because collecting
closer to roads and rivers is easier than in the middle of the forrest. The effect of these
matters is even more complicated for rare species with low prevalence, and as a result
often with small sample sizes. Furthermore, the BAM framework needs to be considered
and with it: the dispersal of the species, the geologic history, the biotic interactions, the
time interval and special extent, and simply mistaking one species for another during
field research.

To create high quality reliable SDMs one needs to consider all the above factors
and probably many more. It is practically impossible to know all the facts and circum-
stances regarding a species because of limited resources at the disposal of researchers
and the above issues and biases (HIRZEL et al., 2002; AUSTIN et al., 2006). Even more so, even
if it was possible to know all occurrences at a given time, one still needs to understand
the relationship with the environmental factors and complex biological processes such

as interspecies relationship and diseases.

The Virtual Ecologist (VE) approach in contrast evaluates methods of data sam-
pling, analysis and modelling methods with the use of virtual data by simulating the
ecological processes involved and also the sampling processes and biases (ZURELL et al,,
2010; THIBAUD et al., 2014). The advantage of this approach is that it gives complete knowl-
edge of the underlying species distribution and its relationship to environmental factors,
and possibly biological ones as well. The downside is that this relationship might be
oversimplified and not capture the complexity of living real-world species (AUSTIN et al,,
20006; HIRZEL; HELFER; METRAL, 2001). While the VE approach tends to simulate the en-
tire process , earlier work by Hirzel, Helfer and Metral (2001) already proposed the use
of a virtual species which nature is completely described by its ecological niche and the
A region of the BAM diagram. In essence the VE approach removes all uncertainty and
present a known truth. Austin et al. (2006) puts forward the view that SDMs should be ca-
pable of recovering this artificial "truth” if they are to be of any use on empirical ‘complex’

real-word data.

According to Meynard and Quinn (2007), Zurell et al. (2010), Hirzel, Helfer and Me-
tral (2001), Barbet-Massin et al. (2012) virtual species simulation proved useful to assess
the predictive quality and analysis of SDMs and subscribed to the fact that simulation
allows for more accurate model evaluation and better control of the experiment parame-
ters. The simulation of virtual species distributions is increasingly applied as described
in an extensive literature review of the use of virtual models and the issues that they tried
to clarify, see Miller (2014). There are many advantages of the VE approach, however, after
reviewing many works Miller concluded that some studies introduced more problems as

a result of the method to generate virtual distributions, and that the correct approach is
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determined by the research objectives. A given example of such an introduced problem
is the consistently good performance by the BIOCLIM (BUSBY, 1991) method in Saupe et
al. (2012) as the method to generate the virtual distribution was probably very similar to
BIOCLIM.

5.1.1  Virtual species

In this case study a virtual species is generated to evaluate the performance of the genetic
fuzzy solution described in Chapter 4. This case study focuses on three questions: (i) How
does the algorithm perform compared to other popular modelling techniques available
in the BIOMOD package in the ideal situation knowing true absences and presences?, (2)
What is the impact of knowing only presences and using background data?, and (3) What

is the impact of sampling errors on the prediction quality?

A framework for virtual ecology modelling including the generation of virtual
species through various customisable species - environment relationships and selecting
distribution and sampling biases is made available in an open-source package for the R
environment (R Core Team) named virtualspecies (LEROY et al., 2015). Other solution exists
such as SDMvspecies (DUAN et al,, 2015), but they do not provide a probabilistic sampling
feature, the probability of detecting an occurrence at a site where a species is present
(REESE et al,, 2005), or the probabilistic approach to convert environmental suitability to
presences and absences (MEYNARD; KAPLAN; SILMAN, 2013).

Figure 13 shows the four steps followed with the virtualspecies package to build the
virtual species used in this case study. The global climate dataset WorldClim (Section 2.1.3)
is used as the source for the environmental variables. For this species, six bioclimatic en-
vironmental variables derived from the monthly temperature and rainfall values were
extracted from the dataset: (1) mean diurnal range, (2) the maximum temperature of the
warmest month, (3) the minimum temperature of the coldest month, (4) the annual pre-
cipitation, (5) the precipitation of the wettest month, and (6) the precipitation of the dri-
est month. Bucklin et al. (2015) has shown that four of these variables already are highly
predictive for the species that were modelled, while using eight variables produces only
a slight increase in quality. Taking the middle ground, six environmental variables are
chosen to define this virtual species, but the exact number does not matter as long as
the variable importance for the species is high, meaning the variables explain well the

distribution, as is the case for this virtual species.

In the first step, the environmental space E of the species (see Section 2.0.3) is
defined. For this, PCA (RAO, 1964) was performed to obtain and reduce the variation into
two non-correlated environmental variables that explain the distribution of the species.
Other methods that do not use PCA to define species suitability exist, but they likely lead

to virtual species with unrealistic environmental conditions (LEROY et al,, 2015). With the
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Figure 13 — The steps taken to build the virtual species with the virtualspecies R frame-
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Figure 13 — The steps taken to build the virtual species with the virtualspecies R frame-
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PCA 83.5% of the variability of the environmental variation was captured into two inde-
pendent axes. Similar to the workflow mentioned in Jiménez-Valverde and Lobo (2007),
except the mean value is not chosen for the axes, but an arbitrarily one. The environmen-
tal range inhabited by the species was arbitrarily chosen as: axis 1, [min=-9.96; max=2.69] :
dnorm (mean=-2; sd=0.5), and for axis 2 [min=-3.34; max=6.85] : dnorm (mean=0.8; sd=0.5),

see Step 1 in Figure 13.

The second step uses Hutchinson’s duality principle to map the defined environ-
mental space of the first step onto the geographic space G. The entire world is here se-
lected as the region of interest and the suitability of each place is indirectly dependent
on the earlier selected bioclimatic variables. The resulting map is a suitability map where
each cell value is obtained by multiplying the densities of the normal curves of both axes

for a given point.
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The third step converts the obtained suitability map into presence and absence
points. This simulates field research where professional or citizen scientist visit a loca-
tion and spot a particular species. A simple approach of differentiating presences from
absences is by applying a fixed threshold where all values at one side of the threshold
are considered presences and at the other side absences (HIRZEL; HELFER; METRAL, 2001;
JIMENEZ-VALVERDE; LOBO, 2007; PETERSON, 2011). One complication of this approach is
that it does not simulate the random processes acting on species occupancies and will
lead to misleading data to train SDMs (LEROY et al,, 2015). An alternative approach is a
probabilistic approach; Meynard, Kaplan and Silman (2013) discusses five reasons why a
probabilistic approach is preferred: (1) ecological theory supports a dynamic occupancy
pattern, (2) a threshold approach can give an incomplete answer for a set of questions, (3)
the capacity to discriminate between presences and absences is lower with a probabilis-
tic approach and SDMs need to be able to handle such ambiguity, (4) standard statistical
modelling techniques based on logistic curves, e.g.,, GLM and GAM, may not converge
well as the slope of the logistic curve at the threshold value is infinite, (5) using a single
threshold value eliminates all variability and will always result in the same distribution
map, as such repeated experiments to separate the effects of prevalence and sample bias
can not be run. The environmental suitability is converted to a probability of occurrence
with a logistic function using a probabilistic approach. A random draw then determines if
a cell is marked as a presence, e.g, a cell value of 0.1 has a one in ten chance to be marked

as such. The result is the presence-absence map shown in Step 3 of Figure 13.

The fourth step is to optionally limit the region and then draw samples. One rea-
son to limit the region is to be able to test model transferability, see Section 2.2.2. To test
this training samples are randomly drawn from the spatial area defined by the borders
of the country Brazil. While testing sample are randomly drawn from the entire world.
To answer the three question asked for this case study, an error probability is defined to
simulate misidentifications. The testing of the generate SDMs will always be done on the
sampled true absences and presences, while models will be trained on either true pres-

ences and absences or true presences and background data depending on the question
asked.

5.1.2 Evaluation of SDM performance

To explore SDM performance, a training dataset for model calibration needs to be pre-
pared. There is no consensus on the sample size n of presences required to effectively
train models. Earlier work suggests that model performance is negatively affected if
n < 30 for all tested methods (WISZ et al., 2008). In another work n > 70 is required to
make model reliability independent of the sample size (JIMENEZ-VALVERDE; LOBO; HORTAL,
2009). Other work suggested that useful models with as few as five to ten positive obser-
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vations and that models trained with n = 50 did not outperform models with n > 100
(HERNANDEZ et al,, 2006). However, in general it is assumed that the quality of the model is
increased when more samples are used (JIMENEZ-VALVERDE; LOBO; HORTAL, 2009; PEARCE;
FERRIER, 2000; STOCKWELL; PETERSON, 2002). Due to the absence of a clear guide, a pres-
ence sample size of n = 80 was chosen. Well above the recommendations of previous
research, but still low enough to simulate the lack of presences for many species in the
real world. There is also no consensus on the correct prevalence, or the proportion of pres-
ences to absences in presence-absence datasets. According to Jiménez-Valverde, Lobo and
Hortal (2009) in the absence of noise the effect of prevalence is not noticeable for n > 50.
Others suggest that the proportion of presences and absences should be balanced and
so a prevalence of 50% is chosen (LANTZ; NEBENZAHL, 1996; HOEHLER, 2000; MCPHERSON;
JETZ; ROGERS, 2004).

Overfitted SDMs are good at explaining the training samples and possibly the
training region, but likely perform poorly on unseen data and new regions. To check for
overfitting ten-fold stratified cross validation is the more robust and popular method
(BREIMAN, 1993; BORRA; CIACCIO, 2010). In ten-fold stratified CV the data is randomly di-
vided into ten almost equal sized blocks while maintaining a 0.5 prevalence. The CV pro-
cess involves creating ten times a model on nine of the blocks and testing the model on
the reserved block. Each time a different reserved block is used for testing. Using CV will
not only signify the goodness of the fit of the trained models, it is also an indication that
a heuristics based algorithm, such as implemented for this thesis consistently converges

to a usable model.

To answer the first question the algorithm performance is compared to other mod-
elling techniques available in the BIOMOD package. BIOMOD provides support for: Gen-
eralised Linear Model (MCCULLAGH; NELDER, 1989, GLM), Generalised Additive Model
(HASTIE; FITHIAN, 2013, GAM), Multiple Adaptive Regression Splines (FRIEDMAN, 1991,
MARS), Generalised Boosting Model (FRIEDMAN, 2001, GBM), Classification Tree Anal-
ysis (BREIMAN et al,, 1984, CTA), Artificial Neural Network (HORNIK; STINCHCOMBE; WHITE,
1989, ANN), Surface Range Envelop or also known as BIOCLIM (BUSBY, 1991, SRE), Flexi-
ble Discriminant Analysis (HASTIE; TIBSHIRANT; BUJA, 1994, FDA), Random Forest (HO, 1995,
RF), and Maximum Entropy modelling (PHILLIPS; ANDERSON; SCHAPIRE, 2006, MAXENT).
After modification BIOMOD also supports the implemented genetic programming SDM
that is discussed in this thesis named "THESIS’ in the results. For the ideal situation a
training sample set is constructed of 100 true absences and 100 true presences, both re-
stricted to Brazil to test whether the models can extrapolate to other regions in the world.
This dataset of 200 samples and a prevalence of 0.5 has no errors in its observations and
is depicted in Step 4 of Figure 13. In the figure presences are marked as '+’ and absences
marked as ’x’. The main attraction of SDMing is that models make meaningful predic-

tions for new regions and times. To test this ability the testing data set is obtained by
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randomly sampling 20.000 locations on the world wide suitability map. It is important
to note that the prevalence of the testing set is far from 0.5 and is proportional to the preva-
lence of the species. For this reason the model evaluation metric TSS is used, because it
is readily applied for presence—absence predictions and is shown to be not affected by
prevalence (ALLOUCHE; TSOAR; KADMON, 2006).

5.1.3 Results

Models are first trained on the discussed training dataset with BIOMOD (default settings
for all algorithms) and then evaluated in two ways: on the held out validation data during
CV, the left Validation column in Figure 14, and on the global test dataset, the right Test
column in Figure 14. The diagrams graphically illustrate the numerical distribution of
the T'SS values for the different classifiers, using the smallest and largest observations
for the whiskers, and the lower quartile, median and the upper quartile for the boxes.
Each row in the figure shows the result of training and validating the models after more
and more error is introduced by equally increasing false presences and false absences
by a certain percentage of the total samples. During the experiment the training dataset
is fixed at 200 samples and a prevalence of 0.5, the test dataset is kept the same for all
experiments and does not contain introduced errors. The idea is to test the predictive
power under different noise conditions, which is an indication of how well the models
will perform when pseudo-absences or background sampling is used as both can be seen

as introducing noise ( marking a presence as an absence ).

The first row (0% error) of Figure 14 shows the evaluation when no noise is intro-
duced. All presences and absences used to train and evaluate are "true’ in this situation. As
is expected for all models, part of the box and whiskers lay in the dark grey area, signifying
a'T'SS > 0.75, and are considered ‘excellent’ models. Projecting all models to an unknown
area immediately shows a big drop in the quality of almost all algorithms. Not one algo-
rithm produces ’excellent’ results and only the algorithms THESIS, MAXENT,MARS,FDA
produce 'good’ results (0.4 < TSS < 0.75).

A projection is made for each algorithm with the model that obtained the high-
est TSS score on the validation dataset. These projections are shown in Figure 15. Fig-
ure 152 shows the actual distribution of the species. Ideally model projections should be
as similar to this image as possible. Note that this is only possible if the bioclimatic fac-
tors present in Brazil are representative of the species’ niche. In the case of this virtual
species it is known to be true, but this assumption does not necessarily hold for real word
projections into challenging new regions and times. The algorithms FDA,MAXENT,SRE,
THESIS produce results quite similar to the original distribution. The other algorithms
all predict good in Brazil, but they incorrectly predict the species to be overly extensive

on a very large part of the northern hemisphere.
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Figure 14 — T'SS score of BIOMOD model projections for increasingly higher presence-
and absence error for both validation and test datasets. The light grey area
indicates models that are considered ‘good’ (see See Section 2.2.4.3), while the
dark grey area indicates ‘excellent’ models.
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Figure 14 — T'SS score of BIOMOD model projections for increasingly higher presence-
and absence error for both validation and test datasets. The light grey area
indicates models that are considered ‘good’ (see See Section 2.2.4.3), while the
dark grey area indicates ‘excellent’ models.
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Figure 15 — Virtual species model projection for several algorithms
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Figure 16 — Nemenyi critical difference diagrams comparing the overall performance of
the THESIS method with other BIOMOD approaches using the T'SS score as
performance metric and considering all 0%-50% error experiments. Tested
on (a) CV validation datasets, (b) test dataset. Average ranks of the examined
SDMs are depicted. Bold lines indicate groups of SDMs which are not signit-
icantly different (at p = 0.05 their average ranks differ less than the Critical
Distance (CD) value/distance indicated by CD line on the top.)
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According to Demsar (2006), the Wilcoxon signed rank test (WILCOXON, 1945) is the
test to compare two methods: the Friedman test (FRIEDMAN, 1940) when comparing more
than two methods and the Nemenyi test (NEMENYI, 1962) to post-hoc compare all classi-
fiers over multiple datasets when the Friedman test indicates that there is a significant
difference between the methods. These three tests are the non-parametric equivalents
of the paired t-test, the ANOVA analysis of variance, and the Tukey test. Non-parametric
tests have the desirable quality of not requiring that the variables are distributed nor-
mally. These kind of tests are less powerful than the parametric tests that use data with a
particular distribution. As a consequence non-parametric tests are less reliable to reject
the null hypothesis when it is false and lead to erroneous conclusions. The three tests,
Friedman, Nemenyi and Wilcoxon, are executed in R (R Development Core Team, 20006) in

combination with the scmamp package (CALVO; SANTAFE, 2015).

The Friedman test is applied to the underlaying data of the graphs depicted in
Figure 14. The test confirmed that there is a statistically significant difference in the T'SS
values obtained from the SDMs. To investigate this difference the post-hoc Nemenyi test
was applied. The results of this test are graphically depicted in Figure 16 with a Critical
Difference diagram (DEMSAR, 2006). In the figure the SDMs are ranked with the best over-
all classifier at the left to the least performing classifier at the right. The Critical Differ-



5.1. Case study I - virtual ecology 93

Figure 17 — Nemenyi critical difference diagrams comparing the overall performance of
the THESIS method with increasingly higher error rates using the TSS score.
Tested on (a) CV validation datasets, (b) test dataset. Average ranks of THESIS
are depicted for each error rate. Bold lines indicate groups of models with spe-
cific error rates which are not significantly different (at p = 0.05 their average
ranks differ less than the Critical Distance (CD) value/distance indicated by
CD line on the top.)
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ence (CD) of the Nemenyi test is indicated in the top left of the figure. When two classifiers
differ less in their ranking than the CD then there is no significant difference with 95%
confidence level (p = 0.05), else there is a significant difference between the two. SDMs
connected with a bold horizontal line are closer to each other than the CD and thus do
not differ significantly with 95% confidence interval. Similarly, a CD diagram, Figure 17,
is created to compare the THESIS models with themselves that were generated for the
0,10,20,30,40 and 50% error rate experiments (shown in Figure 14). Figure 16 shows that
the implemented algorithm ranks among the most highly predictive algorithms for this
particular species. Figure 17 shows that the impact of noise does not significantly impact
the quality of the predictions for this species for at least up to twenty percent on the
validation data, and thirty for the test data.

5.1.4 Conclusion

The results of this case study show that modelling algorithms function differently de-
pending on the application and the data quality of the input data. Concluding the ques-
tions that were asked are answered as follows:
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How does the algorithm perform compared to other popular modelling techniques avail-

able in the BIOMOD package in the ideal situation knowing true absences and
presences?

The developed THESIS algorithm produces ‘good’ models for this species for all
experiments up to 30% of error in the input data. Even for the 40% and 50% er-
ror experiments ‘good’ models are produced, although only for a few of the folds.
Statistically, the algorithm performs comparable to those present in BIOMOD. Ex-
perimental results show that the algorithm generalises well, generating even up to
50% error ‘good’ models that project well into the unseen region. Based on the CD

diagram (Figure 16) the following observations are made:

« The SDM performance ranking for projecting into the unseen region is from
best to worst: THESIS, RF, MAXENT, GAM, FDA, GBM, SRE, MARS, GLM,
ANN, and CTA.

« The performance ranking on the validation data is from best to worst: THESIS,
GAM, MAXENT, RF, FDA, GBM, SRE, MARS, GLM, ANN, and CTA.

« The THESIS algorithm does not show a significant difference (95% confidence
level; p = 0.05) with the algorithms GAM, MAXENT, RF and FDA on the eval-
uation data.

« The THESIS algorithm rank as best and shows a significant difference (95%
confidence level; p = 0.05) with all other algorithms on the test data.

What is the impact of sampling errors on the prediction quality?

The answer is that, as expected, an increase of error causes a deterioration in model
quality. This trend is easy to see in the Validation column, Figure 14, by the con-
tinuous decrease of the TSS value of the models for each graph with a higher error
rate. Almost all algorithms produce ’excellent’ models for the ideal situation, then
the models deteriorate to 'good’ after introducing 10% error, and typically ending
up worse than ’good’ for 20% error. Note that these errors are really worst case
scenarios as it also includes the percentage of errors in the presence data, that in
practice may be filtered out with careful data preparation. Based on the CD diagram
(Figure 17) the following observations are made regarding the impact of sampling

€ITrors:

« For the validation tests, there is no significant impact (95% confidence level;
p = 0.05) on the model projection quality up until and including 20% of error
had been introduced.

« For projecting into unseen regions, there is no significant impact (95% confi-
dence level; p = 0.05) on the model projection quality up until and including

30% of error had been introduced.

Concluding, for this species and selection of folds, up to 30% error in both presence
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and absence data, does not significantly (95% confidence level; p = 0.05) impact
model quality. However, as shown in Figure 14 part of the box is no longer in the
'good’ area of the graph and thus care needs to be taken to select the correct model
based on the validation data.

What is the impact of knowing only presences and using background data?
The comparison of SDMs in Elith et al. (2006) shows that presence-absence models
with pseudo-absences or background data have a tendency to outperform presence
only-models and are therefore increasingly used (BARBET-MASSIN et al., 2012). With
background and pseudo-absence data locations that fall within G p can erroneously
be marked as absence leading to commission errors. The amount of error will de-
pend on the size of the study region and the relative extent of the potential distribu-
tional area of the species with that region (ANDERSON; LEW; PETERSON, 2003; PHILLIPS;
ANDERSON; SCHAPIRE, 20006; PETERSON, 2011). In general though these commission
errors are comparable to what is modelled by introducing the error in the exper-
iments for this case study. The species modelled here has a species prevalence of
0.043, meaning the fraction of the area a species occupies divided by the total area
of the region (the world in this case) equals to 0.043. Assuming that background
and pseudo-absence locations are randomly chosen, the amount of presence cells
selected as absence will be far lower than the 30%, as shown in the literature where
models for species with low prevalence have higher accuracy than for species that
occupy large areas (KADMON; FARBER; AVINOAM, 2003; SEGURADO; ARAUJO, 2004; HER-
NANDEZ et al., 2006; FRANKLIN; MILLER, 2009). As discussed the THESIS algorithm
generates good models up to 30% for this species, therefore, there is no significant

impact of using background data.

In general this case study suggests that the THESIS algorithm should be used for appli-
cations where transferability is required, such as invasion and global change biology. A
negative consequence of this is that the algorithm limits the detail that is captured nec-

essary for interpolation.

5.2 Case study Il - Zenaida macroura

In this study the quality of the algorithms to model a living real world species Zenaida
macroura is examined. The experiment to train and test the algorithms overlaps with the
experiments discussed in Peterson, Pape and Eaton (2007). The focus of the experiments
is to answer two questions: How do the SDM algorithms in BIOMOD and the THESIS
algorithm perform on a real species? How well do the generated models transfer to new

unseen regions?
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Figure 18 — Zenaida Marcroura

I/./;y £ SLE R ae 8 -

b ’, Lt : o -
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censed under CCo (Menke Dave, U.S. Fish and Wildlife Service, )

5.2.1 Zenaida macroura

The mourning dove (Zenaida macroura, see Figure 18) is one of the most abundant birds
in northern america and is widely distributed. It has been spotted to be present in vari-
ous habitats, such as urban areas, woodland edges, bushy fields, meadows and scrubland
(RUMELT, 2016).

Northern populations that breed up until the south of Canada migrate in winter to
the southern of Mexico and Central America, see Figure 19. Survey data of the species was
obtained from the BBS (SAUER; J. E. Hines; J. Fallon, 2001). The species was chosen because
of the large geographic distribution and large sample size in the BBS and the interesting
model projections for this species in (PETERSON; PAPE ; EATON, 2007). Since the species is
considered and known to be a good disperser, the distributions of the species will not
be significantly affected by dispersal and historical factors (M in the BAM framework,
Section 2.0.4), but instead be largely limited to the ecological factors B and A. Normally,
in the context of using SDM, the B factor is considered (Eltonian) noise and is hypoth-
esised to play mostly a role in fine-grained spatial regions in contrast to the A factor
that has long-ranged autocorrelations with the species distribution (SOBERON; PETERSON,
2005; SOBERON, 2007). Stable population occurrences were obtained by selecting from the
BBS survey routes where the species has been detected during yearly surveys, taken at
the height of the breeding season, in eight, not necessarily consecutive, years during the
period 1991 - 2000. Absences were defined by selecting survey routes where the species
has not been detected by the bird watcher for any of the years during this same period. All
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Figure 19 — Zenaida Marcroura distribution during the year.
[ Breeding only
[l Resident year-round
[ ] Wintering only

Source: Ranges from BirdLife International and NatureServe (2015)

other routes are not used for this study. This resulted in a data set with 1155 true absence
points and 1003 true presence points of Zenaida macroura in North America (westlimit=-
169.5; southlimit=24.5; eastlimit=-52.0; northlimit=76.5; projection=WGS84) as shown as in
Figure 20.

5.2.2 Evaluation of SDM performance

To test if the SDMs extrapolates and transfers into not sampled geographic areas the BBS
data is divided into two stratified subsets by separating the samples into geographic quad-
rants divided by the median longitude and latitude of the samples and then grouping
the two diagonally opposing quadrants as shown by the boxes in Figure 20. For this test
the models were trained with the data on the on-diagonal and tested with the presence-
absence data from the off diagonal. The position of the quadrants was chosen so that all
quadrants contain about the same number presence points. A ten-fold CV is used to fairly
compare the algorithms by making sure that consistently good models are generated and

to evaluate the models’ prediction quality on the calibration dataset.
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Figure 20 — The geographic distribution of Zenaida macroura, obtained from the BBS
dataset (1991-2000). Absence data marked by small crosses, presence data as
black squares (main diagonal) and by dotted circles (antidiagonal). Models
were trained with one diagonal and tested with the other.
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To test how good the SDMs in general predicts the distribution of Zenaida
macroura the data of both diagonals is merged into one data set. Models are trained for
with ten-fold CV. For each fold 50% of the data points is randomly selected, without any
regard for geographic location, for calibration and the other 50% is held out for model
testing. The idea is that in contrast to the experiment described in the previous paragraph
here the environmental space E is more extensive sampled and thus more representative

for the species.

Similar to the work of Peterson, Pape and Eaton (2007), the abiotic data set is
formed by joining the nineteen bioclimatic variables of the WorldClim data set (HIJMANS
etal,, 2005) with four layers (elevation, slope, aspect and the compound topographic index)
from the digital elevation model Hydroik (U.S. Geological Survey, 2000) data set. To repro-
duce the data set PCA is used to reduce the amount of factors. The first eleven compo-
nents together account for 97,0% of the variance. A difference with the reference work is
that the Hydroik data set is not resampled to 10’ resolution, but only projected to WGS84
and aligned with the 30 arc-seconds WorlClim data set. The reason is that occurrence
point data (Longi and Lati fields) from BBS are used and not the route paths shape files.
Thus avoiding the effect of resampling as, for example, slope calculations are resolution

dependent.
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Figure 21 — Zenaida Macroura model projection with stratified sampling

Source: Author
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Figure 22 — Zenaida Macroura model projection with random sampling
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Figure 23 — T'SS scores of BIOMOD models and THESIS projections for stratified and
random datasets, and both with their respective validation- and test datasets.
The light grey area indicates models that are considered ’good’ (see See Sec-
tion 2.2.4.3), while the dark grey area indicates 'excellent’ models.
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5.2.3 Results

The results of the experiments are summarised with the use of box and whisker plots
shown in Figure 23. After training with BIOMOD (default settings for all algorithms) the
models are evaluated in two ways: on the held out validation data during CV, results
depicted in the left Validation column of Figure 23, and on the test dataset, depicted in
the right Test column of Figure 23. The first row of the figure shows the results obtained
for the random sampling experiment, the second row displays the results for the stratified

experiment.

One thing to notice is that the models trained in the stratified experiment are sig-
nificantly (p-value < 2.2e-16) better performing on the evaluation datasets than those in
the random experiment. This suggests that in the stratified experiment there is less com-
plexity that needs to be captured by the algorithms to make good predictions. In addition,
it suggests that the models score better due to less variety in the ecological factors between
the training and evaluation data. As expected, this effect is reversed when the models are
tested on unseen data. Models trained with the random data perform significantly better
on the unseen data than those trained with the stratified dataset. This further suggests
that the models obtained with stratified data are overfitted to the diagonal that they were

calibrated on.

The models of the fold with the average highest TSS value for the stratified- and
random datasets are projected and shown in Figure 21 and Figure 22 respectively. The
most remarking result is that with a few exception, e.g., SRE, all projections look quite
similar. Most variation in the maps seems to be in Mexico, at the south of the map. This
observation also holds true when comparing the random- (Figure 22) with the stratified
(Figure 24b) projection for the same algorithm. One thing that becomes apparent is that
it is virtually impossible to pick the better map merely on a single number metric and
without extensive knowledge of the species. For this reason, as discussed in Chapter 6,
it is of the utmost important that maps are evaluated and hand picked by experts with
extensive knowledge of the modelled species. Even with experts it is a difficult task accord-
ing to Murray et al. (2009) as there was an obvious difference of estimates of distribution
between experts from different regions as well as within regions and they concluded it

might be dangerous to use only one or two experts.

The Friedman test was applied to the underlaying data of the graphs depicted
in Figure 22 and 21. The test confirmed that there is a statistically significant difference
in the TSS values obtained from the SDMs. To investigate this difference the post-hoc
Nemenyi test was applied. The results of this test are graphically depicted in Figure 24
with a CD diagram. In the figure the SDMs are ranked with the best overall classifier at the
left to the least performing classifier at the right. The CD of the Nemenyi test is indicated
in the top left of the figure. When two classifiers differ less in their ranking than the CD
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Figure 24 — Nemenyi critical difference diagrams comparing the overall performance of
the THESIS method with other BIOMOD approaches with each other using
the TSS score as performance and considering the random and stratified ex-
periments. Tested on (a) CV validation with 50% of data used for testing, (b)
tested on the off diagonal dataset. Average ranks of the examined SDMs are
depicted. Bold lines indicate groups of SDMs which are not significantly dif-
ferent (at p = 0.05 their average ranks differ less than the Critical Distance
(CD) value/distance indicated by CD line on the top.)
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then there is no significant difference with 95% confidence level (p = 0.05), else there is
a significant difference between the two. SDMs connected with a bold horizontal line are
closer to each other than the CD and thus do not differ significantly with 95% confidence

interval.

5.2.4 Conclusion

The results of this and the first case study show that modelling algorithms behave differ-
ently between (virtual) species and that the ranking among the algorithm vary strongly
for the two studies. A result that has been underscored in the literature, where it is has
been shown that no method is superior in all circumstances (SEGURADO; ARAUJO, 2004).
All algorithms, but SRE, produced 'good’ models for the random experiment, while less
acceptable models for the stratified experiment. The projections generated by all models
give the impression that they are potentially correct maps of distributions. Without plac-
ing the maps under critical examination it nearly impossible to select the map that best

represents the species. The questions regarding this case study are answered as follows:

How do the SDM algorithms in BIOMOD and the THESIS algorithm perform on a real

species?
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Overall, the eleven SDMs showed good ability to predict the observed distributions
for the random experiment, and close to good for the stratified experiments. Based

on the CD diagram (Figure 24) the following observations are made:

« The SDM performance ranking trained on random data is from best to worst:
RF, GBM, GAM, THESIS, MAXENT, ANN, MARS, FDA, GLM, CTA, and SRE
(Figure 24a).

« The performance ranking of the models trained on the stratified data is from
best to worst: GBM, RF, MAXENT, FDA, CTA, ANN, THESIS, MARS, GLM,
GAM, and SRE (Figure 24b).

« Models generated by the THESIS algorithm do not show a significant differ-
ence (95% confidence level; p = 0.05) with the best ranked algorithms RF, GBM,
and GAM on for the random experiment.

« The models trained by the THESIS algorithm do not show a significant differ-
ence (95% confidence level; p = 0.05) with the best ranked algorithms GBM,
RF, MAXENT, FDA, CTA, and ANN for the stratified experiment.

How well do the generated models transfer to new unseen regions?
Unlike in the first case study, all algorithms have more difficulty projecting into
the new unseen diagonal. The reason for this is likely due to the shape, nature and
complexity of responses to the environmental factors. Even though these models
individually do not have the desired accuracy and vary between their predictions
that does not make them useless. There is increasing support for ensemble mod-
elling (ARAUJO et al., 2005; ARAUJO; CORREA, 2007) to combine and aggregate the result
of several methods to reach a consensus, an already stablished technique outside of
ecological modelling (DIETTERICH, 2000). In the literature it has been shown that en-
sembles significantly improve predictions (ARAUJO et al., 2005; MARMION et al., 2009).
Grenouillet et al. (2011) even goes as far as recommending not to use any single SDM

for predictions, especially for species large environmental ranges.

Summarising, this case study suggests that the THESIS algorithm predicts comparable
(95% confidence level; p = 0.05) to the top ranked algorithms in BIOMOD.



105

6 Model sharing

Contents
6.1 Introduction . ... .. ... ... .. .. . ... ... 105
6.2 Modelsharing . ... .. .. ... .. ... .. .. .. .. .. . ... 107
6.2.1 DataLifeCycle . ... ... ... ... . ... ... . ... ... ... 108
6.2.2 Standardisationofdata . . ... ... ....... ... .. ...... 109
6.23 Species Distribution Modelling ecosystems . . . . ... ... ... 109
6.3 SDM framework . . . . .. ... ... ... ... .. ... .. ... 110
6.3.1 Cloud based architecture . . . .. ............. .. ..... 110
6.3.2 Data from repositories . ... ......... ... ... 110
6.3.3 Dataquality ... ... ... . 111
6.3.4 Analyticsengine . .. ...... ... . . . o L. 111
635 Interface dashboard . . .. ... ... ... ... .. .. .. ... 111
6.4 System architecture . . . ... ... ... ... ... ... ... ... .. 112
6.4.1 The application controller . . . ... ...... ... ... ..... 112
6.4.2 Third party repository interface . . .................. 114
6.43 Species Distribution Modelling Cloud Service . . ... ... ... 114
6.5 Final Remarks . . ... ... ... ... ... ... ... ... ... ... 115

6.1 Introduction

So far in this thesis, the importance of datasets and Species Distribution Model (SDM)
for benefit indicators and synthetic studies has been discussed in Chapter 1 and Chap-
ter 2, where also a theoretical (BAM) framework for modelling ecological niches has been
set out and the many complexities of errors and model validation. Chapter 2 also intro-
duced SDMs that play a key role in integrated model-based assessments to understand
and explore the complexity and the provision of scenario analyses to make well-informed

political decision-making (SIEBER et al,, 2010) and to reduce pressure upon biodiversity.

However, while not directly connected to the work presented thus far, true integra-
tion of biodiversity data requires theoretical deep models and hypotheses about the pro-

cesses by which organisms evolve and interact with the environment and other species.
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While working on the algorithm and learning about SDM I found it more and more im-
portant to consider to store and retrieve the models in some form. This for mainly three
reasons; the first the development of the algorithm and the comparison with other algo-
rithms has been troubling because of a lack of models and dataset to compare it with,
in other words to perform a kind of benchmark to see where and how the the proposed
algorithm operates well. Secondly, there is a significant loss of information and efforts
undertaken by researches to not include the models, unlike point data that does not say
much, a (published) model predicts the species density and provides a complete and fine-
scale spatial coverage of potential distributions for an entire geographic range, and more
importantly includes the evaluation of the model by typically an expert of the species.
Third, the re-utilization of models of species can help build analytical tools to respond
to questions about species interactions (PETERSON et al., 2010; SANTANA; SARAIVA, 2010).
This not only increases our knowledge about interactions, but also likely increases the
quality of the species predictions as species are only a part of'a larger whole. Enabling the
use of the models themselves to answer more complex scenario based analysis (STOCK-
WELL; PETERS, 1999). For this reason, I discovered for myself that this is perhaps the most
important issue that should be focussed on and have therefore described in the chap-
ter a possible temporary solution to the problem. Temporary because during the study
I discovered that this problem warrants many other doctoral research projects and is an
extremely complex, but worthwhile, problem to solve.

Reliable models for occurrences and richness of species assist policy-makers
in meeting objectives and are used, for example, to value areas for nature conserva-
tion (PARVIAINEN et al,, 2009). While there is a lot of discussion about what exactly is mod-
elled and the correct applicable terminology, in essence, they forecast a part of the species
niche (SILLERO, 2011). The models forecast the occupied niche when true absences are
used from all suitable habitats to train the model, or the realised niche, when the sam-
ples do not cover all presence areas or when pseudo- or background absences are used.

Knowing where a species occurs is a first step in making decisions.

There are several major problems in predictive modelling studies that affect
model performance, e.g., incompleteness of data (ARAUJO et al,, 2005), dependence on
the selection of the appropriate study region (ANDERSON; RAZA, 2010), the spatial reso-
lution as landscape patterns and processes are scale-dependent and their response non-
linear (YANG et al., 2011; WU et al., 2002), the training of models with sample locations from
different temporal periods (ROUBICEK et al., 2010; STANKOWSKI; PARKER, 2010), the choice of
threshold to convert probability values into presence or absence (NENZEN; ARAUJO, 2011),
and the modelling method used best suited for the aim of the modelling (PETERSON, 2011;
ELITH etal.,, 2006). Therefore, evaluate the usefulness ofa model it is necessary for an ecolo-

gist with expert knowledge of the modelled species to cautiously interpret its predictions.
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Policy questions can only be answered when cross-domain interactions are consid-
ered and not solely ecological models, as they are incomplete by themselves since they fail
to account for important processes that influence extinction outcomes (KEITH et al., 2008).
To maximise the benefits of the ecological models it is important to include other factors,
such as: (i) costs (MURDOCH et al., 2007), (ii) the human socio-economic system (YUE; JOR-
GENSEN; LAROCQUE, 2011), (iii) demographic and landscape dynamics (WINTLE et al., 2005),
and (iv) spatio-temporal interactions and animal movement (LAROCQUE et al.,, 2011). Con-
sidering the broad spectrum of possible cross-scale interactions it is likely that the re-
quired expertise goes beyond that of ecologists. To make the fullest use of the scientific
value of the generated and evaluated models by ecologist it is necessary that models are
available to other scientists and not just the underlaying data. To not share those is an in-
efficient use of funds and a loss of opportunity to accelerate breakthrough research with

an impact beyond ecology.

This chapter stresses the need to share and re-use of SDMs through the use of an
ecosystem for modelling species distributions. An architecture of'a system is described
thatis comprised of readily available cloud computing technologies and the R language (R
Development Core Team, 2000) to enable meaningful storage, retrieval and publishing of
data models in a seamless automated fashion in an attempt to achieve integrated envi-
ronmental modelling. A generic format for model encoding or a specific infrastructure
is not proposed nor required for this to work as the infrastructure primarily functions
as a general storage method. The main idea behind this conceptual framework is to pro-
vide researchers a place to collaborate, share data and to utilise earlier published models.
This way model outputs are turned into conservation management tools to allow policy
makers to manage the loss of biodiversity in the region. Therefore, turning enabling the

use of model outputs for more than just static geographical maps.

The remainder of this chapter is organised as follows: first, other solutions are
presented that relate to this problem and that contextualises this chapter in Section 6.2.
The requirements of the proposed ecosystem are described in Section 6.3. Section 6.4
provides the overall design and architecture of the framework and describes the high-
level details of all components. Since the proposed solution is conceptual, the last section
of this chapter will discuss potential problem areas and suggestions how to implement

the proposed solution.

6.2 Model sharing

This section will describe briefly four different aspects of the proposed solution, namely:
(i) the standardisation of data, (ii) the utilisation of cloud computing technologies, (iii) the

Species Distribution Modelling ecosystems themselves, and (iv) the data sharing aspect,
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Figure 25 — A view of the data life cycle
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which is the main reason for this ecosystem.

6.2.1 Data Life Cycle

Figure 25 illustrates a view of the data life cycle.Two cycles are shown that lead to new
research questions and knowledge. The inner cycle starts with data collection and in-
volves acquisition, data exploration, quality control, analysis and visualisation and, in the
end, a publication. The outer cycle starts with integration of archived data and extracting
knowledge. The latter cycle facilitates reproducibility and multi-disciplinary collabora-
tions: opening the way to new scientific insights by testing new or alternative hypothe-
ses and methods of analysis and exploration of topics not envisioned by the original re-
searcher (WRUCK; PEUKER; REGENBRECHT, 2014).

Re-usable archived data and metadata is a requisite for the outer cycle. To catalyse
scientific progress the data needs an accurate description and be publicly available, illus-
trated in Figure 25 by the steps inside the dashed box: (i) metadata preparation, (ii) meta-

data, and (iii) archived (meta) data.

Collectively ecologists produce an enormous amount of data, however only a frac-
tion is shared. The majority works individually and pursues constrained spatial and tem-
poral scales with limited resources for storage, analysis and sharing of data (HEIDORN,
2008). In a study of a hundred randomly selected articles produced by projects funded
through NSF’s Division of Environmental Biology (2005-2009) only 43% of the papers
that produced data shared some or all it (HAMPTON et al,, 2013). Nonetheless, 83% of that
shared data is related to genetics. Only 8% made non-genetic data available. The fact is,
even if more models are published they will only be useful if their access and reuse is easy

for all that are involved.
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6.2.2 Standardisation of data

Computer science forms a central role in creating new models for the way results are
published. As it is common to include references in articles, so it should be routine to in-
clude complete computational methods. These results should be extensively tested, cross-
referenced and encoded in community-supported and standardised formats. Modelling
standards should allow and publish data in an automated way to obtain integrative mod-
els as just quantifying losses of biodiversity will not be enough for policy change and loss
reduction (BALMFORD et al., 2005).

There are other initiatives that aim to improve this, for example: MetaCat (BERKLEY
etal, ), EcoTrend (SERVILLA et al,, 2008), LifeWatch (HERNANDEZ ERNST; POIGNE; LOS, 2010),
WBCMS (FOOK, 2009), DataOne and the EML and DarwinCore standards. However, these
initiatives do not specifically address the standardisation of the model representation
as for example the Systems Biology Markup Language (SBML) does for systems biol-
ogy (HUCKA et al,, 2003).

Even though a standard, such as SBML, for SDMs is not defined, and defining
such as standard goes far beyond the scope of this work, the field has a de facto SDM stan-
dard in BIOdiversity MODelling (BIOMOD) (THUILLER et al., 2009) that supports many if
not all popular SDM algorithms, such as MaxEnt (PHILLIPS; ANDERSON; SCHAPIRE, 2000),
GARP (STOCKWELL; PETERS, 1999) and Random Forests. BIOMOD allows for the storage
and retrieval of earlier created models and, consequently, provides a de facto standard to
share those models. For that reason, this framework takes advantage of R and BIOMOD

to save the models and to document the process by which they are generated and utilised.

6.2.3 Species Distribution Modelling ecosystems

For SDM voluminous bionomic and scenopoetic data are used to discover meaningful
insights into the potential niche of the species under study. These insights are revealed
through modelling and analysis using machine learning and statistical methods. Various
techniques and algorithms are developed specifically with SDMs in mind, focusing on
data sets where limited data is available and where real species absence points are almost

non-existent due to the labor intensity of obtaining them by biologists.

The proposed SDM ecosystem supports managing, integrating and visualising of’
the models and their relevant data. The greatest challenges of such an ecosystem is deal-
ing with: the complex and heterogeneous nature of the data, the lack of common stan-
dards and the difficulty to obtain funding for long term storage, as that is only sensible
if data re-use is proven to work.

The short and limited scope project carried out in this research does not try to

solve these problems nor tries to define a standard for workflow, model or meta-data.
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Instead, the focus is on version control, citability and reproducibility. The platform does
not achieve this by imposing an accepted format for important meta-data, but rather by
providing a platform where models are created on-line in a similar fashion as is now
customarily done by researchers on their own desktop computers. As an initial step the
proposed solution provides a web-based R front-end and a repository to save and retrieve
the models.

6.3 SDM framework

The Species Distribution Modelling Framework for an SDM Ecosystem should consider

the necessities discussed in the remainder of the section.

6.3.1  Cloud based architecture

A unified cloud based architecture for SDMs provides a single, centralised, consistent,
reusable and reproducible modelling service that enables research validation and inte-
gration. The cloud brings a self-scalable global access to on-demand long running com-
puting resources such that individual researchers do not have to worry about budgeting
for dedicated machines. In principle lowering the overall cost for all that are involved as

computing resources are only sporadically required per user.

Researchers access models stored in the cloud and share their own models to col-
laborate with other scientists for further synthetic studies. It permits others to verify pub-
lished results of past investigation and to extend and integrate and generalise the models

into new unexplored areas.

The cloud should be the preferred way to store long-term generated models in-
stead of on private hard drives or in local repositories. Studies have shown (CAETANO;
AISENBERG, 2014; HEIDORN, 2008) that local data is often lost from disuse and that in fact
only about eight percent of articles have their data available upon direct request after a
period ofjust five years. This platform needs to facilitate a way to include the full compu-
tational methods used in publications. Others can experiment with those methods while
reading along with the article.

6.3.2 Data from repositories

Biodiversity data with detailed information for each data set laboriously compiled
and made available by and through organisations such as the Global Biodiversity In-
formation Facility (GBIF; http://www.gbiforg/ ) and the Atlas of Living Australia (ALA;
http://www.ala.org.au/ ) must be capitalised on by the framework as this data is an essential

ingredient for the model building process.
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6.3.3 Data quality

Even though GBIF and ALA provide access to large data sets, the compilation and clean-
ing of that data for building the model is still a very time consuming process. Cleaning
and improving the quality of the data requires a profound understanding of the species
over large taxonomic, spatial- and temporal scales. While a complete data refinement
workflow, as for example discussed in Mathew et al. (2014), is not enforced and outside
the scope of this work. The platform merely ought to address the need to store the result
of the data cleaning process and the identification and exclusion of erroneous or irrele-
vant records so that other models are trained and compared with the exact same records

thus making the model creation reproducible.

6.3.4 Analytics engine

The projection of models over large geospatial areas, which requires large volumes of
static scenopoetic data together with ever-changing species distribution as they continu-
ously are gathered by biologists all over the world, benefits from cloud computing prin-
ciples to overcome the high computational efforts needed to build, project and analyse
models. The analytics engine is cloud based and allows for the projection by using proven
supervised data learning algorithms. By keeping the analytic engine open for public
changes, computer- and other scientists will have a framework to develop and test new al-
gorithms and strategies. Eventually, the platform is used to write easily model algorithm
benchmarks to evaluate new algorithms to determine their quality, since data sets and

predicted model outcomes will be verified and possibly peer reviewed.

6.3.5 Interface dashboard

An internationally accessible interface to all involved and interested in the model predic-
tions should be made available, such that research institutes, government agencies and
also the general public can utilise the platform. From the perspective of the researcher
the cloud based interface provides a way to access model predictions and study the en-
vironmental impact on their distributions. The interface facilitates a way to reproduce,
validate and analyse earlier published models, opening up the niche models for conser-
vation planning: to give attention and using valuable limited resources for those species
and places that need it the most. In addition, through the interface the models can be
used for integrated model-based assessments to understand and explore the complexity

and the provision of scenario analyses.

Beyond that, the framework should address the reasons why researchers do not
share their data, such as: (i) the time needed to prepare data (SWAN; BROWN, 2008), (ii) the

loss of control of data (TENOPIR et al., 2011), (iii) not receiving credit and acknowledg-
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ment (GROTH; GIBSON; VELTEROP, 2010), (iv) data taken out of context (BECHHOFER et
al,, 2013), and (v) highly sensitive and/or restricted for public access data, e.g., extinct
species (MEIJAARD; NIJMAN, 2014) and (vi) licensing concerns (KLUMP et al., 2000).

6.4 System architecture

The proposed system architecture makes effective use of a cloud based architecture by
providing global access, centralised data storage and self-management for processing re-
sources for its users. Figure 26 shows the overview of the SDM framework in a cloud based
SDM ecosystem. The architecture is composed of several modules that interact together
to provide the required functionality. The following sections describe the following mod-

ules in more detail:

m The Application Controller

m Third Party Repository Interface

m Species Distribution Modelling Cloud Service
— Reservation Controller
— SDM Engine
- Kernels Manager

— Processing Instances

6.4.1 The application controller

The primary functions of the application controller is to control and direct user requests
to the appropriate modules and to provide the web service with the required informa-
tion to access the models. It is responsible for storing and serving static projections, re-
ports and model quality analysis. The controller synchronises information on load and
resource availability with the reservation controller to enable users to track the status of’

the system.

The application controller enforces modularity by dispatching the requests by
sending and receiving messages to the other modules and instances, so to exploit the
elasticity of the cloud architecture by increasing the number of active instances propor-
tional to the amount of incoming requests. A single web interface forwards user com-
mands to virtual instances that are allocated by the kernel manager. Returned messages
are identified by their host id and displayed in the appropriate user view of the SDM en-
vironment. This lays a foundation for a more robust design where the clients and servers
are independent modules and may fail separately without one failure affecting others in

the system.
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6.4.2 Third party repository interface

The technical interoperability to obtain heterogeneous data from different sources is
complex. The Third Party Repository Interface module provides an internal standardised
access to species repositories (e.g.,, GBIF and ALA) to obtain occurrences with a program-
matic interface that is made available by existing R packages in the modelling environ-

ment.

6.4.3 Species Distribution Modelling Cloud Service

The SDM cloud service consists out of several components that all support the SDM Ker-
nel. The reservation controller’s purpose is requesting and allocating resources, the SDM
engine’s to maintain the model repository, and lastly the kernels manager function is to
self-manage the required number of instances to support parallel task based execution
of the models.

6.4.3.1 Reservation Controller

The reservation controller provides an interface to request resource reservations for the
SDM kernel application. Its main service is to provide contract negotiation for the re-
quired virtual resources for a given time frame. The aim is to implement a resource
reservation scheduling algorithm that supports the execution of the SDM algorithms.
However, it tries to limit the number of active instances as they are billed per hour and
also incur a setup cost and time, delaying the execution of the process. Therefore, not
every reservation request should directly result in an immediate launch of a virtual in-

stance.

6.4.3.2 SDM Engine

The Species Distribution Modelling Engine supplies the storage for commonly used
scenopoetic data for the reason that researchers often use the same voluminous data set,
e.g., the WorldClim Global Climate Data set (HIJMANS et al., 2005), to build their models.
However, other data may be uploaded directly into the Cloud Storage.

The researcher has a choice of various open source software packages and mod-
elling algorithms by using BIOMOD (THUILLER et al,, 2009) in a general R-Studio Server
(setup to create models, or even ensembles of models); just as in any other R instance that

is run in a local desktop environment.

6.4.3.3 Kernels Manager

When the reservation controller processes the request information it checks whether the

requested resources are currently already available. Each solicited resource is then com-


https://www.rstudio.com/products/rstudio/download-server/#https://www.rstudio.com/products/rstudio/download-server/.)

6.5. Final Remarks 115

pared with all instances that are currently active to find an instance that matches all the
requested features. Typical features are: architectures, instance sizes and the available
number of CPUs and GPUs. If no matching instance is found by the Kernels Manager it
will bare-metal provision a new instance, for example: booting the machine to a fresh sys-
tem image, attaching volumes and configuring the required packages. The new instance
is added to the resource inventory and its lifetime subsequently managed by the kernels
manager. A confirmation message is returned and a user is granted access. In this way the
framework acts in a similar fashion as serving ordinary thin client, thus allowing multiple

user applications to run in separate and parallel processes.

6.4.3.4 Processing Instances

The processing instances, alike the other modules, are build on top of'a cloud computing
service that provides scalable on-demand usage-based "pay as you go” compute capacity.

Each instance makes use of the fixed and removable storage services.

All instances are preconfigured identically with both the Python and R packages
available and with access to the shared storage and the scenopoetic datasets maintained
by the kernel manager. It is on these virtual instances that the actual SDMs are developed,
executed and analysed. Models can be saved to long term storage and retrieved at a later
time by either the same user or by any other researcher if the model is shared or made
publicly available. Thus providing a way to reproduce data cleaning, model construction

and projection at a later time for re-evaluation or to be build upon for new research.

6.5 Final Remarks

This chapter discussed SDM and model sharing for biodiversity ecosystems. It briefly
touches the requirements, design aspects and possible architecture to enable research
synthesis and utilise the generated models in a broader context and leveraging cloud-
computing, self~management by auto-scaling the required resources in the cloud for ad-
dressing many issues in traditional non-centralised modelling systems. A system of this

type can bring the following benefits that currently are not available:

« aplatform for model storage for various species using well known de facto standards.
Model developers using the proposed system would benefit from this interoperabil-
ity for data sharing,

- a simple yet effective structured approach to store large amounts of models and
layer data using existing technologies for querying and managing the large data
sets in a data warehouse solution. Allowing the proposed solution to scale dynam-
ically as it is build on cloud technologies making it easy to increase storage and

computational power on demand.
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« an interface for SDM that allows generic and unstructured data from various data
providers to be accessed and processed in the system. Data stored in such records
is easily visualised in solutions such as Google Maps for further investigation.

 a modelling engine that is based on the BIOMOD package and consequently im-
plements various SDM modelling algorithms on the cloud using python and R.
With the proposed framework in many cases there is no need to further analyse the
models themselves as they will already be evaluated by expert ecologist and cross-
referenced to a publication; making them available to be used as an integral part

for new composite models and further interdisciplinary research.

Most importantly, a tremendous benefit would be to no longer allow SDM to go in disuse
after they are used for publication and as a consequence potentially open up new areas

of research.
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This thesis proposed a new algorithm to create models of species niches to iden-
tify and predict species distributions. Two methods have been combined to present a
hybrid solution that utilises both linear genetic programming and fuzzy rule systems.
This approach differs from the other models present in BIOMOD in that it is based on a
process that mimics biological evolution. The algorithm continuously adapts individual
solutions within a population of possible solutions. During each generation, or adapta-
tion round, the solutions "evolve” toward better and more optimal models. This chapter
re-visits the results and examines them in light of the original thesis that was stated in
Chapter 1. In addition, the chapter discusses the strengths and weaknesses of the new

algorithm. It concludes with an exploration of possible future directions for research.

7.1 Thesis revisited

This section reviews the thesis stated in Chapter 1, verifying that it has been addressed.

Thesis: Not just ecological models, hybrid fuzzy - evolutionary models in extendible

environments allow for better predictions.

The results of the two case studies presented in this thesis confirm that the im-
plementation of the objective (Section 3.1) regarding a hybrid of fuzzy and evolutionary
algorithm produces models that are able to predict the complex non-linear relationship
between environmental factors and species presence and absences. Whether these mod-
els perform better than other methods will depend on the species under study; regarding
the first case study, the algorithm produces significantly (p = 0.05) better models that
transfer well to unseen regions. With respect to the second case study, the algorithm has
not produced better models. However, the generated models were significantly (p = 0.05)
comparable with the best ones produced. In addition, the algorithm has shown a linear

speedup on an cloud computing solution in Section 4.6.
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With regard to the objectives mentioned in Section 3.2 the needed modifications
are published on GitHub * and involves: the BIOMOD package, the source code of the
algorithm, and the compiled command line executable that implements the algorithm. A
general approach to add algorithms to BIOMOD should be standardised to easily verify
new algorithms. The source code is made available under the GPLv2 license (Free Software
Foundation, June 1991), permitting commercial use, modification, distribution of the soft-
ware, without being held liable; in accord with the philosophy of Chapter 6. As a result
the experiments described in this thesis are reproducible, although with slightly different

results due to the heuristic nature of the algorithm.

As stated previously in Section 2.3, SDMs are used to shape policies for conserva-
tion planning. Arguably, increased accuracy and higher quality predictions will result in
more effective maps to understand the likely changes in species distributions based on,
for example, future emission scenarios such as those defined by Working Group III of
the Intergovernmental Panel on Climate Change (op. 2000). Concluding, the thesis and

all objectives to demonstrate it have been met.

7.2 Strengths of this approach

The nature of linear genetic programming and fuzzy rule based system make this ap-
proach particularly suited for noisy occurrence records and the lack of true absence data,
as previously seen in Section 5.1. For the analysis of species distribution modelling to be

useful under these circumstance the modelling algorithm is required to handle this well.

The robust nature of the algorithm has been demonstrated by the application of
both case studies. While the algorithm does not transfer as well in the second case study,
it does not perform significantly worse than other conventional modelling algorithms.
The strength of this approach is that it is not based on ideal mathematical models, but in-
stead is problem agnostic. Genetic Programming does not '’know’ anything about species
distributions, nor the environmental factors that affect them. In fact, no explicit domain
knowledge to achieve the goal is used to create the models. Instead, the algorithm simply
tries to find this relationship, in this case with symbolic regression, and successively tries
better iterations to get improved results. A strength of this approach is therefore that it

can be used to create small programs that describe the niche of a species.

The genetic programming approach, even more so with fuzzy rules, differs from
many other algorithms of modelling species niches in that it operates by doing a proba-
bilistic search and keeping a diverse set of solutions, that might even be contradictory, to
solve the problem. This way the technique does not rely on greedy hill climbing to move

from one point to the more optimal in search space. Greedy hill climbing may work well

1

<https://github.com/michelbieleveld/genetic-fuzzy>
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for simple problems, but for non-trivial problems where certain areas in search space
are inaccessible to hill climbing this will not work. As a consequence of the probabilist
search, the algorithm can spend some portion of its population on sub optimal solutions,
while it searches with another portion in different more adventurous areas of the search

space.

7.3 Weaknesses of this approach

A general weakness of all approaches that use species distribution modelling is that there
are many, many details that need clarification and testing. Sample size, effects of scale,
time and resolution, whether model projections are valid for future predictions, sample
efforts that can introduce bias, optimal parameters for each algorithm, and how are all
these aspects, and many more, are relevant for the training and application of the SDM.
Unfortunately, but not unexpected, the work presented in this thesis also does not have
an answer to those questions for the proposed algorithm. It’'s main weakness, as with the
other algorithms, is that there is no clear guideline when to use this algorithm as is the
case for all algorithms used in SDM. The main reason being that it will depend on the
application and species under study. The famous No Free Lunch theorem by Wolpert and
Macready (1997) states that any two optimisation algorithms are equivalent when their
performance is averaged across all possible problems. A result of this theorem is that if
an algorithm is better at one thing, it must be worse at something else. Based on the
limited results of just two case studies, the discussed algorithm seems to perform less
well when interpolating,

A major weakness in the algorithm is that its search is computationally intensive.
While by nature the algorithm is embarrassingly parallel when using multiple demes and
shards or even the evaluation of fitness of the individuals, as shown in Section 4.6, but
that does not negate the fact that a lot of processing power is required to go through
search space. Building a single model for the species in the case studies, often took in the
order of ten minutes on a personal computer to build ten models for the cross validation
using serially a single core and up to 30 seconds when using the cluster with twenty nodes.
However, when in the end a suitable model is found little processing power (in the order
of tens of seconds) is required to apply this model to the data (in the order of giga bytes
of climate data) to make projections.

7.4 Future directions

Perhaps, now that many other aspects are in place and are proven to be highly useful,
the most important improvement needed for species distribution models is not the al-

gorithms, nor the quality of the data points ( as shown there is no significant difference
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up to 30% error in the virtual species case study) or making presence points available to
the public with solutions such as GBIF, but the sharing of SDMs, verified by experts, that
can be used for research synthesis and policy making. Ideally, shared through a system
of sorts as discussed in Chapter 6, but any framework that makes the models themselves

available and citable just like other data will enable research synthesis.

Other future directions in this particular research area of data sharing involves
defining formal model representations that are useful for the visual presentation and to
allow the models to be computable to automatically simulate and analyse them, similar
as is done with the Systems Biology Markup Language. Defining such as language that
defines a common intermediate format will enable: (1) researchers to define algorithms
and use them without rewriting the tools, and vice-versa, (2) the sharing and publishing of
the models for reproducible and synthesis research, and (3) the survival of the generated

models for current publications beyond the lifetime of submitting those publications.

Many steps in the algorithms presented here, both for those present in BIOMOD
and the algorithm discussed in this thesis, use parameters with ad hoc set values. To un-
derstand the effect of those values, good training datasets are needed to identify and mea-
sure specific impacts of parameter changes. Optimising these parameters will require a de
facto standardised benchmark for species distribution modelling, similar as the probeni
benchmark (PRECHELT et al,, 1994) for neural network learning. This benchmark should
contain several real world species with various degrees of prevalence and data for specific

applications that either require transferability or interpolation.

Genetic Programming and Fuzzy Rule Systems may prove useful in incorporating
other sources of data, such as species relationships and population densities. Algorithms
such as discussed in this thesis are problem agnostic and optimise for various non-linear
problems. There is good promise in applying this approach to these new sources of data,
as it is relatively easy to adapt the instructions of genetic programming to include more

complex relationships based on expert knowledge.

Finally, future research in species distribution modelling algorithms and the mod-
elling process should start focussing on how these tools are useful for conservation plan-
ning research to support management, and not just to generate maps. This could open
up decision support tools to use species distribution maps to identify areas that are suit-
able for conservation based on a set of biodiversity metrics for minimal economic and
social cost. It is possible that the properties of the discussed algorithm can best identify
a particular set of target metrics due to the inherent multi-objective process of genetic

programming. Future research can consider this question as well.
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